Chapter 26

Matrices and linear algebra

ap,mat

Contents

26.1	Matrix algebra	26.2
	26.1.1 Determinant (s,mat,det)	26.2
	26.1.2 Eigenvalues and eigenvectors (s,mat,eig)	26.2
	26.1.3 Hermitian and symmetric matrices	26.3
	26.1.4 Matrix trace (s,mat,trace)	26.3
	26.1.5 Inversion formulas (s,mat,mil)	26.3
	26.1.6 Kronecker products (s,mat,kron)	26.4
26.2	Positive-definite matrices (s,mat,pd)	26.4
	26.2.1 Properties of positive-definite matrices	26.5
	26.2.2 Partial order	26.5
	26.2.3 Diagonal dominance	26.5
	26.2.4 Diagonal majorizers	26.5
	26.2.5 Simultaneous diagonalization	26.6
26.3	Vector norms (s,mat,vnorm)	26.6
	26.3.1 Examples of vector norms	26.6
	26.3.2 Inequalities	26.7
	26.3.3 Properties	26.7
26.4	Inner products (s,mat,inprod)	26.7
	26.4.1 Examples	26.7
	26.4.2 Properties	26.8
26.5	Matrix norms (s,mat,mnorm)	26.8
	26.5.1 Induced norms	26.8
	26.5.2 Other examples	26.9
	26.5.3 Properties	26.9
	26.5.4 Properties for square matrices	26.10
	26.5.4.1 Invertibility	26.10
	26.5.4.2 Relationship with spectral radius	26.10
26.6	Singular values (s,mat,svd)	26.10
26.7	Condition numbers and linear systems (s,mat,cond)	26.11
26.8	Adjoints (s,mat,adjoint)	26.11
	26.8.1 Examples	26.11
	26.8.2 Properties	26.12
26.9	Pseudo inverse / generalized inverse (s,mat,pseudo)	26.12
26.10Matrices and derivatives (s,mat,grad)		26.13
26.11The four spaces (s,mat,4space)		26.13
26.12	Principal components analysis (low-rank approximation) (s,mat,pca)	26.14
26.13	BProblems (s,mat,prob)	26.14
26.1 4	Bibliography	26.15

This appendix reviews some of the linear algebra and matrix analysis results that are useful for developing iterative algorithms and analyzing inverse problems.

In particular, the concept of the **adjoint** of a linear operator arises frequently when studying inverse problems, generalizing the familiar concept of the transpose of a matrix. This appendix also sketches the basic elements of functional analysis needed to describe an **adjoint**.

26.1 Matrix algebra

s, mat, det 26.1.1 Determinant (s, mat, det)

If $A = a_{11} \in \mathbb{C}$ is a scalar, then the **determinant** of A is simply its value: det $\{A\} = a_{11}$. Using this definition as a starting point, the **determinant** of a square matrix $A \in \mathbb{C}^{n \times n}$ is defined recursively:

$$\mathsf{det}\{\boldsymbol{A}\} \triangleq \sum_{j=1}^n a_{ij} (-1)^{j+i} \, \mathsf{det}\{\boldsymbol{A}_{-i,-j}\}$$

for any $i \in \{1, ..., n\}$, where $A_{-i,-j}$ denotes the $n - 1 \times n - 1$ matrix formed by removing the *i*th row and *j*th column from A.

Properties of the determinant include the following.

- det{AB} = det{BA} if $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times m}$.
- det{A} = (det{A'})*, where "" denotes the Hermitian transpose or conjugate transpose.
- A is singular (not invertible) if and only if det $\{A\} = 0$.

s, mat, eig 26.1.2 Eigenvalues and eigenvectors (s, mat, eig)

If $A \in \mathbb{C}^{n \times n}$, *i.e.*, A is a $n \times n$ (square) matrix, then we call a nonzero vector $x \in \mathbb{C}^n$ an eigenvector of A (or a right eigenvector of A) and $\lambda \in \mathbb{C}$ the corresponding eigenvalue when

$$Ax = \lambda x$$

Properties of eigenvalues include the following.

- The eigenvalues of A are the *n* roots of the characteristic polynomial det $\{A \lambda I\}$.
- The set of eigenvalues of a matrix A is called its spectrum and is denoted eig $\{A\}$ or $\lambda(A)$.
- If $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times m}$, then the eigenvalues satisfy the following commutative property:

$$eig\{AB\} - \{0\} = eig\{BA\} - \{0\}, \qquad (26.1.1)$$

i.e., the *nonzero* elements of each set of eigenvalues are the same.

Proof. If $\lambda \in eig\{AB\} - \{0\}$ then $\exists x \neq 0$ such that $ABx = \lambda x \neq 0$. Clearly $y \triangleq Bx \neq 0$ here. Multiplying both sides by B yields $BABx = \lambda Bx \Longrightarrow BAy = \lambda y$, so $\lambda \in eig\{BA\} - \{0\}$.

- If $A \in \mathbb{C}^{n \times n}$ then det $\{A\} = \prod_{i=1}^{n} \lambda_i$.
- $\operatorname{eig}\{A'\} = \{\lambda^* : \lambda \in \operatorname{eig}\{A\}\}$
- If A is invertible then $\lambda \in eig\{A\}$ iff $1/\lambda \in eig\{A^{-1}\}$.
- For $k \in \mathbb{N}$: $\operatorname{eig} \{ \mathbf{A}^k \} = \{ \lambda^k : \lambda \in \operatorname{eig} \{ \mathbf{A} \} \}$.
- The spectral radius of a matrix A is defined as the largest eigenvalue magnitude:

$$\rho(\mathbf{A}) \triangleq \max_{\lambda \in \mathsf{eig}[\mathbf{A}]} |\lambda| \,. \tag{26.1.2}$$

See also (26.1.5) for Hermitian symmetric matrices.

• A corollary of (26.1.1) is the following symmetry property:

$$\rho(\boldsymbol{A}\boldsymbol{B}) = \rho(\boldsymbol{B}\boldsymbol{A}). \tag{26.1.3}$$

• Geršgorin Theorem. For a $n \times n$ matrix A, define $r_i(A) = \sum_{j \neq i} |a_{ij}|$, i = 1, ..., n. Then all the eigenvalues of A are located in the following union of disks in the complex plane:

$$\lambda_i(\boldsymbol{A}) \in \bigcup_{i=1}^n B_2(a_{ii}, r_i(\boldsymbol{A})), \qquad (26.1.4)^{\text{e,mat}}$$

where $B_2(c,r) \triangleq \{z \in \mathbb{C} : |z-c| \le r\}$ is a disk of radius r centered at c in the complex plane \mathbb{C} . • If $\rho(\mathbf{A}) < 1$, then $\mathbf{I} - \mathbf{A}$ is invertible and [1, p. 312]:

$$[\boldsymbol{I} - \boldsymbol{A}]^{-1} = \sum_{k=0}^{\infty} \boldsymbol{A}^k.$$

• Weyl's inequality [wiki] is useful for bounding the (real) eigenvalues of sums of Hermitian matrices. In particular it is useful for analyzing how matrix perturbations affect eigenvalues.

e,eig(AB)=eig(BA)

s, mat, hermitian 26.1.3 Hermitian and symmetric matrices

A (square) matrix $A \in \mathbb{C}^{n \times n}$ is called Hermitian or Hermitian symmetric iff $a_{ji} = a_{ij}^*$, i, j = 1, ..., n, *i.e.*, A = A'.

• A Hermitian matrix is diagonalizable by a unitary matrix:

$$\boldsymbol{A} = \boldsymbol{U} \operatorname{diag}\{\lambda_i\} \boldsymbol{U}',$$

where $U^{-1} = U'$.

• The eigenvalues of a Hermitian matrix are all real [1, p. 170].

- If A is Hermitian, then x'Ax is real for all $x \in \mathbb{C}^n$ [1, p. 170].
- If A is Hermitian, then (see Problem 26.1 for consideration whether this condition is necessary):

$$\rho(\mathbf{A}) = \max_{\mathbf{x}\neq\mathbf{0}} \frac{|\mathbf{x}'\mathbf{A}\mathbf{x}|}{\mathbf{x}'\mathbf{x}}.$$
(26.1.5)

• If A is Hermitian, then it follows from (26.1.5) that

$$oldsymbol{x}'oldsymbol{A}oldsymbol{x} = \operatorname{real} \{oldsymbol{x}'oldsymbol{A}oldsymbol{x}\} \leq |oldsymbol{x}'oldsymbol{A}oldsymbol{x}| \leq
ho(oldsymbol{A})\,oldsymbol{x}'oldsymbol{x}\,, \quad orall oldsymbol{x} \in \mathbb{C}^n.$$

• If *A* is *real* and symmetric, then we have upper bound that is sometimes tighter [1, p. 34]:

$$oldsymbol{x}'oldsymbol{A}oldsymbol{x} \leq \left(\max_{\lambda \in \mathsf{eig}oldsymbol{\{A\}}}\lambda
ight) \|oldsymbol{x}\|^2\,,\quad orall oldsymbol{x} \in \mathbb{R}^n.$$

s, mat, trace 26.1.4 Matrix trace (s, mat, trace)

The trace of a matrix $A \in \mathbb{C}^{n \times n}$ is defined to be the sum of its diagonal elements:

$$\mathsf{trace}\{\boldsymbol{A}\} \triangleq \sum_{i=1}^{n} a_{ii}. \tag{26.1.6}$$

Properties of trace include the following.

