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This appendix reviews some of the linear algebra and matrix analysis results that are useful for developing iterative
algorithms and analyzing inverse problems.

In particular, the concept of the adjoint of a linear operator arises frequently when studying inverse problems,
generalizing the familiar concept of the transpose of a matrix. This appendix also sketches the basic elements of
functional analysis needed to describe an adjoint.
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26.1 Matrix algebra

26.1.1 Determinant (s,mat,det)s,mat,det

If A = a11 ∈ C is a scalar, then the determinant of A is simply its value: det{A} = a11. Using this definition as a
starting point, the determinant of a square matrixA ∈ Cn×n is defined recursively:

det{A} ,
n∑
j=1

aij(−1)j+i det{A−i,−j}

for any i ∈ {1, . . . , n}, where A−i,−j denotes the n − 1 × n − 1 matrix formed by removing the ith row and jth
column fromA.

Properties of the determinant include the following.
• det{AB} = det{BA} ifA ∈ Cm×n andB ∈ Cn×m.
• det{A} = (det{A′})∗, where “′” denotes the Hermitian transpose or conjugate transpose.
• A is singular (not invertible) if and only if det{A} = 0.

26.1.2 Eigenvalues and eigenvectors (s,mat,eig)s,mat,eig

If A ∈ Cn×n, i.e., A is a n × n (square) matrix, then we call a nonzero vector x ∈ Cn an eigenvector of A (or a
right eigenvector ofA) and λ ∈ C the corresponding eigenvalue when

Ax = λx.

Properties of eigenvalues include the following.
• The eigenvalues ofA are the n roots of the characteristic polynomial det{A− λI} .
• The set of eigenvalues of a matrixA is called its spectrum and is denoted eig{A} or λ(A).
• IfA ∈ Cm×n andB ∈ Cn×m, then the eigenvalues satisfy the following commutative property:

eig{AB}−{0} = eig{BA}−{0} , (26.1.1)
e,eig(AB)=eig(BA)

i.e., the nonzero elements of each set of eigenvalues are the same.
Proof. If λ ∈ eig{AB}−{0} then ∃x 6= 0 such that ABx = λx 6= 0. Clearly y , Bx 6= 0 here. Multiplying
both sides byB yieldsBABx = λBx =⇒ BAy = λy, so λ ∈ eig{BA}−{0}.
• IfA ∈ Cn×n then det{A} =

∏n
i=1 λi.

• eig{A′} = {λ∗ : λ ∈ eig{A}}
• IfA is invertible then λ ∈ eig{A} iff 1/λ ∈ eig

{
A−1

}
.

• For k ∈ N: eig
{
Ak
}
=
{
λk : λ ∈ eig{A}

}
.

• The spectral radius of a matrixA is defined as the largest eigenvalue magnitude:

ρ(A) , max
λ∈eig{A}

|λ| . (26.1.2)
e,mat,eig,rho

See also (26.1.5) for Hermitian symmetric matrices.
• A corollary of (26.1.1) is the following symmetry property:

ρ(AB) = ρ(BA). (26.1.3)
e,mat,rho,sym

• Geršgorin Theorem. For a n × n matrix A, define ri(A) =
∑
j 6=i |aij | , i = 1, . . . , n. Then all the eigenvalues

ofA are located in the following union of disks in the complex plane:

λi(A) ∈
n⋃
i=1

B2(aii, ri(A)), (26.1.4)
e,mat,eig,gersgorin

where B2(c, r) , {z ∈ C : |z − c| ≤ r} is a disk of radius r centered at c in the complex plane C.
• If ρ(A) < 1, then I −A is invertible and [1, p. 312]:

[I −A]
−1

=

∞∑
k=0

Ak.

• Weyl’s inequality [wiki] is useful for bounding the (real) eigenvalues of sums of Hermitian matrices. In particular
it is useful for analyzing how matrix perturbations affect eigenvalues.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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26.1.3 Hermitian and symmetric matricess,mat,hermitian

A (square) matrix A ∈ Cn×n is called Hermitian or Hermitian symmetric iff aji = a∗ij , i, j = 1, . . . , n, i.e.,
A = A′.
• A Hermitian matrix is diagonalizable by a unitary matrix:

A = U diag{λi}U ′,

where U−1 = U ′.
• The eigenvalues of a Hermitian matrix are all real [1, p. 170].
• IfA is Hermitian, then x′Ax is real for all x ∈ Cn [1, p. 170].
• IfA is Hermitian, then (see Problem 26.1 for consideration whether this condition is necessary):

ρ(A) = max
x6=0

|x′Ax|
x′x

. (26.1.5)
e,mat,rho,ratio

• IfA is Hermitian, then it follows from (26.1.5) that

x′Ax = real{x′Ax} ≤ |x′Ax| ≤ ρ(A)x′x , ∀x ∈ Cn.

• IfA is real and symmetric, then we have upper bound that is sometimes tighter [1, p. 34]:

x′Ax ≤
(

max
λ∈eig{A}

λ

)
‖x‖2 , ∀x ∈ Rn.

26.1.4 Matrix trace (s,mat,trace)s,mat,trace

The trace of a matrixA ∈ Cn×n is defined to be the sum of its diagonal elements:

trace{A} ,
n∑
i=1

aii. (26.1.6)
e,mat,trace

Properties of trace include the following.
• ForA ∈ Cm×n andB ∈ Cn×m the trace operator has the following commutative property:

trace{AB} = trace{BA} . (26.1.7)
e,mat,trace,AB,BA

• IfA ∈ Cn×n has eigenvalues λ1, . . . , λn, then

trace{A} =
n∑
i=1

λi. (26.1.8)
e,mat,trace,eig

26.1.5 Inversion formulas (s,mat,mil)s,mat,mil

The following matrix inversion lemma is easily verified [2]:

[A+BCD]
−1

= A−1 −A−1B
[
DA−1B +C−1

]−1
DA−1, (26.1.9)

e,mat,mil

assuming that A and C are invertible. It is also known as the Sherman-Morrison-Woodbury formula [3–5]. (See
[6] for the case whereA is singular but positive semidefinite.)

