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31.1 Introduction (s,prob,intro)s,prob,intro

This appendix summarizes some facts from probability and statistics that are used in developing and analyzing image
reconstruction algorithms. This is not intended to be a tutorial introduction; for review see [1].

31.1
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31.2 Conditional probability (s,prob,cond)
s,prob,cond

For two events A and B, the definition of conditional probability is:

P{A |B} =
P{A,B}
P{B}

. (31.2.1)
e,prob,cond

Bayes rule is:

P{A|B} =
P{B|A}P{A}

P{B}
. (31.2.2)

e,prob,bayes

If {Ai} are disjoint (mutually exclusive) events and P{
⋃
iAi} = 1, then the total probability relation is:

P{B} =
∑
i

P{B|Ai}P{Ai} . (31.2.3)
e,prob,total

31.3 Discrete distributions

31.3.1 Binomial and Multinomial (s,prob,nomial)s,prob,nomial

Random variable X has a binomial distribution with parameter p if

P{X = x} =

{
p, x = 1
1− p, x = 0.

Random variables X1, . . . , XM have a multinomial distribution with parameters p1, . . . , pM and N if

P{X1 = x1, . . . , XM = xM} =

(
N

x1 x2 . . . xM

) M∏
m=1

pm I{∑M
m=1 xm=N}, (31.3.1)

e,prob,multinomial

where
(

N
x1 x2 . . . xM

)
=

N !∏M
m=1 xm!

.

31.3.2 Poisson (s,prob,poisson)s,prob,poisson

A Poisson [2, p. 206] random variable N with mean µ0 has the following probability mass function (PMF):

P{N = k} =
1

k!
e−µ0 µk0 , k = 0, 1, . . . .

We write N ∼ Poisson{µ0} . The above PMF is the usual form, but to be more precise, one should consider the case
where µ0 = 0, and write the PMF as follows:

P{N = k} =

 1, µ0 = 0, k = 0
1
k! e−µ0 µk0 , µ0 > 0, k = 0, 1, . . .
0, otherwise.

(31.3.2)
e,prob,poisson,pmf

The fellowing sections review properties of Poisson random variables are useful for statistical image reconstruction
algorithms.

31.3.2.1 Momentss,prob,poisson,moment

The most important moments of N ∼ Poisson{µ0} are E[N ] = µ0, Var{N} = µ0, E
[
N4
]

= µ0 + 7µ2
0 + 6µ3

0 + µ4
0,

Var
{
N2
}

= µ0 + 6µ2
0 + 4µ3

0. [wiki]

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
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31.3.2.2 Bernoulli thinnings,prob,poisson,thin

Suppose a source transmits N photons of a certain energy along a ray passing through an object towards a specified
pixel on the detector. We assume N is a Poisson random variable with mean µ0 as in (31.3.2). Each of the N
transmitted photons may either pass unaffected (“survive” passage) or may interact with the object. These are Bernoulli
trials since the photons interact independently. From Beer’s law [3] we know that the probability of surviving passage
is given by

p = e−
∫
µ(z) dz .

The number of photons M that pass unaffected through the object is a random variable, and this process is called
Bernoulli thinning or Bernoulli selection. From Beer’s law [3]:

P{M = m |N = n} =

(
n
m

)
pm(1− p)n−m, m = 0, . . . , n. (31.3.3)

e,prob,poisson,M|N

Using total probability:

P{M = m} =

∞∑
n=0

P{M = m |N = n}P{N = n}

=

∞∑
n=m

(
n
m

)
pm(1− p)n−m

1

n!
e−µ0 µn0 =

1

m!
e−µ0 p (µ0 p)m, m = 0, 1, . . . .

Therefore the distribution of photons that survive passage is also Poisson, with mean E[M ] = µ0 p .

31.3.2.3 Poisson conditionals

It also is useful to examine the reverse of (31.3.3). By applying Bayes’ rule, for 0 ≤ m ≤ n:

P{N = n |M = m} =
P{M = m |N = n}P{N = n}

P{M = m}

=

(
n
m

)
pm(1− p)n−m 1

n! e−µ0 µn0

1
m! e−µ0p (µ0p)m

=
1

(n−m)!
(µ0 − µ0p)

n−m e−(µ0−µ0p)

=
1

(n−m)!
(E[N ]−E[M ])n−m e−(E[N ]− E[M ]) .

Thus, conditioned onM , the random variableN−M has a Poisson distribution with mean E[N ]−E[M ]. In particular,

E[N −M |M ] = E[N ]−E[M ],

which is useful in deriving the transmission EM algorithm [4, 5].

31.3.2.4 Sums of Poisson random variables

Suppose Y =
∑K
k=1Xk where Xk ∼ Poisson{µk} . Then Y ∼ Poisson

{∑K
k=1 µk

}
. Interestingly, there is a con-

verse for this result called Raikov’s theorem [6]. If two independent nonnegative random variables have a sum that
has a Poisson distribution, then the two random variables also have a Poisson distribution.

