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25.1 Introduction (s,geom,intro)s,geom,intro

This chapter describes some details for a few tomographic imaging system geometries. These details are important for

implementing efficient forward and backprojection operations.

Numerous papers have described tomographic system models and associated forward- and back-projection meth-

ods. This chapter only scratches the surface.

s,geom,line,perp

Distances between a point and a line are useful in deriving projectors. In Fig. 25.1.1, one can show that

τ =
−(x0 − x1)(y2 − y1) + (y0 − y1)(x2 − x1)

√

(x2 − x1)2 + (y2 − y1)2

τ⊥ =
(x0 − x1)(x2 − x1) + (y0 − y1)(y2 − y1)

√

(x2 − x1)2 + (y2 − y1)2
.

(x0, y0)

(x1, y1)

(x2, y2)

τ

τ⊥

ϕ

Figure 25.1.1: Distance between a point and a line.

fig,geom,line,perp
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25.2 Parallel-beam 2D system models (s,geom,par2)s,geom,par2

Consider the 2D object model based on a common basis function β0(x, y) superimposed on a N ×M Cartesian grid

as follows:

f(x, y) =
N−1
∑

n=0

M−1
∑

m=0

f [n, m] β0

(

x− xc[n]

∆X

,
y − yc[m]

∆Y

)

, (25.2.1)
e,geom,par2,fxy

where (xc[n], yc[m]) denotes the center of the basis function for f [n, m]. Typically

xc[n] = (n− wX)∆X, n = 0, . . . , N − 1

yc[m] = (m− wY)∆Y, m = 0, . . . , M − 1

wX = (N − 1)/2 + cX

wY = (M − 1)/2 + cY, (25.2.2)
e,geom,par2,xon

where the user-selectable parameters (cX, cY) denote a spatial offset for the image center. These are useful when the

object is not positioned in the center of the field-of-view. For simplicity, we assume that ∆Y = ±∆X, and that β0(x, y)
is symmetric in both arguments, i.e., β0(±x,±y) = β0(x, y) . (The purpose of a negative ∆X or ∆Y value is to permit

mirror reversals of the coordinate system.)

Consider parallel-beam or parallel-ray system geometries that have the property that for a given projection angle

ϕ, the radial samples have equal spacing ∆R, so that, cf. (4.3.1), we can write

ȳϕ[iR] = hϕ(r) ∗ pϕ(r)
∣

∣

∣

r=(iR−wR)∆R

=

∫

hϕ((iR − wR)∆R − r) pϕ(r) dr, (25.2.3)
e,geom,par2,yb

for iR = 0, . . . , nR − 1, where pϕ(r) denotes the Radon transform of f(x, y). Note that for generality we allow the

blur PSF hϕ(r) to vary with projection view ϕ, although often it does not. The offset wR is defined akin to wX and wY,

e.g., wR , (nR − 1)/2 + cR. Typically the offset cR is zero or ±1/4, the latter reflecting the quarter detector offset

that is used in some CT systems to improve sampling, e.g., [1–4].

The next subsection considers the specific case of a strip-integral model where hϕ(r) = 1
w rect

(

r
w

)

, where w
denotes the detector width.

Let g(t, ϕ) denote the Radon transform of β0(x, y), i.e.,

g(t, ϕ) ,

∫

L(t,ϕ)

β0(x, y) dℓ =

∫ ∞

−∞
β0(t cosϕ−ℓ sinϕ, t sinϕ+ℓ cosϕ) dℓ . (25.2.4)

e,geom,par2,fbasisradon

Then by the linearity, shift, and scaling properties of the Radon transform we have

pϕ(r) =

N−1
∑

n=0

M−1
∑

m=0

f [n, m]∆X g

(

r − rϕ[n, m]

∆X

, ϕ

)

, (25.2.5)
e,geom,par2,pangr

where

rϕ[n, m] , xc[n] cosϕ + yc[m] sinϕ . (25.2.6)
e,geom,par2,rangnm

Substituting into (25.2.3) yields the linear model

ȳϕ[iR] =

N−1
∑

n=0

M−1
∑

m=0

a[iR, ϕ; n, m] f [n, m], (25.2.7)
e,geom,par2,yb,a,f

for iR = 0, . . . , nR − 1, where the elements of the system matrix are given by1

a[iR, ϕ; n, m] =

∫

hϕ((iR − wR)∆R − r) ∆X g

(

r − rϕ[n, m]

∆X

, ϕ

)

dr

=

∫

hϕ((iR − wR)∆R − rϕ[n, m]−r′) ∆X g(r′/∆X, ϕ) dr′

= Fϕ

(

(iR − τϕ[n, m]) ∆R; ∆X

)

, (25.2.8)
e,geom,par2,aainm,Fangr

1Note that for a sinogram with nR radial bins and projection angles {ϕk}, the relation between the “linear algebra” notation aij and the notation

in (25.2.8) is aij = a[i mod nR, ϕ⌊i/nR⌋ ;n(j), m(j)], where n(j) and m(j) were defined in (1.4.16).
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where r′ = r − rϕ[n, m] and we define

τϕ[n, m] , wR + rϕ[n, m] /∆R, (25.2.9)
e,geom,par2,tangnm

and

Fϕ(r; ∆X) ,

∫

hϕ(r − r′)∆X g(r′/∆X, ϕ) dr′ = hϕ(r) ∗∆X g(r/∆X, ϕ) . (25.2.10)
e,geom,par2,Fangr

For simple basis functions and PSFs, one can determine the “blurred footprint” function(s) Fϕ(r; ∆X) analytically.

For more complicated basis functions and PSFs, one can precompute the integral that defines Fϕ(r; ∆X) using very

fine discretizations, and tabulate the results for a suitable range of arguments. Then each system matrix element

corresponds simply to looking up in the appropriate table (one for each angle ϕ) for the desired argument.

For example, suppose we consider the pixel basis but use a (truncated) gaussian PSF. Each g(t, ϕ) is a trapezoid,

and a different trapezoid for each angle. So Fϕ(r; ∆X) is essentially the convolution of a trapezoid with a gaussian.

The analytical form for that convolution is cumbersome, but such a convolution is very easy computed numerically to

high accuracy and then tabulated, e.g., [5].

25.2.1 Local bases

Practical models use local basis functions β0(x, y) having finite support and finite width PSF models hϕ(r). For such

local models, the blurred footprint function Fϕ(r; ∆X) is nonzero only the finite support interval (− rmax(ϕ), rmax(ϕ)).
In such typical cases, most of the system matrix elements in (25.2.8) are zero. To determine which elements are

nonzero for a given pixel location [n, m] and projection view angle ϕ, i.e., to determine the bin support, we must find

the iR values for which

− τmax(ϕ) < iR − τϕ[n, m] < τmax(ϕ),

where

τmax(ϕ) , rmax(ϕ) /∆R, (25.2.11)
e,geom,par2,tmaxa

or equivalently:

τϕ[n, m]− τmax(ϕ) < iR < τϕ[n, m]+ τmax(ϕ) .

Using these bounds avoids unnecessary evaluations of Fϕ(r; ∆X). In particular, a loop over iR values should cover

imin
R

(τϕ[n, m]) ≤ iR ≤ imax
R

(τϕ[n, m]), (25.2.12)
e,geom,par2,ib,leq

where

imin
R

(τ) , ⌊τ − τmax(ϕ)⌋+ 1

imax
R

(τ) , ⌈τ + τmax(ϕ)⌉ − 1.

By (27.9.1), the number of nonzero iR values in the interval (25.2.12) satisfies

1 + imax
R
− imin

R
≤ ⌈2 τmax(ϕ)⌉ . (25.2.13)

e,geom,par2,ib,ceil

25.2.2 Tabulation

One approach is to tabulate exhaustively all of the nonzero values of Fϕ(r; ∆X) needed for forward projection [6].

This is feasible for small problems, but for large problems the required memory can be excessive.

For reducing memory, the standard approach to tabulating Fϕ(r; ∆X) would be to evaluate it for finely spaced

values of its argument, and then use either nearest neighbor or linear interpolation to compute (25.2.8). A disadvantage

of this approach is that it requires nonsequential access of the table values as one indexes over iR, which may degrade

cache performance. In light of (25.2.13), for more sequential access of the table, first define

K = max
ϕ
⌈2 τmax(ϕ)⌉ ,
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and choose an over-sampling factor L. Then for a given view angle ϕ, precompute samples of Fϕ(r; ∆X) as follows2:

F [k, l] , Fϕ

([

imin
R

(

l + 1
2

L

)

+ k −
(

l + 1
2

L

)]

∆R; ∆X

)

,
k = 0, . . . , K − 1
l = 0, . . . , L− 1.