Multiplying on the right by B and simplifying yields the following useful related equality, sometimes called the
push-through identity:

[A+BCD]
−1
B = A−1B

[
DA−1B +C−1

]−1
C−1. (26.1.10)

e,mat,push,through

The following inverse of 2× 2 block matrices holds ifA andB are invertible:[
A D
C B

]−1
=

[ [
A−DB−1C

]−1 −A−1D∆−1

−∆−1CA−1 ∆−1

]
, (26.1.11)

e,mat,block,2x2,inv

where ∆ = B−CA−1D is the Schur complement ofA. A generalization is available even whenB is not invertible
[7, p. 656].

https://creativecommons.org/licenses/by-nc-nd/4.0/
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26.1.6 Kronecker products (s,mat,kron)s,mat,kron

The Kronecker product of a L×M matrixA with a K ×N matrixB is the KL×MN matrix defined as follows:

A⊗B =

 a11B . . . a1MB
...

...
...

aL1B . . . aLMB

 . (26.1.12)
e,mat,kronecker

Properties of the Kronecker product include the following (among many others [8]):
• (A⊗B)(C ⊗D) = (AC ⊗BD) if the dimensions are compatible.
• In particular (A⊗B)(u⊗v) = (Au)⊗ (B v).

IfA andB are Toeplitz or circulant matrices, then this property is the matrix analog of the separability property of
2D convolution.
• (A⊗B)−1 = A−1 ⊗B−1 ifA andB are invertible.
• (A⊗B)′ = A′ ⊗B′
• [A⊗B](l−1)K+k, (m−1)N+n = almbkn, l = 1, . . . , L, k = 1, . . . ,K, n = 1, . . . , N, m = 1, . . . ,M.
• det{A⊗B} = (det{A})m (det{B})n ifA is n× n andB is m×m
• IfAu = λu andB v = η v then u⊗v is an eigenvector ofA⊗B with eigenvalue λη.
• IfA has singular values {σi} andB has singular values {ηj}, thenA⊗B has singular values {σiηj}.

In the context of imaging problems, Kronecker products are useful for representing separable operations such as
convolution with a separable kernel and the 2D DFT. To see this, consider that the linear operation

v[k] =

N−1∑
n=0

b[k, n]u[n], k = 0, . . . ,K − 1,

can be represented by the matrix-vector product v = Bu, where B is the K × N matrix with elements b[k, n].
Similarly, the separable 2D operation

v[k, l] =

M−1∑
m=0

a[l,m]

(
N−1∑
n=0

b[k, n]u[n,m]

)
, k = 0, . . . ,K − 1, l = 0, . . . , L− 1,

can be represented by the matrix-vector product v = C u, where C = A ⊗ B and A is the L ×M matrix with
elements a[l,m]. Choosing b[k, n] = e−ı

2π
N kn and a[l,m] = e−ı

2π
M lm shows that the matrix representation of the

(N,M)-point 2D DFT isQ2D = QM ⊗QN , whereQN denotes the N -point 1D DFT matrix.
For a M ×N matrix G, let lex{G} denote the column vector formed by lexicographic ordering of its elements,

i.e., lex{G} = (g11, . . . , gM1, g12, . . . gM2, . . . , g1N , . . . , gMN ), sometimes denoted vec(G). Then one can show that

(A⊗B) lex{G} = lex
{
AGBT

}
. (26.1.13)

e,mat,kron,lex

The Kronecker sum [wiki] of n× n square matrixA with m×m square matrixB is defined as

A⊕B = A⊗ Im + In ⊗B.

26.2 Positive-definite matrices (s,mat,pd)s,mat,pd

There is no standard definition for a positive definite matrix that is not Hermitian symmetric. Therefore we restrict
attention to matrices that are Hermitian symmetric, which suffices for imaging applications. Matrices that are pos-
itive definite or positive semidefinite often arise as covariance matrices for random vectors and as Hessian matrices
for convex cost functions.

d,mat,pd

Definition 26.2.1 For a n × n matrix M that is Hermitian symmetric, we say M is positive definite [1, p. 396] iff
x′Mx > 0 for all x 6= 0 ∈ Cn.

t,mat,pd,equiv

Theorem 26.2.2 The following conditions are equivalent [9].
• M is positive definite.
• M � 0
• All eigenvalues ofM are positive (and real).
• For all i = 1, . . . , nM1:i,1:i � 0 where M1:i,1:i denotes the ith principal minor—the upper left i × i corner of
M .
• There exists a Hermitian matrix S � 0, called a matrix square root of M , such that M = S2. Often we write
S =M1/2.
• There exists a unique lower triangular matrix L with positive diagonal entries such that M = LL′. This factor-

ization is called the Cholesky decomposition.

One can similarly define positive semidefinite matrices (also known as nonnegative definite), using ≥ and �
instead of > and �.

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://en.wikipedia.org/wiki/Matrix_addition#Kronecker_sum
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26.2.1 Properties of positive-definite matrices
• IfM � 0, thenM is invertible andM−1 � 0.
• IfM � 0 and α > 0 is real, then αM � 0.
• IfA � 0 andB � 0, thenA+B � 0.
• IfA � 0 andB � 0, thenA⊗B � 0.
• IfA � 0 then aii > 0 and is real.

