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Chapter 10

Signal models and basis functions
ch,basis
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10.1 Introduction (s,basis,intro)s,basis,intro

Most of the reconstruction methods described in this book assume that the underlying continuous-space object of
interest is approximated by a series expansion in terms of basis functions [1]:

f(~x) =

np∑
j=1

xj bj(~x), (10.1.1)
e,basis,intro,series

or equivalently
f = B2x,

where B2 is a mapping from Rnp or Cnp into the space of functions of ~x. The jth “column” of the operator B2 is
the basis function bj(~x). Although we often write equality in the model (10.1.1), in practice this representation is an
approximation. See Fig. 10.1.1.

The model (10.1.1) is equivalent to assuming that f(~x) lies in the np-dimensional subspace of continuous-space
functions spanned by the basis functions {bj(~x)}. We usually use such finite-dimensional subspaces because it facili-
tates computation and because the available data vector y is always finite dimensional.

Nevertheless, in principle it is at least conceivable to try to reconstruct a continuous f(~x) from a finite-dimensional
measurement vector. This is done routinely in the field of nonparametric regression [2], the generalization of linear re-
gression that allows for fitting smooth functions discussed in 1D in §2.2. However, nonparametric estimation becomes
more complicated in 2D problems like tomography.

Van De Walle, Barrett, et al. [3] proposed a pseudo-inverse approach to MRI reconstruction in a continuous-
object / discrete-data formulation, based on the general principles of Bertero et al. [4]. If the pseudo-inverse could
truly be computed once-and-for-all then such an approach could be practically appealing. However, in practice often
there are object-dependent effects, such as nonuniform attenuation in SPECT and magnetic field inhomogeneity in
MRI, and these effects preclude precomputation of the required SVDs. So pseudo-inverse approaches are impractical
computationally for typical realistic physical models. See also [5, 6].

This chapter summarizes some of the choices for basis functions {bj(~x)} that have been investigated in the image
reconstruction literature, as well as some of the alternatives to the finite-dimensional linear subspace model (10.1.1).
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Figure 10.1.1: Illustration of a 1D function f(x) and its approximation by two finite-dimensional subspaces, one using
rectangular basis functions, and the other using quadratic B-splines.
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Figure 10.1.2: Illustration of a simple 2D function f(~x) and its approximation by a finite-dimensional subspaces using
square-pixel basis functions.
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10.2 (Linear) basis function choices (s,basis,linear)
s,basis,linear

Numerous families of basis functions {bj(~x)} have been investigated in the image reconstruction literature for use
with finite-dimensional linear subspace models of the form (10.1.1). This section enumerates several of the options.
• Fourier series (complex / not sparse) [7]
• Circular harmonics (complex / not sparse) [8–11]
• Wavelets (negative values / not sparse) [12]
• Overlapping circles (disks) [13]
• Overlapping spheres (balls) [14] (approximately ellipsoids under nonrigid motion)
• Kaiser-Bessel window functions (blobs) [15]
• Rectangular pixels / voxels (rect functions)
• Dirac impulses (point masses / bed-of-nails / lattice of points / “comb” function)
• “Natural pixels” {si(~x)} [16–20]
• B-splines (pyramids) [21–24]
• Polar grid [25–29],
• Logarithmic polar grid [30]
• gaussian functions [31, 32]
• Radial basis functions (circularly symmetry) such as [33] b(~x) = (1− ‖~x/r‖2)1{‖~x‖≤r}
• Organ-based voxels (e.g., for PET reconstruction using anatomy from CT image in a PET-CT system) [34–39]

There are many considerations when choosing between the many options listed above. (See [22, 40] for early
discussions.)
Mathematical considerations
• The subspace should represent f(~x) “well” with moderate np (approximation accuracy). One meaning of “well” is

that the approximation error should be much less than the estimation error.
• In particular, it is desirable for the subspace to be able to represent perfectly a constant (uniform) function.
• It is desirable for the functions {bj(~x)} to be linearly independent, ensuring that the expansion (10.1.1) is unique.