31.3.2.5 Poisson conditioning and multinomials

Suppose Y =
∑K
k=1Xk where Xk ∼ Poisson{µk} with each µk ≥ 0. Then, conditioned on the event [Y = y], the

collection of random variables (X1, . . . , XK) has a multinomial distribution with

E[Xj |Y = y] =


µj∑
k µk

y,
∑
k µk > 0, y ≥ 0

0,
∑
k µk = 0, y = 0

undefined,
∑
k µk = 0, y > 0.

(31.3.4)
e,prob,poisson,multinomial

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Proof:
Using Bayes rule and the Poisson distributions of the independent Xk values:

P{X1 = x1, . . . , XK = xK |Y = y}

=
P{Y = y |X1 = x1, . . . , XK = xK}P{X1 = x1, . . . , XK = xK}

P{Y = y}

= I{y=x1+···+xK}

∏K
k=1 µ

xk

k e−µk /xk!

[
∑
k µk]

y
e−

∑
k µk /y!

= I{y=x1+···+xK}

(
y

x1 · · · xK

) K∏
j=1

(
µj∑
k µk

)xk

,

which is a multinomial distribution with means given by (31.3.4). 2

One can also show that

E

∏
j

t
Xj

j |Y = y

 =

(∑
k tkµk∑
k µk

)y
, (31.3.5)

e,prob,poisson,multi,ratio

a fact that is somewhat useful in deriving an α-EM algorithm for Poisson data; see Problem 18.6 and Problem 31.1.

31.3.2.6 Poisson sums of multinomialss,prob,poisson,sum,multi

Let Xl be independently and identically distributed multinomial random variables with parameters (p1, . . . , pJ ; 1),
i.e., P{Xl = j} = pj , j = 1, . . . , J. Let N ∼ Poisson{µ0} and define Yj =

∑N
l=1 I{Xl=j}. Then the {Yj} values

have independent Poisson distributions with means E[Yj ] = µ0 pj .
Proof:
By construction, conditioned in [N = n] the Yj values have a multinomial distribution with parameters (p1, . . . , pJ ;n).
Thus by total probability:

P{Y1 = y1, . . . , YJ = yJ} =

∞∑
n=0

P{Y1 = y1, . . . , YJ = yJ |N = n}P{N = n} .

The only nonzero term in this sum is when n =
∑J
j=1 yj . Thus

P{Y1 = y1, . . . , YJ = yJ} =
n!∏J
j=1 yj !

J∏
j=1

p
yj
j

1

n!
e−µ0 µn0 =

J∏
j=1

(µ0 pj)
yj

yj !
e−µ0 pj . (31.3.6)

e,prob,poison,sum,multi

31.3.2.7 Moments of random sums of IID random variables

Let X1, X2, . . . denote IID random variables with mean µX and variance σ2
X . Often in imaging problems we need the

moments of a sum of a random number N of these:

Y =

N∑
n=1

Xn.

Often N has a Poisson distribution, but the moments of Y can be found more generally. Using iterated expectation,
the mean of Y is:

E[Y ] = E[E[Y |N ]] = E[NµX ] = E[N ]µX . (31.3.7)
e,prob,sumN,mean

Similarly, the second moment of Y is

E
[
Y 2
]

= E
[
E
[
Y 2 |N

]]
= E

[
N∑
n=1

N∑
m=1

E[XnXm]

]
= E

[
N E

[
X2
n

]
+(N2 −N)µ2

X

]
= E

[
N(σ2

X + µ2
X) + (N2 −N)µ2

X

]
= E

[
Nσ2

X +N2µ2
X

]
= E[N ]σ2

X + (σ2
N + E2[N ])µ2

X .

Thus the variance of a random sum is

Var{Y } = E
[
Y 2
]
−E2[Y ] = E[N ]σ2

X + (σ2
N + E2[N ])µ2

X − E2[N ]µ2
X = E[N ]σ2

X + σ2
Nµ

2
X . (31.3.8)

e,prob,sumN,var

https://creativecommons.org/licenses/by-nc-nd/4.0/
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31.4 Continuous distributions

31.4.1 Normal or gaussian (s,prob,gauss)s,prob,gauss

For a gaussian random vectorX , we writeX ∼ N(µ,K) as a short hand for the joint normal pdf

p(x) =
1√

det{2πK}
e−

1
2 (x−µ)′K−1(x−µ) . (31.4.1)

e,prob,gauss,jpdf

The covariance matrixK is always symmetric positive-semidefinite and is usually positive definite.
We say X ∼ N(µX ,KX) and Y ∼ N(µY ,KY ) are jointly distributed gaussian random vectors with covari-

ance Cov{X,Y } if
[
X
Y

]
∼ N(µ,K) where µ =

[
µX
µY

]
andK =

[
KX Cov{X,Y }
Cov{Y ,X} KY

]
.