26.2.2 Partial orders,mat,pd,order

The notation B � A is shorthand for saying B −A is positive definite. This is a strict partial order, particularly
because it satisfies transitivity: C � B and B � A implies C � A. Likewise, B � A is shorthand for saying
B − A is positive semidefinite, and � is also transitive. This partial order of matrices is called Loewner order
[wiki]. These inequalities are important for designing majorizers. The following results are useful properties of these
inequalities.

lemma,mat,ba

Lemma 26.2.3 IfB � A, then C ′BC � C ′AC for any matrix C of suitable dimensions. (See Problem 26.5.)
t,mat,spd,inv

Theorem 26.2.4 If B � A � 0, then A−1 � B−1. (See Problem 26.6.) In words: matrix inversion preserves the
natural (partial) ordering of symmetric positive definite matrices.

26.2.3 Diagonal dominance
• A n×nmatrixA is called (weakly) diagonally dominant iff |aii| ≥

∑
j 6=i |aij | , i = 1, . . . , n. It is called strictly

diagonally dominant |aii| >
∑
j 6=i |aij | , i = 1, . . . , n.

• For Hermitian A, if A is strictly diagonally dominant and aii > 0, i = 1, . . . , n, then A � 0 and in particular A
is invertible [1, Cor. 7.2.3].
• IfA is strictly diagonally dominant, thenA is invertible [1, Cor. 5.6.17].
• IfA is strictly diagonally dominant andD = diag{aii}, then ρ(I −D−1A) < 1 [1, p. 352, Ex. 6.1.9].

lemma,mat,dd

Lemma 26.2.5 IfH ∈ Cn×n is Hermitian and diagonally dominant and hii ≥ 0, i = 1, . . . , n, thenH � 0.
Proof:
By §26.1.3, H has real eigenvalues that, by the Geršgorin Theorem (26.1.4), satisfy λ(H) ≥ hii −

∑
j 6=i |hij | ,

and that latter quantitity is nonnegative by the assumed diagonal dominance. Thus by Theorem 26.2.2, H is positive
semidefinite. 2

26.2.4 Diagonal majorizers
We now use Lemma 26.2.5 to establish some diagonal majorizers.

c,mat,diag,B1

Corollary 26.2.6 If B is a Hermitian matrix, then B � D , diag{|B|1} where |B| denotes the matrix consisting
of the absolute values of the elements ofB.
Proof:
Let H , D − B = diag{|B|1}−B. Then hii =

∑
j |bij | − bii =

(∑
j 6=i |bij |

)
+ (|bii| − bii) ≥

∑
j 6=i |bij |

because |b| − b ≥ 0. Also for j 6= i: hij = −bij so
∑
j 6=i |hij | =

∑
j 6=i |bij | ≤ hii. Thus H is diagonally dominant

soD −B � 0. 2

c,mat,dd

Corollary 26.2.7 If F = A′WA where W = diag{wi} with wi ≥ 0, then F � D = diag{dj} where dj ,∑nd

i=1 wi |aij |
2
/πij and πij = |aij | /

∑
k |aik| (cf. (12.5.10)), i.e., dj =

∑nd

i=1 |aij |wi
(∑np

k=1 |aik|
)
.

Proof:
Define the Hermitian matrixH =D − F for which hjj = dj −fjj =

∑nd

i=1 wi |aij |
2
/πij −

∑nd

i=1 wi |aij |
2 ≥ 0. So

by Lemma 26.2.5, it suffices to show thatH is diagonally dominant:

hjj −
∑
k 6=j

|hjk| = dj −fjj −
∑
k 6=j

|fjk| =
nd∑
i=1

wi |aij |2 /πij −
nd∑
i=1

wi |aij |2 −
∑
k 6=j

∣∣∣∣∣
nd∑
i=1

wia
∗
ikaij

∣∣∣∣∣
≥

nd∑
i=1

wi |aij |2 /πij −
nd∑
i=1

wi |aij |2 −
∑
k 6=j

nd∑
i=1

wi |aik| |aij |

=

nd∑
i=1

wi |aij |2 /πij −
nd∑
i=1

wi |aij |
∑
k

|aik| = 0.

2

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://en.wikipedia.org/wiki/Loewner_order
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Another way of writing the diagonal majorizer in Corollary 26.2.7 is

A′WA �D , diag{|A′|W |A|1} . (26.2.1)
e,mat,pd,AWA,D

WhenA (andW ) have nonnegative elements (e.g., in CT, PET, SPECT), an alternative simpler proof is to use Corol-
lary 26.2.6 directly withB = A′WA.

The following theorem generalizes Corollary 26.2.7 (cf. (12.5.14)). See Problem 26.12.
t,mat,dd

Theorem 26.2.8 ForB ∈ Cnd×np and any πij ≥ 0 and
∑np

j=1 πij = 1 for which πij = 0 only if bij = 0:

B′B �D , diag{dj}, dj ,
nd∑
i=1

|bij |2 /πij . (26.2.2)
e,mat,dd

Proof:
x′B′Bx =

∑nd

i=1

∣∣∑np

j=1 bijxj
∣∣2 =

∑nd

i=1

∣∣∣∑np

j=1 πij

(
bij
πij
xj

)∣∣∣2 ≤ ∑nd

i=1

∑np

j=1 πij

∣∣∣ bijπij xj∣∣∣2 =
∑np

j=1 |xj |
2
dj =

x′Dx, using the convexity of |·|2. 2

c,mat,dd,equal

Corollary 26.2.9 ForB ∈ Cnd×np :

B′B �D = αI, α =

nd∑
i=1

np∑
j=1

|bij |2 = |||B|||2Frob.