(25.2.14)
e,geom,par2,Fkl

Then for k = 0, . . . , K − 1, approximate Fϕ(r; ∆X) by its nearest tabulated value as follows:

Fϕ

([

imin
R

(τ) + k − τ
]

∆R; ∆X

)

≈ F [k, l(τ)],

where

l(τ) , ⌊(τ − ⌊τ⌋)L⌋ ∈ {0, . . . , L− 1} .
For sequential access, we store F [k, l] so that k varies fastest.

IRT See Gtomo2_table.m.

25.2.3 Incrementalism

To compute τϕ[n, m] efficiently, note that the following recursion holds:

τϕ[n + 1, m] = τϕ[n, m]+

(

∆X

∆R

cosϕ

)

,

which is known as an incremental approach since we can precompute the parenthesized value, e.g., [7, 8].

25.2.4 Computation analysis

Consider a typical N×N image and a single projection view with nR = N samples. Computing the forward projection

(25.2.7) for a single angle ϕ using the above tabulation approach requires 2KN2 flops.

Because the table (25.2.14) is finite, the above tabulation approach is equivalent mathematically to a generalization

of the approach proposed by Schwinger et al. [9]. In that method one first projects each pixel value f [n, m] onto the

nearest neighbor in a finely spaced projection array, then convolves that finely spaced projection array with the footprint

function Fϕ(r; ∆X), and then downsamples the filtered projection array to the sample spacing of the measurements.

For an efficient implementation of that method, the convolution and down-sampling steps should be combined into a

single step. The accuracy of this approach will be identical to our tabulation method if the over-sampling factor is the

same L used in (25.2.14). For such an implementation, the flops required per projection view are N2 + 2LKN =
(1 + 2LK/N)N2. The footprint tabulation approach is more efficient if L/N > 1− 1

2K .

25.2.5 Local angle approximation (s,geom,par2,aa)
s,geom,par2,aa

It may be useful to make approximations to the “blurred footprint” function Fϕ(r; ∆X) in (25.2.10), e.g., to reduce

memory when tabulating or to reduce computation time.

Let q(ϕ) denote a smooth function of ϕ, such as q(ϕ) = g(0, ϕ) . If ϕ ≈ θ, then

g(t, ϕ) ≈ q(ϕ)

q(θ)
g

(

q(ϕ)

q(θ)
t, θ

)

. (25.2.15)
e,geom,par2,aa,g,approx

Note that both sides of this approximation integrate to the same value.

In (25.2.10), suppose that hϕ(r) ≈ hθ(r) for ϕ ≈ θ. (This holds exactly when hϕ(r) is independent of ϕ.) Then

we have the following approximation to the blurred footprint:

ϕ ≈ θ =⇒ Fϕ(r; ∆X) =

∫

hϕ(r − r′)∆X g

(

r′

∆X

, ϕ

)

dr′ (25.2.16)
e,geom,par2,aa,g,approx

≈
∫

hθ(r − r′)∆X

q(ϕ)

q(θ)
g

(

q(ϕ)

q(θ)

r′

∆X

, θ

)

dr′ (25.2.17)

=

(

q(ϕ)

q(θ)

)2

Fθ

(

r; ∆X

q(θ)

q(ϕ)

)

. (25.2.18)
e,geom,par2,aa,F,approx

If the basis function β0(x, y) in (25.2.1) is circularly symmetric, then we can choose q(ϕ) = 1 and (25.2.18) holds

exactly. Otherwise, a reasonable choice is q(ϕ) = g(0, ϕ) . See §25.2.10.

2The factor of 1/2 is to find the center value in an even number of intervals.
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25.2.6 Mojette sampling (s,geom,par2,moj)
s,geom,par2,moj

The tabulation approach becomes particularly simple if we can choose the radial sampling to be related to the projec-

tion angle ϕ as follows:

∆R =
1

L
|∆X|max(|cosϕ| , |sinϕ|), (25.2.19)

e,geom,par2,Dr

where L ∈ N is an over-sampling factor, and we continue to assume that |∆Y| = |∆X|. This choice of sample spacing

dates back many years and has been rediscovered many times [10–16]; recently it is associated with the Mojette

transform [17–20]. See also the related linogram sampling in §3.8. Fig. 25.2.1 illustrates the radial spacing for a

certain angle ϕ.

φ

Figure 25.2.1: Illustration of Mojette radial sample spacing.

fig,geom,moj1

To illustrate why such radial sample spacing is convenient, consider the case where |cosϕ| ≥ |sinϕ| and ∆X cosϕ >
0, for which ∆R = 1

L∆X cosϕ . In this case, the system matrix elements (25.2.8) simplify as follows:

Fϕ

(

(iR − τϕ[n, m])∆R; ∆X

)

= Fϕ

(

(iR − Ln− τ̃ϕ[m])
1

L
∆X cosϕ; ∆X

)

, (25.2.20)
e,geom,par2,moj,i-n

where we define

τ̃ϕ[m] , wR − LwX + L(m− wY)
∆Y sinϕ

∆X cosϕ
. (25.2.21)

e,geom,par2,tangm

Note that τ̃ϕ[m + 1] = τ̃ϕ[m] +L ∆Y sinϕ
∆X cosϕ . The attractive property of (25.2.20) is that it depends on iR−n when L = 1,

which we assume hereafter3. So we can tabulate (exactly) the nonzero values of Fϕ

(

(k − τ̃ϕ[m])∆X cosϕ; ∆X

)

for

each m = 0, . . . , M − 1 and for each ϕ of interest. Furthermore, we can compute the forward projection summation

(25.2.7) very efficiently because the summation over n is a 1D convolution for each m and ϕ. In particular, for each n
the minimum relevant value of iR is n + imin

R
[m] where

imin
R

[m] ,

⌊

τ̃ϕ[m]−rmax(ϕ)

∆R

⌋

+ 1.

Thus, for each angular sample ϕ, we tabulate

Fϕ[k, m] , Fϕ

(

(

imin
R

[m] + k − τ̃ϕ[m]
)

∆X cosϕ; ∆X

)

,
k = 0, . . . , K − 1
m = 0, . . . , M − 1.

3For L = 2, we write iR − 2n = 2(⌊iR/2⌋ −n) + iR mod 2. So two tables suffice, one for even iR and one for odd iR. In general, we would

need L tables, namely Fϕ

“

(k + l − τ̃ϕ[m]) 1

L
∆X cosϕ;∆X

”

for l = 0, . . . , L− 1, where “k” corresponds to L(⌊iR/L⌋ − n). Clearly L = 1

is simplest.



c© J. Fessler. October 18, 2009 25.7

To simplify implementation, we can let K = maxϕ ⌈2 τmax(ϕ)⌉ = maxϕ

⌈

2 rmax(ϕ)
∆R

⌉

, and then choose r′max(ϕ) =

K/2∆R, in which case

imin
R

[m] =

⌊

τ̃ϕ[m]−K

2

⌋

+ 1.

There are four possible cases depending on ∆R in (25.2.19), each of which involves a similar simplification if we

use appropriate rotations and/or mirror reversals of the discrete-space image f [n, m].
Consider next the case where |cosϕ| ≥ |sinϕ| but ∆X cosϕ < 0, for which ∆R = −∆X cosϕ . In this case, the

system matrix elements involve footprint samples at

(iR − τϕ[n, m])∆R =

(

iR − wR −
(n− wX)∆X cosϕ+(m− wY)∆Y sinϕ

∆R

)

∆R

=

(

iR − wR + n− wX + (m− wY)
∆Y sinϕ

∆X cosϕ

)

∆R

=

(

iR − n′ − wR + (N − 1− wX) + (m− wY)
∆Y sinϕ

∆X cosϕ

)

∆R

=
(

iR − n′ − τ̃ ′
ϕ[m]

)

,

where we define

τ̃ ′
ϕ[m] , wR − (N − 1− wX) + (m− wY)

∆Y sinϕ

|∆X cosϕ|
and n′ = N − 1− n. This is just a mirror reversal of f [n, m] over n.

If |sinϕ| > |cosϕ| and ∆Y sinϕ > 0, then ∆R = ∆Y sinϕ and

(iR − τϕ[n, m])∆R =

(

iR − wR −
(n− wX)∆X cosϕ+(m− wY)∆Y sinϕ

∆R

)

∆R

=

(

iR −m− wR + wY − (n− wX)
∆X cosϕ

∆Y sinϕ

)

∆R.

This is akin to (25.2.20) except with a transpose of f [n, m].
Finally, if |sinϕ| > |cosϕ| and ∆Y sinϕ < 0, then ∆R = −∆Y sinϕ and

(iR − τϕ[n, m])∆R =

(

iR − wR −
(n− wX)∆X cosϕ+(m− wY)∆Y sinϕ

∆R

)

∆R

=

(

iR − wR + m− wY + (n− wX)
∆X cosϕ

∆Y sinϕ

)

∆R

=

(

iR −m′ − wR + (M − 1− wY) + (n− wX)
∆X cosϕ

∆Y sinϕ

)

∆R,

where we define m′ = M−1−m. This case involves both a transpose of f [n, m] and then a mirror reversal of f [m, n]
over m.