IfX and Y are jointly distributed gaussian random vectors, then

E[X |Y = y] = E[X] +Cov{X,Y } [Cov{Y }]−1
(y − E[Y ])

and
Cov{X |Y = y} = Cov{X}−Cov{X,Y } [Cov{Y }]−1 Cov{Y ,X} .

If two jointly distributed gaussian random variables are uncorrelated, then they are independent.
Two random variables can each have gaussian distributions yet still not be jointly gaussian distributed; see Prob-

lem 3.37.
The following property of gaussian random vectors is useful for deriving Stein’s unbiased risk estimate (SURE).

If Z ∼ N
(
x, σ2I

)
and if h(z) is a np-dimensional vector function for which E

[∣∣∣ ∂∂zj hj(z)
∣∣∣] <∞ for j = 1, . . . , np,

then [7]:

E

 np∑
j=1

hj(z)xj

 = E

 np∑
j=1

hj(z)zj

−σ2 E[div{h(z)}], (31.4.2)
e,prob,gauss,sure

where the divergence is defined as div{h(z)} ,
∑np

j=1
∂
∂zj

hj(z).

31.4.2 Transformations (s,prob,xform)s,prob,xform

The following theorem generalizes the usual such formulas found in engineering probability texts for transformations
of random vectors.

Theorem 31.4.1 (See [8, 9] for proofs.)
t,transform

Let g : Rn → Rn be one-to-one and assume that h = g−1 is continuous. Assume that, on an open set S ⊆ Rn, h is
continuously differentiable with Jacobian determinant1 |det{∇h(x)}| ,

∣∣∣det{ ∂
∂xj

hi(x)
}∣∣∣ . Suppose random vector

X has pdf p(x) and

P{X ∈ h(Sc)} =

∫
Sc

p(x) dx = 0, (31.4.3)
e,p0

where Sc denotes the set complement (in Rn) of S, and h(A) = {h(x) : x ∈ A} . Then the pdf of the random vector
Y = g(X) is given by

p(y) = |det{∇h(y)}| p(h(y)), y ∈ S, (31.4.4)
e,prob,transform

and is zero otherwise.

31.5 Covariances (s,prob,cov)s,prob,cov

The covariance of a random vectorX is defined by:

Cov{X} , E[(X − E[X])(X − E[X])′] .

The cross covariance of a random vectorX and a random vector Y is defined by:

Cov{X,Y } , E[(X − E[X])(Y − E[Y ])′] .

Properties of covariance
1We use |det{A}| to denote the absolute value of the determinant of a matrix A.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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• Covariances are positive-semidefinite matrices: Cov{X} � 0
• Cov{X,Y } = E[XY ′]−E[X]E[Y ′]
• Cov{X,Y } = Cov{Y ,X}′
• Cov{X,X} = Cov{X}
• Cov{aX + b, cY + d} = ac∗ Cov{X,Y }
• Cov{AX,BY + d} = ACov{X,Y }B′
• In particular, Var{Xi} = e′i Cov{X} ei, where ei denotes the ith unit vector
• If non-random vectors u and v have the same size as X and Y respectively, then a version of the Schwarz

Inequality is:

|u′ Cov{X,Y }v| ≤
√
Var{u′X}Var{v′ Y } =

√
u′ Cov{X}u

√
v′ Cov{Y }v

• In particular, if X and Y are scalar random variables, then the correlation coefficient ρX,Y , Cov{X,Y }√
Var{X}Var{Y }

is

bounded by unity: |ρX,Y | ≤ 1.
• IfX and Y are independent r.v.s, then E[XY ] = E[X]E[Y ]] so Cov{X,Y } = 0.
• The reverse is not true in general (uncorrelated does not ensure independence); an exception is gaussian.
• Cov

{∑
iXi,

∑
j Yj

}
=
∑
i

∑
j Cov{Xi,Yj}

• If E[X] = µ, then using (28.1.7):

E[X ′BX] = E[trace{X ′BX}] = E[trace{BXX ′}] = trace{B E[XX ′]}
= µ′Bµ+ trace{B Cov{X}} . (31.5.1)

e,prob,cov,xBx

31.6 Standard errors (s,prob,stderr)s,prob,stderr

We often estimate the mean, variance, or standard deviation from a sample of n elements and present the estimates with
standard errors or error bars (in plots) as well. A standard error of a statistic (or estimator) is the (estimated) standard
deviation of the statistic. An error bar is, in a plot, a line which is centered at the estimate with length that is double the
standard error. Standard errors mean the statistical fluctuation of estimators, and they are important particularly when
one compares two estimates (for example, whether one quantity is higher than the other in a statistically meaningful
way). Here we review the standard errors of frequently used estimators of the mean, variance, and standard deviation
[10].