Proof:
In Theorem 26.2.8 take πij = |bij |2 /

∑np

k=1 |bik|
2
. 2

26.2.5 Simultaneous diagonalization
If S is symmetric and A is symmetric positive definite and of the same size, then there exists an invertible matrix B
that diagonalizes both S and A, i.e., B′SB = D and B′AB = I where D is diagonal [wiki] [1, p. 218]. However,
B is not orthogonal in general.

26.3 Vector norms (s,mat,vnorm)s,mat,vnorm

The material in this section is derived largely from [1, Ch. 5] [10].
vnorm

Definition 26.3.1 Let V be a vector space over a field such as R or C. A function ‖·‖ : V → R is a vector norm iff
for all x,y ∈ V:
• ‖x‖ ≥ 0 (nonnegative)
• ‖x‖ = 0 iff x = 0 (positive)
• ‖cx‖ = |c| ‖x‖ for all scalars c in the field (homogeneous)
• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

26.3.1 Examples of vector norms
• For 1 ≤ p <∞, the `p norm is

‖x‖p ,

(∑
i

|xi|p
)1/p

. (26.3.1)
e,mat,vnorm,lp

• The max norm or infinity norm or `∞ norm is

‖x‖∞ , sup {|x1| , |x2| , . . .} , (26.3.2)
e,mat,vnorm,linf

where sup denotes the supremum (least upper bound) of a set. One can show [10, Prob. 2.12] that

‖x‖∞ = lim
p→∞

‖x‖p . (26.3.3)
e,mat,vnorm,linf,limit

• For quantifying sparsity, it is useful to note that

lim
p→0
‖x‖pp =

∑
i

I{xi 6=0} , ‖x‖0 . (26.3.4)
e,mat,vnorm,l0

However, the “0-norm” ‖x‖0 is not a vector norm because it does not satisfy all the conditions of Definition 26.3.1.
The proper name for ‖x‖0 is counting measure.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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26.3.2 Inequalities
To establish that (26.3.1) and (26.3.2) are vector norms, that hardest part is proving the triangle inequality. The
proofs use the following inequalities.
The Hölder inequality [10, p. 29]
If p ∈ [1,∞] and q ∈ [1,∞] satisfy 1/p+ 1/q = 1, and if x = (x1, x2, . . .) ∈ `p and y = (y1, y2, . . .) ∈ `q , then∑

i

|xiyi| ≤ ‖x‖p ‖y‖q . (26.3.5)
e,mat,holder

Equality holds iff either x or y equal 0, or both x and y are nonzero and
(
|xi|/‖x‖p

)1/q
=
(
|yi|/‖y‖q

)1/p
, ∀i.

The Minkowski inequality [10, p. 31]
If x and y are in `p, for 1 ≤ p ≤ ∞,(∑

i

|xi + yi|p
)1/p

≤

(∑
i

|xi|p
)1/p

+

(∑
i

|yi|p
)1/p

. (26.3.6)
e,mat,minkoswki

For 1 ≤ p <∞, equality holds iff x and y are linearly dependent.

26.3.3 Properties
• If ‖·‖ is a vector norm then

‖x‖T , ‖Tx‖ (26.3.7)
e,mat,vnorm,wtd

is also a vector norm for any nonsingular1 matrix T (with appropriate dimensions).
• Let ‖·‖α and ‖·‖β be any two vector norms on a finite-dimensional space. Then there exist finite positive constants
Cm and CM such that (see Problem 26.3):

Cm ‖·‖α ≤ ‖·‖β ≤ CM ‖·‖α . (26.3.8)
e,mat,vnorm,equiv

Thus, convergence of {x(n)} to a limit x with respect to some vector norm implies convergence of {x(n)} to that
limit with respect to any vector norm.
• For any vector norm: ∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖ .
• All vector norms are convex functions:

‖αx+ (1− α)z‖ ≤ α ‖x‖+ (1− α) ‖z‖ , ∀α ∈ [0, 1].

This is easy to prove using the triangle inequality and the homogeneity property in Definition 26.3.1.
• The quadratic function f(x) , ‖x‖22 is strictly convex because its Hessian is positive definite. However, f(x) ,
‖x‖2 is not strictly convex.
• For p > 1, f(x) , ‖x‖pp is strictly convex on Cn and `p. See Problem 26.11 and Example 27.9.10.

26.4 Inner products (s,mat,inprod)
s,mat,inprod

For a vector space V over the field C, an inner product operation 〈·, ·〉 : V × V → C, must satisfy the following
axioms ∀x,y ∈ V, α ∈ C.
• 〈x, y〉 = 〈y, x〉∗ (Hermitian symmetry), where ∗ denotes complex conjugate.
• 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 (additivity)
• 〈αx, y〉 = α 〈x, y〉 (scaling)
• 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 iff x = 0. (positive definite)

26.4.1 Examples
x,mat,inprod,w,lii

Example 26.4.1 For the space of (suitably regular) functions on [a, b], a valid inner product is

〈f, g〉 =
∫ b

a

w(t)f(t)g∗(t) dt,

where w(t) > 0, ∀t is some (real) weighting function. The usual choice is w = 1.
x,mat,inprod,2

Example 26.4.2 In Euclidean space, Cn, the usual inner product (aka “dot product”) is

〈x, y〉 =
n∑
i=1

xiy
∗
i , where x = (x1, . . . , xn) and y = (y1, . . . , yn).

1 We also use the notation ‖x‖T even when T might be singular, in which case the resulting functional is a semi-norm rather than a norm,
because the positivity condition in Definition 26.3.1 no longer holds.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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26.4.2 Properties
• Bilinearity: 〈∑

i

αixi,
∑
j

βjyj

〉
=
∑
i

∑
j

αiβ
∗
j 〈xi, yj〉 .

