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29.1 Introduction (s,math,intro)s,math,intro

This appendix reviews some basic mathematical tools and notation used in this book.

29.2 Fourier transforms (s,math,four)s,math,four

The d̄-dimensional Fourier transform F (~ν) of a function f(~x), where ~x ∈ Rd̄ and ~ν ∈ Rd̄, and the inverse Fourier
transform are given by:

F (~ν) =

∫
f(~x) e−ı2π~ν·~x d~x (29.2.1)

f(~x) =

∫
F (~ν) eı2π~ν·~x d~ν . (29.2.2)

e,math,four,ft

29.2.1 Properties
29.2.1.1 Linearity ∑

j

αj fj(~x)
FT←→

∑
j

αj Fj(~ν)

29.2.1.2 Convolution property

The convolution of two d̄-dimensional signals f(~x) and g(~x) is denoted

(f ∗ g)(~x) =

∫
Rd̄
f(~x′) g(~x− ~x′) d~x′ . (29.2.3)

e,math,four,conv

The convolution property of the Fourier transform is:

h(~x) = (f ∗ g)(~x)
FT←→ H(~ν) = F (~ν)G(~ν) . (29.2.4)

e,math,four„conv

29.2.1.3 Shift property

g(~x) = f(~x− ~x0)
FT←→ G(~ν) = e−ı2π~ν·~x0 F (~ν) .

29.2.1.4 Scaling property

g(~x) = f(α~x)
FT←→ G(~ν) =

1

|α|d̄
F

(
~ν

α

)
, α 6= 0.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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29.2.1.5 Affine scaling property

For an invertible d̄× d̄ matrixB: (see Problem 29.1):

g(~x) = f
(
B−1 (~x− ~x0)

) FT←→ G(~ν) = |det{B}| e−ı2π~ν·~x0 F (B′~ν) . (29.2.5)
e,math,four,affine

29.2.1.6 Rotation property

For an orthonormal d̄× d̄ matrix U :

g(~x) = f(U~x)
FT←→ G(~ν) = F (U~ν) . (29.2.6)

e,math,four,rotate

29.2.1.7 Parseval’s theorem ∫
f(~x) g∗(~x) d~x =

∫
F (~ν)G∗(~ν) d~ν . (29.2.7)

e,math,four,parseval

29.2.1.8 Differentiation property

g(~x) =
∂

∂xj
f(~x)

FT←→ G(~ν) = ı2πνj F (~ν) .

29.2.1.9 Laplacian property

g(~x) = ∆2 f(~x) =

d̄∑
j=1

∂2

∂x2
j

f(~x)
FT←→ G(~ν) =

d̄∑
j=1

−(2πνj)
2 F (~ν) = −(2π)2 ‖~ν‖2 F (~ν) . (29.2.8)

e,math,four,laplace

29.2.1.10 Circular symmetry

If f(~x) = f0(‖~x‖) then F (~ν) = F0(‖~ν‖) .

29.2.1.11 Separability

If f(~x) =
∏d̄
i=1 fi(xi) then F (~ν) =

∏d̄
i=1 Fi(νi), where fi(x)

FT←→ Fi(ν).

29.2.1.12 Hermitian symmetry property

If f(~x) is real, then its Fourier transform is Hermitian symmetric: F (−~ν) = F ∗(~ν) .

29.3 Discrete Fourier transform (s,math,dsp)s,math,dsp

The 1D N -point discrete Fourier transform (DFT) of a signal x[n] is defined by

X[k] =

N−1∑
n=0

x[n] e−ı
2π
N nk , k = 0, . . . , N − 1, (29.3.1)

e,math,dsp,dft

and the inverse DFT is given by

x[n] =
1

N

N−1∑
k=0

X[k] eı
2π
N nk , n = 0, . . . , N − 1. (29.3.2)

e,math,dsp,idft

29.3.1 Properties of DFT
• Shift (periodic)

x[(n− n0) modN ]
DFT←→ e−ı

2π
N n0 X[k] .

• Parseval’s theorem
N−1∑
n=0

|x[n]|2 =
1

N

N−1∑
k=0

|X[k]|2 . (29.3.3)
e,math,dsp,parseval

https://creativecommons.org/licenses/by-nc-nd/4.0/
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29.4 Laplace transform (s,math,laplace)
s,math,laplace

The Laplace transform is useful for analyzing the properties of 1D linear time-invariant systems. For signal process-
ing applications, the bilateral Laplace transform is usually more relevant than the unilateral Laplace transform.
Therefore we focus on the bilateral, or two-sided Laplace transform here.

Although there exists a formula for the inverse Laplace transform, typically all that is needed is to combine
Laplace transform properties with known transform pairs such as those summarized below.

29.4.1 Laplace transform pairss,math,laplace,pair

signal transform ROC Notes

h(t) H(s) =

∫ ∞
−∞

h(t) e−st dt

δ(t) 1 C

e−at step(t)
1

s+ a
− real{a} < real{s}

e−a|t|
2a

a2 − s2
|real{s}| < real{a}

cos(bt) e−at step(t)
s+ a

(s+ a)2 + b2
− real{a} < real{s} Problem 29.2

sin(bt) e−at step(t)
b

(s+ a)2 + b2
− real{a} < real{s} Problem 29.3

cos(bt) e−a|t|
2a
(
a2 + b2 − s2

)
(a2 + b2 − s2)2 + (2bs)2

|real{s}| < real{a} Problem 29.4

sin(b |t|) e−a|t|
2b
(
a2 + b2 + s2

)
(a2 + b2 − s2)2 + (2bs)2

|real{s}| < real{a} Problem 29.5

(cos(at) + sin(a |t|)) e−a|t|
8a3

s4 + 4a4
|real{s}| < real{a}

29.4.2 Laplace transform propertiess,math,laplace,prop

property signal transform ROC
linearity ah(t) + bg(t) aH(s) + bG(s) ROC ⊇ ROC1 ∩ ROC2

differentiation d
dth(t) sH(s) ROC ⊇ ROCh

convolution h(t) ∗ g(t) H(s)G(s) ROC ⊇ ROCh ∩ ROCg
time shift h(t− τ) e−τsH(s) ROC unchanged
time scale h(at), a 6= 0 1

|a|H(s/a) ROC = ROCh/a

modulation ebt h(t) H(s− b) ROC = ROCh + real{b}
differentiation in s −th(t) d

dsH(s) ROC unchanged
running integration

∫ t
−∞ h(t′) dt′ 1

sH(s) ROC ⊇ ROCh ∩ {real{s} 0}

https://creativecommons.org/licenses/by-nc-nd/4.0/
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29.5 Differential equations (s,math,diff)
s,math,diff