31.6.1 Normal one sample problem
Let X1, . . . , Xn denote a random sample from N

(
µ, σ2

)
where both µ and σ are unknown parameters. Define the

following two statistics (sample mean and sample variance):

X̄ =
1

n

n∑
i=1

Xi and S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.

31.6.2 Mean estimator
The uniformly minimum variance unbiased (UMVU) estimator of µ is X̄ [11, p. 92]. Because X̄ ∼ N (µ, σ2/n), the
standard error of X̄ is

σX̄ =
√
Var
{
X̄
}

=
σ√
n
.

Hence the natural estimate of σX̄ is σ̂X̄ = σ̂/
√
n For σ̂, see §31.6.4.

31.6.3 Variance estimator
From [11, p. 92], S2 is UMVU for σ2 and

(n− 1)S2

σ2
∼ χ2

n−1. (31.6.1)
e,chi

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Because the chi-squared distribution with n − 1 degrees of freedom
(
χ2
n−1

)
has variance 2(n − 1) [11, p. 31], the

standard error of S2 is

σS2 =
√

Var{S2} = σ2

√
2

n− 1
.

Hence the natural estimate is σ̂S2 = S2
√

2/(n− 1). It is useful to note

σS2/σ2 = σ̂S2/S2 =

√
2

n− 1
.

Because σ2 and S2 have the square of the units of Xi, often it is preferable to report estimates of σ, as described next.

31.6.4 Standard deviation estimatorsubsec,std

The UMVU estimator of σ is KnS[11, p. 92] where

Kn =

√
n− 1

2

Γ(n−1
2 )

Γ(n2 )
=

√
n− 1

2
eln Γ( n−1

2 )−ln Γ( n
2 ),

where the second form is more numerically stable for large values of n when using the “ln gamma function.” By
setting Kn = 1, S is a common choice in practice but it is slightly biased. Because

√
n− 1

σ
S ∼ χn−1

[see (31.6.1)] and the chi distribution with n− 1 degrees of freedom (χn−1) has variance [12, p. 49: typo corrected]

Vn = 2

(
n− 1

2
−

Γ2(n2 )

Γ2(n−1
2 )

)
,

the standard error of KnS is

σKnS =
√

Var{KnS} = σKn

√
Vn
n− 1

.

To investigate the asymptotic behavior of σKnS , we need the following approximation [13, P. 602]:

Γ(n2 )

Γ(n−1
2 )

=

√
n− 1

2

(
1− 1

4(n− 1)
+O

(
1

n2

))
. (31.6.2)

e,gamma

Using (31.6.2), it can be shown that

Kn = 1 +O

(
1

n

)
and

σKnS =
σ√

2(n− 1)

(
1 +O

(
1

n

))
=

σ√
2(n− 1)

+O

(
1

n
√
n

)
.

To summarize,

σKnS/σ = σ̂KnS/(KnS) =
Kn

√
Vn√

n− 1

≈ 1√
2(n− 1)

for large n. (31.6.3)
e,sigsig

Fig. 31.6.1 shows a plot of Kn,
√
Vn, and Kn

√
Vn versus n. For n > 10, it seems reasonable to use Kn = 1 and the

approximation (31.6.3) for the standard error.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 31.6.1: This plot shows that Kn and
√
Vn approach 1 and 1/

√
2, respectively, as n increases.

fig_stderr_gamma

31.7 Fisher information and Cramér-Rao bound (s,prob,fish)s,prob,fish

For a statistical model with measurements y distributed according to a distribution p(y;x) that depends on a parameter
vector x, an important quantity is the Fisher information matrix defined by

F(x) , E[∇ L(x)∇ L(x)], (31.7.1)
e,prob,fish,1

where L(x) , log p(y;x) denotes the log likelihood associated with the measurement statistics. Under suitable
regularity conditions, an equivalent expression is

F(x) = −E
[
∇2 L(x)

]
. (31.7.2)

e,prob,fish,2

x,prob,fish,gauss

Example 31.7.1 For the linear gaussian model y = Ax + ε where ε ∼ N(0,Π), the log-likelihood is L(x) ≡
− 1

2 (y −Ax)′Π−1(y −Ax) and ∇ L(x) = A′Π−1(y −Ax) = A′Π−1ε so the Fisher information is

F = E
[
A′Π−1εε′Π−1A

]
= A′Π−1 E[εε′] Π−1A = A′Π−1A.