• For $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times m}$ the trace operator has the following commutative property:

$$\mathsf{trace}\{AB\} = \mathsf{trace}\{BA\}. \tag{26.1.7}$$

• If $\mathbf{A} \in \mathbb{C}^{n \times n}$ has eigenvalues $\lambda_1, \ldots, \lambda_n$, then

$$\mathsf{trace}\{\boldsymbol{A}\} = \sum_{i=1}^{n} \lambda_{i}. \tag{26.1.8}$$

s, mat, mil 26.1.5 Inversion formulas (s, mat, mil)

The following matrix inversion lemma is easily verified [2]:

$$[A + BCD]^{-1} = A^{-1} - A^{-1}B [DA^{-1}B + C^{-1}]^{-1} DA^{-1}, \qquad (26.1.9)$$

assuming that A and C are invertible. It is also known as the **Sherman-Morrison-Woodbury** formula [3–5]. (See [6] for the case where A is singular but positive semidefinite.)

Multiplying on the right by B and simplifying yields the following useful related equality, sometimes called the **push-through identity**:

$$A + BCD]^{-1}B = A^{-1}B[DA^{-1}B + C^{-1}]^{-1}C^{-1}.$$
(26.1.10)

The following inverse of 2×2 block matrices holds if A and B are invertible:

$$\begin{bmatrix} A & D \\ C & B \end{bmatrix}^{-1} = \begin{bmatrix} \begin{bmatrix} A - DB^{-1}C \end{bmatrix}^{-1} & -A^{-1}D\Delta^{-1} \\ -\Delta^{-1}CA^{-1} & \Delta^{-1} \end{bmatrix},$$
 (26.1.11)

where $\Delta = B - CA^{-1}D$ is the Schur complement of *A*. A generalization is available even when *B* is not invertible [7, p. 656].

e.mat.mil

e.mat.push.through

s, mat, kron 26.1.6 Kronecker products (s, mat, kron)

The **Kronecker product** of a $L \times M$ matrix **A** with a $K \times N$ matrix **B** is the $KL \times MN$ matrix defined as follows:

$$\boldsymbol{A} \otimes \boldsymbol{B} = \begin{bmatrix} a_{11}\boldsymbol{B} & \dots & a_{1M}\boldsymbol{B} \\ \vdots & \vdots & \vdots \\ a_{L1}\boldsymbol{B} & \dots & a_{LM}\boldsymbol{B} \end{bmatrix}.$$
 (26.1.12)

Properties of the Kronecker product include the following (among many others [8]):

- $(A \otimes B)(C \otimes D) = (AC \otimes BD)$ if the dimensions are compatible.
- In particular $(A \otimes B)(u \otimes v) = (A u) \otimes (B v)$. If A and B are Toeplitz or circulant matrices, then this property is the matrix analog of the separability property of 2D convolution.
- $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$ if A and B are invertible.
- $(\boldsymbol{A} \otimes \boldsymbol{B})' = \boldsymbol{A}' \otimes \boldsymbol{B}'$
- $[\mathbf{A} \otimes \mathbf{B}]_{(l-1)K+k, (m-1)N+n} = a_{lm}b_{kn}, \quad l = 1, \dots, L, \ k = 1, \dots, K, \ n = 1, \dots, N, \ m = 1, \dots, M.$
- det{ $A \otimes B$ } = (det{A})^m (det{B})ⁿ if A is $n \times n$ and B is $m \times m$
- If $A u = \lambda u$ and $B v = \eta v$ then $u \otimes v$ is an eigenvector of $A \otimes B$ with eigenvalue $\lambda \eta$.
- If A has singular values {σ_i} and B has singular values {η_j}, then A ⊗ B has singular values {σ_iη_j}.
 In the context of imaging problems, Kronecker products are useful for representing separable operations such as

convolution with a separable kernel and the 2D DFT. To see this, consider that the linear operation

$$v[k] = \sum_{n=0}^{N-1} b[k, n]u[n], \qquad k = 0, \dots, K-1,$$

can be represented by the matrix-vector product v = B u, where B is the $K \times N$ matrix with elements b[k, n]. Similarly, the separable 2D operation

$$v[k,l] = \sum_{m=0}^{M-1} a[l,m] \left(\sum_{n=0}^{N-1} b[k,n]u[n,m] \right), \qquad k = 0, \dots, K-1, \qquad l = 0, \dots, L-1,$$

can be represented by the matrix-vector product v = C u, where $C = A \otimes B$ and A is the $L \times M$ matrix with elements a[l,m]. Choosing $b[k,n] = e^{-i\frac{2\pi}{N}kn}$ and $a[l,m] = e^{-i\frac{2\pi}{M}lm}$ shows that the matrix representation of the (N, M)-point 2D DFT is $Q_{2D} = Q_M \otimes Q_N$, where Q_N denotes the N-point 1D DFT matrix.

For a $M \times N$ matrix G, let lex{G} denote the column vector formed by lexicographic ordering of its elements, *i.e.*, lex{G} = $(g_{11}, \ldots, g_{M1}, g_{12}, \ldots, g_{M2}, \ldots, g_{1N}, \ldots, g_{MN})$, sometimes denoted vec(G). Then one can show that

$$(\boldsymbol{A} \otimes \boldsymbol{B}) \operatorname{lex} \{\boldsymbol{G}\} = \operatorname{lex} \{\boldsymbol{A} \boldsymbol{G} \boldsymbol{B}^T\}.$$
(26.1.13)

The Kronecker sum [wiki] of $n \times n$ square matrix A with $m \times m$ square matrix B is defined as

$$A \oplus B = A \otimes I_m + I_n \otimes B.$$

26.2 Positive-definite matrices (s,mat,pd)

There is no standard definition for a **positive definite** matrix that is not **Hermitian symmetric**. Therefore we restrict attention to matrices that are **Hermitian symmetric**, which suffices for imaging applications. Matrices that are **positive definite** of **positive semidefinite** often arise as covariance matrices for random vectors and as Hessian matrices for convex cost functions.

Definition 26.2.1 For a $n \times n$ matrix M that is Hermitian symmetric, we say M is positive definite [1, p. 396] iff x'Mx > 0 for all $x \neq 0 \in \mathbb{C}^n$.

Theorem 26.2.2 *The following conditions are equivalent* [9].

- *M* is positive definite.
- $M \succ 0$

d, mat, pd

t,mat,pd,equiv

- All eigenvalues of M are positive (and real).
- For all i = 1, ..., n $M_{1:i,1:i} \succ 0$ where $M_{1:i,1:i}$ denotes the *i*th principal minor—the upper left $i \times i$ corner of M.
- There exists a Hermitian matrix $S \succ 0$, called a matrix square root of M, such that $M = S^2$. Often we write $S = M^{1/2}$.
- There exists a unique lower triangular matrix L with positive diagonal entries such that M = LL'. This factorization is called the Cholesky decomposition.

One can similarly define **positive semidefinite** matrices (also known as **nonnegative definite**), using \geq and \succeq instead of > and \succ .

e, mat, kron, lex

Properties of positive-definite matrices 26.2.1

- If $M \succ 0$, then M is invertible and $M^{-1} \succ 0$.
- If $M \succ \mathbf{0}$ and $\alpha > 0$ is real, then $\alpha M \succ \mathbf{0}$.
- If $A \succ 0$ and $B \succ 0$, then $A + B \succ 0$.
- If $A \succ 0$ and $B \succ 0$, then $A \otimes B \succ 0$.
- If $A \succ 0$ then $a_{ii} > 0$ and is real.

s,mat,pd,order 26.2.2 Partial order

The notation $B \succ A$ is shorthand for saying B - A is positive definite. This is a strict partial order, particularly because it satisfies transitivity: $C \succ B$ and $B \succ A$ implies $C \succ A$. Likewise, $B \succ A$ is shorthand for saying B - A is positive semidefinite, and \succeq is also transitive. This partial order of matrices is called Loewner order [wiki]. These inequalities are important for designing majorizers. The following results are useful properties of these inequalities.

Lemma 26.2.3 If $B \succeq A$, then $C'BC \succeq C'AC$ for any matrix C of suitable dimensions. (See Problem 26.5.)

Theorem 26.2.4 If $B \succeq A \succ 0$, then $A^{-1} \succeq B^{-1}$. (See Problem 26.6.) In words: matrix inversion preserves the natural (partial) ordering of symmetric positive definite matrices.

26.2.3 Diagonal dominance

- A $n \times n$ matrix A is called (weakly) diagonally dominant iff $|a_{ii}| \ge \sum_{j \neq i} |a_{ij}|, i = 1, ..., n$. It is called strictly **diagonally dominant** $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$, i = 1, ..., n. • For Hermitian A, if A is strictly diagonally dominant and $a_{ii} > 0$, i = 1, ..., n, then $A \succ 0$ and in particular A
- is invertible [1, Cor. 7.2.3].
- If *A* is strictly diagonally dominant, then *A* is invertible [1, Cor. 5.6.17].
- If A is strictly diagonally dominant and $D = \text{diag}\{a_{ii}\}$, then $\rho(I D^{-1}A) < 1$ [1, p. 352, Ex. 6.1.9].