If the time-varying state vector x(t) evolves according to the linear, constant-coefficient differential equation

ẋ(t) = Ax(t) + u(t),

with initial condition x(0) = x0, then it is readily verified that the solution for t ≥ 0 is

x(t) = eAt x0 +

∫ t

0

eA(t−s) u(s) ds . (29.5.1)
e,math,diff,sol

If A has eigen-decomposition A = V ΛV −1, then eAs = V Λs V −1. This is useful, for example, when solving the
Bloch equation in NMR.

If the scalar function x(t) evolves according to the linear, time-varying differential equation

ẋ(t) = a(t)x(t) + u(t),

with initial condition x(0) = x0, then it is readily verified that the solution for t ≥ 0 is

x(t) = exp

(∫ t

0

a(s) ds

)
x0 +

∫ t

0

exp

(∫ t

s

a(τ) dτ

)
u(s) ds .

Unfortunately, there is no simple generalization of this result to the vector state case:

ẋ(t) = A(t)x(t) + u(t) .

DefineB(t) ,
∫ t

0
A(s) ds and consider the function

f(t) = exp(B(t))f0 =

(
I +

∞∑
k=1

1

k!
[B(t)]

k

)
f0.

Its derivative is

ḟ(t) =

( ∞∑
k=1

1

k!

(
d

dt
[B(t)]

k

))
f0.

This simplifies if the matrix d
dtB(t) commutes withB(t), which happens in the scalar case but not in general.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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29.6 Z transform (s,math,z)s,math,z

The Z transform is useful for analyzing the properties of discrete-time 1D linear time-invariant systems.
Although there exists a formula for the inverse Z transform, typically all that is needed is to combine Z transform

properties with known transform pairs such as those summarized below.

29.6.1 Z transform pairss,math,z,pair

In the following table, p = r eıb ∈ C, where r, b ∈ R.
signal transform ROC

h[n]

∞∑
n=−∞

h[n]z−n

δ[n] 1 C

pn step(n)
1

1− pz−1
|p| < |z|

p|n|
(p− p−1)z−1

1− (p+ p−1)z−1 + z−2
=

(p− p−1)z−1

(1− pz−1)(1− p−1z−1)
|p| < |z| < 1

|p|

cos(bn) rn step(n)
1− r cos(b) z−1

1− 2r cos(b) z−1 + r2z−2
=

1− real{p} z−1

(1− pz−1)(1− p∗z−1)
|r| < |z|

sin(bn) rn step(n)
r sin(b) z−1

1− 2r cos(b) z−1 + r2z−2
=

imag{p} z−1

(1− pz−1)(1− p∗z−1)
|r| < |z|

cos(bn) r|n| z−1 (1 + z−2)(r − 1/r) cos(b)−(r2 − 1/r2)z−1

(1− pz−1)(1− 1/pz−1)(1− p∗z−1)(1− 1/p∗z−1)
|r| < |z| < 1

|r|

sin(b |n|) r|n| z−1 (1 + z−2)(r + 1/r) sin(b)−2 sin(2b) z−1

(1− pz−1)(1− 1/pz−1)(1− p∗z−1)(1− 1/p∗z−1)
|r| < |z| < 1

|r|

29.6.2 Z transform propertiess,math,z,prop

property signal transform ROC
linearity ah[n] + bg[n] aH(z) + bG(z) ROC ⊇ ROC1 ∩ ROC2

differencing h[n]− h[n− 1] (1− z−1)H(z) ROC ⊇ ROCh
convolution h[n] ∗ g[n] H(z)G(z) ROC ⊇ ROCh ∩ ROCg
time shift h[n−m] z−mH(z) ROC unchanged, except origin
time reversal h[−n] H(z−1) ROC inverted
modulation bnh[n] H(z/b) ROC = ROCh/ |b|
time expansion (upsampling), k ∈ N h[n/k]I{n/k∈Z} H(zk) ROC = ROC

1/k
h

differentiation in z −nh[n] − d
dzH(z) ROC unchanged

accumulation
∑n
k=−∞ h[k] 1

1−z−1H(z) ROC ⊇ ROCh ∩ {|z| > 1}

29.7 B-splines (s,math,spline)
s,math,spline

B-spline functions of order k ≥ 0 with knots t1, t2, . . . , tN+k+1 are defined recursively as follows for i = 1, . . . , N :

Bi,0(t) = I{ti≤t<ti+1}

Bi,k(t) =
t− ti

ti+k − ti
Bi,k−1(t) +

ti+1+k − t
ti+1+k − ti+1

Bi+1,k−1(t). (29.7.1)
e,math,bspline

In image processing, often the knots are spaced equally.
MIRT See ir_bspline_k.m.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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29.8 Gradients (s,math,gradient)s,math,gradient

If f(x) is a (differentiable) function from Rnp to R, then the row gradient of f is defined as

∇f(x) =

[
∂

∂x1
f(x), . . . ,

∂

∂xnp

f(x)

]
. (29.8.1)

e,rgrad

The column gradient, denoted ∇f is the transpose of the row gradient.

29.8.1 Gradients of linear and quadratic forms
If f(x) = real{v′ x} for some vector v ∈ Cnp , then (see §29.2):

∇f(x) = v .