More generally, for the nonlinear gaussian model y = µ(x) + ε where ε ∼ N(0,Π), the log-likelihood is
L(x) ≡ − 1

2 (y − µ(x))
′
Π−1 (y − µ(x)) and ∇ L(x) = (∇µ(x)) Π−1 (y − µ(x)) = (∇µ(x)) Π−1ε, where

∇µ(x) denotes the np × nd gradient of µ : Rnp → Rnd . So the Fisher information is

F = E
[
∇µ(x)Π−1εε′Π−1∇µ(x)

]
= ∇µ(x)Π−1 E[εε′] Π−1∇µ(x) = ∇µ(x)Π−1∇µ(x). (31.7.3)

e,prob,fish,nonlin,gauss

One reason the Fisher information matrix is important is that under certain regularity conditions, maximum
likelihood estimators (MLE) x̂ asymptotically have gaussian distributions with covariance F−1. Furthermore, the
Cramér-Rao lower bound (CRB) [wiki] states that if x̂ is an unbiased estimator for x, then the covariance of x̂
satisfies

Cov{x̂} � F−1. (31.7.4)
e,prob,fish,crb

See §25.18 for a concise derivation. The only estimator that can achieve the lower bound is the MLE. Even for finite
sample sizes, the CRB is often a good approximation to the covariance of a ML estimate:

Cov{x̂} ≈ F−1.

31.8 Gauss-Markov theorem (s,prob,gauss-markov)s,prob,gauss-markov

The Gauss-Markov theorem is a particularly important result from statistical estimation theory that serves as a guide
for designing estimators including image reconstruction methods.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Consider the linear model y = Ax + ε where we assume that the noise is zero mean: E[ε] = 0 and has known
covariance: Cov{ε} = K. Note that no other assumptions about the distribution of ε are made. Now suppose that our
goal is to find an unbiased linear estimator of x that has the “smallest possible” variability. This is known as the best
linear unbiased estimator (BLUE). Specifically, for a linear estimator of the form

x̂ = By

for some matrix B, we want to minimize trace{Cov{x̂}} subject to the constraint that E[x̂] = x for any x, i.e., that
BA = I. The solution is [14, 15]

B =
[
A′K−1A

]−1
A′K−1.

In other words, the best x̂ solves the following weighted least-squares (WLS) problem:

x̂ = arg min
x

‖y −Ax‖2W 1/2 = [A′WA]
−1
A′Wy,

where the weighting is the inverse of the noise covariance:

W = K−1.

Therefore, when feasible, we should include weighting based on the inverse of the data covariance for least-squares
data consistency terms. Generalizations of this argument to biased estimators are also available [16].

The covariance of this BLUE is

Cov{x̂} = B Cov{y}B′ =
[
A′K−1A

]−1
.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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31.9 Variable-projection methods for nonlinear least-squares (s,prob,varpro)
s,prob,varpro

For problems with gaussian noise, the ML estimate θ̂ of a parameter vector θ minimizes a WLS cost function:

θ̂ = arg min
θ

1

2
‖y − ȳ(θ)‖2W 1/2 ,

where ȳ(θ) denotes the model for the measurements. A typical optimization method used for this minimization prob-
lem is the Levenberg-Marquardt method [17, 18]. There are a variety of nonlinear least-squares estimation problems
where the model is linear in some of the unknown parameters and nonlinear in the other parameters. Mathematically,
the overall parameter vector has the form θ = (x,α) where

ȳ(θ) = A(α)x.

In these cases, the WLS problem becomes

arg min
x,α

1

2
‖y −A(α)x‖2W 1/2 .

This joint estimation problem can be simplified by exploiting the partially linear structure of the model. The resulting
approach is called the variable projection method [19].

For any given α, the minimizer over x is a linear WLS problem with solution

x̂(α) = arg min
x

1

2
‖y −A(α)x‖2W 1/2 = B†(α)W 1/2y,

whereB(α) ,W 1/2A(α) andB† denotes the pseudo-inverse ofB. Usually such problems are over determined,
i.e.,B is a “tall” matrix with full column rank, in which case

B† = [B′B]
−1
B′.

Substituting x̂(α) back into the original cost function, the minimization over α becomes

α̂ = arg min
α

1

2
‖y −A(α) x̂(α)‖2W 1/2 = arg min

α

1

2

∥∥∥y −A(α)B†(α)W 1/2y
∥∥∥2

W 1/2
.

Now note that (after some simplification):∥∥∥y −A(α)B†(α)W 1/2y
∥∥∥2

W 1/2
= y′

(
I −A(α)B†(α)W 1/2

)′
W
(
I −A(α)B†(α)W 1/2

)
W 1/2y

= y′Wy − y′W 1/2B(α)B†(α)W 1/2y.

The first term is independent of α, so the nonlinear optimization problem simplifies to

α̂ = arg max
α

y′W 1/2B(α)B†(α)W 1/2y

= arg max
α

y′WA(α) [A′(α)WA(α)]
−1
A′(α)Wy.