• The following induced norm is a valid vector norm:

‖x‖ =
√
〈x, x〉. (26.4.1)

e,mat,vnorm,induced

• A vector norm satisfies the parallelogram identity:

1

2

(
‖x+ y‖2 + ‖x− y‖2

)
= ‖x‖2 + ‖y‖2

iff it is induced by an inner product via (26.4.1). The required inner product is

〈x, y〉 , 1

4

(
‖x+ y‖2 − ‖x− y‖2 + ı ‖x+ ıy‖2 − ı ‖x− iy‖2

)
=
‖x+ y‖2 − ‖x‖2 − ‖y‖2

2
+ ı
‖x+ ıy‖2 − ‖x‖2 − ‖y‖2

2
.

• The Schwarz inequality or Cauchy-Schwarz inequality states:

|〈x, y〉| ≤ ‖x‖ ‖y‖ =
√
〈x, x〉

√
〈y, y〉, (26.4.2)

e,mat,schwarz

for a norm ‖·‖ induced by an inner product 〈·, ·〉 via (26.4.1), with equality iff x and y are linearly dependent.

26.5 Matrix norms (s,mat,mnorm)s,mat,mnorm

The set Cm×n of m × n matrices over C is a vector space and one can define norms on this space that satisfy the
properties in Definition 26.3.1, as follows [1, Ch. 5.6].

mat,norm

Definition 26.5.1 A function ‖·‖ : Cm×n → R is a (vector) norm for Cm×n iff it satisfies the following properties for
allA ∈ Cm×n andB ∈ Cm×n.
• ‖A‖ ≥ 0 (nonnegative)
• ‖A‖ = 0 iffA = 0 (positive)
• ‖cA‖ = |c| ‖A‖ for all c ∈ C (homogeneous)
• ‖A+B‖ ≤ ‖A‖+ ‖B‖ (triangle inequality)

In addition, many, but not all, norms for the space Cn×n of square matrices are submultiplicative, meaning that
they satisfy the following inequality:

|||AB||| ≤ |||A||||||B|||, ∀A,B ∈ Cn×n. (26.5.1)
e,mat,mnorm,submult

We use the notation ||| · ||| to distinguish such matrix norms on Cn×n from the ordinary vector norms ‖·‖ on Cm×n
that need not satisfy this extra condition.

For example, the max norm on Cm×n is the element-wise maximum: ‖A‖max = maxi,j |aij | . This is a (vector)
norm on Cm×n but does not satisfy the submultiplicative condition (26.5.1). Most of the norms of interest in imaging
problems are submultiplicative, so these matrix norms are our primary focus hereafter.

26.5.1 Induced norms
If ‖·‖ is a vector norm that is suitable for both Cn and Cm, then

|||A||| , max
‖x‖=1

‖Ax‖ = max
x 6=0

‖Ax‖
‖x‖

(26.5.2)
e,mat,mnorm,from,vnorm

is a matrix norm for Cm×n, and
‖Ax‖ ≤ |||A||| ‖x‖ , ∀x ∈ Cn. (26.5.3)

e,mat,norm,Ax

In such cases, we say the matrix norm ||| · ||| is induced by the vector norm ‖·‖. Furthermore, the submultiplicative
property (26.5.1) holds not only for square matrices, but also whenever the number of columns of A matches the
number of rows ofB.

x,mat,norm,induce

Example 26.5.2 The most important matrix norms are induced by the vector norm ‖·‖p.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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• The spectral norm ||| · |||2, often denoted simply ||| · |||, is defined on Cm×n by

|||A|||2 , max
{√

λ : λ ∈ eig{A′A}
}
,

which is real and nonnegative. This is the matrix norm induced by the Euclidean vector norm ‖·‖2, i.e.,

|||A|||2 = max
x6=0

‖Ax‖2
‖x‖2

.

• The maximum row sum matrix norm is defined on Cm×n by

|||A|||∞ , max
1≤i≤m

n∑
j=1

|aij | . (26.5.4)
e,mnorm,max

It is induced by the `∞ vector norm.

• The maximum column sum matrix norm is defined on Cm×n by

|||A|||1 , max
x6=0

‖Ax‖1
‖x‖1

= max
1≤j≤n

m∑
i=1

|aij | . (26.5.5)
e,mnorm,1

It is induced by the `1 vector norm.

26.5.2 Other examples
• The Frobenius norm is defined on Cm×n by

|||A|||Frob ,

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
√

trace{A′A}, (26.5.6)
e,mnorm,frobenius

and is also called Schur norm and Hilbert-Schmidt norm. It is often the easiest norm to compute.
This norm is invariant to unitary transformations [11, p. 442], because of the trace property (26.1.7).
This is not an induced norm [12], but nevertheless it is compatible with the Euclidean vector norm because

‖Ax‖2 ≤ |||A|||Frob ‖x‖2 . (26.5.7)
e,mat,mnorm,frob,ineq

However, this is not a tight upper bound in general. By combining (26.5.7) with the definition of matrix multi-
plication, one can show easily that the Frobenius norm is submultiplicative [1, p. 291].

26.5.3 Properties
• All matrix norms are equivalent in the sense given for vectors in (26.3.8).

• Two vector norms can induce the same matrix norm if and only if one of the vector norms is a constant scalar
multiple of the other.

• No induced matrix norm can be uniformly dominated by another induced matrix norm:

|||A|||α ≤ |||A|||β , ∀A ∈ Cm×n

if and only if
|||A|||α = |||A|||β .

• A unitarily invariant matrix norm satisfies |||A||| = |||UAV ||| for all A ∈ Cm×n and all unitary matrices
U ∈ Cm×m, V ∈ Cn×n.
The spectral norm ||| · |||2 is the only matrix norm that is both induced and unitarily invariant.