If f(x) = x′Mx for some matrixM ∈ Rnp×np , then

∇f(x) = (M +M ′)x. (29.8.2)
e,math,gradient,quad

See Appendix 29 for the complex case.
Leibniz’s rule:

G(x) =

∫ b(x)

a(x)

h(x, y) dy =⇒ d

dx
G(x) = h(x, b(x))

d

dx
b(x)− h(x, a(x))

d

dx
a(x) +

∫ b(x)

a(x)

∂

∂x
h(x, y) dy .

29.8.2 Taylor series expansions
If g : R→ R is an n-times differentiable function, then Taylor’s theorem is:

g(x) = g(a) +

n−1∑
k=1

1

k!
g(k)(a)(x− a)k +

∫ x

a

1

(n− 1)!
(x− t)n−1g(n)(t) dt .

In particular, for n = 2 we have

g(t) = g(s) + ġ(s)(t− s) +

∫ t

s

(t− τ)g̈(τ) dτ

= g(s) + ġ(s)(t− s) + (t− s)2

∫ 1

0

(1− α)g̈(αt+ (1− α)s) dα .

Conversely, if

g(t) = g(s) + ġ(s)(t− s) + (t− s)2

∫ 1

0

(1− α) c̆(αt+ (1− α) s) dα,

then g̈(t) = c̆(t).
If f : Rn → R is differentiable, then the 1st-order Taylor series expansion of f around a point z is

f(x) = f(z) +

[∫ 1

0

∇f(αx+ (1− α)z) dα

]
(x− z). (29.8.3)

e,taylor1

If f : Rn → R is twice differentiable, then the 2nd-order Taylor series expansion of f around a point z is

f(x) = f(z) +∇f(z)(x− z) + (x− z)′
[∫ 1

0

(1− α)∇2f(αx+ (1− α)z) dα

]
(x− z). (29.8.4)

e,taylor2

For functions with complex arguments, see §29.4.

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://en.wikipedia.org/wiki/Taylor's_theorem


c© J. Fessler. [license] February 22, 2019 29.8

29.8.3 Lipschitz continuity
A function g : Cn → Cm is called Lipschitz continuous if there exists a finite real number L such that

‖g(x)− g(z)‖2 ≤ L‖x− z‖2 , ∀x, z ∈ Cn. (29.8.5)
e,math,lipschitz,def

Such an L is called a Lipschitz constant. If g is Lipschitz continuous, then it is natural to seek the smallest Lipschitz
constant:

L∗ , sup
x 6=z

‖g(x)− g(z)‖2
‖x− z‖2

,

which one might call “the” Lipschitz constant of g.
A function need not be differentiable to be Lipschitz continuous. For example, g(x) = |x| is Lipschitz continuous

with L = 1. However, any Lipschitz continuous function is absolutely continuous and thus differentiable almost
everywhere. We generalize this definition in Definition 29.9.16.

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://en.wikipedia.org/wiki/Lipschitz_continuity
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29.9 Convexity (s,math,convex)
s,math,convex

Convex sets and convex functions have important roles in optimization. This section reviews some relevant properties.

29.9.1 Convex setss,math,convex,set

d,convex,set

Definition 29.9.1 A set C is convex iff

x, z ∈ C =⇒ αx+ (1− α) z ∈ C, ∀α ∈ [0, 1].

In words, for any two points in a convex set, all points on the line segment between those points also lie in the set.
x,convex,ellipse

Example 29.9.2 An ellipse is a convex set, as illustrated in the following figure.

x
y

{αx+ (1− α)y : α ∈ [0, 1]}

x,math,convex,box

Example 29.9.3 Any box set of the following form is convex:

{x ∈ Rn : lj ≤ xj ≤ uj , j = 1, . . . , n} . (29.9.1)
e,math,convex,box

x,math,convex,nonneg,orthant

Example 29.9.4 The nonnegative orthant is the most important convex set used in this book:

{x ∈ Rn : 0 ≤ xj <∞, j = 1, . . . , n} . (29.9.2)
e,math,convex,nonneg,orthant

29.9.2 Convex projectionss,math,convex,projection

A particularly important property of convex sets is that for any point x outside the set, there is a unique point x(?)

within the set that is closest to x, as established by the following theorem from functional analysis [1, p. 69].
t,math,convex,closest

Theorem 29.9.5 Let C be a nonempty closed convex subset of a Hilbert space H (such as Rn or Cn) with associated
inner product 〈·, ·〉 and norm ‖·‖. For any x ∈ H , there is a unique vector x(?) ∈ C such that

‖x− x(?)‖ ≤ ‖x− z‖ , ∀z ∈ C.

Furthermore, x(?) is characterized (in a necessary and sufficient sense) by

real{〈x− x(?), z − x(?)〉} ≤ 0, ∀z ∈ C. (29.9.3)
e,math,convex,closest,inprod

This theorem is a close relative of the projection theorem. Because of its existence and uniqueness results, it is
valid to define the following projector onto a convex set C:

PC(x) , arg min
z∈C

‖z − x‖ . (29.9.4)
e,math,convex,projector

This function gives the closest point in C to x.
x,math,convex,projector,box

Example 29.9.6 If C is the box set defined in (29.9.1) and x(?) = PC(x), then

x?j =

 lj , xj < lj
xj , lj ≤ xj ≤ uj
uj , xj > uj .

https://creativecommons.org/licenses/by-nc-nd/4.0/
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29.9.3 Convex functions (s,math,convex,fun)s,math,convex,fun

d,convex,fun

Definition 29.9.7 For a convex set D ⊂ Rn, a real functional f : D → R is called a convex function on D iff

f(αx+ (1− α) z) ≤ α f(x) + (1− α) f(z), ∀α ∈ [0, 1], ∀x, z ∈ D.