Lemma 26.2.5 If $H \in \mathbb{C}^{n \times n}$ is Hermitian and diagonally dominant and $h_{ii} \ge 0$, i = 1, ..., n, then $H \succeq 0$. Proof:

By §26.1.3, H has real eigenvalues that, by the Geršgorin Theorem (26.1.4), satisfy $\lambda(H) \geq h_{ii} - \sum_{i \neq i} |h_{ij}|$, and that latter quantitity is nonnegative by the assumed diagonal dominance. Thus by Theorem 26.2.2, H is positive semidefinite.

26.2.4**Diagonal majorizers**

We now use Lemma 26.2.5 to establish some diagonal majorizers.

Corollary 26.2.6 If **B** is a Hermitian matrix, then $B \leq D \triangleq \text{diag}\{|B|1\}$ where |B| denotes the matrix consisting of the absolute values of the elements of B.

Proof:

Let $\boldsymbol{H} \triangleq \boldsymbol{D} - \boldsymbol{B} = \text{diag}\{|\boldsymbol{B}|\,\mathbf{1}\} - \boldsymbol{B}$. Then $h_{ii} = \sum_{j} |b_{ij}| - b_{ii} = \left(\sum_{j \neq i} |b_{ij}|\right) + (|b_{ii}| - b_{ii}) \ge \sum_{j \neq i} |b_{ij}|$ because $|b| - b \ge 0$. Also for $j \ne i$: $h_{ij} = -b_{ij}$ so $\sum_{j \ne i} |h_{ij}| = \sum_{j \ne i} |b_{ij}| \le h_{ii}$. Thus \boldsymbol{H} is diagonally dominant so $D - B \succ 0$.

Corollary 26.2.7 If $\mathbf{F} = \mathbf{A}' \mathbf{W} \mathbf{A}$ where $\mathbf{W} = \text{diag}\{w_i\}$ with $w_i \ge 0$, then $\mathbf{F} \preceq \mathbf{D} = \text{diag}\{d_j\}$ where $d_j \triangleq \sum_{i=1}^{n_d} w_i |a_{ij}|^2 / \pi_{ij}$ and $\pi_{ij} = |a_{ij}| / \sum_k |a_{ik}|$ (cf. (12.5.10)), i.e., $d_j = \sum_{i=1}^{n_d} |a_{ij}| w_i \left(\sum_{k=1}^{n_p} |a_{ik}|\right)$. Proof:

Define the Hermitian matrix $\boldsymbol{H} = \boldsymbol{D} - \boldsymbol{\mathsf{F}}$ for which $h_{jj} = d_j - f_{jj} = \sum_{i=1}^{n_d} w_i |a_{ij}|^2 / \pi_{ij} - \sum_{i=1}^{n_d} w_i |a_{ij}|^2 \ge 0$. So by Lemma 26.2.5, it suffices to show that H is diagonally dominant:

$$\begin{aligned} h_{jj} - \sum_{k \neq j} |h_{jk}| &= d_j - f_{jj} - \sum_{k \neq j} |f_{jk}| = \sum_{i=1}^{n_d} w_i |a_{ij}|^2 / \pi_{ij} - \sum_{i=1}^{n_d} w_i |a_{ij}|^2 - \sum_{k \neq j} \left| \sum_{i=1}^{n_d} w_i a_{ik}^* a_{ij} \right| \\ &\geq \sum_{i=1}^{n_d} w_i |a_{ij}|^2 / \pi_{ij} - \sum_{i=1}^{n_d} w_i |a_{ij}|^2 - \sum_{k \neq j} \sum_{i=1}^{n_d} w_i |a_{ik}| |a_{ij}| \\ &= \sum_{i=1}^{n_d} w_i |a_{ij}|^2 / \pi_{ij} - \sum_{i=1}^{n_d} w_i |a_{ij}| \sum_{k} |a_{ik}| = 0. \end{aligned}$$

Another way of writing the diagonal majorizer in Corollary 26.2.7 is

$$A'WA \preceq D \triangleq \operatorname{diag}\{|A'|W|A|1\}.$$
(26.2.1)

When A (and W) have nonnegative elements (*e.g.*, in CT, PET, SPECT), an alternative simpler proof is to use Corollary 26.2.6 directly with B = A'WA.

The following theorem generalizes Corollary 26.2.7 (cf. (12.5.14)). See Problem 26.12.

Theorem 26.2.8 For $B \in \mathbb{C}^{n_d \times n_p}$ and any $\pi_{ij} \ge 0$ and $\sum_{j=1}^{n_p} \pi_{ij} = 1$ for which $\pi_{ij} = 0$ only if $b_{ij} = 0$:

$$\boldsymbol{B}'\boldsymbol{B} \preceq \boldsymbol{D} \triangleq \operatorname{diag}\{d_j\}, \quad d_j \triangleq \sum_{i=1}^{n_{\mathrm{d}}} |b_{ij}|^2 / \pi_{ij}.$$
 (26.2.2)

Proof:

 $\boldsymbol{x}'\boldsymbol{B}'\boldsymbol{B}\boldsymbol{x} = \sum_{i=1}^{n_{\rm d}} \left|\sum_{j=1}^{n_{\rm p}} b_{ij}x_j\right|^2 = \sum_{i=1}^{n_{\rm d}} \left|\sum_{j=1}^{n_{\rm p}} \pi_{ij} \left(\frac{b_{ij}}{\pi_{ij}}x_j\right)\right|^2 \le \sum_{i=1}^{n_{\rm d}} \sum_{j=1}^{n_{\rm p}} \pi_{ij} \left|\frac{b_{ij}}{\pi_{ij}}x_j\right|^2 = \sum_{j=1}^{n_{\rm p}} |x_j|^2 d_j = \boldsymbol{x}'\boldsymbol{D}\boldsymbol{x}, \text{ using the convexity of } |\cdot|^2.$

Corollary 26.2.9 For $B \in \mathbb{C}^{n_{d} \times n_{p}}$:

$$\boldsymbol{B}'\boldsymbol{B} \preceq \boldsymbol{D} = \alpha \boldsymbol{I}, \quad \alpha = \sum_{i=1}^{n_{\mathrm{d}}} \sum_{j=1}^{n_{\mathrm{p}}} |b_{ij}|^2 = \|\boldsymbol{B}\|_{\mathrm{Frob}}^2.$$

Proof:

In Theorem 26.2.8 take $\pi_{ij} = \left| b_{ij} \right|^2 / \sum_{k=1}^{n_{\rm p}} \left| b_{ik} \right|^2$.

26.2.5 Simultaneous diagonalization

If *S* is symmetric and *A* is symmetric positive definite and of the same size, then there exists an invertible matrix *B* that diagonalizes both *S* and *A*, *i.e.*, B'SB = D and B'AB = I where *D* is diagonal [wiki] [1, p. 218]. However, *B* is not orthogonal in general.

26.3 Vector norms (s,mat,vnorm)

The material in this section is derived largely from [1, Ch. 5] [10].

Definition 26.3.1 Let \mathcal{V} be a vector space over a field such as \mathbb{R} or \mathbb{C} . A function $\|\cdot\| : \mathcal{V} \to \mathbb{R}$ is a vector norm iff for all $x, y \in \mathcal{V}$:

- $\|\boldsymbol{x}\| \geq 0$ (nonnegative)
- $\|\boldsymbol{x}\| = 0$ iff $\boldsymbol{x} = \boldsymbol{0}$ (positive)
- $||c\mathbf{x}|| = |c| ||\mathbf{x}||$ for all scalars c in the field (homogeneous)
- $\|x + y\| \le \|x\| + \|y\|$ (triangle inequality)

26.3.1 Examples of vector norms

• For $1 \le p < \infty$, the ℓ_p norm is

$$\|\boldsymbol{x}\|_{p} \triangleq \left(\sum_{i} |x_{i}|^{p}\right)^{1/p}.$$
(26.3.1)

• The max norm or infinity norm or ℓ_{∞} norm is

$$\|\boldsymbol{x}\|_{\infty} \triangleq \sup\left\{ |x_1|, |x_2|, \ldots \right\}, \tag{26.3.2}$$

where sup denotes the supremum (least upper bound) of a set. One can show [10, Prob. 2.12] that

$$\|\boldsymbol{x}\|_{\infty} = \lim_{p \to \infty} \|\boldsymbol{x}\|_{p}.$$
(26.3.3)

• For quantifying sparsity, it is useful to note that

$$\lim_{p \to 0} \|\boldsymbol{x}\|_p^p = \sum_i \mathbb{I}_{\{\boldsymbol{x}_i \neq 0\}} \triangleq \|\boldsymbol{x}\|_0.$$
(26.3.4)

However, the "0-norm" $||x||_0$ is *not* a vector norm because it does not satisfy all the conditions of Definition 26.3.1. The proper name for $||x||_0$ is **counting measure**.

e.mat.vnorm.linf

26.3.2 Inequalities

To establish that (26.3.1) and (26.3.2) are vector norms, that hardest part is proving the **triangle inequality**. The proofs use the following inequalities.