Uniqueness is not essential though because our ultimate goal is finding f true and having multiple values of x for
which f true = B2x (or approximately so) is acceptable. There is really never a xtrue in practice! However, the
redundancy of linearly dependent functions {bj(~x)} may increase computation time so usually should be avoided.
• Orthogonality of basis functions is often advocated for signal modeling because it greatly simplifies computing

the coefficients xj in (10.1.1) given f . However, in inverse problems we are not given f so orthogonality is not
essential!
• It can be desirable for the representation (10.1.1) to be insensitive to a shift of the basis-function grid, i.e., approxi-

mate shift invariance. Smooth basis functions are preferable to discontinuous functions in this respect.
• Similarly, it is desirable for the basis functions to be symmetric and circularly symmetric so that the representation

(10.1.1) has approximate rotation invariance and invariance to coordinate system reflections.
• Many bases have the desirable approximation property that one can form arbitrarily accurate approximations to
f(~x) by taking np sufficiently large. (This is related to completeness.) Exceptions include “natural pixels” (a finite
set) and the point-lattice “basis” (usually).

Computational considerations
• Choice of basis functions affects how “easy” it is to compute elements of the system matrix aij and/or perform

matrix vector multiplicationAx (forward projection).
• If the system matrix A is to be precomputed and stored, then it should be sparse (mostly zeros). Narrower basis

functions usually are preferable in this respect.
• In applications where f(~x) is nonnegative, it should be easy to represent nonnegative functions e.g., if xj ≥ 0, then
f(~x) ≥ 0. A sufficient condition is bj(~x) ≥ 0.
As detailed in Appendix 25, basis function choice, combined with the system model ȳi =

∫
si(~x) f(~x) d~x de-

termines the elements of the system matrix A as aij =
∫
si(~x) bj(~x) d~x . However, many published “projector /

backprojector pairs” are not based explicitly on any particular choice of basis.
Some pixel-driven backprojectors could be interpreted implicitly as point-mass object models. This model works

fine for FBP, but causes artifacts for iterative methods [41].
Mazur et al. [42] approximate the shadow of each pixel by a rect function, instead of by a trapezoid. “As the shapes

of pixels are artifacts of our digitisation of continuous real-world images, consideration of alternative orientation or
shapes for them seems reasonable.” However, they observe slightly worse results that worsen with iteration!

10.3 Nonlinear object parameterizations (s,basis,nonlin)
s,basis,nonlin

Linear models like (10.1.1) are the most common in image reconstruction, but numerous alternatives have also been
investigated, including nonlinear parametric models. These models are often considered in problems with very limited
data, necessitating strong assumptions about the object with few degrees of freedom. Usually these models involve
estimating both object intensity and shape parameters (e.g., location, radius, etc.), the latter leading to nonlinearity.
This section enumerates some of the parametric models that have been used for image reconstruction problems.
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Surface-based (homogeneous) models
• Circles / spheres [43, 44]
• Ellipses / ellipsoids [45]
• Superquadrics
• Rectangles with unknown position, size, amplitude [46, 47]
• Polygons [48]
• Bi-quadratic triangular Bezier patches [49]
• Triangulated 3D surface [50–52].

Other models
• Generalized series f(~x) =

∑
j xj bj(~x,θ)

• Deformable templates [53–55] f(~x) = b(Tθ(~x))
• Adaptive tetrahedral meshes (defined by a point cloud) [56]

These type of parametric models have the advantage that they can be considerably more parsimonious than vox-
elized models. Thus, if they are accurate, they can yield greatly reduced estimation error. These models are partic-
ularly compelling in limited-data problems, even if they are oversimplified. (All models are wrong but some models
are useful.) The nonlinear dependence of f(~x) on shape parameters and location leads to non-convex cost functions,
complicating optimization.

Region of interest (ROI) or “focus of attention” [57–59]
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10.4 Synthesis models and dictionary learning (s,basis,synth)
s,basis,synth

Even after using the finite-series expansion (10.1.1), image reconstruction problems are usually under-determined
(i.e., np > nd) or at least very badly ill-conditioned. Thus, attempting to estimate x solely by finding a minimizer
of a data-fit term L- (x) is rarely adequate. Chapter 1 and Chapter 2 described using regularization or prior models to
(indirectly) “constrain” the estimate x̂. This section describes synthesis-based approaches to modeling x. The basic
idea underlying all of these methods is that we must find some way to reduce the degrees of freedom of the estimator
x̂.