The function f is called strictly convex iff the inequality is strict for all x 6= z and α ∈ (0, 1).

f(x)

x
x2x0x1

Figure 29.9.1: Illustration of a 1D convex function.
fig,convex

An alternative (equivalent) definition is that a function is convex iff its epigraph (the set of points on or above the
graph of the function, i.e., {(x, t) : x ∈ D, f(x) ≤ t ∈ R}) is a convex set [2, p. 75].

d,concave,fun

Definition 29.9.8 A function f is called concave if its negative, −f , is convex.
A strictly concave function is defined by analogy.

x,math,convex,parabola

Example 29.9.9 A parabola f(x) = a+ bx+ cx2 with c ≥ 0 is convex on R, because for α ∈ [0, 1]:

αf(x) + (1− α) f(y)− f(αx+ (1− α) y) = cα (1− α) (x− y)2 ≥ 0.
x,math,convex,power

Example 29.9.10 The function f(x) = |x|p is convex for p ≥ 1 [2, p. 71] and is strictly convex for p > 1. (See
Problem 29.7.)

For generalizations of convexity, see [3] (g-convex) and [2] (quasi-convex).

29.9.3.1 Minimizers of convex functions
d,math,local,min

Definition 29.9.11
x(?) is a local minimizer of f(x) with respect to norm ‖·‖ iff ∃ε > 0 s.t. ‖x− x(?)‖ ≤ ε =⇒ f(x(?)) ≤ f(x) [4,
p. 19].
x(?) ∈ D is a global minimizer of f(x) over the domain D iff f(x(?)) ≤ f(x) ∀x ∈ D.

Convex functions are particularly important for optimization problems because of the following properties.
• Any local minimizer of a convex function is a global minimizer.
• A global minimizer of a strictly convex function is unique.

The converse of uniqueness is not true; i.e., there are many functions that have unique global minimizers that are
not strictly convex, such as the `1 norm: f(x) = ‖x‖1, and even non-convex, such f(x) =

√
|x|. Convexity is

sufficient but not necessary for ensuring uniqueness of a global minimizer.
Neither of these properties ensures that local or global minimizers exist for convex functions. For example, the 1D

function f(x) = ex is strictly convex but has no local (or global) minimizers on R.
For differentiable convex functions on Rn we can characterize the global minimizer(s) using the gradient.

• If Ψ(x) is convex on Rn, then ∇Ψ(x) = 0 iff x is a global minimizer of Ψ.
• If Ψ(x) is strictly convex on Rn, then ∇Ψ(x) = 0 iff x is the (unique) global minimizer of Ψ.

In other words, to find an unconstrained minimizer of a convex function over Rn, it suffices to find a value of xwhere
the gradient is zero. In contrast, for general (possibly non-convex) functions, finding a point x where the gradient is
zero tells us very little because x could be a local minimizer or a local maximizer or neither (a saddle point).

https://creativecommons.org/licenses/by-nc-nd/4.0/
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29.9.3.2 Assessing convexity using properties

One way to determine if a function is convex is to resort to the definition. Often it is simpler to use properties of the
function such as the following.

• A function f(x) is convex on D iff its restriction g(t) = f(x+ tz) to a line in D is convex for any x and z in
D [2, p. 68].

• If f is twice differentiable, then f is convex if and only if its Hessian matrix is positive-semidefinite:

∇2f � 0. (29.9.5)
e,math,convex,fun,hess,mgeq

(See Lemma 29.5.7 and Lemma 29.5.8.)

• If f is twice differentiable, then f is strictly convex if its Hessian matrix is positive definite:

∇2f � 0. (29.9.6)
e,math,convex,fun,hess,mgt

However, the converse is not true. Example: f(x) = x4 is strictly convex, but its Hessian (second derivative) is
not positive everywhere.

Often convex functions are constructed from other (convex) functions and the following properties apply.

• If f is convex on Rn, then g(x) , f(Mx+b) is convex on Rm for any matrixM ∈ Rn×m and vector b ∈ Rn.
In other words, convexity is preserved under affine transformations. (See Problem 29.6.)

• If f(x) and g(x) are convex, then so is their point-wise maximum: h(x) = max {f(x), g(x)} .

• Sums of convex functions are convex.

• Sums of strictly convex functions are strictly convex.

• The sum of a convex function and a strictly convex function is strictly convex.

x,convex,fun,sum

Example 29.9.12 The following cost function is strictly convex for any β > 0: Ψ(x) = ‖y −Ax‖22 +β ‖x‖22 .
The Hessian of the Tikhonov regularizer g(x) = β ‖x‖22 is∇2g = βI , which is positive definite, so g is strictly
convex. The data-fit term ‖y −Ax‖22 is convex by the affine property above, so the sum is strictly convex.

29.9.3.3 Properties of convex functions

• By induction, one can show that if f is convex and
∑K
k=1 αk = 1 for αk ≥ 0, then f obeys the following

convexity inequality

f

(
K∑
k=1

αkxk

)
≤

K∑
k=1

αkf(xk), (29.9.7)
e,math,convex,convexity,inequality

for xk values in D, the domain of f .

• A special case of the preceding result is Jensen’s inequality. If f : D → R is a convex function and X ∈ Rn
is a random vector with P{X ∈ D} = 1, then

f(E[X]) ≤ E[f(X)] . (29.9.8)
e,jensen

• The sublevel sets {x ∈ D : f(x) < a} of a convex function f are convex sets for any a ∈ R.
x,convex,fun,mean

Example 29.9.13 Applying (29.9.7) to the function f(x) = − log(x) yields the weighted arithmetic-geometric mean
inequality [5, p. 53a]: ∑

k

αkxk ≥
∏
k

xαkk , ∀xk ≥ 0,

if
∑
k αk = 1 and αk ≥ 0, with equality iff all xk values are equal.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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29.9.3.4 Properties of differentiable convex functions

• If f is convex on D and differentiable at z ∈ D, then it satisfies the following support property:

f(x) ≥ f(z) + 〈∇f(z), x− z〉, ∀x ∈ D. (29.9.9)
e,math,convex,above,tangent

In other words, a convex function lies above the tangent plane at any point.

• Conversely, if f is differentiable on D and satisfies (29.9.9) everywhere, then f is convex [2, p. 70].