For the specific case of a square pixel basis function and a strip integral detector response model, one convenient

choice for the strip width is w = ∆R. In this case, K = 3 because

rmax(ϕ)

∆R

=
1
2 (|cosϕ|+ |sinϕ|)∆X + 1

2∆R

∆R

=
1

2
+

1

2

|cosϕ|+ |sinϕ|
max(|cosϕ| , |sinϕ|) ≤

3

2
.

IRT See Gtomo2_table.m.

The sample spacing (25.2.19) is not immediately applicable to any known tomography system. Nevertheless,

it may be useful for iterative image reconstruction, for example in one of the following two ways. We could take

the measured sinogram and interpolate it into the sampling described by (25.2.19), and then perform iterative image

reconstruction using that interpolated sinogram. This pre-interpolation has the risk of compromising image quality, but

such interpolation is already done routinely in commercial X-ray CT systems; fan-beam CT sinograms are converted

to parallel-beam both to simplify the backprojection process and to avoid noise amplifying effects of fan-beam FBP
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weighting factors. Despite such fan-parallel rebinning, the images have been accepted clinically. A second concern is

that such pre-interpolation will compromise the statistical models used for iterative image reconstruction. However,

all the statistical models that are used for X-ray CT data involve many approximations, e.g., [21]; furthermore, X-ray

CT raw data usually is subjected to several precorrection steps that also affect the statistical properties.

If interpolating the data into the Mojette sampling (25.2.19) is unacceptable, there is an alternative. One can first

forward project the image using the nonstandard method above, and then interpolate the resulting “Mojette sinogram”

into the natural coordinate system of the measurements, e.g., the fan-beam geometry. This approach can leave the data

“untouched.” The interpolations involved in the forward projection process may help approximate the blur (detector

response etc.) of any realistic system, so the iterative reconstruction method may attempt to “deconvolve” this blur,

thereby possibly improving, or at least not degrading, the final spatial resolution. Comparing these approaches is an

open problem.

25.2.7 Square-pixel / strip-integral system model (s,geom,par2,strip)
s,geom,par2,strip

Consider the basis function consisting of a uniform unit pixel:

β0(x, y) = rect(x) rect(y) . (25.2.22)
e,geom,par2,rect2

As discussed in Chapter 3, the Radon transform of this function has the trapezoidal form

g(t, ϕ) = l(ϕ) ·































dmax(ϕ) + r

dmax(ϕ)− dbreak(ϕ)
, −dmax(ϕ) < r < −dbreak(ϕ)

1, |r| ≤ dbreak(ϕ)
dmax(ϕ) − r

dmax(ϕ)− dbreak(ϕ)
, dbreak(ϕ) < r < dmax(ϕ)

0, otherwise,

(25.2.23)
e,geom,strip,g

where

l(ϕ) =
1

max(| cosϕ |, | sinϕ |)

dmax(ϕ) =
| cosϕ |+ | sinϕ |

2

dbreak =
1

2

∣

∣

∣
| cosϕ | − | sinϕ |

∣

∣

∣
.

As in Chapter 3, ϕ denotes the projection angle (angle of the line integral relative to y axis) and r denotes the (signed)

distance of the line to the origin.

Since a trapezoid has three pieces, we can rewrite the above projection function as follows:

g(t, ϕ) = g1(r) + g2(r) + g3(r)

where

g1(r) =

{

l(ϕ) r+dmax(ϕ)
dmax(ϕ)−dbreak(ϕ) , −dmax(ϕ) < r < −dbreak(ϕ)

0, otherwise

g2(r) =

{

l(ϕ), |r| ≤ dbreak(ϕ)
0, otherwise

g3(r) =

{

l(ϕ) dmax(ϕ)−r
dmax(ϕ)−dbreak(ϕ) , dbreak(ϕ) < r < dmax(ϕ)

0, otherwise.

Now consider a strip-integral projection model, for a sinogram with nR radial bins spaced by ∆R, and strip-width
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w, corresponding to hϕ(r) = 1
w rect

(

r
w

)

. For this model, we will also need the integrals of the above trapezoid pieces:

γ(t1, t2) =

∫ t2

t1

g(t, ϕ) dt

= γ1(max(t1,−dmax), min(t2,−dbreak))

+ γ2(max(t1,−dbreak), min(t2, dbreak))

+ γ3(max(t1, dbreak), min(t2, dmax)), (25.2.24)
e,geom,strip,gam

where γk(t1, t2) ,
∫ t2

t1
gk(r) dr . Integrating yields:

γ1(t1, t2) =
l(ϕ)

2 [dmax(ϕ)− dbreak(ϕ)]

[

(t2 + dmax(ϕ))2 − (t1 + dmax(ϕ))2
]

1{t2>t1}

γ2(t1, t2) = l(ϕ)(t2 − t1) 1{t2>t1}

γ3(t1, t2) =
l(ϕ)

2 [dmax(ϕ)− dbreak(ϕ)]

[

(t1 − dmax(ϕ))2 − (t2 − dmax(ϕ))2
]

1{t2>t1}.

The elements of the system matrix for a strip-integral model (for one projection angle) are given by (25.2.8), where

Fϕ(r; ∆X, w) ,

∫

hϕ(r − r′) ∆X g(r′/∆X, ϕ) dr′

=
1

w

∫ r+w/2

r−w/2

∆X g(r′/∆X, ϕ) dr′

=
∆2

X

w

∫ (r+w/2)/∆X

(r−w/2)/∆X

g(t, ϕ) dt

=
∆2

X

w
γ

(

r − w/2

∆X

,
r + w/2

∆X

)

, (25.2.25)
e,geom,par2,strip,aij

where γ was defined in (25.2.24). For this model, the support of Fϕ(t∆R; ∆X, w) is governed by (25.2.11) where

τmax(ϕ) =
∆Xdmax(ϕ) + w/2

∆R

,

for which

M = max
ϕ
⌈2 τmax(ϕ)⌉ =

⌈

∆X

√
2 + w

∆R

⌉

.

IRT See square_strip_int.m.

Fig. 25.2.2 shows the entire system matrix A for a “strip integral” system model.

25.2.8 Siddon’s line-integral method (s,geom,par2,siddon)
s,geom,par2,siddon

The trapezoidal form for the projection of a square, as given in (25.2.23), was derived in Example 3.2.6 using the

Fourier-slice theorem, resulting in the convolution of two rectangles. Alternatively, one can derive an equivalent form

geometrically, as illustrated in Fig. 25.2.3. This is the basis for Siddon’s forward projection method [22].

As given in (3.2.2), the locus of points along the ray at angle ϕ and (signed) distance r from the origin is

{(r cosϕ, r sinϕ) + ℓ (− sinϕ, cosϕ) : l ∈ R} .

(The case ℓ = 0 corresponds to the point along the ray that is closest to the origin.) For rays where ϕ is not a multiple

of π/2, one can find the intersection of the ray with the vertical lines that bound the square pixel to the left and right

using

ℓx
± =

r cosϕ−x±
sinϕ

,
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Figure 25.2.2: Elements of a system matrix A for a “strip integral” tomographic system model for a 20 × 22 image

and a 24× 18 sinogram with ∆X = 1 and ∆R = 1.
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Figure 25.2.3: Siddon’s line-integral method illustrated in 2D parallel-beam geometry.
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where x± denote the x coordinates of the left and right edges of the pixel. Similarly, the intersections of the ray with

the horizontal lines that bound the pixel from above and below are:

ℓy
± =

y± − r sinϕ

cosϕ
,

where y± denote the y coordinates of the top and bottom edges of the pixel. Thus the line segment intersecting the

voxel is the intersection of the intervals
(

min(ℓx
±), max(ℓx

±)
)

and
(

min(ℓy
±), max(ℓy

±)
)

. In Siddon’s method, aij is

the length of this intersection. This approach is applicable only for the ideal line-integral model with no detector blur,

i.e., hϕ(r) = δ(r) .

25.2.9 Linear interpolation approximation (s,geom,par2,lin1)
s,geom,par2,lin1

Conventional pixel-driven back-projection methods can be put in the framework described here by making a particular

choice for the basis function β0(x, y) in (25.2.1) and for the blur hϕ(r) in (25.2.3). Specifically, consider using

Dirac impulses for the basis “functions:” β0(x, y) = δ2(x, y), and a triangular function for the detector response:

hϕ(r) = 1
∆R

tri
(

r
∆R

)

. Substituting into (25.2.4) yields g(t, ϕ) = δ(r), which applied in (25.2.8) yields

a[iR, ϕ; n, m] = ∆2
X

hϕ((iR − wR)∆R − rϕ[n, m]) =
∆2

X

∆R

tri

(

(iR − wR)∆R − rϕ[n, m]

∆R

)

.