The Hölder inequality [10, p. 29]

If
$$p \in [1, \infty]$$
 and $q \in [1, \infty]$ satisfy $1/p + 1/q = 1$, and if $\boldsymbol{x} = (x_1, x_2, ...) \in \ell_p$ and $\boldsymbol{y} = (y_1, y_2, ...) \in \ell_q$, then

$$\sum |x_i y_i| \le \|\boldsymbol{x}\|_p \|\boldsymbol{y}\|_q.$$
(26.3.5)

Equality holds iff either \boldsymbol{x} or \boldsymbol{y} equal $\boldsymbol{0}$, or both \boldsymbol{x} and \boldsymbol{y} are nonzero and $(|x_i|/\|\boldsymbol{x}\|_p)^{1/q} = (|y_i|/\|\boldsymbol{y}\|_q)^{1/p}, \forall i$. The Minkowski inequality [10, p. 31]

If \boldsymbol{x} and \boldsymbol{y} are in ℓ_p , for $1 \leq p \leq \infty$,

$$\left(\sum_{i} |x_{i} + y_{i}|^{p}\right)^{1/p} \leq \left(\sum_{i} |x_{i}|^{p}\right)^{1/p} + \left(\sum_{i} |y_{i}|^{p}\right)^{1/p}.$$
(26.3.6)

For $1 \le p < \infty$, equality holds iff \boldsymbol{x} and \boldsymbol{y} are linearly dependent.

26.3.3 Properties

• If $\|\cdot\|$ is a vector norm then

$$\|\boldsymbol{x}\|_{\boldsymbol{T}} \triangleq \|\boldsymbol{T}\boldsymbol{x}\| \tag{26.3.7}$$

is also a vector norm for any *nonsingular*¹ matrix T (with appropriate dimensions).

• Let $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ be any two vector norms on a *finite-dimensional* space. Then there exist finite positive constants C_m and C_M such that (see Problem 26.3):

$$C_m \left\| \cdot \right\|_{\alpha} \le \left\| \cdot \right\|_{\beta} \le C_M \left\| \cdot \right\|_{\alpha}. \tag{26.3.8}$$

Thus, convergence of $\{x^{(n)}\}\$ to a limit x with respect to some vector norm implies convergence of $\{x^{(n)}\}\$ to that limit with respect to any vector norm.

• For any vector norm:

$$ig\|oldsymbol{x}\| - ig\|oldsymbol{y}\| ig| \le ig\|oldsymbol{x} - oldsymbol{y}\|$$

• All vector norms are **convex** functions:

$$\|\alpha \boldsymbol{x} + (1-\alpha)\boldsymbol{z}\| \le \alpha \|\boldsymbol{x}\| + (1-\alpha) \|\boldsymbol{z}\|, \ \forall \alpha \in [0,1].$$

This is easy to prove using the triangle inequality and the homogeneity property in Definition 26.3.1.

- The quadratic function $f(x) \triangleq ||x||_2^2$ is strictly convex because its Hessian is positive definite. However, $f(x) \triangleq ||x||_2$ is not strictly convex.
- For p > 1, $f(x) \triangleq ||x||_p^p$ is strictly convex on \mathbb{C}^n and ℓ_p . See Problem 26.11 and Example 27.9.10.

26.4 Inner products (s,mat,inprod)

For a vector space \mathcal{V} over the field \mathbb{C} , an **inner product** operation $\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{C}$, must satisfy the following axioms $\forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}, \alpha \in \mathbb{C}$.

- $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{y}, \boldsymbol{x} \rangle^*$ (Hermitian symmetry), where * denotes complex conjugate.
- $\langle \boldsymbol{x} + \boldsymbol{y}, \, \boldsymbol{z} \rangle = \langle \boldsymbol{x}, \, \boldsymbol{z} \rangle + \langle \boldsymbol{y}, \, \boldsymbol{z} \rangle$ (additivity)
- $\langle \alpha \boldsymbol{x}, \, \boldsymbol{y} \rangle = \alpha \, \langle \boldsymbol{x}, \, \boldsymbol{y} \rangle$ (scaling)
- $\langle \boldsymbol{x}, \, \boldsymbol{x} \rangle \geq 0$ and $\langle \boldsymbol{x}, \, \boldsymbol{x} \rangle = 0$ iff $\boldsymbol{x} = \boldsymbol{0}$. (positive definite)

26.4.1 Examples

s,mat,inprod

Example 26.4.1 For the space of (suitably regular) functions on [a, b], a valid inner product is

$$\langle f, g \rangle = \int_{a}^{b} w(t) f(t) g^{*}(t) \,\mathrm{d}t,$$

where w(t) > 0, $\forall t$ is some (real) weighting function. The usual choice is w = 1.

Example 26.4.2 In Euclidean space, \mathbb{C}^n , the usual inner product (aka "dot product") is

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \sum_{i=1}^{n} x_i y_i^*$$
, where $\boldsymbol{x} = (x_1, \dots, x_n)$ and $\boldsymbol{y} = (y_1, \dots, y_n)$.

¹ We also use the notation $||\mathbf{x}||_{T}$ even when T might be singular, in which case the resulting functional is a semi-norm rather than a norm, because the positivity condition in Definition 26.3.1 no longer holds.

26.4.2 Properties

• Bilinearity:

$$\left\langle \sum_{i} \alpha_{i} \boldsymbol{x}_{i}, \sum_{j} \beta_{j} \boldsymbol{y}_{j} \right\rangle = \sum_{i} \sum_{j} \alpha_{i} \beta_{j}^{*} \left\langle \boldsymbol{x}_{i}, \boldsymbol{y}_{j} \right\rangle.$$

• The following **induced norm** is a valid vector norm:

$$\|\boldsymbol{x}\| = \sqrt{\langle \boldsymbol{x}, \, \boldsymbol{x} \rangle}.\tag{26.4.1}$$

• A vector norm satisfies the parallelogram identity:

$$rac{1}{2}\left(\left\| m{x} + m{y}
ight\|^2 + \left\| m{x} - m{y}
ight\|^2
ight) = \left\| m{x}
ight\|^2 + \left\| m{y}
ight\|^2$$

iff it is induced by an inner product via (26.4.1). The required inner product is

$$egin{aligned} &\langle m{x},\,m{y}
angle &\triangleq rac{1}{4} \left(\|m{x}+m{y}\|^2 - \|m{x}-m{y}\|^2 + \imath \,\|m{x}+\imathm{y}\|^2 - \imath \,\|m{x}-\imathm{y}\|^2
ight) \ &= rac{\|m{x}+m{y}\|^2 - \|m{x}\|^2 - \|m{y}\|^2}{2} + \imath rac{\|m{x}+\imathm{y}\|^2 - \|m{x}\|^2 - \|m{y}\|^2}{2}. \end{aligned}$$

• The Schwarz inequality or Cauchy-Schwarz inequality states:

$$|\langle \boldsymbol{x}, \, \boldsymbol{y} \rangle| \leq \|\boldsymbol{x}\| \, \|\boldsymbol{y}\| = \sqrt{\langle \boldsymbol{x}, \, \boldsymbol{x} \rangle} \sqrt{\langle \boldsymbol{y}, \, \boldsymbol{y} \rangle}, \tag{26.4.2}$$

for a norm $\|\cdot\|$ induced by an inner product $\langle \cdot, \cdot \rangle$ via (26.4.1), with equality iff x and y are linearly dependent.

26.5 Matrix norms (s,mat,mnorm)

The set $\mathbb{C}^{m \times n}$ of $m \times n$ matrices over \mathbb{C} is a vector space and one can define norms on this space that satisfy the properties in Definition 26.3.1, as follows [1, Ch. 5.6].

Definition 26.5.1 A function $\|\cdot\| : \mathbb{C}^{m \times n} \to \mathbb{R}$ is a (vector) norm for $\mathbb{C}^{m \times n}$ iff it satisfies the following properties for all $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{m \times n}$.

- $\|\mathbf{A}\| \ge 0$ (nonnegative)
- $\|\mathbf{A}\| = 0$ iff $\mathbf{A} = \mathbf{0}$ (positive)
- $||c\mathbf{A}|| = |c| ||\mathbf{A}||$ for all $c \in \mathbb{C}$ (homogeneous)
- $||A + B|| \le ||A|| + ||B||$ (triangle inequality)

In addition, many, but not all, norms for the space $\mathbb{C}^{n \times n}$ of square matrices are submultiplicative, meaning that they satisfy the following inequality:

$$\|\boldsymbol{A}\boldsymbol{B}\| \leq \|\boldsymbol{A}\| \|\boldsymbol{B}\|, \qquad \forall \boldsymbol{A}, \boldsymbol{B} \in \mathbb{C}^{n \times n}.$$
(26.5.1)

We use the notation $\|\cdot\|$ to distinguish such **matrix norms** on $\mathbb{C}^{n \times n}$ from the ordinary vector norms $\|\cdot\|$ on $\mathbb{C}^{m \times n}$ that need not satisfy this extra condition.

For example, the max norm on $\mathbb{C}^{m \times n}$ is the element-wise maximum: $\|A\|_{\max} = \max_{i,j} |a_{ij}|$. This is a (vector) norm on $\mathbb{C}^{m \times n}$ but does not satisfy the submultiplicative condition (26.5.1). Most of the norms of interest in imaging problems are submultiplicative, so these matrix norms are our primary focus hereafter.