The following lemmas are used to prove convergence of the gradient projection algorithm in §12.2.
l,math,convex,polyak,2

Lemma 29.9.14 [6, p. 10] If f : D → R is convex and differentiable on D, then

〈∇f(x)−∇f(z), x− z〉 ≥ 0, ∀x, z ∈ D.
Proof:
f is convex =⇒ f(z) ≥ f(x) + 〈∇f(x), z − x〉 and f(x) ≥ f(z) + 〈∇f(z), x− z〉 . Now add. 2

d,math,convex,lips,mn

Definition 29.9.15 A function g : Cn → Cm is Lipschitz continuous w.r.t. norms ‖·‖m and ‖·‖n on Cm and Cn
respectively iff

‖g(x)− g(z)‖m ≤ ‖x− z‖n , ∀x, z ∈ Cn. (29.9.10)
e,math,convex,fun,lip,mn

d,math,convex,ab,lips

Definition 29.9.16 A function g : Cn → Cm is (A,B)-Lipschitz continuous iff

‖A (g(x)− g(z))‖2 ≤ ‖B (x− z)‖2 , ∀x, z ∈ Cn, (29.9.11)
e,math,convex,fun,lip,ab

whereA has m columns andB ∈ Cn×n is invertible.

Our primary interest in Lipschitz functions will be gradients of cost functions, which are mappings from Cnp into
Cnp (or Rnp into Rnp ). The following definition generalizes (29.8.5) and is a special case of Definition 29.9.16.

d,math,convex,s,lips

Definition 29.9.17 A function g : Cnp → Cnp is S-Lipschitz continuous, for an invertible np × np matrix S, iff∥∥S−1 (g(x)− g(z))
∥∥

2
≤ ‖S′ (x− z)‖2 , ∀x, z ∈ Cnp . (29.9.12)

e,math,convex,lip,s

This definition is a strict generalization of the usual definition of Lipschitz continuity because if (29.9.12) holds,
then

‖g(x)− g(z)‖2 =
∥∥SS−1 (g(x)− g(z))

∥∥
2
≤ |||S|||2

∥∥S−1 (g(x)− g(z))
∥∥

2
≤ |||S|||2 ‖S′ (x− z)‖2

≤ |||S|||2|||S′|||2 ‖x− z‖2 ,

so g(·) is Lipschitz continuous with Lipschitz constant L = |||S|||2|||S′|||2.
t,math,convex,lip,hess

Theorem 29.9.18 If Ψ is twice differentiable, then the Hessian bound |||S−1∇2Ψ(x)S−H|||2 ≤ 1, ∀x ∈ Rnp holds
iff its gradient is S-Lipschitz continuous per (29.9.12).
Proof (extended from [7, p. 21]):
Using Taylor expansion with remainder (29.8.4) and the triangle inequality shows (29.9.12) as follows:

∥∥S−1 (∇Ψ(z)−∇Ψ(x))
∥∥ =

∥∥∥∥S−1

∫ 1

0

∇2Ψ(x+ τ (z − x))S−HS′ (z − x) dτ

∥∥∥∥
≤
(∫ 1

0

|||S−1∇2Ψ(x+ τ (z − x))S−H|||2 dτ

)
‖S′ (z − x)‖

≤ ‖S′ (z − x)‖ .

Lemma 29.9.19 provides a (generalized) converse. 2

l,math,convex,gp,mnorm,ab

Lemma 29.9.19 If g : Cn → Cm is differentiable at x ∈ Cn and (A,B)-Lipschitz continuous per (29.9.11), then

|||A∇ g(x)B−1||| ≤ 1.
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Proof:
Because g is differentiable at x, there existsH(x) = ∇ g(x) ∈ Cm×n such that

∀ε > 0, ∃δε > 0 s.t. ‖d‖ ≤ δε =⇒ ‖g(x+ d)− g(x)−H(x)d‖ ≤ ε ‖d‖ .

Suppose |||AHB−1||| > 1. Then there exists z 6= 0 and c > 0 such that
∥∥AHB−1z

∥∥ = (1 + c) ‖z‖ . Consider
ε = c/(2|||A||||||B−1|||) and choose α such that α

∥∥B−1z
∥∥ < δε. (The case where |||A||| = 0 is trivial.) Defining

d = αB−1z and using the triangle inequality:

(1 + c) ‖αz‖ =
∥∥AHB−1αz

∥∥ ≤ ‖A (g(x+ d)− g(x)−Hd)‖+ ‖A (g(x+ d)− g(x))‖
≤ |||A|||ε ‖d‖+ ‖Bd‖ ≤ (c/2) ‖αz‖+ ‖αz‖ ,

a contradiction. So we must have |||AHB−1||| ≤ 1. 2

c,math,convex,lip,majorize

Corollary 29.9.20 If Ψ is twice differentiable and convex, and S is invertible, then the Lipschitz condition (29.9.12)
holds iff∇2Ψ(x) � SS′, ∀x. (Problem 29.9.)

In other words, for a twice differentiable, convex cost function Ψ, the Lipschitz condition (29.9.12) is equivalent
to a bound on the curvature (Hessian) of Ψ.

The condition in Definition 29.9.17 leads to the following inequality related to Lemma 29.9.14. (See Prob-
lem 29.8.)

l,math,convex,gp,upper,s

Lemma 29.9.21 If Ψ is convex and differentiable and its gradient is S-Lipschitz continuous per Definition 29.9.17,
then

〈∇Ψ(x)−∇Ψ(z), x− z〉 ≤ ‖S′ (x− z)‖2 . (29.9.13)
e,math,convex,gp,upper,s

l,math,convex,gp,lower,s

Lemma 29.9.22 If Ψ is convex and differentiable and its gradient is S-Lipschitz continuous per Definition 29.9.17,
then we can strengthen Lemma 29.9.14 to

〈∇Ψ(x)−∇Ψ(z), x− z〉 ≥
∥∥S−1 (∇Ψ(x)−∇Ψ(z))

∥∥2
. (29.9.14)

e,math,convex,gp,lower

Proof (extended from [6, p. 24]):
Consider first the case where Ψ is twice differentiable. Then by the 2nd-order Taylor expansion (29.4.3): ∇Ψ(x) =

∇Ψ(z) +H(x, z)(x − z) where H(x, z) =
∫ 1

0
∇2Ψ(τx+ (1− τ) z) dτ � 0 by the convexity of Ψ. Defining

A , A(x, z) = S−1H(x, z)S−H � 0, by Lemma 29.9.19 we have |||A||| ≤ 1. Note that A2 � |||A|||A � A, so
w′Aw ≥ ‖Aw‖2 . Thus with w = S′ (x− z):

〈∇Ψ(x)−∇Ψ(z), x− z〉 = 〈H (x− z) , x− z〉 =
〈
S−1HS−Hw, w

〉
= w′Aw

≥ ‖Aw‖2 =
∥∥S−1H (x− z)

∥∥2
=
∥∥S−1 (∇Ψ(x)−∇Ψ(z))

∥∥2
.