To within scale factors, this corresponds to the pixel-driven backprojector (3.5.5). That backprojector is adequate

for FBP reconstruction, but the corresponding forward projector produces unacceptable aliasing artifacts due to the

frequency spectrum of the Dirac impulse basis.

25.2.10 Distance-driven approximation (s,geom,par2,dd)
s,geom,par2,dd

De Man and Basu proposed a projection / backprojection method called distance driven. The 2D forward projector

works by mapping pixel boundaries and detector boundaries to a common axis; one then computes lengths of inter-

secting intervals along that axis, and divides by the detector width and the cosine of the projection angle [23–25].

Fig. 25.2.4 illustrates the approximation. The method can be implemented with an efficient memory access pat-

tern [26]. In 2D, the method is equivalent to replacing (25.2.25) with the following approximation:

Fϕ(r; ∆X, w) ≈ F0(r; ∆X max(|cosϕ| , |sinϕ|), w)

max2(|cosϕ| , |sinϕ|) .

One can verify that this approximation is a special case of (25.2.18) where θ = 0. One can also show that the above

approach is equivalent to the basis function model (25.2.1) for the particular basis function β0(x, y) = rect(x) δ(y)
for projection angles ϕ ∈ [−π/4, π/4] and for the basis function β0(x, y) = δ(x) rect(y) for projection angles

ϕ ∈ [π/4, 3π/4]. In other words, it is equivalent to using different basis functions for different projection view angles.

However, this is only a mathematical equivalence; the procedure proposed by De Man and Basu is quite different

from the tabulation approach described in §25.2. An open problem is to analyze the error of the above approximation.

Another open problem is to explore whether there are variations that would reduce that error without increasing

computation, e.g., by tuning ∆X or w on the right-hand side.

The DD projector is not invariant to upsampling by pixel replication.

The distance-driven method uses a rectangular approximation to the trapezoidal footprint (25.2.23) of a rectan-

gular image basis function. An earlier approach called Joseph’s method [27] uses a triangular approximation to the

trapezoidal footprint as follows:

g(t, ϕ) ≈ l(ϕ) tri(t l(ϕ)) =
1

max(|cosϕ| , |sinϕ|) tri

(

t

max(|cosϕ| , |sinϕ|)

)

.

The strip-integral generalization was considered in [28].
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φ

Figure 25.2.4: Illustration of approximation used in 2D distance-driven projection method.

fig,geom,dd2

25.2.11 Fourier-based projection / backprojection (s,geom,par2,nufft)
s,geom,par2,nufft

One natural approach to forward projection is to use the Fourier-slice theorem (3.2.24). That theorem relates the 1D

FT of each projection to samples of the 2D FT of the object on a polar grid. The use of the Fourier-slice theorem as

a tool for reprojection was noted in the late 1980’s by Crawford et al. [29, 30], in the context of correction of beam

hardening in X-ray CT, and by Stearns et al. [31,32], in the context of filling in missing projections in (noniterative) 3D

PET image reconstruction. These approaches were apparently largely abandoned thereafter due in part to unacceptable

image artifacts caused by the large interpolation errors associated with conventional “gridding” methods for converting

between polar and Cartesian coordinates in frequency space. The importance of accurate interpolation for gridding has

been analyzed rigorously [33, p. 119]. More recently, optimized Kaiser-Bessel interpolators for the nonuniform fast

Fourier transform (NUFFT) [34–37] have been shown to largely eliminate interpolation artifacts, renewing interesting

in Fourier-based reprojection methods, e.g., [38, 39].

Frequency domain interpolation for NUFFT is closely related to “gridding” methods. Such methods have been

considered both for tomography and for general applications, e.g., [31, 40–67], and for MR imaging [68–73]. In

most of these papers, the focus was using gridding to find a non-iterative approximate solution to an inverse problem.

In contrast, Fourier-based reprojection is a tool for calculating the forward problem, thereby allowing an iterative

reconstruction method to solve the inverse problem. The prospect of using graphics hardware to assist in this projection

process is enticing [74–78].

Let f(x, y) denote the 2D image whose projections we wish to compute. For the purposes of Fourier-based

reprojection, the most useful expression for the Fourier-slice theorem is

f(x, y)
Radon↔ pϕ(r) =

∫

F (ρ cosϕ, ρ sinϕ) eı2πρr dρ, (25.2.26)
e,geom,par2,nufft,pangr

where pϕ(r) denotes the Radon transform of f(x, y) and F (u, v) its spectrum:

f(x, y)
2D FT←→ F (u, v) =

∫∫

f(x, y) e−ı2π(xu+yv) dxdy .

The complication here is that the preceding integral is in Cartesian coordinates whereas (25.2.26) essentially involves

polar coordinates.

Now consider the usual basis function representation of f(x, y) in (25.2.1), i.e.,

f(x, y) =

N−1
∑

n=0

M−1
∑

m=0

f [n, m] β0

(

x− (n− wX)∆X

∆X

,
y − (m− wY)∆Y

∆Y

)

.
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By the shift property of the FT, the corresponding spectrum is exactly

F (u, v) = ∆X∆Y B0(u, v) eı2π(u∆XwX+v∆YwY) Fd(2πu∆X, 2πv∆Y)

= B1(u, v)Fd(2πu∆X, 2πv∆Y), (25.2.27)
e,geom,par2,nufft,Fuv

where B0(u, v) is the 2D FT of the basis function β0(x, y), we define

B1(u, v) , ∆X∆Y B0(u, v) eı2π(u∆XwX+v∆YwY) , (25.2.28)
e,geom,par2,nufft,B1

and the 2D DSFT of f [n, m] is:

Fd(ω1, ω2) =

N−1
∑

n=0

M−1
∑

m=0

f [n, m] e−ı(ω1n+ω2m) . (25.2.29)
e,geom,par2,nufft,dsft2

Both B1(u, v) and Fd(ω1, ω2) are Hermitian symmetric spectra, since β0(x, y) and f [n, m] are real. Although the

discrete-space spectrum Fd(ω1, ω2) is 2π-periodic, the corresponding continuous-space spectrum F (u, v) is not, due

to the spectral properties of the basis β0(x, y) (except in the unrealistic case of the Dirac impulse basis). We can

compute (25.2.27) exactly using a (slow) 2D FT or approximately (to within the desired accuracy) by using a 2D

NUFFT [37,79]. Instead of using an NUFFT designed for arbitrary sampling patterns, one could use instead a special

purpose NUFFT designed for the polar sampling pattern, e.g., [80].

As in (25.2.3) one can account for shift-invariant detector blur h(r) having corresponding frequency response

H(ν), so by the convolution property of the FT and the Fourier slice theorem (25.2.26) we wish to compute

ȳϕ[iR] = h(r) ∗ pϕ(r)
∣

∣

∣

r=(iR−wR)∆R

=

∫ ∞

−∞
F (ρ cosϕ, ρ sinϕ)H(ρ) eı2πρ∆R(iR−wR) dρ, (25.2.30)

e,geom,par2,nufft,int1

for iR = 0, . . . , nR − 1, where nR is the number of radial samples, and ∆R denotes the radial sampling distance. A

simple choice is h(r) = 1
w rect

(

r
w

)

for which H(ν) = sinc(wν) . This model accounts for the finite width of the

detector elements.

For a forward projection, we must compute approximations to (25.2.30) for a finite collection of ϕ values. In

general, F (u, v) is not band-limited, so we must truncate the integral limits and discretize. For speed, we want to

evaluate the resulting sum using an N1-point inverse FFT for suitably chosen N1, so we choose a sample spacing

∆ρ = 1
N1∆R

, yielding the following approximation:

ȳϕ[iR] ≈ ỹϕ[iR] ,
1

N1

K1−1
∑

k=−K1+1

Zϕ[k] eı2πkiR/N1 , (25.2.31)
e,geom,par2,nufft,ytangir

for iR = 0, . . . , nR − 1, where

Zϕ[k] ,
1

∆R

H

(

k

N1∆R

)

e−ı2πkwR/N1 F (uk, vk), (25.2.32)
e,geom,par2,nufft,Zangk

where uk = k
N1∆R

cosϕ and vk = k
N1∆R

sinϕ for k = −K1 + 1, . . . , K1 − 1. An alternative expression is

ỹϕ[iR] = ỹ+
ϕ [iR] + ỹ−

ϕ [iR] = 2 real
(

ỹ+
ϕ [iR]

)

, (25.2.33)
e,geom,par2,nufft,ytangir,2real

where

ỹ+
ϕ [iR] ,

1

N1

K1−1
∑

k=0

Z̃ϕ[k] eı2πkiR/N1 . (25.2.34)
e,geom,par2,nufft,ytangir+

ỹ−
ϕ [iR] ,

1

N1

0
∑

k=−K1+1

Z̃ϕ[k] eı2πkiR/N1 =
1

N1

K1−1
∑

k=0

Z̃ϕ[−k] e−ı2πkiR/N1

Z̃ϕ[k] ,

(

1− 1

2
δ[k]

)

Zϕ[k] . (25.2.35)
e,geom,par2,nufft,Ztangk
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Because F (u, v) and H are Hermitian symmetric, so is Zϕ[k], so ỹ+
ϕ [iR] =

(

ỹ−
ϕ [iR]

)∗
.