• A self adjoint matrix norm satisfies |||A′||| = |||A|||.
The spectral norm ||| · |||2 is the only matrix norm that is both induced and self adjoint.

• IfA ∈ Cm×n has rank r ≤ min(m,n), then [13, p. 57]:

|||A|||2 ≤ |||A|||Frob ≤
√
r|||A|||2. (26.5.8)

e,mat,mnorm,2,F

• By [13, p. 58],
|||A|||2 ≤

√
|||A|||1|||A|||∞.

• Using the spectral radius ρ(·) defined in (26.1.2):

|||A|||2 =
√
ρ(A′A). (26.5.9)

e,mat,mnorm,2,rho

https://creativecommons.org/licenses/by-nc-nd/4.0/
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26.5.4 Properties for square matrices
• For k ∈ N

|||Ak||| ≤ |||A|||k.

• If ||| · ||| is a matrix norm on Cn×n, and if T ∈ Cn×n is invertible, then the following is a matrix norm:

|||A|||T , |||T−1AT |||.

• If |||A||| < 1 for some matrix norm, then limk→∞A
k = 0.

26.5.4.1 Invertibility

• IfA is invertible then
|||A−1||| ≥ |||I|||/|||A|||.

• If |||A||| < 1 for any matrix norm, then I −A is invertible and

[I −A]
−1

=

∞∑
k=0

Ak.

26.5.4.2 Relationship with spectral radius

• IfA is Hermitian symmetric, then the relation (26.5.9) specializes to

|||A|||2 = ρ(A).

• If ||| · ||| is any matrix norm on Cn×n and ifA ∈ Cn×n, then

ρ(A) ≤ |||A|||. (26.5.10)
e,rho<norm

• GivenA ∈ Cn×n, the spectral radius is the smallest matrix norm:

ρ(A) = inf {|||A||| : ||| · ||| is a matrix norm} .

• IfA ∈ Cn×n, then limk→∞A
k = 0 if and only if ρ(A) < 1.

• For any matrix norm ||| · |||:
ρ(A) = lim

k→∞
|||Ak|||1/k. (26.5.11)

e,rho,lim,mnorm

• If A ∈ Cn×n, then the series
∑∞
k=0 αkA

k converges if there is a matrix norm ||| · ||| on Cn×n such that the
numerical series

∑∞
k=0 |αk| |||A|||k converges.

t,mat,mnorm2,mleq

• Theorem 26.5.3 IfA is symmetric positive semidefinite, i.e.,A � 0, then (Problem 26.4)

|||A|||2 ≤ 1 ⇐⇒ A � I.

26.6 Singular values (s,mat,svd)
s,mat,svd

Eigenvalues are defined only for square matrices. For any rectangular matrix A ∈ Cn×m, the singular values,
denoted σ1, . . . , σn are the square roots of the eigenvalues of the n×n square matrixA′A. (BecauseA′A is positive
semidefinite, its eigenvalues are all real and nonnegative.) Written concisely:

σi(A) =
√
λi(A′A). (26.6.1)

e,mat,svd,sig

IfA is Hermitian positive definite, then σi = λi.
Usually the singular values are ordered from largest to smallest, i.e., σ1 ≥ σ2 ≥ · · · ≥ σn. With this order, the rth

singular value is related to a low-rank approximation toA as follows [wiki]:

σr(A) = inf
{
|||A−L|||2 : L ∈ Cn×m has rank < r

}
.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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26.7 Condition numbers and linear systems (s,mat,cond)
s,mat,cond

The condition number [wiki] for matrix inversion with respect to matrix norm ||| · ||| is defined:

κ(A) ,

{
|||A||||||A−1|||, A invertible
∞, A singular. (26.7.1)

e,mat,cond,mnorm

In particular, for the spectral norm ||| · |||2 we have

κ(A) =
σmax(A)

σmin(A)
, (26.7.2)

e,mat,cond

where σmax and σmin denote the maximum and minimum singular values ofA. A concept of condition number has
also been developed for problems with constraints [14]. Condition numbers are submultiplicative:

κ(AB) ≤ κ(A)κ(B).

Suppose we want to solve Ax = b, but the right-hand side is perturbed (e.g., by noise or numerical error) so
instead we solveAx̂ = b+ ε. Then the error propagation depends on the condition number [1, p. 338]:

‖x− x̂‖
‖x‖

≤ κ(A)
‖ε‖
‖b‖

.

See [15] [16, p. 89] for generalizations to nonlinear problems.

26.8 Adjoints (s,mat,adjoint)
s,mat,adjoint

Recall the following fact from linear algebra. IfA ∈ Cm×n, then

〈Ax, y〉Cm = y′Ax = (A′y)′x = 〈x, A′y〉Cn ,

where A′ denotes the Hermitian transpose of A. For analyzing some image reconstruction problems, we need to
generalize the above relationship to operators A in function spaces (specifically Hilbert spaces). The appropriate
generalization of “transpose” is called the adjoint of A and is denoted A∗ [17, p. 352].