10.4.1 Subspace model
The classical linear approach to reducing degrees of freedom is to assume that x lies in the subspace S spanned by
some np × r basis matrixB with r � np (having full column rank):

x ≈ Bz, (10.4.1)
e,basis,synth,x=Bz

for some unknown coefficient vector z ∈ Rr. (This is equivalent mathematically to using a different set of r basis
functions in (10.1.1).) Then one estimates z from the data by minimizing the data-fit term:

x̂ , Bẑ, ẑ , arg min
z∈Rr

L- (Bz) .

If r is sufficiently small relative to the data dimension nd, then this problem may be well conditioned and have a
unique minimizer.

One can “learn” the subspace basis B from training data X = [x1 . . . xM ] , provided M > r. We want to find
a matrix B (with linearly independent columns) such that each xm approximately lies in its span, i.e., ‖xm −Bzm‖
should be small, where zm = arg minz ‖xm −Bz‖. It is simpler (and loses no generality) to require that the columns
ofB be orthonormal, leading to the optimization problem

arg min
B :B′B=Ir

min
Z∈Rr×M

|||X −BZ|||2Frob. (10.4.2)
e,basis,synth,B,train

This is a non-convex problem and there is not a unique solution forB, but one of the global minimizers is to letB be
the first r eigenvectors of the np × np sample covariance matrix XX ′ =

∑M
m=1 xmx

′
m, assuming the eigenvalues

λk are ordered from largest to smallest. If λr > λr+1 then the subspace spanned by this B is unique even if B itself
is not unique (one can permute its columns for example). But in the rare case where λr = λr+1, then the subspace is
not unique but stillB is a global minimizer. This approach is called principal components analysis (PCA). In practice,
one computesB by finding the singular value decomposition (SVD) ofX and taking the first r left singular vectors.

It is difficult to visualize subspaces in dimensions higher than np = 3. Fig. 10.4.1 illustrates an np = 2 case where
a r = 1 dimensional subspace is a reasonable model.

x
1

x
2

Figure 10.4.1: Illustration of (synthetic) data that is well approximated by a 1D subspace.
fig_basis_synth_subspace1

The subspace approach works fine for regression problems like fitting a line (r = 2) to a scatter plot of data.
Unfortunately, in image reconstruction problems rarely is there a single low-dimensional subspace that adequately
describes the images of interest. The remainder of this section describes models that are more flexible yet retain some
aspects of the “low rank” nature of the classical subspace model.
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10.4.2 Union of subspaces models
A more general model is to assume x belongs (at least approximately) to one of K subspaces where the kth subspace
is spanned by the columns of a np × rk matrixBk, where the rank rk � np, as follows:

x ∈
K⋃

k=1

Sk, Sk = {Bkzk : zk ∈ Rrk} .

If we can somehow determine which subspace is appropriate, then essentially we have only a rk-dimensional estima-
tion problem within that subspace. One possible formulation is

x̂ , Bk̂ẑk̂, ẑk , arg min
z∈Rrk

L- (Bkz), k̂ , arg min
k

L- (Bkẑk) .

Methods for learning the subspace bases {Bk} from training data are given in [60–63]. Often the models include
hierarchical or tree-based structure [64].

A union of K-subspaces is a generalization of the K-means approach to data clustering.
Fig. 10.4.2 illustrates an np = 3 case with K = 3 subspaces where r1 = 2 and r2 = r3 = 1.

Figure 10.4.2: Illustration of (synthetic) data in Rnp where np = 3 that is well approximated by K = 3 subspaces,
the first of dimension r1 = 2 and r2 = r3 = 1 for the other two subspaces.

fig_basis_synth_subspace3

10.4.3 Over-complete dictionary model
An alternative to the union-of-subspaces model is to represent x using a linear combination of a small number of
atoms from an over-complete dictionaryD of size np ×K where K > np as follows [65]:

x ≈Dz, ‖z‖0 =

K∑
k=1

1{zk 6=0} ≤ r. (10.4.3)
e,basis,synth,x=Dz

In other words, we represent (or approximate) x using a linear model with an r-sparse coefficient vector. Certainly
this model can be more expressive than the single subspace model (10.4.1). Strictly speaking, (10.4.3) is also a union

of subspaces model where there are
(
K
r

)
possible r-dimensional subspaces. This representation is “more flexible”

yet “less structured.”
For a given dictionaryD, one can approach an image reconstruction problem as follows:

x̂ ,Dẑ, ẑ , arg min
z∈RK

L- (Dz) sub. to ‖z‖0 ≤ r. (10.4.4)
e,basis,synth,over,recon

The idea here is that after we somehow determine the appropriate subspace (i.e., the span of the columns of D
corresponding to the non-zero elements of z), then the minimization problem is “only” r-dimensional, where typically
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r � np, so the problem may be well conditioned within that subspace. Note that the length of the coefficient vector z
in the subspace model (10.4.1) is only r whereas in the over-complete dictionary model (10.4.3) it is K ≥ np � r.