Because dim(α) < dim(θ), less computation is needed to find α̂ using this approach. After one finds α̂, the final
estimate for x is x̂(α̂). In the special case where the matrix B(α) has orthonormal columns for every possible
parameter α, thenB† = B′ and the computation further simplifies to

arg max
α

‖A′(α)Wy‖2 . (31.9.1)
e,proj,varpro,orth

The variable projection method has been generalized beyond least squares problems [20]. To avoid expensive
exhaustive search over α, one can use cover trees methods [21].

https://creativecommons.org/licenses/by-nc-nd/4.0/
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x,prob,varpro,cos

Example 31.9.1 Consider the problem of finding the phase of a sinusoid from equally spaced samples: ȳm(θ) =√
1
M x1 +

√
2
M x2 cos(2πm/M + α), m = 0, . . . ,M − 1, where θ = (x1, x2, α). In this case, if W = I , then

B = [u c(α)] where u =
√

1
M 1 and cm(α) =

√
2
M cos(2πm/M + α) . One can verify that this matrix B(α) is

orthonormal for any value of α. Thus, from (31.9.1) the LS estimate of α is given by by the maximizer of ‖B′(α)y‖2 =

|u′ y|2 + |c′(α)y|2 . The first term is independent of α, so α̂ is the maximizer of |c′(α)y| =
∣∣∣∑M−1

m=0 c
∗
m(α)ym

∣∣∣ =∣∣∣∑M−1
m=0 cos(2πm/M + α) ym

∣∣∣ =
∣∣∣real

{∑M−1
m=0 e−ı2πm/M e−ıα ym

}∣∣∣ = |real{e−ıα Y1}| = ||Y1| cos(∠Y1 − α)| .

where the first DFT coefficient is Y1 =
∑M−1
m=0 e−ı2πm/M ym and we have assumed that y is real. Thus the LS

estimate is α̂ = ∠Y1 + kπ where k is any integer.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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31.10 Entropy (s,prob,entropy)
s,prob,entropy

The entropy of a random variable, as defined by Shannon [22, 23], is often used (and abused) in imaging problems.
In particular, it is useful for multi-modality image registration problems. It has also been studied extensively as a
regularization method for image recovery problems.

31.10.1 Shannon entropy
For a discrete random variable X having probability mass function (PMF) {pk, k = 1, . . . ,K}, the entropy of
X is defined by2

H{X} = −
K∑
k=1

pk log pk . (31.10.1)
e,prob,entropy,H

Note that like expectation E[X] and variance Var{X}, entropy is defined in terms of the distribution of X and is thus
a constant, not a random variable. This definition of entropy has several desirable properties. For example, one can
show that

0 ≤ H ≤ logK. (31.10.2)
e,prob,entropy,bound

The upper bound is achieved by the (discrete) uniform distribution where pk = 1/K. This is the “most random”
distribution for a discrete random variable taking K distinct values. The lower bound is achieved when X takes only
one value (with probability one), e.g., when p1 = 1, p2 = · · · = pK = 0. Such a random variable is not random at all.

In some image recovery problems, notably those based on maximum entropy methods, the 2D array of image
values f [m,n] is treated as if it represents a 2D probability mass function (after suitable normalization), and the
“entropy” of such an image is defined as

H = −
M−1∑
m=0

N−1∑
n=0

|f [m,n]|
s

log

(
|f [m,n]|

s

)
, (31.10.3)

e,prob,entropy,H,fmn=pmf

where s ,
∑M−1
m=0

∑N−1
n=0 |f [m,n]| . Often the normalization factor s is ignored. Given an imaging model g = Af,

typically under-determined, one can try to find f [m,n] to maximize H subject to ‖g = Af‖ ≤ ε. Because the upper
bound in (31.10.2) is achieved for uniform, rather than impulsive, distributions, one can expect that the maximum
entropy image will be among the smoother images that are sufficiently consistent with the data.

Consider aN ×M digital image f [m,n] with a finite number gray levels {fk}, e.g., {0, 1, . . . , 255}. Whether this
image should be viewed as a deterministic function or as a random process is a question of modeling and philosophy.
However, one can always define a random variable X by selecting one pixel at random and letting X be the value of
the selected pixel. This will be a discrete-valued random variable having probability mass function

pk = P{X = fk} =
1

MN

M−1∑
m=0

N−1∑
n=0

I{f [m,n]=fk}. (31.10.4)
e,prob,entropy,pk,pmf

MIRT See hist_bin_int.m.
This PMF is simply the histogram of the values of the image f [m,n], normalized by MN . Another definition of the
entropy of the image f [m,n] uses this PMF:

Hf = H{X} = −
K∑
k=1

pk log pk (31.10.5)

= −
K∑
k=1

(
1

MN

M−1∑
m=0

N−1∑
n=0

I{f [m,n]=fk}

)
log

(
1

MN

M−1∑
m=0

N−1∑
n=0

I{f [m,n]=fk}

)
. (31.10.6)

e,prob,entropy,H,fmn,hist

Note that this definition differs considerably from (31.10.3), as illustrated in the following example.
x,prob,entropy,uniform

Example 31.10.1 Consider an N ×M image f [m,n] that is completely uniform: f [m,n] = c. In this case, (31.10.3)
evaluates to its maximum H = log(MN), whereas (31.10.6) evaluates to its minimum H = 0.