If K1 = N1, then computing ỹ+
ϕ [iR] requires an ordinary N1-point FFT. If K1 < N1, then we zero-pad Z̃ϕ[k] first.

For high resolution imaging, we may have K1 > N1. For example if K1 = 2N1, then

ỹ+
ϕ [iR] =

1

N1

N1−1
∑

k=0

(

Z̃ϕ[k] + Z̃ϕ[k + N1]
)

eı2πkiR/N1 ,

which again requires only a N1-point inverse FFT.

The question remains then how to choose N1 and K1. Clearly we need N1 ≥ nR. For a space-limited object

the projections pϕ(r) are themselves space-limited, spanning some field of view FOV
R

. (Typically FOV
R
≈ nR∆R,

although the widths of the detector response and the image basis function also may contribute.) From a sampling

perspective, to avoid spatial aliasing of pϕ(r), we need N1 ≥ FOV
R
/∆R. Thus, we choose

N1 = max {nR, FOV
R
/∆R} .

If we chose sinc functions for the basis, then F (u, v) would be band-limited to a maximum frequency
√

2/(2∆X),
assuming ∆Y = ±∆X, so the natural choice for K1 would satisfy K1∆ρ ≈

√
21/(2∆X), i.e., K1 ≈

√
2N1

2
∆R

∆X
.

However, for more reasonable space-limited basis functions, F (u, v) is not band-limited, so the choice of K1 involves

a tradeoff between accuracy and speed.

:

?

25.2.11.1 Implementation

Here is a summary of the NUFFT-based reprojection method.

Step 1. Use the 2D NUFFT method with ω1 = 2π∆X

k
N1∆R

cosϕ and ω2 = 2π∆Y

k
N1∆R

sinϕ for k = 1, . . . , K1−1,
for each ϕ value of interest, to compute an accurate approximation to the DSFT in (25.2.29). Compute the DC

value exactly via Fd(0, 0) =
∑N−1

n=0

∑M−1
m=0 f [n, m] . Use u = ρ cosϕ and v = ρ sinϕ with ρ = k/(K∆R) for

k = −N/2, . . . , N/2− 1.

Step 2. Scale the NUFFT output by the factors in (25.2.28), (25.2.32) and (25.2.35) to compute Z̃ϕ[k].

Step 3. Take the inverse N1-point FFT of each Z̃ϕ[·] set (for each ϕ) using (25.2.34). Discard all but the samples

iR = 0, . . . , nR − 1. Take twice the real part to form ỹϕ[iR] per (25.2.33).

IRT See Gtomo_nufft.m.

25.2.11.2 Extensions

The inverse FFT (25.2.31) yields uniformly-spaced radial samples. Typical PET systems having circular geometries

acquire nonuniform radial samples. For conventional FBP reconstruction prior to ramp filtering one interpolates the

nonuniform radial samples onto equally-spaced samples, often called arc correction. Such “preprocessing” interpola-

tion is suboptimal for iterative reconstruction since it destroys the statistical independence of the measurements. It is

preferable to build the nonuniform spacing into the reprojection method.

The min-max NUFFT interpolation method described in [37] is applicable to cases where (25.2.31) must be re-

placed by nonuniform radial sampling. Similar considerations apply for fan-beam projection [81, 82].

25.2.11.3 Adjoint

The method described above is a linear operator and hence corresponds implicitly to some (nA · nR) × (N · M)
matrix. Iterative algorithms usually also need the ability to compute matrix-vector multiplication by the transpose of

that matrix, even though the matrix itself is not stored explicitly. It is straightforward to “reverse” (not invert!) the

steps described above to develop an algorithm to perform multiplication by the transpose, corresponding to the adjoint

of the forward operator, which is a form of backprojection.
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25.2.12 Local spectrum of Gram operator (s,geom,par2,gram)
s,geom,par2,gram

We can find the local frequency response of the Gram matrix A′WA by taking the FFT of its jth column. However,

it can also be useful to have approximate analytical expressions for that local frequency response [83].

Consider the image domain model (25.2.1) and the 2D parallel-beam geometry having system model (25.2.3). The

elements aij of the corresponding system matrix A can be written as aij = a(rk, ϕl; n, m) where j = 1 + n + mN,
i = 1 + k + (l − 1)nR, for k = 0, . . . , nR − 1, l = 1, . . . , nA, and

a(r, ϕ; n, m) = a(r − rϕ[n, m], ϕ), where a(r, ϕ) ,

∫

hϕ(r − r′)∆X g

(

r′

∆X

, ϕ

)

dr,

using (25.2.4). Rewrite the elements of weighing matrix W = diag{wi} as wi = w(rk, φl) . Then the elements of the

Gram matrix are given exactly by

hd[n, m; n′, m′] = [A′
WA]jj′ =

nA
∑

l=1

nR
∑

k=1

w(rk, ϕl) a(rk, ϕl; n, m) a(rk, ϕl; n
′, m′) (25.2.36)

e,geom,par2,gram,h,sum,kl

where j′ = 1 + n′ + m′N. For a pixel at a given location (n′, m′) we can compute the local frequency response of the

Gram matrix by taking the DFT of hd[n, m; n′, m′] with respect to (n, m), thereby enabling predictions of resolution

and noise properties. However, when we want to do this for many such locations, then many DFT computations would

be required. We derive next a simpler analytical approximation for the local frequency response.

The main impediment to analysis is that the expression (25.2.36) is not exactly shift invariant, because the ray

samples rk intersect each pixel somewhat differently. However, the aggregate effect of all those rays is quite similar

from pixel to pixel, motivating the following approximation. As in (25.2.3), we assume the radial samples rk are

equally spaced, i.e., rk = r0 + k∆R. We then use an integral (!) to approximate the summation4 in (25.2.36) as

follows:

hd[n, m; n′, m′] ≈
nA
∑

l=1

1

∆R

∫ ∞

−∞
w(r, ϕl) a(r, ϕl; n, m) a(r, ϕl; n

′, m′) dr

=

nA
∑

l=1

1

∆R

∫ ∞

−∞
w(r, ϕl) a(r − rϕl

[n, m], ϕl) a(r − rϕl
[n′, m′], ϕl) dr

=

nA
∑

l=1

w(ϕl; n, m; n′, m′)
1

∆R

∫ ∞

−∞
a(r − rϕl

[n, m], ϕl) a(r − rϕl
[n′, m′], ϕl) dr, (25.2.37)

e,geom,par2,gram,h,sum,l

where

w(ϕ; n, m; n′, m′) ,

∫∞
−∞ w(r, ϕ) a(r − rϕ[n, m], ϕ) a(r − rϕ[n′, m′], ϕ) dr
∫∞
−∞ a(r − rϕ[n, m], ϕ) a(r − rϕ[n′, m′], ϕ) dr

.

Because w(r, ϕ) often varies slowly in r relative to the typically sharp peak of a(r, φ) at r = 0, we make the following

approximation:

w(ϕ; n, m; n′, m′) ≈ w(ϕ; n0, m0) , w(rϕ[n0, m0], ϕ),

where provided that (n, m) and (n′, m′) are “sufficiently close” to (n0, m0). Here, (n0, m0) denotes the coordinates

of the jth pixel for which we want a local Fourier approximation, Substituting into (25.2.37) yields

hd[n, m; n′, m′] ≈
nA
∑

l=1

w(ϕl; n0, m0) hϕl
[n, m; n′, m′], (25.2.38)

e,geom,par2,gram,h,sum,wh

where

hϕ[n, m; n′, m′] ,
1

∆R

∫ ∞

−∞
a(r − rϕ[n, m], ϕ) a(r − rϕ[n′, m′], ϕ) dr .

Making the change of variables r′ = r − rϕ[n′, m′] shows that

hϕ[n, m; n′, m′] = qϕ(rϕ[n, m]− rϕ[n′, m′])

= qϕ(∆X(n− n′) cosϕ+∆Y(m−m′) sinϕ),

4See [84] for an analogous approximation for approximating FBP variance.
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where the following 1D autocorrelation is with respect to r:

qϕ(r) ,
1

∆R

a(r, ϕ) ⋆ a(r, ϕ) .