Fig. 10.4.3 illustrates an np = 2 case with K = 3 atoms where r = 1 provides a reasonable model. In the case
np = 2, the union-of-subspaces model and the over-complete dictionary model are identical for r = 1. To illustrate
the distinction between these models requires np > 2. For example, for np = 3, if we have a dictionary with K atoms

and r = 2, then (10.4.3) corresponds to the union of all
(
K
2

)
pairs of atoms in the dictionary. In contrast a typical

union-of-subspaces model would consist of just a few such pairs.

x
1

x
2

Figure 10.4.3: Illustration of (synthetic) data for np = 2 that is well approximated by K = 3 subspaces of dimension
r = 1.

fig_basis_synth_subspace2

There are many issues to address when using an over-complete dictionary like (10.4.3).
• One must choose the allowed sparsity level r, which is rarely known a priori for a given application.

For problems with gaussian noise of known variance σ2, one can avoid picking r by replacing the optimization
problem (10.4.4) with the following alternative formulation:

x̂ ,Dẑ, ẑ , arg min
z∈RK

‖z‖0 sub. to ‖y −ADz‖22 ≤ ndσ
2.

Here we find the sparsest coefficient vector that leads to a data-fit term within a given error tolerance. The tolerance
ndσ

2 is appropriate if xtrue = Dz, but we have seen in §2.5.2.1 that in general the discrepancy principle yields
suboptimal regularization levels when fitting data.
• The minimization problem in (10.4.3) is non-convex and combinatorial. Often this problem is circumvented by

using greedy algorithms or replacing ‖z‖0 with ‖z‖1 leading to a convex optimization problem.
• The size of the dictionary D would be enormous if it were used to represent the entire image. For a 2562 image

(tiny by modern digital photography standards), np = 216 and if K = 2np thenD has 233 elements and storingD
as single-precision (4-byte) floating point values would need 235 bytes or 32 GBytes. Therefore usually the image
x is partitioned into small patches, e.g., each of 8×8 pixels, and each patch of 64 values is represented individually
by a sparse coefficient vector for an over-complete dictionaryD0 of size 82 ×K where K > 82. If K = 128 then
only 32 KBytes are needed to storeD0. Mathematically, in this representation the overall model for x corresponds
to the direct sum [wiki] of the subspaces for each image patch.
Issues with patch-wise representations include possible image artifacts at the boundaries between patches, leading
to “blocky” appearance, particularly if r is small. Furthermore, this representation is not shift invariant.
To avoid these drawbacks, one could use overlapping patches, and then one must choose how to combine the values
from each patch to make the final image estimate x̂.
• Finally, one must select the dictionaryD, including K, the number of atoms. The next section describes a popular

method called the K-SVD approach.

10.4.4 Dictionary learning
In the context of image reconstruction, there are two main types of methods for dictionary learning, i.e., for estimating
D. One approach is to start with image-domain training data, typically obtained from “fully sampled” and/or “high
SNR” cases, and then we use the learned dictionaryD to help reconstructed “under sampled” and/or “low SNR” data.
The other approach is to try to learn the dictionary D adaptively from the given measurement vector y (sinogram,
k-space, etc.) [66, 67]. The following sections consider both types of methods, starting with the simpler the image-
domain approach.

http://en.wikipedia.org/wiki/Direct_sum
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10.4.4.1 Dictionary learning: image domain

Given training data X = [x1 . . . xM ] (e.g., patches from good quality images), we can learn a dictionary D using
the K-SVD method [68]. We start by picking K; clearly we need M � K or the dictionary learning problem would
degenerate to just using the training data.

The goal is to find a dictionaryD = [d1 . . . dK ] such that every example in the training data is well approximated
by the dictionary with a r-sparse coefficient vector. In other words, for each xm there should be some coefficient vector
zm with ‖zm‖0 ≤ r for which ‖xm −Dzm‖ is small. A reasonable mathematical criterion is

arg min
D∈Rnp×K

M∑
m=1

min
zm∈Zr

‖xm −Dzm‖22 , Zr ,
{
z ∈ RK

m : ‖z‖0 ≤ r
}
.