26.5.1 Induced norms

If $\|\cdot\|$ is a vector norm that is suitable for both \mathbb{C}^n and \mathbb{C}^m , then

$$\|\boldsymbol{A}\| \triangleq \max_{\|\boldsymbol{x}\|=1} \|\boldsymbol{A}\boldsymbol{x}\| = \max_{\boldsymbol{x}\neq\boldsymbol{0}} \frac{\|\boldsymbol{A}\boldsymbol{x}\|}{\|\boldsymbol{x}\|}$$
(26.5.2)

is a matrix norm for $\mathbb{C}^{m \times n}$, and

$$\|\mathbf{A}\mathbf{x}\| \leq \|\mathbf{A}\| \|\mathbf{x}\|, \qquad \forall \mathbf{x} \in \mathbb{C}^n.$$
(26.5.3)

In such cases, we say the matrix norm $\|\cdot\|$ is **induced** by the vector norm $\|\cdot\|$. Furthermore, the **submultiplicative** property (26.5.1) holds not only for square matrices, but also whenever the number of columns of A matches the number of rows of B.

Example 26.5.2 The most important matrix norms are induced by the vector norm $\|\cdot\|_{p}$

• The spectral norm $\|\cdot\|_2$, often denoted simply $\|\cdot\|$, is defined on $\mathbb{C}^{m \times n}$ by

$$\|\!|\!| \boldsymbol{A} \|\!|_2 \triangleq \max \left\{ \sqrt{\lambda} : \lambda \in \mathsf{eig} \{ \boldsymbol{A}' \boldsymbol{A} \} \right\}$$

which is real and nonnegative. This is the matrix norm induced by the Euclidean vector norm $\|\cdot\|_2$, i.e.,

$$\|\|A\|\|_2 = \max_{x \neq 0} \frac{\|Ax\|_2}{\|x\|_2}$$

• The maximum row sum matrix norm is defined on $\mathbb{C}^{m \times n}$ by

$$\|\boldsymbol{A}\|_{\infty} \triangleq \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|.$$
(26.5.4)

It is induced by the ℓ_{∞} vector norm.

• The maximum column sum matrix norm is defined on $\mathbb{C}^{m \times n}$ by

$$\| \boldsymbol{A} \|_{1} \triangleq \max_{\boldsymbol{x} \neq \boldsymbol{0}} \frac{\| \boldsymbol{A} \boldsymbol{x} \|_{1}}{\| \boldsymbol{x} \|_{1}} = \max_{1 \le j \le n} \sum_{i=1}^{m} |a_{ij}|.$$
(26.5.5)

It is induced by the ℓ_1 vector norm.

26.5.2 Other examples

• The **Frobenius norm** is defined on $\mathbb{C}^{m \times n}$ by

$$\| \boldsymbol{A} \|_{\text{Frob}} \triangleq \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2} = \sqrt{\text{trace}\{\boldsymbol{A}'\boldsymbol{A}\}}, \qquad (26.5.6)$$

and is also called **Schur norm** and **Hilbert-Schmidt norm**. It is often the easiest norm to compute. This norm is invariant to unitary transformations [11, p. 442], because of the trace property (26.1.7). This is not an induced norm [12], but nevertheless it is **compatible** with the Euclidean vector norm because

$$\left\|\boldsymbol{A}\boldsymbol{x}\right\|_{2} \leq \left\|\boldsymbol{A}\right\|_{\mathrm{Frob}} \left\|\boldsymbol{x}\right\|_{2}.$$
(26.5.7)

However, this is not a tight upper bound in general. By combining (26.5.7) with the definition of matrix multiplication, one can show easily that the Frobenius norm is **submultiplicative** [1, p. 291].

26.5.3 Properties

- All matrix norms are **equivalent** in the sense given for vectors in (26.3.8).
- Two vector norms can induce the same matrix norm if and only if one of the vector norms is a constant scalar multiple of the other.
- No induced matrix norm can be uniformly dominated by another induced matrix norm:

$$\|\boldsymbol{A}\|_{lpha} \leq \|\boldsymbol{A}\|_{eta}, \qquad \forall \boldsymbol{A} \in \mathbb{C}^{m imes n}$$

if and only if

$$\|\boldsymbol{A}\|_{\alpha} = \|\boldsymbol{A}\|_{\beta}.$$

• A unitarily invariant matrix norm satisfies ||A|| = ||UAV|| for all $A \in \mathbb{C}^{m \times n}$ and all unitary matrices $U \in \mathbb{C}^{m \times m}, V \in \mathbb{C}^{n \times n}$.

The spectral norm $\|\cdot\|_2$ is the only matrix norm that is both induced and unitarily invariant.

- A self adjoint matrix norm satisfies |||A'||| = |||A|||.
 The spectral norm ||| · |||₂ is the only matrix norm that is both induced and self adjoint.
- If $A \in \mathbb{C}^{m \times n}$ has rank $r \le \min(m, n)$, then [13, p. 57]:

$$\|A\|_{2} \leq \|A\|_{\text{Frob}} \leq \sqrt{r} \|A\|_{2}. \tag{26.5.8}$$

• By [13, p. 58],

$$\| \| \boldsymbol{A} \|_{2} \leq \sqrt{\| \| \boldsymbol{A} \|_{1} \| \| \boldsymbol{A} \|_{\infty}}$$

• Using the spectral radius $\rho(\cdot)$ defined in (26.1.2):

$$\|\boldsymbol{A}\|_{2} = \sqrt{\rho(\boldsymbol{A}'\boldsymbol{A})}.$$
(26.5.9)

26.5.4 Properties for square matrices

• For $k \in \mathbb{N}$

$$\|\boldsymbol{A}^k\| \leq \|\boldsymbol{A}\|^k.$$

• If $\|\cdot\|$ is a matrix norm on $\mathbb{C}^{n\times n}$, and if $T \in \mathbb{C}^{n\times n}$ is invertible, then the following is a matrix norm:

$$\|A\|_{T} \triangleq \|T^{-1}AT\|.$$

• If $\| \boldsymbol{A} \| < 1$ for some matrix norm, then $\lim_{k \to \infty} \boldsymbol{A}^k = \boldsymbol{0}$.

26.5.4.1 Invertibility

• If *A* is invertible then

$$\|A^{-1}\| \ge \|I\| / \|A\|.$$

• If $\| \boldsymbol{A} \| < 1$ for any matrix norm, then $\boldsymbol{I} - \boldsymbol{A}$ is invertible and

$$\left[\boldsymbol{I} - \boldsymbol{A} \right]^{-1} = \sum_{k=0}^{\infty} \boldsymbol{A}^{k}$$

26.5.4.2 Relationship with spectral radius

• If A is Hermitian symmetric, then the relation (26.5.9) specializes to

$$\|\boldsymbol{A}\|_2 = \rho(\boldsymbol{A}).$$

• If $\|\cdot\|$ is any matrix norm on $\mathbb{C}^{n \times n}$ and if $A \in \mathbb{C}^{n \times n}$, then

$$\rho(\mathbf{A}) \le \|\mathbf{A}\|. \tag{26.5.10}$$

• Given $A \in \mathbb{C}^{n \times n}$, the spectral radius is the smallest matrix norm:

 $\rho(\boldsymbol{A}) = \inf \left\{ \| \boldsymbol{A} \| : \| \cdot \| \text{ is a matrix norm} \right\}.$

- If $A \in \mathbb{C}^{n \times n}$, then $\lim_{k \to \infty} A^k = 0$ if and only if $\rho(A) < 1$.
- For any matrix norm $\|\cdot\|$:

$$\rho(\mathbf{A}) = \lim_{k \to \infty} \|\mathbf{A}^k\|^{1/k}.$$
(26.5.11)

- If $A \in \mathbb{C}^{n \times n}$, then the series $\sum_{k=0}^{\infty} \alpha_k A^k$ converges if there is a matrix norm $\|\cdot\|$ on $\mathbb{C}^{n \times n}$ such that the numerical series $\sum_{k=0}^{\infty} |\alpha_k| \|A\|^k$ converges.
- Theorem 26.5.3 If A is symmetric positive semidefinite, i.e., $A \succeq 0$, then (Problem 26.4)

$$\|\boldsymbol{A}\|_2 \leq 1 \iff \boldsymbol{A} \preceq \boldsymbol{I}.$$

26.6 Singular values (s,mat,svd)

Eigenvalues are defined only for square matrices. For any rectangular matrix $A \in \mathbb{C}^{n \times m}$, the singular values, denoted $\sigma_1, \ldots, \sigma_n$ are the square roots of the eigenvalues of the $n \times n$ square matrix A'A. (Because A'A is positive semidefinite, its eigenvalues are all real and nonnegative.) Written concisely:

$$\sigma_i(\mathbf{A}) = \sqrt{\lambda_i(\mathbf{A}'\mathbf{A})}.$$
(26.6.1)

If **A** is Hermitian positive definite, then $\sigma_i = \lambda_i$.