2In digital communications, often the logarithm base 2 is used, but this is just a scale factor that is unimportant for imaging problems.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Now suppose that the image f [m,n] is continuous valued, e.g., arbitrary real or complex numbers. (This situation
arises in many image registration problems because even if the initial images are discrete valued, interpolation oper-
ations can lead to arbitrary gray scale values.) In this situation, the standard “histogram” definition of entropy given
in (31.10.6) may not be useful. For example, if every image pixel has a different value, then K = MN and (31.10.6)
reduces to H = log(MN) .

For continuous-valued images, one might be inclined to seek a continuous analogue of (31.10.1). For a continuous
random variable with probability density function p(x), its differential entropy is defined by

h = −
∫

p(x) log p(x) dx . (31.10.7)
e,prob,entropy,h

x,prob,entropy,gauss

Example 31.10.2 If X ∼ N
(
µ, σ2

)
then, using (31.4.1), its differential entropy is h = 1

2

(
1 + log

(
2πσ2

))
, which

increases monotonically with σ2. More generally, ifX ∼ N(µ,K) ∈ Rd then h = 1
2 (d+ log(det{2πK})) .

The definition (31.10.7) lacks some of the desirable properties of (31.10.1). For example it can take negative
values, as illustrated in Example 31.10.2 when σ2 < 1/(2πe). Furthermore, the distribution p(x) is rarely known in
practice for images so this expression seems to be of limited use for inverse problems. One could estimate p(x) from
an image f [m,n] using a kernel density estimate, also known as the Parzen window method:

p̂(x) =
1

MN

M−1∑
m=0

N−1∑
n=0

q(f [m,n]−x),

for some nonnegative function q(·) (called the kernel or window) that integrates to unity. Choosing the width of the
kernel requires care [24–26]. However, one would still need to sample x to perform numerical calculations, so it seems
more direct to work with discrete x values directly as described next.

A simple way to apply (31.10.1) to continuous-valued images would be to quantize those values into K bins. For
example, if the image values lie in the range [0, 100) then one could use K bins of the form Bk = [k∆, (k + 1)∆)
where in this case ∆ = 100/K, covering that interval. By analogy with (31.10.4), define the PMF of the quantized
values as

pk =
1

MN

M−1∑
m=0

N−1∑
n=0

I{f [m,n]∈Bk} (31.10.8)
e,prob,entropy,pk,Bk

and then use (31.10.1) to define entropy. (Even for discrete-valued images one can use (31.10.8) by neglecting the
least-significant bits [27].

MIRT See jf_histn.m.
A limitation of this definition is that H → log(MN) as ∆ → 0, if the image values are distinct. Therefore, choosing
the bin size ∆ is delicate. Note that if ∆ is small, then pk ≈ ∆ p(xk) where xk = k∆, so

H = −
∑
k

pk log pk ≈ −
∑
k

∆ p(xk) log(∆ p(xk)) ≈ h− log ∆.

Unfortunately, the simple quantization method (31.10.8) is not a continuous function of the image, which prevents the
use of gradient-based methods for optimization.

Inspired by the interpolation method of [28], an alternative approach is to use a differentiable kernel ψ(t) to
“interpolate” the histogram as follows:

pk =
1

MN

M−1∑
m=0

N−1∑
n=0

ψ(f [m,n] /∆− k), k = kmin, . . . , kmax, (31.10.9)
e,prob,entropy,pk,kernel

where we assume ψ(·) is nonnegative and satisfies the interpolation property

∞∑
k=−∞

ψ(t− k) = 1, ∀t ∈ R,

so that
∑kmax

k=kmin
pk = 1 (provided we choose kmin and kmax properly as discussed below). Choosing ∆ and ψ is still

important because typically H→ 0 as ∆→∞ and H→ log(MN) as ∆→ 0. It might appear that (31.10.9) requires
O(MNK) computation. But if we use a kernel ψ with finite support (−W/2,W/2), then for each k we need only

https://creativecommons.org/licenses/by-nc-nd/4.0/
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evaluate ψ(t− k) for values of t for which t − k lies in the support interval, i.e., k −W/2 < t < k + W/2. For a
given data value, the only pertinent values of k are those integers for which t−W/2 < k < t+W/2, i.e.,

bt−W/2c+ 1 ≤ k ≤ dt+W/2e − 1. (31.10.10)
e,prob,entropy,kde,range

The number of such k values is dt+W/2e − bt−W/2c − 1 ≤ dW e using (29.12.2). So this method requires
O(MN dW e) computation if implemented efficiently.