Thus, thanks to the simple approximation (25.2.37), we now have a form that is shift-invariant (except for edge effects).

We have ignored the finite support mask that is present in any discrete-space image reconstruction method. Let

µ(x, y) denote the reconstruction FOV. Then a more accurate model is

hϕ[n, m; n′, m′] = qϕ(∆X(n− n′) cosϕ+∆Y(m−m′) sinϕ)µ(xc[n], yc[m])µ(xc[n
′], yc[m

′]),

where the pixel centers (xc[n], yc[m]) were defined in (25.2.2). Because this model is not completely shift-invariant,

we must make a choice about how to define the local impulse response near pixel (n0, m0). One approach is to use

the coordinate transformation recommended for analyzing quasistationary noise in [85, p. 870] as follows:

h̃ϕ[n, m; n0, m0] , hϕ[n0 + n/2, m0 + m/2; n0 − n/2, m0 −m/2]

= qϕ(n∆X cosϕ +m∆Y sinϕ) µ1(n∆X, m∆Y),

where x0 , xc[n0], y0 , yc[m0], and

µ1(x, y) , µ(x0 + x/2, y0 + y/2)µ(x0 − x/2, y0 − y/2) .

This approach yields a local impulse response that is symmetric in (n, m), thus ensuring that its spectrum is real. An

alternative is to reference all displacements relative to the point (n0, m0) as follows:

h̃ϕ[n, m; n0, m0] , hϕ[n0 + n, m0 + m; n0, m0]

= qϕ(n∆X cosϕ+m∆Y sinϕ)µ2(n∆X, m∆Y),

where

µ2(x, y) , µ(x0 + x, y0 + y)µ(x0, y0) . (25.2.39)
e,geom,par2,gram,mu2

This choice is not symmetric in (n, m), but it better corresponds to the local Fourier analyses based on the DFT of

A′WAej , so we focus on it hereafter.

In light of (25.2.38) and the linearity of the DFT, to determine the frequency response of hd[n, m; n′, m′] we must

find the spectrum of h̃ϕ[n, m; n0, m0], i.e., we want to determine

Hϕ(ω1, ω2) =
N−1
∑

n=0

M−1
∑

m=0

h̃ϕ[n, m; n0, m0] e
−ı(ω1n+ω2m)

=

N−1
∑

n=0

M−1
∑

m=0

sϕ(n∆X, m∆Y) e−ı(ω1n+ω2m)

≈ 1

∆X

1

∆Y

∫∫

sϕ(x, y) e−ı(ω1x/∆X+ω2y/∆Y) dx dy

=
1

∆X

1

∆Y

Sϕ

(

ω1

2π∆X

,
ω2

2π∆Y

)

,

where we define the following “strip like” function:

sϕ(x, y) , qϕ(x cosϕ+y sinϕ) µ2(x, y),

and sϕ(x, y)
2D FT←→ Sϕ(u, v) .

We assume hereafter that the field of view is a convex and symmetric set. Thus the intersection of the ray through

point (x0, y0) at angle ϕ and the reconstruction support is a line segment with width FOVϕ. For example, if the

support is a disk with radius R, then one can show that FOVϕ = 2
√

R2 − (x0 cosϕ+y0 sinϕ)2. Then because a is

sharply peaked, we make the approximation5

sϕ(x, y) ≈ qϕ(x cosϕ+y sinϕ) rect

(−x sinϕ+y cosϕ

FOVϕ

)

, (25.2.40)
e,geom,par2,gram,mask

5For a circular support, a better approximation would be rect
“

−x sinϕ +y cosϕ −ℓ0
FOVϕ

”

, where ℓ0 , −x0 sinϕ+y0 cosϕ . This shift by ℓ0 arises

from the fact that the choice (25.2.39) is not symmetric, so we disregard it hereafter.
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where FOVϕ denotes the width of the profile at angle ϕ across the field of view through the point (x0, y0). Fig. 25.2.5

illustrates the accuracy of this approximation.

Exact

x

y

−20 0 20

−20

0

20

Approximate

x

y

−20 0 20

−20

0

20

Figure 25.2.5: Exact version of sϕ(x, y) versus its approximation (25.2.40).

fig˙geom˙gram˙mask

The 2D FT of sϕ(x, y) is easiest to see for the case ϕ = 0:

s0(x, y) = q0(x) rect

(

y

FOV0

)

2D FT←→ S0(u, v) =
1

∆R

|A0(u)|2 FOV0 sinc(FOV0v),

where qϕ(·) FT←→ 1
∆R
|Aϕ(ν)|2 by the autocorrelation property of the 1D FT. Similarly, by the rotation property of the

2D FT:

Sϕ(ρ, Φ) ≈ 1

∆R

|Aϕ(ρ cos(Φ− ϕ))|2 FOVϕ sinc(FOVϕρ sin(Φ− ϕ)) .

Combining all of the above approximations yields the following result for the local frequency response around a

point (n0, m0):

Hd(ω1, ω2) ≈ H1(ρ, Φ)
∣

∣

∣

ρ=
√

(ω1/2π∆X)2+(ω2/2π∆Y)2, Φ=∠π(ω1,ω2)

where

H1(ρ, Φ) ,
1

∆R∆X∆Y

nA
∑

l=1

w(ϕl; n0, m0) (25.2.41)

· |Aϕl
(ρ cos(Φ− ϕl))|2 FOVϕl

sinc(FOVϕl
ρ sin(Φ− ϕl)) . (25.2.42)

e,geom,par2,gram,HqA,1

The frequency response Hd(ω1, ω2) can be sampled to determine the corresponding DFT coefficients.

Note that as FOVϕ →∞, one can show that

FOVϕ sinc(FOVϕρ sin(Φ− ϕ))→ δ(ρ sin(Φ− ϕ)) =
1

|ρ| δ((Φ− ϕ)mod π),

as expected from Problem 3.5. Therefore the sinc term is sharply peaked near Φ = ϕ, so we consider the further

simplifying approximation

w(ϕ; n0, m0)Sϕ(ρ, Φ) ≈ w(Φ; n0, m0)
1

∆R

|AΦ(ρ)|2 FOVϕ sinc(FOVϕρ sin(Φ− ϕ)) .

This approximation suggests

H1(ρ, Φ) ≈ H2(ρ, Φ) ,
1

∆R∆X∆Y

w(Φ; n0, m0) |AΦ(ρ)|2
nA
∑

l=1

FOVϕl
sinc(FOVϕl

ρ sin(Φ− ϕl)) . (25.2.43)
e,geom,par2,gram,HqA,2
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x,geom,par2,gram,square Example 25.2.1 Consider the case of a square pixel basis β0(x, y) = rect2(x, y) and a rectangular detector response

hϕ(r) = 1
w rect

(

r
w

)

. By (3.2.25) we have

Aϕ(ν) = sinc(wν) ∆X∆Y sinc(ν∆X cosϕ) sinc(ν∆Y sinϕ) .

Fig. 25.2.6 shows an example where samples of Hd(ω1, ω2) were computed analytically using (25.2.43) and by the

FFT of (25.2.36), for a non-center pixel within a circular FOV. There is reasonable agreement despite using several

approximations in the derivation.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

0.5

1
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x 10
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H
(u

,0
)

 

 

nx = 128

ny = 128

dx = 1.5

n0 = 20

m0 = 10

na = 90

Analytical
FFT of G’G e

j

Figure 25.2.6: Comparison of profiles through the analytical local frequency response (25.2.43) and the numerical

local frequency response computed via the FFT.

fig˙gram˙fft˙vs˙sinc

An interesting case arises for a circular field of view, for which FOV is a constant value when x0 = y0 = 0. In

this special case,

nA
∑

l=1

FOV sinc(FOVρ sin(Φ− ϕl)) ≈ nA

π

∫ π

0

FOVsinc(FOVρ sin(Φ− ϕ)) dϕ

=
nA

π

∫ π

0

FOVsinc(FOVρ sinϕ) dϕ .

This final expression is independent of Φ, so if it also happens that Aϕ(ρ) is independent of ϕ, then H(ρ, Φ) ends up

being approximately separable. This is a convenient result because such separability occurs in the pure continuous-

space form w(Φ) / |ρ| , and that separability is exploited in both regularization design [86, 87] and in variance predic-

tions [88].

Evidently the following integral is central to the approximations above:

f(u) ,
1

π

∫ π

0

sinc(u sinϕ) dϕ .

One empirical approximation for this integral is:

f(u) ≈







1− 0.6u2, 0 ≤ u < 1
1

(1 + (πu)2)1/2 +
√

2u cos(π(u + 1/4))
, u ≥ 1.