Usually the singular values are ordered from largest to smallest, *i.e.*, $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n$. With this order, the *r*th singular value is related to a **low-rank approximation** to *A* as follows [wiki]:

$$\sigma_r(\boldsymbol{A}) = \inf \left\{ \|\boldsymbol{A} - \boldsymbol{L}\|_2 : \boldsymbol{L} \in \mathbb{C}^{n \times m} \text{ has rank } < r \right\}.$$

,mat,svd,sig

26.7 Condition numbers and linear systems (s,mat,cond)

The condition number [wiki] for matrix inversion with respect to matrix norm ||| • ||| is defined:

$$\kappa(\boldsymbol{A}) \triangleq \begin{cases} \|\|\boldsymbol{A}\|\|\|\boldsymbol{A}^{-1}\|\|, & \boldsymbol{A} \text{ invertible} \\ \infty, & \boldsymbol{A} \text{ singular.} \end{cases}$$
(26.7.1)

In particular, for the spectral norm $\|\cdot\|_2$ we have

$$\kappa(\boldsymbol{A}) = \frac{\sigma_{\max}(\boldsymbol{A})}{\sigma_{\min}(\boldsymbol{A})},\tag{26.7.2}$$

where σ_{max} and σ_{min} denote the maximum and minimum singular values of A. A concept of condition number has also been developed for problems with constraints [14]. Condition numbers are submultiplicative:

 $\kappa(\boldsymbol{A}\boldsymbol{B}) \leq \kappa(\boldsymbol{A})\kappa(\boldsymbol{B}).$

Suppose we want to solve Ax = b, but the right-hand side is perturbed (*e.g.*, by noise or numerical error) so instead we solve $A\hat{x} = b + \epsilon$. Then the error propagation depends on the condition number [1, p. 338]:

$$\frac{\|\boldsymbol{x} - \hat{\boldsymbol{x}}\|}{\|\boldsymbol{x}\|} \leq \kappa(\boldsymbol{A}) \frac{\|\boldsymbol{\varepsilon}\|}{\|\boldsymbol{b}\|}$$

See [15] [16, p. 89] for generalizations to nonlinear problems.

26.8 Adjoints (s,mat,adjoint)

Recall the following fact from linear algebra. If $A \in \mathbb{C}^{m \times n}$, then

$$\langle \boldsymbol{A} \boldsymbol{x},\, \boldsymbol{y}
angle_{\mathbb{C}^m} = \boldsymbol{y}' \boldsymbol{A} \boldsymbol{x} = (\boldsymbol{A}' \boldsymbol{y})' \boldsymbol{x} = \langle \boldsymbol{x},\, \boldsymbol{A}' \boldsymbol{y}
angle_{\mathbb{C}^n},$$

where A' denotes the Hermitian transpose of A. For analyzing some image reconstruction problems, we need to generalize the above relationship to operators A in function spaces (specifically Hilbert spaces). The appropriate generalization of "transpose" is called the adjoint of A and is denoted A^* [17, p. 352].

Let \mathcal{X} and \mathcal{Y} denote vector spaces with inner products $\langle \cdot, \cdot \rangle_{\mathcal{X}}$ and $\langle \cdot, \cdot \rangle_{\mathcal{Y}}$ respectively. Let $\mathcal{B}(\mathcal{X}, \mathcal{Y})$ denote the space of bounded linear operators from \mathcal{X} to \mathcal{Y} , *i.e.*, if $\mathcal{A} \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$ then the following supremum is finite:

$$\|\boldsymbol{\mathcal{A}}\| \triangleq \sup_{f \in \mathcal{X}, \ f \neq 0} \frac{\|\boldsymbol{\mathcal{A}}f\|_{\mathcal{Y}}}{\|f\|_{\mathcal{X}}},$$

where $\|\cdot\|_{\mathcal{X}}$ is the norm on \mathcal{X} corresponding to $\langle \cdot, \cdot \rangle_{\mathcal{X}}$, defined in (26.4.1), and likewise for $\|\cdot\|_{\mathcal{Y}}$.

If \mathcal{X} and \mathcal{Y} are Hilbert spaces, *i.e.*, complete vector spaces under their respective inner products, and if $\mathcal{A} \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$, then one can show that there exists a unique bounded linear operator $\mathcal{A}^* \in \mathcal{B}(\mathcal{Y}, \mathcal{X})$, called the adjoint of \mathcal{A} , that satisfies

$$\langle \mathcal{A}f, g \rangle_{\mathcal{Y}} = \langle f, \mathcal{A}^*g \rangle_{\mathcal{X}}, \quad \forall f \in \mathcal{X}, g \in \mathcal{Y}.$$
 (26.8.1)

26.8.1 Examples

If $\mathcal{X} = \mathbb{C}^n$ and $\mathcal{Y} = \mathbb{C}^m$ and $\mathbf{A} \in \mathbb{C}^{m \times n}$, then $\mathbf{A}^* = \mathbf{A}'$. So adjoint and transpose are the same in Euclidean space.

As another finite-dimensional example, consider $\mathcal{X} = \mathbb{C}^{n \times n}$ and $\mathcal{Y} = \mathbb{C}$ and the trace operator $\mathcal{A} : \mathbb{C}^{n \times n} \to \mathbb{C}$ defined by $y = \mathcal{A}X$ iff $y = \text{trace}\{X\}$. To determine the adjoint we massage the inner products:

$$\langle \mathcal{A}X, y \rangle_{\mathcal{Y}} = \left(\sum_{i=1}^{n} X_{ii}\right) y^* = \left(\sum_{i,j=1}^{n} \delta[i-j] X_{ij}\right) y^* = \sum_{i,j=1}^{n} X_{ij} \left(\delta[i-j] y\right)^* = \sum_{i,j=1}^{n} X_{ij} \left([I_n y]_{ij}\right)^*.$$

Thus $\mathcal{A}^* y = y \mathbf{I}_n$ is the adjoint of the trace operator.

Now we turn to infinite-dimensional examples.

Example 26.8.1 Consider $\mathcal{X} = \ell_2$, the space of square summable sequences, and $\mathcal{Y} = \mathcal{L}_2[-\pi, \pi]$, the space of square integrable functions on $[-\pi, \pi]$. The discrete-time Fourier transform (DTFT) operator $\mathcal{A} : \mathcal{X} \to \mathcal{Y}$ is defined by

$$F = \mathcal{A}f \iff F(\omega) = \sum_{n=-\infty}^{\infty} e^{-i\omega n} f_n, \quad \forall \omega \in [-\pi, \pi].$$

The fact that this linear operator is bounded is equivalent to **Parseval's theorem**:

$$||F||_{\mathcal{Y}}^2 = \int_{-\pi}^{\pi} |F(\omega)|^2 \,\mathrm{d}\omega = 2\pi \sum_{n=-\infty}^{\infty} |f_n|^2 = 2\pi \,||f||_{\mathcal{X}}^2.$$

Thus $\|\mathcal{A}\| = 2\pi$. *To determine the adjoint, manipulate the inner product:*

$$\langle \boldsymbol{\mathcal{A}} f, G \rangle_{\mathcal{Y}} = \int_{-\pi}^{\pi} (\boldsymbol{\mathcal{A}} f)(\omega) G^{*}(\omega) \, \mathrm{d}\omega = \int_{-\pi}^{\pi} \left(\sum_{n=-\infty}^{\infty} \mathrm{e}^{-i\omega n} f_{n} \right) G^{*}(\omega) \, \mathrm{d}\omega$$
$$= \sum_{n=-\infty}^{\infty} f_{n} \left(\int_{-\pi}^{\pi} \mathrm{e}^{i\omega n} G(\omega) \, \mathrm{d}\omega \right)^{*} = \langle f, \, \boldsymbol{\mathcal{A}}^{*} G \rangle_{\mathcal{X}},$$

where

$$[\mathcal{A}^*G]_n = \int_{-\pi}^{\pi} e^{i\omega n} G(\omega) \,\mathrm{d}\omega \,.$$

In this particular example, $\mathcal{A}^{-1} = \frac{1}{2\pi} \mathcal{A}^*$, but in general the adjoint is not related to the inverse of \mathcal{A} .

Example 26.8.2 Consider $\mathcal{X} = \mathcal{Y} = \ell_2$ and the (linear) discrete-time convolution operator $\mathcal{A} : \ell_2 \to \ell_2$ defined by

$$\boldsymbol{z} = \boldsymbol{\mathcal{A}} \boldsymbol{x} \iff z_n = \sum_{k=-\infty}^{\infty} h_{n-k} x_k, \quad n \in \mathbb{Z},$$

where we assume that $h \in \ell_1$. One can show that $\|Ax\|_2 \le \|h\|_1 \|x\|_2$, so A is bounded with $\|A\| \le \|h\|_1$. Since \mathcal{A} is bounded, it is legitimate to search for its adjoint:

$$\langle \mathcal{A}\boldsymbol{x}, \, \boldsymbol{y} \rangle = \sum_{n=-\infty}^{\infty} y_n^* \left[\sum_{k=-\infty}^{\infty} x_k h_{n-k} \right] = \sum_{k=-\infty}^{\infty} x_k \left[\sum_{n=-\infty}^{\infty} y_n h_{n-k}^* \right]^* = \sum_{k=-\infty}^{\infty} x_k [\mathcal{A}^* \boldsymbol{y}]_k^* = \langle \boldsymbol{x}, \, \mathcal{A}^* \boldsymbol{y} \rangle,$$

where the adjoint is

$$[\mathcal{A}^* \boldsymbol{y}]_k = \sum_{n=-\infty}^{\infty} h_{n-k}^* y_n \Longrightarrow [\mathcal{A}^* \boldsymbol{y}]_n = \sum_{k=-\infty}^{\infty} h_{k-n}^* y_k$$

which is convolution with h_{-n}^* .