Let X and Y denote vector spaces with inner products 〈·, ·〉X and 〈·, ·〉Y respectively. Let B(X ,Y) denote the
space of bounded linear operators from X to Y , i.e., if A ∈ B(X ,Y) then the following supremum is finite:

|||A||| , sup
f∈X , f 6=0

‖A f‖Y
‖f‖X

,

where ‖·‖X is the norm on X corresponding to 〈·, ·〉X , defined in (26.4.1), and likewise for ‖·‖Y .
If X and Y are Hilbert spaces, i.e., complete vector spaces under their respective inner products, and if A ∈

B(X ,Y), then one can show that there exists a unique bounded linear operator A∗ ∈ B(Y,X ), called the adjoint of
A, that satisfies

〈A f, g〉Y = 〈f, A∗g〉X , ∀ f ∈ X , g ∈ Y. (26.8.1)
e,mat,adjoint,inprod

26.8.1 Examples
If X = Cn and Y = Cm andA ∈ Cm×n, thenA∗ = A′. So adjoint and transpose are the same in Euclidean space.

As another finite-dimensional example, consider X = Cn×n and Y = C and the trace operator A : Cn×n → C
defined by y = AX iff y = trace{X} . To determine the adjoint we massage the inner products:

〈AX, y〉Y =

(
n∑
i=1

Xii

)
y∗ =

 n∑
i,j=1

δ[i− j]Xij

 y∗ =

n∑
i,j=1

Xij (δ[i− j] y)∗ =
n∑

i,j=1

Xij

(
[Iny]ij

)∗
.

Thus A∗y = yIn is the adjoint of the trace operator.
Now we turn to infinite-dimensional examples.

x,mat,adjoint,dtft

Example 26.8.1 ConsiderX = `2, the space of square summable sequences, and Y = L2[−π, π], the space of square
integrable functions on [−π, π]. The discrete-time Fourier transform (DTFT) operator A : X → Y is defined by

F = A f ⇐⇒ F (ω) =

∞∑
n=−∞

e−ıωn fn, ∀ω ∈ [−π, π].

https://creativecommons.org/licenses/by-nc-nd/4.0/
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The fact that this linear operator is bounded is equivalent to Parseval’s theorem:

‖F‖2Y =

∫ π

−π
|F (ω)|2 dω = 2π

∞∑
n=−∞

|fn|2 = 2π ‖f‖2X .

Thus |||A||| = 2π. To determine the adjoint, manipulate the inner product:

〈A f, G〉Y =

∫ π

−π
(A f)(ω)G∗(ω) dω =

∫ π

−π

( ∞∑
n=−∞

e−ıωn fn

)
G∗(ω) dω

=

∞∑
n=−∞

fn

(∫ π

−π
eıωnG(ω) dω

)∗
= 〈f, A∗G〉X ,

where

[A∗G]n =

∫ π

−π
eıωnG(ω) dω .

In this particular example, A−1 = 1
2πA

∗, but in general the adjoint is not related to the inverse of A.
x,mat,adjoint,conv

Example 26.8.2 Consider X = Y = `2 and the (linear) discrete-time convolution operator A : `2 → `2 defined by

z = Ax ⇐⇒ zn =

∞∑
k=−∞

hn−kxk, n ∈ Z,

where we assume that h ∈ `1. One can show that ‖Ax‖2 ≤ ‖h‖1 ‖x‖2 , so A is bounded with |||A||| ≤ ‖h‖1 . Since
A is bounded, it is legitimate to search for its adjoint:

〈Ax, y〉 =
∞∑

n=−∞
y∗n

[ ∞∑
k=−∞

xkhn−k

]
=

∞∑
k=−∞

xk

[ ∞∑
n=−∞

ynh
∗
n−k

]∗
=

∞∑
k=−∞

xk[A∗y]∗k = 〈x, A∗y〉,

where the adjoint is

[A∗y]k =

∞∑
n=−∞

h∗n−kyn =⇒ [A∗y]n =

∞∑
k=−∞

h∗k−nyk,

which is convolution with h∗−n.

26.8.2 Properties
The following properties of adjoints all concur with those of Hermitian transpose in Euclidean space.
• I∗ = I , where I denotes the identity operator: I f = f
• (A∗)∗ = A
• (AB)∗ = B∗A∗
• (A+B)∗ = A∗ +B∗
• (αA)∗ = α∗A∗
• |||A∗||| = |||A|||
• |||A∗A||| = |||AA∗||| = |||A|||2 = |||A∗|||2.
• If A ∈ B(X ,Y) is invertible, then A∗ is invertible and (A∗)−1 = (A−1)∗.

26.9 Pseudo inverse / generalized inverse (s,mat,pseudo)
s,mat,pseudo

The Moore-Penrose generalized inverse or pseudo inverse of a matrixA ∈ Cm×n is the unique matrixA† ∈ Cn×m
that satisfies [1, p. 421]

A†A andAA†are Hermitian
AA†A = A
A†AA† = A†.

(26.9.1)
e,mat,pseudo

The pseudo inverse is related to minimum-norm least-squares (MNLS) problems as follows. Of all the vectors
x that minimize ‖Ax− b‖2, the unique vector having minimum (Euclidean) norm ‖x‖2 is

x̂ = A†b. (26.9.2)
e,mat,pseudo,mnls

Properties of the pseudo inverse include the following.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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• [18, p. 252]
A† = A′[AA′]† = [A′A]†A′.

• By [wiki] [13, p. 215], ifA ∈ Cm×n then

A† = argmin
B∈Cn×m

|||AB − Im|||Frob.

•
PA = AA† = A[A′A]†A′, PA′ = A

†A = A′[AA′]†A.