Often this minimization problem is written concisely by grouping together the coefficient vectors Z , [z1 . . . zM ]
and writing

arg min
D∈Rnp×K

min
Z
|||X −DZ|||2Frob sub. to zm ∈ Zr ∀m.

This expression is slightly more concise, but somewhat obscures the fact that for a given D, we can compute each
coefficient vector zm in parallel (independently).

The K-SVD approach [68] alternates between updating the coefficients Z for a given candidate dictionaryD, and
then updating sequentially each atom dm in the dictionary D using an SVD. This alternating minimization method
decreases the cost function |||X −DZ|||Frob every iteration and thus the cost function values converge to some non-
negative value. However, contrary to the claims in [68], this monotonicity is insufficient to ensure convergence of D
to a local minimizer without further proof. (See Example 11.1.2.)

For a given candidate dictionaryD in this alternating minimization process, the problem of updating Z has many
names in the literature, including sparse coding, sparse approximation, sparse synthesis, and atom decomposition. All
of these terms refer to the following minimization problem:

ẑm , arg min
z∈Zr

‖xm −Dz‖22 , m = 1, . . . ,M. (10.4.5)
e,basis,synth,code

Methods for solving this combinatorial optimization problem are called pursuit algorithms. The simplest methods are
greedy algorithms that select one atom at a time. See [69] for a survey.

The matching pursuit (MP) method chooses the atom having the largest (absolute) inner product with the residual,
as follows [70] [wiki].

Matching pursuit
Input: DictionaryD = [d1 . . . dK ] and signal vector x ∈ Rnp .
r = x (initialize residual)
z = 0K (initialize sparse coefficient vector)
for n = 1, . . . , r

kn = arg max
k

|〈dk, r〉| (atom index selection)

zkn := 〈dkn , r〉 (coefficient)
r := r−zkndkn (updated residual)

end
Output: atom indices k1, . . . , kr and coefficients zk1 , . . . , zkr such that x ≈Dz =

∑r
n=1 zkn

dkn

The simple inner product 〈dmk
, r〉 provides an appropriate coefficient if the selected atoms are orthonormal, but

if they are not then one can obtain a better fit (smaller residual) more generally performing a least-squares fit of the
coefficients after each new atom is selected. Equivalently, we project the residual onto the span of all selected atoms
at each step. The orthogonal matching pursuit (OMP) method uses this variation, along with the (natural) constraint
that each atom can be picked only once [71] [wiki].

Being greedy algorithms, they typically find local minimizers of the sparse coding problem (10.4.5). An alternative
is to replace the non-convex problem (10.4.5) with one of the following convex problems:

min
z∈RK

‖z‖1 sub. to ‖xm −Dz‖22 ≤ ε

min
z∈RK

1

2
‖xm −Dz‖22 + β ‖z‖1 . (10.4.6)

e,basis,synth,bpd

These optimization problems are called basis pursuit denoising [wiki]. As β→ 0 the problems become basis pursuit
[wiki]. To use (10.4.6) for updating Z for the K-SVD method, one can take the r largest non-zero coefficients of ẑ, or
adjust β so that ẑ has r non-zero coefficients.

http://en.wikipedia.org/wiki/Matching_pursuit
http://en.wikipedia.org/wiki/Orthogonal_matching_pursuit
http://en.wikipedia.org/wiki/Basis_pursuit_denoising
http://en.wikipedia.org/wiki/Basis_pursuit
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Having updated the sparse coefficients Z, the next step of the K-SVD method is to update the dictionary D. The
K-SVD uses block coordinate descent to update D by minimizing |||X −DZ|||Frob with respect to one column of D
(and the corresponding non-zero elements ofZ) sequentially. To update dk, we consider all training samples for which
the kth element of the corresponding coefficient vector is nonzero, i.e.,Mk , {m : zmk 6= 0} . We then compute the
residual associated with those training samples, excluding dk, i.e.,

rm ,
∑
j 6=k

zmjdj , m ∈Mk.