26.8.2 Properties

The following properties of adjoints all concur with those of Hermitian transpose in Euclidean space.

- $\mathcal{I}^* = \mathcal{I}$, where \mathcal{I} denotes the identity operator: $\mathcal{I} f = f$
- $(\boldsymbol{\mathcal{A}}^*)^* = \boldsymbol{\mathcal{A}}$
- $(\mathcal{AB})^* = \mathcal{B}^* \mathcal{A}^*$
- $(\mathcal{A} + \mathcal{B})^* = \mathcal{A}^* + \mathcal{B}^*$
- $(\alpha \mathbf{A})^* = \alpha^* \mathbf{A}^*$
- $\bullet \| \mathbf{\mathcal{A}}^* \| = \| \mathbf{\mathcal{A}} \|$

• $\| \mathcal{A}^* \mathcal{A} \| = \| \mathcal{A} \mathcal{A}^* \| = \| \mathcal{A} \mathcal{A}^* \| = \| \mathcal{A} \|^2 = \| \mathcal{A}^* \|^2.$ • If $\mathcal{A} \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$ is invertible, then \mathcal{A}^* is invertible and $(\mathcal{A}^*)^{-1} = (\mathcal{A}^{-1})^*.$

Pseudo inverse / generalized inverse (s,mat,pseudo) 26.9

The Moore-Penrose generalized inverse or pseudo inverse of a matrix $A \in \mathbb{C}^{m \times n}$ is the unique matrix $A^{\dagger} \in \mathbb{C}^{n \times m}$ that satisfies [1, p. 421]

$$A^{\dagger}A$$
 and AA^{\dagger} are Hermitian
 $AA^{\dagger}A = A$ (26.9.1)
 $A^{\dagger}AA^{\dagger} = A^{\dagger}.$

The pseudo inverse is related to minimum-norm least-squares (MNLS) problems as follows. Of all the vectors x that minimize $\|Ax - b\|_2$, the unique vector having minimum (Euclidean) norm $\|x\|_2$ is

$$\hat{\boldsymbol{x}} = \boldsymbol{A}^{\dagger} \boldsymbol{b}. \tag{26.9.2}$$

Properties of the pseudo inverse include the following.

• [18, p. 252]

$$oldsymbol{A}^\dagger = oldsymbol{A}' [oldsymbol{A}oldsymbol{A}']^\dagger = [oldsymbol{A}'oldsymbol{A}]^\daggeroldsymbol{A}'$$

• By [wiki] [13, p. 215], if $A \in \mathbb{C}^{m \times n}$ then

$$oldsymbol{A}^{\dagger} = \operatorname*{arg\,min}_{oldsymbol{B} \in \mathbb{C}^{n imes m}} \|oldsymbol{A}oldsymbol{B} - oldsymbol{I}_m\|_{\mathrm{Frob}}$$

٠

$$\mathcal{P}_{\boldsymbol{A}} = \boldsymbol{A}\boldsymbol{A}^{\dagger} = \boldsymbol{A}[\boldsymbol{A}'\boldsymbol{A}]^{\dagger}\boldsymbol{A}', \quad \mathcal{P}_{\boldsymbol{A}'} = \boldsymbol{A}^{\dagger}\boldsymbol{A} = \boldsymbol{A}'[\boldsymbol{A}\boldsymbol{A}']^{\dagger}\boldsymbol{A}$$

• If $U \in \mathbb{C}^{m \times m}$ is unitary and $V \in \mathbb{C}^{n \times n}$ is unitary and $A \in \mathbb{C}^{m \times n}$, then (see Problem 26.9.3):

$$(UAV)^{\dagger} = V'A^{\dagger}U'. \tag{26.9.3}$$

• The pseudo inverse of a product is characterized by [19, Thm. 1.4.1, p. 20]:

$$(\boldsymbol{A}\boldsymbol{B})^{\dagger} = (\boldsymbol{A}^{\dagger}\boldsymbol{A}\boldsymbol{B})^{\dagger}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{B}^{\dagger})^{\dagger} = (\mathcal{P}_{\boldsymbol{A}}\boldsymbol{B})^{\dagger}(\boldsymbol{A}\mathcal{P}_{\boldsymbol{B}})^{\dagger}. \tag{26.9.4}$$

26.10 Matrices and derivatives (s,mat,grad)

Let X denote a $N \times M$ matrix and let f(X) denote some functional $f : \mathbb{R}^{N \times M} \to \mathbb{R}$ of that matrix. Then the **gradient** of f with respect to X is defined as the $N \times M$ matrix having entries

$$\left[\nabla_{\boldsymbol{X}} f(\boldsymbol{X})\right]_{ij} \triangleq \lim_{\alpha \to \infty} \frac{1}{\alpha} \left[f\left(\boldsymbol{X} + \alpha \boldsymbol{e}_{i} \boldsymbol{e}_{j}^{\prime}\right) - f(\boldsymbol{X}) \right].$$
(26.10.1)

Using this definition, one can show that

$$f(\mathbf{X}) = \operatorname{trace}\{\mathbf{A}\mathbf{X}\mathbf{B}\mathbf{X}'\mathbf{C}\} \Longrightarrow \nabla_{\mathbf{X}}f(\mathbf{X}) = \mathbf{A}'\mathbf{C}\mathbf{X}\mathbf{B}' + \mathbf{C}\mathbf{A}\mathbf{X}\mathbf{B}.$$
 (26.10.2)

The derivative of a matrix inverse with respect to a parameter also can be useful [wiki]:

$$\frac{\partial}{\partial t} \left[\boldsymbol{A}(t) \right]^{-1} = -\boldsymbol{A}^{-1} \left(\frac{\partial}{\partial t} \boldsymbol{A}(t) \right) \boldsymbol{A}^{-1}.$$
(26.10.3)

26.11 The four spaces (s,mat,4space)

The range space and null space of a matrix $A \in \mathbb{C}^{m \times n}$ and related quantities can be important.

$$\mathcal{R}_{A} \triangleq \{ \boldsymbol{y} : \boldsymbol{y} = \boldsymbol{A} \boldsymbol{x} \}$$

 $\mathcal{N}_{A} \triangleq \{ \boldsymbol{x} : \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} \}$
 $\mathcal{N}_{A'}^{\perp} \triangleq \{ \boldsymbol{y} : \boldsymbol{A}' \boldsymbol{y}_{0} = \boldsymbol{0} \Longrightarrow \boldsymbol{y}' \boldsymbol{y}_{0} = \boldsymbol{0} \}$
 $\mathcal{R}_{A'}^{\perp} \triangleq \{ \boldsymbol{x} : \boldsymbol{x}' \boldsymbol{A}' \boldsymbol{y} = \boldsymbol{0} \forall \boldsymbol{y} \}.$

All four are linear spaces, so all include the zero vector. These spaces have the following relationships (see Problem 26.10):

$$\mathcal{R}_{\boldsymbol{A}} = \mathcal{N}_{\boldsymbol{A}'}^{\perp} \tag{26.11.1}$$

$$\mathcal{N}_{\boldsymbol{A}} = \mathcal{R}_{\boldsymbol{A}'}^{\perp} \tag{26.11.2}$$

$$\mathcal{R}_{\boldsymbol{A}} - \mathbf{0} \subseteq \mathcal{N}_{\boldsymbol{A}'}^c \tag{26.11.3}$$

$$\mathcal{N}_{\boldsymbol{A}} = \mathbf{0} \subset \mathcal{R}^c \tag{26.11.4}$$

$$\mathcal{N}_{A} = \mathbf{0} \subseteq \mathcal{K}_{A'} \tag{20.11.4}$$

$$\mathcal{N}_{\boldsymbol{A}'}^{\perp} \subseteq \mathcal{N}_{\boldsymbol{A}'}^{c}.$$
(26.11.5)

e, mat, grad

e,mat,grad,tr

26.12 Principal components analysis (low-rank approximation) (s,mat,pca)

Given data y_{ij} for i = 1, ..., N and j = 1, ..., M, often we wish to find a set of L orthonormal vectors $\phi_1, ..., \phi_L \in \mathbb{C}^N$ and corresponding coefficients $x_1, ..., x_M \in \mathbb{C}^L$ to minimize the following WLS approximation error

$$\sum_{j=1}^{M} w_j \left\| \boldsymbol{y}_j - \sum_{l=1}^{L} \phi_l x_{lj} \right\|^2 = \sum_{j=1}^{M} w_j \left\| \boldsymbol{y}_j - \boldsymbol{B} \boldsymbol{x}_j \right\|^2,$$

where $y_j = (y_{1j}, \ldots, y_{Nj})$, $x_j = (x_{1j}, \ldots, x_{LM})$, and $B = [\phi_1 \ldots \phi_L]$. Defining $\tilde{y}_j \triangleq \sqrt{w_j} y_j$ and $\tilde{x}_j \triangleq \sqrt{w_j} x_j$, we can rewrite this low-rank matrix approximation problem as

$$\min_{\tilde{\boldsymbol{X}}, \boldsymbol{B}: \boldsymbol{B}'\boldsymbol{B} = \boldsymbol{I}_L} \sum_{j=1}^M \|\tilde{\boldsymbol{y}}_j - \boldsymbol{B}\tilde{\boldsymbol{x}}_j\|_2^2 = \min_{\tilde{\boldsymbol{X}}, \boldsymbol{B}: \boldsymbol{B}'\boldsymbol{B} = \boldsymbol{I}_L} \|\|\tilde{\boldsymbol{Y}} - \boldsymbol{B}\tilde{\boldsymbol{X}}\|\|_{\text{Frob}}^2,$$

where $\tilde{X} \triangleq [\tilde{x}_1, \dots, \tilde{x}_M]$ and $\tilde{Y} \triangleq [\tilde{y}_1, \dots, \tilde{y}_M]$.