If Ψ is not twice differentiable1, then consider the smoothed function

Ψε(x) =

∫
Ψ(x− z) p(z/ε)ε−np dz

where p(·) is a smooth (i.e., C∞) kernel with finite support and unit integral. Clearly Ψε is convex and twice differ-
entiable and its gradient satisfies the same Lipschitz condition as ∇Ψ. Thus Ψε satisfies the inequality (29.9.14), and
taking the limit as ε→ 0+ establishes (29.9.14) for Ψ. 2

l,math,convex,fun,lower2,s

Lemma 29.9.23 If Ψ is convex and differentiable and its gradient is S-Lipschitz continuous per Definition 29.9.17,
then [7, Thm. 2.1.5]:

Ψ(x) ≤ Ψ(z) + 〈∇Ψ(z), x− z〉+1

2
‖S (∇Ψ(x)−∇Ψ(z))‖2 .

This property was used as a definition in [8].

1 Thanks to Arkadi Nemirovski for help with this proof, in a 2001-08-20 email to Matt Jacobson.
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29.9.3.5 Convex conjugates,math,convex,conj

The convex conjugate of a function, also known as the Legendre-Fenchel transformation, is used for deriving
some optimization methods. (See §14.8.) The definition applies to general normed spaces but here we consider only
real-valued functions on Rn. For such functions, the convex conjugate is

f?(z) , sup
x

(〈z, x〉− f(x)) , ∀z ∈ Rn. (29.9.15)
e,math,convex,conj

x,math,convex,conj,abs

Example 29.9.24 The convex conjugate of the absolute value function f(x) = |x| is

f?(z) =

{
0, |z| ≤ 1
∞, |z| > 1.

x,math,convex,conj,power

Example 29.9.25 The convex conjugate of a power function

f(x) =
1

p
|x|p , 1 < p <∞

is
f?(z) =

1

q
|z|q , 1

p
+

1

q
= 1.

Properties of convex conjugates include the following.
• f?(x) is convex on Rn.
• If f(x) is a proper, convex, and lower-semicontinuous function, then f?? = f by the Fenchel-Moreau theorem,

so
f(x) = sup

z
(〈z, x〉−f?(z)) . (29.9.16)

e,math,convex,conj,min

In particular we have the following inequality:

f(x) ≥ 〈z, x〉−f?(z), ∀z ∈ Rn. (29.9.17)
e,math,convex,conj,geq

29.9.3.6 Proximal mappings,math,convex,prox

If f is a convex function, then the proximal operator or proximal mapping Moreau proximity operator is defined
[9–12] as

proxf (z) , arg min
x

1

2
‖x− z‖22 + f(x) . (29.9.18)

e,math,convex,fun,prox

Because ‖x− z‖2 is strictly convex and f(x) is convex, their sum is strictly convex so that sum has a unique min-
imizer for any z. This operator is particularly useful for the proximal gradient method (PGM) for non-smooth
optimization and its relatives [13, 14].

If f is differentiable, then by differentiating (29.9.18) we have

0 = x− z +∇ f(x)
∣∣∣
x=proxf (z)

=⇒ proxf (z) = (I +∇ f)
−1

(z).

This relationship holds even for nonsmooth convex functions using the subdifferential, so

proxf = (Id + ∂ f)
−1
,

where Id denotes the identity operator (not the identity matrix) and the inverse above denotes a function inverse, not a
matrix inverse.

29.9.3.7 Moreau envelopes,math,convex,moreau,envelope

For a convex function f and λ > 0, the Moreau envelope of f with parameter λ is defined [9–12, 15] [16, Sect. 12.4]
by

fλ(z) , inf
x
f(x) +

1

2λ
‖x− z‖22 . (29.9.19)

e,math,convex,fun,mor,env

Comparing to the proximity operator (29.9.18), we see that

fλ(z) = f
(
proxλf (z)

)
+

1

2λ

∥∥proxλf (z)−z
∥∥2

2
.

The Moreau envelope is also the infimal convolution of f(·) with 1
2λ ‖·‖

2
2 .
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29.9.3.8 Minimization of convex functions over convex setss,math,convex,min

Many of the image reconstruction problems described in this book require finding the minimizer x̂ of a convex cost
function Ψ(x) over a convex set C ⊂ Rnp , i.e.,

x̂ = arg min
x∈C

Ψ(x) .

In general the minimizer of Ψ(x) may not be unique even over C, so we define the solution set

X (?) , {x(?) ∈ C : Ψ(x(?)) ≤ Ψ(x), ∀x ∈ C} .