For large u, this function is approximately 1/(πu). An open problem is to find simpler or more accurate approxima-

tions and to use them in the context of resolution and noise analysis.
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25.3 Non-parallel-beam 2D system models (s,geom,non2)s,geom,non2

Now consider a non-parallel 2D geometry, such as a fan-beam geometry, indexed by two coordinates (s, β). We

assume there is an invertible relationship (such as (3.9.5)) relating each (s, β) pair to corresponding parallel-beam

coordinates (r(s, β), ϕ(s, β)).

Assume that the detector blur is shift invariant, independent of β, and acts only along the s coordinate. The mean

projections satisfy

ȳβ[iS] =

∫

h((iS − wS)∆S − s) pϕ(s,β)(r(s, β)) ds

for iS = 0, . . . , nS − 1, where ∆S is the sample spacing in s, wS is defined akin to wR, and pϕ(r) is the 2D Radon

transform of f(x, y).

Using the same basis expansion model (25.2.1) for the object leads to the linear model

ȳβ [iS] =

N−1
∑

n=0

M−1
∑

m=0

aβ [iS; n, m] f [n, m],

where from (25.2.5) the system matrix elements are

aβ [iS; n, m] =

∫

h((iS − wS)∆S − s)∆X g

(

r(s, β) − rϕ(s,β)[n, m]

∆X

, ϕ(s, β)

)

ds .

To simplify this expression, note that typically β0(x, y) and h are relatively narrow functions. Define s0 = s0[n, m; β]
to be the solution to

r(s0, β) = rϕ(s0,β)[n, m] . (25.3.1)
e,geom,non2,s0

Also define ϕ0 , ϕ(s0, β). As a concrete example, in the fan-beam geometry of §3.9, one can show (see Problem 25.1)

that the solution satisfies

γ(s0) = γ0 , arctan

(

xc[n] cosβ + yc[m] sin β − roff

Ds0 + xc[n] sin β − yc[m] cosβ

)

, (25.3.2)
e,geom,non2,gam0

and ϕ0 = β + γ0, where γ(s) was defined in (3.9.1). In particular, for the equiangular (arc) geometry of 3rd-

generation CT, we have s0 = Dsdγ0, whereas for the equidistant geometry s0 = Dsd tanγ0. (Geometrically, s0 is

the location of the projection of the pixel center onto the detector.) As Ds0 → ∞, note that ϕ0 → β and s0 →
xc[n] cosβ + yc[m] sin β − roff , as expected when the fan-beam geometry approaches the parallel-beam case.

For small basis functions and narrow blurs h, the angles of the rays that intersect the basis function are very similar

to ϕ0 defined above. We thus make our first approximation:

aβ[iS; n, m] ≈
∫

h((iS − wS)∆S − s)∆X g

(

r(s, β) − rϕ(s,β)[n, m]

∆X

, ϕ0

)

ds .

(This approximation is exact for circularly symmetric basis functions.)

It follows from (25.3.1) that the first-order Taylor series for r(s, β) about s0 is

r(s, β) − rϕ(s,β)[n, m] ≈ µ0 (s− s0),

where we define the following magnification factor:

µ0 = µ0[n, m; β] ,
∂

∂s

(

r(s, β) − rϕ(s,β)[n, m]
)

∣

∣

∣

∣

s=s0

.

Substituting above yields

aβ [iS; n, m] ≈
∫

h((iS − wS)∆S − s) ∆X g

(

s− s0

∆X/µ0
, ϕ0

)

ds

=

∫

h((iS − τ [n, m; β])∆S − s′)∆X g

(

s′

∆X/µ0
, ϕ0

)

ds′,
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where s′ = s− s0 and

τ [n, m; β] , wS + s0[n, m; β]/∆S.

Defining

F (t, µ; ϕ) ,

∫

h(t∆S − s)∆X g

(

s

∆X/µ
, ϕ

)

ds

yields our final approximation for the system matrix elements:

aβ [iS; n, m] ≈ F (iS − τ [n, m; β], µ0[n, m; β]; ϕ0[n, m; β]) .

s,geom,non2,fan Example 25.3.1 For the fan-beam geometry we have

µ0 = [(Ds0 cos γ0 − roff sin γ0)− (− xc[n] sin ϕ0 + yc[m] cosϕ0)] γ̇(s0).

In the arc case we have γ(s) = s/Dsd, so γ̇(s0) = 1/Dsd.
In the flat case, we have γ(s) = arctan(s/Dsd), so γ̇(s0) = 1

Dsd

1
1+(s0/Dsd)2 .

IRT See Gtomo2_strip.m.
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b
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Figure 25.3.1: Geometry for approximate fan-beam system matrix.

fig,geom,fan2

todo: rectification [89] todo: shear-warp [90]
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25.4 Fan beam transmission system matrix (s,geom,fan)s,geom,fan

This section describes the geometrical considerations in fan-beam transmission system models, using the coordinates

in Fig. 25.4.1.

r

θ

so
u
rce-d

etecto
r

o
b
ject-d

etecto
r

(x,y)

θ

(0,0)

τp

d
s (x

, y
)

τ⊥

τc

τs

γ

ϕ

Figure 25.4.1: Coordinate system for “strip-integral” fan-beam projections.

fig,geom,fan,offset

If ϕ denotes the source rotation angle, and (x, y) denotes the pixel center coordinates, then usual “parallel beam”

radial distance is

τp(x, y) = x cosϕ+y sinϕ .

todo: pbox? The offset in the other direction is

τ⊥(x, y) = −x sinϕ+y cosϕ .

todo: pbox? We must have τ⊥ < Ds0 or else the source is inside the object. We must have −τ⊥ < D0d or else the

object is on the other side of the detector. Combining, we see that the distance from the source to the “plane” of the

point (x, y) is:

ds(x, y) , Ds0 − τ⊥(x, y) ∈ (0, Dsd).
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25.4.1 Bin support

The object magnification factor at (x, y) is

m(x, y) =
Dsd

ds(x, y)
=

Dsd

Dsd −D0d − τ⊥(x, y)
=

Dsd

Ds0 + x sinϕ−y cosϕ
.

The incidence angle of the ray from the source through the pixel center located at (x, y) is

γ(x, y) = tan−1

(

τp(x, y)− τs

ds(x, y)

)

= tan−1

(

m(x, y)
τps(x, y)

Dsd

)

,

where

τps(x, y) , τp(x, y)− τs.

(In the context of collimated emission imaging, |γ| should have some collimator-limited maximum.)

The “projection angle” θ through the center of this pixel is

θ = ϕ + γ = ϕ + tan−1

(

τps

ds(x, y)

)

.

25.4.1.1 Flat detector

The flat-detector fan-beam projection of the pixel center is located at

τc(x, y) = τs + m(x, y) [τp(x, y)− τs]

= τs +
Dsd

ds(x, y)
(x cosϕ+y sinϕ−τs) .

To determine the bin support, we must find the largest and smallest members of the four-element set

{

τc

(

x± ∆x

2
, y ± ∆x

2
,

)}

.

Defining

τf (sx, sy) = τc

(

x + sx
∆x

2
, y + sy

∆x

2

)

− τs

where sx, sy = ±1, we have

τf (sx, sy) = m

(

x + sx
∆x

2
, y + sy

∆x

2

)[

τp

(

x + sx
∆x

2
, y + sy

∆x

2

)

− τs

]

=
Dsd

Ds0 + (x + sx
∆x

2 ) sinϕ−(y + sy
∆x

2 ) cosϕ

[

τps(x, y) + ∆x
sx cosϕ+sy sinϕ

2

]

= Dsd

τps(x, y) + 1
2∆x(sx cosϕ+sy sinϕ)

ds(x, y) + 1
2∆x(sx sinϕ−sy cosϕ)

.

By trying all four combinations of signs and sorting the resulting τf ’s, we can find the four breakpoints of the

piecewise-linear approximation of the projection function shown below, having height

l(θ) ,
1

max {| cos θ|, | sin θ|} .

todo: pbox?
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l(γ)

τ1 τ2 τ3 τ4

Since τ = (i − wb − c)∆b for i = 0, . . . , nb − 1, where wb = (nb − 1)/2 and c denotes the channel offset, the

exact bin support will be the integer interval

[

1 +

⌊

w′
b +

τ1

∆b
− w

2∆b

⌋

,

⌈

w′
b +

τ4

∆b
+

w

2∆b

⌉)

,

where w′
b = wb + τs

∆b
+ c. Note the open right interval for simplicity of implementation.

25.4.1.2 Arc detector

γc(sx, sy) = γ

(

x + sx
∆X

2
, y + sx

∆X

2

)

= tan−1

(

τps(x,y)
∆X

+ sx
cosϕ

2 + sy
sinϕ

2

ds(x,y)
∆X

+ sx
sinϕ

2 + sy
− cosϕ

2

)

.