Since B has orthonormal columns, minimizing over \tilde{x}_j yields $\tilde{x}_j = B'\tilde{y}_j$ or equivalently $x_j = B'y_j$ and $\tilde{X} = B'\tilde{Y}$. In this form, $B\tilde{X}$ is a low-rank approximation of \tilde{Y} . Thus to find B we must minimize

$$\begin{split} \| ilde{m{Y}} - m{B}m{B}' ilde{m{Y}} \|_{ ext{Frob}}^2 &= ext{trace}igg\{ ig(ilde{m{Y}} - m{B}m{B}' ilde{m{Y}} ig)' ig(ilde{m{Y}} - m{B}m{B}' ilde{m{Y}} ig) igg\} \ &\equiv - ext{trace}igg\{ ilde{m{Y}}' m{B}m{B}' ilde{m{Y}} igg\} \,. \end{split}$$

Thus we want to maximize trace $\{B'\tilde{Y}\tilde{Y}'B\}$, where $K \triangleq \tilde{Y}\tilde{Y}'$, subject to the constraint that the columns of B must be orthonormal. Taking the gradient with respect to ϕ_l of the Lagrangian $\sum_{l=1}^{L} \phi'_l K \phi_l - \lambda_l (\|\phi_l\|^2 - 1)$ yields $K\phi_l = \lambda_l\phi_l$. Thus each ϕ_l is an eigenvector of K. So the optimal B is the first L singular vectors of K. This is called the **Eckart-Young theorem** [20].

Mat svds

s,mat,prob p,mat,rho,ratio

p,mat,lemma,ba

p,mat,diag,gers

26.13 Problems (s,mat,prob)

Problem 26.1 *Prove or disprove the ratio property for* $\rho(\mathbf{A})$ *in* (26.1.5) *in the general case where* \mathbf{A} *is square but not necessarily symmetric.*

Problem 26.2 Equation (26.1.3) states that $\rho(AB) = \rho(BA)$ when $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times m}$. Prove or disprove: $\rho(I_m - AB) \stackrel{?}{=} \rho(I_n - BA).$

Problem 26.3 Determine the constants in relating norms in (26.3.8) for the case $\alpha = 2$ and $\beta = 1$.

Problem 26.4 *Prove Theorem* 26.5.3, i.e., $A \succeq 0 \Longrightarrow (||A|||_2 \le 1 \iff A \preceq I)$.

Problem 26.5 *Prove Lemma* 26.2.3 *relating to matrix partial orderings.*

Problem 26.6 Prove Theorem 26.2.4, relating to the inverse of partially Hermitian positive definite matrices.

Problem 26.7 Prove the Frobenius norm inequality (26.5.7) and show that it is not tight.

Problem 26.8 Following Example 26.8.2, determine the adjoint of the 2D convolution operator $g = \mathcal{A}f \iff g(x,y) = \iint h(x-x',y-y') f(x',y') dx' dy'$.

Problem 26.9 Prove the equality (26.9.3) for unitary transforms of pseudo inverses.

Problem 26.10 *Prove the relationships between the four spaces in* (26.11.5).

Problem 26.11 *Prove that* $f(\boldsymbol{x}) = \|\boldsymbol{x}\|_p^p$ *is strictly convex for* p > 1.

Problem 26.12 *Either prove the generalized diagonal dominance theorem Theorem 26.2.8 using the Geršgorin the*orem, or construct a counter example showing that (26.2.2) truly is a generalization, i.e., a case where D - B'B is not diagonally dominant. (Solve?)

26.14 Bibliography

moon:00

eckart:1936:tao

- R. A. Horn and C. R. Johnson. *Matrix analysis*. Cambridge: Cambridge Univ. Press, 1985 (cit. on pp. 26.2, 26.3, 26.4, 26.5, 26.6, 26.8, 26.9, 26.11, 26.12).
- [2] H. V. Henderson and S. R. Searle. "On deriving the inverse of a sum of matrices." In: *SIAM Review* 23.1 (Jan. 1981), 53–60. DOI: 10.1137/1023004 (cit. on p. 26.3).
- [3] J. Sherman and W. J. Morrison. "Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix." In: *Ann. Math. Stat.* 20.4 (Dec. 1949), p. 621. URL: http://www.jstor.org/stable/2236322 (cit. on p. 26.3).
- [4] M. A. Woodbury. *Inverting modified matrices*. Tech. Report 42, Stat. Res. Group, Princeton Univ. 1950 (cit. on p. 26.3).
 - [5] M. S. Bartlett. "An inverse matrix adjustment arising in discriminant analysis." In: Ann. Math. Stat. 22.1 (Mar. 1951), 107–11. URL: http://www.jstor.org/stable/2236707 (cit. on p. 26.3).
 - [6] K. Kohno, M. Kawamoto, and Y. Inouye. "A matrix pseudoinversion lemma and its application to block-based adaptive blind deconvolution for MIMO systems." In: *IEEE Trans. Circ. Sys. I, Fundamental theory and applications* 57.7 (July 2010), 1499–1512. DOI: 10.1109/TCSI.2010.2050222 (cit. on p. 26.3).
 - [7] T. Kailath. *Linear systems*. New Jersey: Prentice-Hall, 1980 (cit. on p. 26.3).
 - [8] C. F. Van Loan. "The ubiquitous Kronecker product." In: J. Comp. Appl. Math. 123.1-2 (Nov. 2000), 85–100.
 DOI: 10.1016/S0377-0427 (00) 00393-9 (cit. on p. 26.4).
 - [9] C. R. Johnson. "Positive definite matrices." In: Amer. Math. Monthly 77.3 (Mar. 1970), 259–64. URL: http://www.jstor.org/stable/2317709 (cit. on p. 26.4).
 - [10] D. G. Luenberger. *Optimization by vector space methods*. New York: Wiley, 1969. URL: http://books.google.com/books?id=1ZU0CAH4RccC (cit. on pp. 26.6, 26.7).
 - [11] R. H. Chan and M. K. Ng. "Conjugate gradient methods for Toeplitz systems." In: *SIAM Review* 38.3 (Sept. 1996), 427–82. DOI: 10.1137/S0036144594276474. URL: http://www.jstor.org/stable/2132496 (cit. on p. 26.9).
 - [12] V-S. Chellaboina and W. M. Haddad. "Is the Frobenius matrix norm induced?" In: *IEEE Trans. Auto. Control* 40.12 (Dec. 1995), 2137–9. DOI: 10.1109/9.478340 (cit. on p. 26.9).
 - [13] G. H. Golub and C. F. Van Loan. *Matrix computations*. 2nd ed. Johns Hopkins Univ. Press, 1989 (cit. on pp. 26.9, 26.13).
 - [14] J. Renegar. "Condition numbers, the barrier method, and the conjugate-gradient method." In: *SIAM J. Optim.* 6.4 (Nov. 1996), 879–912. DOI: 10.1137/S105262349427532X (cit. on p. 26.11).
 - [15] W. C. Rheinboldt. "On measures of ill-conditioning for nonlinear equations." In: *Mathematics of Computation* 30.133 (Jan. 1976), 104–11. URL: http://www.jstor.org/stable/2005433 (cit. on p. 26.11).
 - [16] L. N. Trefethen and D. Bau. *Numerical linear algebra*. Phildelphia: Soc. Indust. Appl. Math., 1997 (cit. on p. 26.11).
 - [17] A. W. Naylor and G. R. Sell. *Linear operator theory in engineering and science*. 2nd ed. New York: Springer-Verlag, 1982 (cit. on p. 26.11).
 - [18] T. K. Moon and W. C. Stirling. Mathematical methods and algorithms for signal processing. Prentice-Hall, 2000. URL: http://www.neng.usu.edu/ece/faculty/tmoon/book/book.html#errata (cit. on p. 26.13).
 - [19] S. L. Campbell and C. D. Meyer. *Generalized inverses of linear transformations*. London: Pitman, 1979 (cit. on p. 26.13).
 - [20] C. Eckart and G. Young. "The approximation of one matrix by another of lower rank." In: *Psychometrika* 1.3 (1936), 211–8. DOI: 10.1007/BF02288367 (cit. on p. 26.14).