Based on (31.10.10), the smallest and largest relevant values of k are respectively kmin = bfmin/∆−W/2c + 1
and kmax = bfmin/∆ +W/2c − 1.

If ψ(·) is differentiable, then pk is a differentiable function of the image, facilitating gradient-based optimization.
Substituting (31.10.9) into (31.10.1) and differentiating the resulting entropy definition yields

∂

∂ f [m,n]
H = −

∑
k

[(
∂

∂ f
pk

)
log pk +

pk
pk

(
∂

∂ f
pk

)]
= −

∑
k

(
∂

∂ f
pk

)
log pk −

∂

∂ f

∑
k

pk

= −
∑
k

(
∂

∂ f
pk

)
log pk =

1

MN∆

(∑
k

ψ̇(f [m,n] /∆− k) log pk

)
.

Again, by using an interpolator ψ with finite support, gradient computation is also O(MN dW e). In particular, by
using a quadratic B-spline for ψ, the derivative operation is akin to linear interpolation.

MIRT See kde_pmf1.m and kde_pmf2.m
The literature describes many methods for choosing the parameter ∆. One simple rule of thumb that has been

advocated for a gaussian window q(·) is to choose

∆ = 0.9 min(σ, IQR/1.34)/(MN)1/5,

where σ is the sample standard deviation of the image values and IQR is the inter-quartile range [29, p. 48]. For
another kernel ψ, such as a quadratic B-spline, one can scale ∆ according to the relative FWHM of ψ and a gaussian
kernel.

MIRT See kde_pmf_width.

31.10.2 Joint entropy
For a pair of discrete random variables X,Y having joint probability mass function pkl = P{X = xk, Y = yl}, for
k = 1, . . . ,K, l = 1, . . . , L, the joint entropy of X and Y is defined by

H{X,Y } = −
K∑
k=1

L∑
l=1

pkl log pkl . (31.10.11)
e,prob,entropy,joint

An important property of this definition is

max(H{X},H{Y }) ≤ H{X,Y } ≤ H{X}+H{Y } . (31.10.12)
e,prob,entropy,subadd

The latter inequality is called subadditivity. The upper bound is reached whenX and Y are stastistically independent.
Joint entropy has been studied for multi-modality image registration problems [27, 30–32] and for certain multi-
modality regularization methods [33–35].

Given a pair of images f [m,n] and g[m,n] (possibly continuous valued), the joint histogram analog of (31.10.9)
is

pkl =
1

MN

M−1∑
m=0

N−1∑
n=0

ψ(f [m,n] /∆f − k)ψ(g[m,n] /∆g − l), k = 1, . . . ,K, l = 1, . . . , L,

where now it may be appropriate to allow ∆f and ∆g to differ.

31.10.3 Mutual information
A related quantity for a pair of jointly distributed random variables is their mutual information:

MI(X,Y ) = H{X}+H{Y }−H{X,Y } . (31.10.13)
e,prob,entropy,mi
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This quantity has been used for multi-modality image registration problems [28, 36, 37]. It also has been explored for
multi-modality regularization methods [33, 38, 39]. Numerous variations have been proposed, e.g., [40, 41], including
normalized mutual information

NMI(X,Y ) =
H{X}+H{Y }

H{X,Y }
(31.10.14)

e,prob,entropy,nmi

and entropy correlation coefficient

ECC(X,Y ) =

√
2− 2

H{X,Y }
H{X}+H{Y }

. (31.10.15)
e,prob,entropy,ecc

An important practical consideration in all such similarity measures for image registration is whether they exhibit
overlap invariance [42, 43].

31.10.4 Cross entropy
Yet another related quantity that has been used in imaging problems is the cross entropy of two random variables [44,
45], defined by (cf. §18.4.3):

H{X}+D(p ‖ q) =

(
−
∑
k

pk log pk

)
+

(∑
k

pk log
pk
qk
− pk + qk

)
= −

∑
k

pk log qk,

where pk denotes the PMF of X and qk denotes the PMF of Y . This quantity has been used for multi-modality
regularization methods [46–48] and for image reconstruction [46, 47, 49–53].

31.11 Problems (s,prob,prob)s,prob,prob

p,prob,poisson,multi,ratio

Problem 31.1 Prove (31.3.5). (Solve?)
p,prob,mix,mmse

Problem 31.2 Random variable x has a mixture distribution: p(x) =
∑
k πk pk(x) where πk ≥ 0 and

∑
k πk = 1

and pk(x) is the distribution of x for the kth class. Assume that the conditional distribution p(y |x) of the measure-
ments y is independent of the class of x. Show that the MMSE estimate of x from y is

x̂ =
∑
k

πk
p(y | Ak)

p(y)
E[x |y,Ak],

where Ak denotes the event that x is drawn from the kth class, i.e., pk(x) = p(x | Ak). This estimator expression
simplifies further when x is a mixture of gaussians and y |x ∼ N(Ax,Π) .
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