• If U ∈ Cm×m is unitary and V ∈ Cn×n is unitary andA ∈ Cm×n, then (see Problem 26.9.3):

(UAV )† = V ′A†U ′. (26.9.3)
e,mat,pseudo,uav

• The pseudo inverse of a product is characterized by [19, Thm. 1.4.1, p. 20]:

(AB)† = (A†AB)†(ABB†)† = (PAB)†(APB)†. (26.9.4)
e,mat,pseudo,ab

26.10 Matrices and derivatives (s,mat,grad)s,mat,grad

Let X denote a N ×M matrix and let f(X) denote some functional f : RN×M → R of that matrix. Then the
gradient of f with respect toX is defined as the N ×M matrix having entries

[∇X f(X)]ij , lim
α→∞

1

α

[
f
(
X + αeie

′
j

)
− f(X)

]
. (26.10.1)

e,mat,grad

Using this definition, one can show that

f(X) = trace{AXBX ′C} =⇒ ∇X f(X) = A′CXB′ +CAXB. (26.10.2)
e,mat,grad,tr

The derivative of a matrix inverse with respect to a parameter also can be useful [wiki]:

∂

∂t
[A(t)]

−1
= −A−1

(
∂

∂t
A(t)

)
A−1. (26.10.3)

e,mat,grad,inv

26.11 The four spaces (s,mat,4space)
s,mat,4space

The range space and null space of a matrixA ∈ Cm×n and related quantities can be important.

RA , {y : y = Ax}

NA , {x :Ax = 0}

N⊥A′ , {y :A′y0 = 0 =⇒ y′y0 = 0}

R⊥A′ , {x : x′A′y = 0 ∀y} .

All four are linear spaces, so all include the zero vector. These spaces have the following relationships (see Prob-
lem 26.10):

RA = N⊥A′ (26.11.1)

NA = R⊥A′ (26.11.2)
RA − 0 ⊆ N c

A′ (26.11.3)
NA − 0 ⊆ RcA′ (26.11.4)

N⊥A′ ⊆ N c
A′ . (26.11.5)

e,mat,4space

https://creativecommons.org/licenses/by-nc-nd/4.0/
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26.12 Principal components analysis (low-rank approximation) (s,mat,pca)
s,mat,pca

Given data yij for i = 1, . . . , N and j = 1, . . . ,M , often we wish to find a set of L orthonormal vectors φ1, . . . ,φL ∈
CN and corresponding coefficients x1, . . . ,xM ∈ CL to minimize the following WLS approximation error

M∑
j=1

wj

∥∥∥∥∥yj −
L∑
l=1

φlxlj

∥∥∥∥∥
2

=

M∑
j=1

wj ‖yj −Bxj‖2 ,

where yj = (y1j , . . . , yNj), xj = (x1j , . . . , xLM ), andB = [φ1 . . . φL]. Defining ỹj ,
√
wjyj and x̃j ,

√
wjxj ,

we can rewrite this low-rank matrix approximation problem as

min
X̃, B :B′B=IL

M∑
j=1

‖ỹj −Bx̃j‖22 = min
X̃, B :B′B=IL

|||Ỹ −BX̃|||2Frob,

where X̃ , [x̃1, . . . , x̃M ] and Ỹ , [ỹ1, . . . , ỹM ].
Since B has orthonormal columns, minimizing over x̃j yields x̃j = B′ỹj or equivalently xj = B′yj and

X̃ = B′Ỹ . In this form,BX̃ is a low-rank approximation of Ỹ . Thus to findB we must minimize

|||Ỹ −BB′Ỹ |||2Frob = trace

{(
Ỹ −BB′Ỹ

)′ (
Ỹ −BB′Ỹ

)}
≡ − trace

{
Ỹ ′BB′Ỹ

}
.

Thus we want to maximize trace
{
B′Ỹ Ỹ ′B

}
, where K , Ỹ Ỹ ′, subject to the constraint that the columns of B

must be orthonormal. Taking the gradient with respect to φl of the Lagrangian
∑L
l=1 φ

′
lKφl − λl(‖φl‖

2 − 1) yields
Kφl = λlφl. Thus each φl is an eigenvector of K. So the optimal B is the first L singular vectors of K. This is
called the Eckart-Young theorem [20].

Mat svds

26.13 Problems (s,mat,prob)s,mat,prob

p,mat,rho,ratio

Problem 26.1 Prove or disprove the ratio property for ρ(A) in (26.1.5) in the general case whereA is square but not
necessarily symmetric.

p,mat,rho,ab

Problem 26.2 Equation (26.1.3) states that ρ(AB) = ρ(BA) whenA ∈ Cm×n andB ∈ Cn×m. Prove or disprove:

ρ(Im −AB)
?
= ρ(In −BA).

p,mat,vnorm,equiv

Problem 26.3 Determine the constants in relating norms in (26.3.8) for the case α = 2 and β = 1.
p,mat,mnorm2,mleq

Problem 26.4 Prove Theorem 26.5.3, i.e.,A � 0 =⇒ (|||A|||2 ≤ 1 ⇐⇒ A � I) .
p,mat,lemma,ba

Problem 26.5 Prove Lemma 26.2.3 relating to matrix partial orderings.
p,mat,spd,inv

Problem 26.6 Prove Theorem 26.2.4, relating to the inverse of partially Hermitian positive definite matrices.
p,mat,frob

Problem 26.7 Prove the Frobenius norm inequality (26.5.7) and show that it is not tight.

Problem 26.8 Following Example 26.8.2, determine the adjoint of the 2D convolution operator g = Af ⇐⇒
g(x, y) =

∫∫
h(x− x′, y − y′) f(x′, y′) dx′ dy′ .

p,mat,pseudo,uav

Problem 26.9 Prove the equality (26.9.3) for unitary transforms of pseudo inverses.
p,mat,4space

Problem 26.10 Prove the relationships between the four spaces in (26.11.5).
p,mat,lp,p,strict,convex

Problem 26.11 Prove that f(x) = ‖x‖pp is strictly convex for p > 1.
p,mat,diag,gers

Problem 26.12 Either prove the generalized diagonal dominance theorem Theorem 26.2.8 using the Geršgorin the-
orem, or construct a counter example showing that (26.2.2) truly is a generalization, i.e., a case where D −B′B is
not diagonally dominant. (Solve?)
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