Constrained minimization problems require more work than simply equating the gradient to zero. When Ψ is a convex
cost function and C is a convex set, the constrained minimizers are characterized by the following result.

t,math,convex,min

Theorem 29.9.26 [6, p. 203] If Ψ is a differentiable convex function and C is a convex set, then

x(?) ∈ X (?) ⇐⇒ ∇Ψ(x(?)) (x− x(?)) ≥ 0, ∀x ∈ C.
Proof of⇐ [6, p. 200]:
Suppose∇Ψ(x(?)) (x(0) −x(?)) < 0 for some x(0) ∈ C. Define xα = (1− α)x(?) +αx(0) = x(?) +α(x(0) −x(?))
and note xα ∈ C because C is convex. Then by Taylor series: Ψ(xα) = Ψ(x(?)) +α∇Ψ(x(?)) (xα − x(?)) + o(α)
so Ψ(xα) < Ψ(x(?)) for α sufficiently small, a contradiction. 2

The preceding characterization is easily understood geometrically: for x ∈ C, the vector x−x(?) has an angle less
than π/2 away from the gradient∇Ψ(x(?)).

x(?)

x

C
∇Ψ(x(?))

cost function contours

29.9.3.9 Exchanging order of minimization and maximizations,math,convex,min,max

In some optimization problems one would like to exchange the order of minimzation and maximization as follows:

min
x∈X

sup
y∈Y

Ψ(x,y)
?
= sup
y∈Y

min
x∈X

Ψ(x,y) .

Sufficient conditions (including convexity in x and concavity in y) are given in [17, 18].

29.10 Minimizers with nonnegativity constraints (s,math,min,nonneg)
s,math,min,nonneg

t,math,min,nonneg

Theorem 29.10.1 Let f(x) be a differentiable function defined over the nonnegative orthant Rnp

+ . LetD = diag{dj}
denote a diagonal np×np matrix with nonnegative diagonal elements. Let x(?) ∈ Rnp

+ denote a constrained minimizer
of f , i.e., f(x(?)) ≤ f(x), ∀x ∈ Rnp

+ . Then

〈∇ f(x(?)), D(x− x(?))〉 ≥ 0, ∀x ∈ Rnp

+ .
Proof:
By the Karush-Kuhn-Tucker (KKT) conditions,

∂

∂xj
f(x(?))

{
= 0, x?j > 0
≥ 0, x?j = 0,

(29.10.1)
e,math,min,nonneg,kkt

so x?j
∂
∂xj

f(x(?)) = 0 and hence
∑np

j=1 djx
?
j
∂
∂xj

f(x(?)) = 0. Furthermore, x ∈ Rnp

+ implies xj ≥ 0, so

np∑
j=1

djxj
∂

∂xj
f(x(?)) = 0,

because ∂
∂xj

f(x(?)) ≥ 0. 2
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29.11 Augmented Lagrangian methods (s,math,al)
s,math,al

This section summarizes the augmented Lagrangian method for constrained optimization [20, Ch. 3] [21], consider-
ing the case of complex vectors.

Let Ψ : Cnp 7→ R denote a cost function and consider the constrained minimization problem

arg min
x∈Cnp

Ψ(x) sub. toBx = c, (29.11.1)
e,math,al,p0

whereB is a M × np matrix (possibly complex valued) and c ∈ CM .
It is easy to verify that (29.11.1) is equivalent to the following saddle-point problem:

max
q∈CM

arg min
x∈Cnp

Ψ(x) + real{q′(Bx− c)}, (29.11.2)
e,math,al,p1

because if we choose q = α(Bx− c) for α ∈ R then the second term becomes α ‖Bx− c‖2 which is unbounded as
α→∞ unlessBx = c. The vector q is called a Lagrange multiplier.

The saddle-point problem (29.11.2) is also equivalent to the following problem:

max
q∈CM

arg min
x∈Cnp

Lµ(x, q), (29.11.3)
e,math,al,p2

where the augmented Lagrangian is defined by

Lµ(x, q) , Ψ(x) + real{q′(Bx− c)}+
µ

2
‖Bx− c‖2 , (29.11.4)

e,math,al,al

for any real µ > 0. By completing the square, one can rewrite the augmented Lagrangian as2

Lµ(x, q) = Ψ(x) +
µ

2

∥∥∥∥Bx− c+
1

µ
q

∥∥∥∥2

− µ

2

∥∥∥∥ 1

µ
q

∥∥∥∥2

. (29.11.5)
e,math,al,al2

Identifying η = −1
µ q we rewrite (29.11.3) as

max
η∈CM

arg min
x∈Cnp

L̃µ(x,η) where L̃µ(x,η) , Lµ(x,−µη) = Ψ(x) +
µ

2
‖Bx− c− η‖2 − µ

2
‖η‖2 .

One way to solve this saddle-point problem is to alternate between updating x and updating η. We update x using

x(n+1) = arg min
x∈Cnp

L̃µ(x,η(n)) = arg min
x∈Cnp

Ψ(x) +
µ

2
‖Bx− c− η(n)‖2 .

At first it might seem natural to update η using

η(n+1) = arg max
η∈CM

L̃µ(x(n+1),η).

However, that would lead to η(n+1) with infinite norm when Bx(n) 6= c. Instead we apply a single gradient ascent
update (using (29.2.16) in the complex case) for the Lagrange multiplier:

η(n+1) , η(n) + αn∇ηL̃µ(x(n+1),η(n)) = η(n) − αnµ (Bx− c) .

The parameter αn is a step size that must be chosen appropriately to ensure convergence [20, Ch. 3]. Other methods
for updating the Lagrange multiplier η have been proposed [23, 24].

29.12 Special functions (s,math,floor)
s,math,floor

The floor and ceiling operations often are useful for imaging geometry calculations. They are defined as follows:

bxc , max {n ∈ Z : n ≤ x}

dxe , min {n ∈ Z : n ≥ x} .
2 Ramani et al. [22, after (13)] imply that the last term is an irrelevant constant. It is independent of x, so irrelevant for updating x, but it is

essential for the update of η.
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Useful properties of d·e and b·c include the following:

x ≤ dxe < 1 + x

x− 1 < bxc ≤ x
dxe ≤ bx+ 1c = bxc+ 1 (29.12.1)

e,math,floor,ceil<=floor+1

b−xc = −dxe
d−xe = −bxc

dx+ be − bx+ ac ≤ 1 + db− ae . (29.12.2)
e,math,floor,ceil-floor

29.13 Convergence rates of iterations (s,math,rate)
s,math,rate

One can evaluate the convergence rate of iterative methods using a variety of metrics.
• When a cost function Ψ has a minimum value Ψ∗ = minz Ψ(x), we can examine how quickly Ψ(x(n))−Ψ∗

approaches zero.
• If a cost function Ψ is differentiable, we can examine how quickly a norm of its gradient ‖∇Ψ(x(n))‖ approaches

zero.
• If a cost function Ψ has a unique minimizer x(?), we can examine how quickly ‖x(n) − x(?)‖ approaches zero.