We then find a new vector dk that best spans these residual vectors by taking the first singular vector of the SVD of
{rm}. This step is analogous to solving (10.4.2) with r = 1. The corresponding elements of Z are then updated with
this new atom dk, without changing the sparsity pattern of Z. This process is repeated for k = 1, . . . ,K, after which
the algorithm returns to the sparse coding step to update Z. Several implementation tricks related to initialization and
pruning are given in [68], such as always including the constant vector 1np

as one of the atoms.
Fig. 10.4.4, taken from [68, Fig. 5], compares a dictionary learned from 500 8 × 8 patches from face images,

compared to Harr and DCT bases.

Figure 10.4.4: A dictionary for 8 × 8 patches learned from face images, compared to (over-complete) Harr and DCT
bases.

aharon-06-ksa,fig5

For large M (many training samples) one can use stochastic gradient descent [72]. For some applications, con-
straints such as nonnegativity on the atoms is appropriate [73].

For improvements see [74–76].
For software, see http://www.cs.technion.ac.il/˜elad/software.

10.4.4.2 Image reconstruction using a dictionary

Having selected a dictionaryD, e.g., by learning it from training data, the image reconstruction problem is to estimate
x from data y using the sparsity model (10.4.3). There are several possible approaches.

The traditional synthesis approach is to estimate the coefficients as follows:

x̂ = Dẑ, ẑ = arg min
z

‖z‖p sub. to ‖y −ADz‖22 ≤ ε.

Instead of requiring that x be synthesized exactly from the dictionary, another option is to encourage x̂ to be
similar to such an image: [67]:

(x̂, ẑ) = arg min
x,z

1

2
‖y −Ax‖2W 1/2 + β ‖x−Dz‖22 sub. to ‖z‖0 ≤ r.

Another option is the following convex relaxation of the previous problem [67]:

(x̂, ẑ) = arg min
x,z

1

2
‖y −Ax‖2W 1/2 + β ‖x−Dz‖22 + α ‖z‖1 .

For these last two formulations, a natural optimization approach is to alternate between updating the image x, which
is a quadratic problem, and the coefficient vector z, which is a sparse coding problem. (One could apply OMP or
FISTA.) For further examples, see [77–83]. Interestingly, the convex form above is closely related to the augmented
Lagrangian for the convex (but non-smooth) optimization problem

x̂ = Dẑ, ẑ = arg min
z

1

2
‖y −ADz‖2W 1/2 + α ‖z‖1 .

http://www.cs.technion.ac.il/~elad/software
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10.4.4.3 Dictionary learning: data domain

A potential drawback of any dictionary learned from training data is that the object x being reconstructed might not
have a sparse representation in that dictionary. Furthermore, there will always be noise in training data that will affect
dictionary learning. Such considerations have motivated research on jointly reconstructing an image and learning a
dictionary (or part of a dictionary) [66, 67, 77]. An example formulation is

arg min
x

min
D,Z

1

2
‖y −Ax‖22 +

L∑
l=1

β
1

2
‖Rlx−Dzl‖22 sub. to ‖zl‖0 ≤ r,

where Rl is a matrix that extracts the lth patch from the image x. In this setting it is essential to use the dictionary
to represent patches rather than the entire image. One can imagine many variations (including convex relaxations) of
such formulations, as well as combining adaptively learned dictionaries with dictionaries learned from training data
and some predetermined atoms (such as a DC component); one could also include conventional analysis regularizers,
perhaps with a small regularization parameter.

An formulation that is convex with respect to each of the parameters individually (but not collectively) is [84]:

arg min
x

min
D,Z

1

2
‖y −Ax‖22 +

L∑
l=1

(
β

1

2
‖Rlx−Dzl‖22 + α ‖zl‖1

)
.

To avoid scale ambiguity, here one must constrain D, e.g., by requiring that each column dk have unit norm. An
alternating minimization approach is natural.

One can also learn transforms for analysis formulations [85–87].

10.4.5 Summary
Unions of subspaces, such as over-complete dictionaries with sparse coefficient vectors, provide a mechanism for
dimension reduction that is somewhat akin to classical subspaces but more flexible. The drawback is that the resulting
optimization problems often have non-convex aspects.

Analysis formulations are “negative” in the sense that they discourage the reconstructed image x̂ from departing
from prior assumptions about the relationships between groups of pixels (such as neighbors). In contrast, synthesis
formulations are “positive” in the sense that they encourage (or require) the reconstructed image x̂ to be expressible
in terms of the prior information (e.g., linear combinations of dictionary atoms). Identifying which formulation (or
combination thereof) is best for a given application is an open problem; see [88, 89].
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