The rest of this section focuses on the latter case because it is of the most interest.
We a say a sequence {x(n)} converges to a limit x(?) with respect to a norm ‖·‖ if for all ε > 0 there exists a

number Nε such that
‖x(n) − x(?)‖ < ε, ∀n ≥ Nε.

There are various ways to quantify the asymptotic convergence rate of convergent sequences, and these are important
for understanding the limiting behavior of optimization methods.

The quotient convergence factor of a sequence {x(n)} converging to a limit x(?) is defined by [25, p. 281] [26]

Q1({x(n)}) , lim sup
n→∞

∥∥x(n+1) − x(?)
∥∥

‖x(n) − x(?)‖
. (29.13.1)

e,math,rate,quotient,xn

If this limit superior lies in the interval (0, 1) then we say that the sequence {x(n)} converges linearly to x(?).
Another measure of convergence rate of a sequence {x(n)} converging to x(?) is the root convergence factor

defined by [25, p. 288]
R1({x(n)}) , lim sup

n→∞
‖x(n) − x(?)‖1/n . (29.13.2)

e,math,rate,root,xn

One can show that 0 ≤ R1 ≤ 1. Again, if this limit superior lies in the interval (0, 1) then we say that the sequence
converges linearly to x(?).

Unlike the quotient convergence factorQ1, the root convergence factorR1 is independent of the norm [25, p. 288].
Furthermore, R1 ≤ Q1 for any norm [25, p. 296].

Often we are more interested in defining the convergence rate of an iterative process x(n+1) =M(x(n)), where
M : Rnp → Rnp , rather than that of a specific sequence generated by the process [27]. After all, if we happen
to initialize the algorithm with x(0) = x(?) where x(?) = M(x(?)) is a fixed point ofM then we would converge
immediately. So clearly the convergence rate of a particular sequence can depend on the initial condition. To avoid
this dependence we examine the worst case over all possible initializers (or, more precisely, over all initializers that
lead to convergence to x(?)):

Q1(M) , sup
x(0)

{
Q1({x(n)}) : x(n+1) =M(x(n))→ x(?)

}
. (29.13.3)

e,math,rate,quotient,M

We call this the quotient convergence factor of the iterative processM. Likewise we can define a root convergence
factor ofM by

R1(M) , sup
x(0)

{
R1({x(n)}) : x(n+1) =M(x(n))→ x(?)

}
. (29.13.4)

e,math,rate,root,M

Ostrowski’s theorem [25, p. 300] states that ifM is continuous and differentiable on an open set containing x(?)

and
ρ(∇M(x(?))) < 1,

https://creativecommons.org/licenses/by-nc-nd/4.0/
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where∇M(x) is the np × np matrix with elements

[∇M(x)]k,j =
∂

∂xj
[M(x)]k ,

and where ρ(·) in (27.1.2) denotes the spectral radius (largest eigenvalue magnitude) of a square matrix, then the root
convergence factor ofM is

R1(M) = ρ(∇M(x(?))). (29.13.5)
e,math,rate,R1,rho

As a sketch of why this equality holds, for x(n) ≈ x(?):

x(n+1) ≈M(x(?)) +∇M(x(?))(x(n) − x(?)) = x(?) +∇M(x(?))(x(n) − x(?))

so
x(n+1) − x(?) ≈ ∇M(x(?))(x(n) − x(?)).

Thus the asymptotic rate of convergence of x(n) to x(?) is governed by the eigenvalues of∇M(x(?)).
x,math,rate,linear

Example 29.13.1 Consider a sequence generated by the affine recursion

x(n+1) =M(x(n)) , Bx(n) + u (29.13.6)
e,math,rate,M,affine

where I −B is an invertible matrix and we define x(?) = [I −B]
−1
u so that x(n+1) − x(?) = B(x(n) − x(?)) and

hence x(n) − x(?) = Bn(x(0) − x(?)). If ρ(B) < 1 then it is easy to show [25, p. 303] using the Jordan form of B
that

R1(M) = ρ(B).

As a more concrete example, the PGD iteration x(n+1) = x(n) − P ∇Ψ(x(n)) for the quadratic cost function
Ψ(x) = 1

2x
′Hx − b′x has the form (29.13.6) with B = I − PH and u = Pb. So the root convergence factor for

PGD in this case is R1 = ρ(I − PH).

29.14 Problems (s,math,prob)s,math,prob

p,math,four,scale

Problem 29.1 Prove affine scaling property (29.2.5) of the Fourier transform. (Need typed.)
p,math,lapl,cos,exp,step

Problem 29.2 Prove the Laplace transform pair for cos(bt) e−at step(t) in §29.4.1.
p,math,lapl,sin,exp,step

Problem 29.3 Prove the Laplace transform pair for sin(bt) e−at step(t) in §29.4.1.
p,math,lapl,cos,exp

Problem 29.4 Prove the Laplace transform pair for cos(bt) e−a|t| in §29.4.1
p,math,lapl,sin,exp

Problem 29.5 Prove the Laplace transform pair for sin(b|t|) e−a|t| in §29.4.1
p,math,convex,affine

Problem 29.6 Prove that if f is convex on Rn then g(z) = f(Mz + b) is convex. (Need typed.)
p,math,convex,lp

Problem 29.7 Prove that f(x) = |x|p is strictly convex for p > 1, for Example 29.9.10.
p,math,convex,gp,upper,s

Problem 29.8 Prove Corollary 29.9.21, i.e., (29.9.13).
p,math,lip,majorize

Problem 29.9 Prove Corollary 29.9.20, i.e., for a twice differentiable, convex cost function Ψ, the Lipschitz condition
(29.9.12) is equivalent to∇2Ψ(x) � SS′. Hint: use Theorem 27.5.3.
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