25.4.1.3 First-order approximation

To save computation (and sorting) it may be reasonable to use first-order Taylor series6, yielding

τf (sx, sy) =

(

Dsd

ds(x, y)

)

(

1

1− 1
2

sy cosϕ−sx sinϕ
ds(x,y) ∆x

)

[

τps(x, y) + ∆x
sx cosϕ+sy sinϕ

2

]

≈
(

Dsd

ds(x, y)

)[

τps + ∆x

(

sx cosϕ+sy sinϕ

2
+

1

2

sy cosϕ−sx sinϕ

ds(x, y)
τps

)]

= m(x, y) [τps + ∆x (sxhX + syhY)] ,

where

hX ,
1

2
cosϕ−1

2

τps

ds(x, y)
sinϕ

hY ,
1

2
sinϕ+

1

2

τps

ds(x, y)
cosϕ .

:::::

Idris:
:::::::

analyze
:::

the
::::::::

accuracy
:::

of
:::

the
::::::

above
::::::::::::::

approximation.

Thus, the maximum and minimum values of τf are (approximately) located at

τ±
out , τs + m(x, y) [τp − τs ±∆xh(x, y)]

todo: pbox? where

h(x, y) , |hX(x, y)|+ |hY(x, y)|.
Thus, the half-width of the trapezoid shown below is

m(x, y)∆xh(x, y).

The projection is approximately a trapezoid of height l(γ) defined above

6f(∆) = τ+β∆

1−α∆
≈ τ + (β + ατ)∆.
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and with inner breakpoints at

τ±
in , τs + m(x, y)

[

τp − τs ±∆x

∣

∣|hX| − |hY|
∣

∣

]

.

todo: pbox?

l(γ)

τ−
out τ+

outτ−
in τ+

in
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25.4.1.4 Old corner discussion

In particular, to find the projected position τ+
c of the corner of the pixel (which is an extreme point if 0 ≤ θ ≤ π/2)

we see

τ+
c , τc

(

x± ∆x

2
, y ± ∆x

2

)

= τs + m

(

x± ∆x

2
, y ± ∆x

2

)

τps

(

x± ∆x

2
, y ± ∆x

2

)

= τs +
Dsd

Ds0 + (x± ∆x

2 ) sinϕ−(y ± ∆x

2 ) cosϕ

(

τps(x, y) + ∆x
cosϕ+ sinϕ

2

)

= τs +
Dsd

ds(x, y)−∆xχ(ϕ)
[τps(x, y) + ∆xdmax(ϕ)] ,

where

dmax(ϕ) ,
| cosϕ |+ | sinϕ |

2

and

χ(ϕ) , cosϕ− sinϕ =
√

2 cos(ϕ + π/4) .

In the usual case where the pixel size is much smaller than Ds0, the variation of the magnification factors over the

area of a pixel will be quite small, so at first glance it would seem reasonable to replace m
(

x± ∆x

2 , y ± ∆x

2

)

with

simply m(x, y), yielding the approximation:

τ+
c ≈ τ+ , τs + m(x, y) [τp(x, y) + ∆xdmax(ϕ)− τs] .

Although this seems reasonable, it turns out to be unacceptably inaccurate towards the edges of a large field-of-view.

Since

m

(

x± ∆x

2
, y ± ∆x

2

)

−m(x, y) =
Dsd

ds(x, y)−∆xχ(ϕ)
− Dsd

ds(x, y)

=
Dsd

[ds(x, y)−∆xχ(ϕ)] [ds(x, y)]
∆xχ(ϕ),

the approximation error resulting from the above approximation would be:

τ+
c − τ+ =

[

m

(

x± ∆x

2
, y ± ∆x

2

)

−m(x, y)

]

[τps(x, y) + ∆xdmax(ϕ)]

=

(

Dsd

ds(x, y)

)(

τps(x, y) + ∆xdmax(ϕ)

ds(x, y)−∆xχ(ϕ)

)

∆xχ(ϕ).

The parenthesized terms are of order unity for large |τp|, so the overall error is approximately ∆x. Since the pixel size

∆x is usually approximately the same as the detector sample spacing, an error of order ∆x is unacceptable.
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25.4.1.5 Old incomplete reasoning...

When is this latter approximation reasonable? Define

m(x, y; ∆x) = m

(

x± ∆x

2
, y ± ∆x

2

)

=
Dsd

Ds0 + (x± ∆x

2 ) sinϕ−(y ± ∆x

2 ) cosϕ
,

so m(x, y) = m(x, y; 0).

∂

∂∆x
m(x, y; ∆x) =

Dsd
[

Ds0 + (x ± ∆x

2 ) sinϕ−(y ± ∆x

2 ) cosϕ
]2 (cosϕ− sinϕ) .

Thus

m(x, y; ∆x) ≈ m(x, y) +
m2(x, y)

Dsd
∆x.

We can ignore the second term if it is much much smaller than the first term, i.e., if
m2(x,y)

Dsd
∆x ≪ m(x, y) or

equivalently

∆x ≪
Dsd

m(x, y)
,

which means that the pixel size is very small relative to the distance Dsd.

::::

need
:::

to
:::::::

analyze
::::

this
:::::

more!

:::

this
::

is
:::::::::::

incomplete
:::::::

because
::

it
:::::::

ignores
::::

how
:::::

large
:::

the
::::::

terms
:::

are
::::

that
:::

are
:::::

being
::::::::::

magnified!

The projected width of the pixel at angle θ is (approximately) 2∆xdmaxm. Thus

τ± = τc ±∆xdmax(ϕ)m,

Thus:

i± = wb +
τ±
∆b

= wb +
τc ±∆xdmaxm

∆b
= wb +

τs + m(τp − τs)±∆xdmaxm

∆b

=

[

wb +
τs + m(τp − τs)

∆b

]

±m
dmax

∆b/∆x

The bracketed term is ib_cent, and the last term is db.

For a given ray, we have

τ±
c = (i− wb)∆b ± w/2.

We need to look at this in the non-magnified τp coordinates to use ray_int, using τc = τs + m(τp − τs).

τ±
p = τs +

τ±
c − τs

m
= τs +

(i− wb)∆b ± w/2− τs

m
=

[

τs +
(i− wb)∆b − τs

m

]

± w

2m
.

The bracketed term is tau in weight_value_13 and the last term is delta_b.
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25.5 3D PET mashing/span/tilt (s,geom,span,3d)s,geom,span,3d

0 1 2 3 4 5 6 7

0

1
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4

5

6

7

8 9

8

9

Michelogram

nz = 2 nring - 1

in 1st segment: nv = nz - 2 * (span+1)/2 = nz - (span+1)

for 2nd segment (and each additional segment after that), we lose another 2*span worth: nv = nz - (span+1) - 2*span

= nz - 3 span - 1

for Exact (nring=24, nz=47, span=7): nv1 = 47 - (7+1) = 39, nv2 = 47 - 3(7)-1 = 25.

dc = 0.675 = 2dz , tan θ = span dc/d
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0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

25.6 todo (s,geom,todo)s,geom,todo

recursive hierarchical approach that is O(N log n log log n) [91]

correction for system model mismatch resulting from deliberate approximations [92]

[93] exact volume of intersection of a pyramidal ray with a cubic voxel for cone-beam CT

[94] exact volume of intersection of a tube with a cubic voxel for PET

3d cone-beam projection via shear-warp factorization, [95, 96] also called rectification of the views [97].

todo: Unser says that tensor-product cubic b-splines are almost circularly symmetric and hence suitable for fast

reprojection ala blobs.

[19] Mojette angular sampling (rational m/n arctan?)

[98] D W Wilson H H Barrett The effects of incorrect modeling on noise and resolution properties of ML-EM

images

[99] Irani-Peleg algorithm converges ? even with what might be called a mismatched ”projector” ?

[25] Deman and Basu’s clever distance-based projector. Need to examine accuracy of its approximation!

[100] intermediate radiance distribution

[101] clever form of partial shift invariance for thick-septa collimators, boils down to
∫

hi(~x)bj(~x) needed com-

puted only for some i,j combinations!

[102] tabulate projection of basis (splatting) for subsequent table lookup!

[103] describes a “2D+1” model for SPECT that uses a depth-dependent gaussian blur in the transaxial plane,

with a depth-independent blur in the z-direction. this could be implemented easy using a combination of the ”system

12” projector followed by simple convolution in z. may be useful for some approximate analysis too? see sys12

subdirectory

[104] complicated pinhole

[105] discussion of [106] interleaving approach in circular PET system, with pictures.
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Figure 25.6.1: Stayman’s rat PET system model

fig,rat,petsys

[107] On various approximations for the projectors in iterative reconstruction algorithms for 3D PET @an piece-

wise linear approximation for reprojection. interesting rotation-invariance argument!
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25.7 Photon/detector interaction: Planar detector (s,emis,plane,cauchy)s,emis,plane,cauchy

A point source at a distance d from a planar detector emits photons isotropically (within a plane for simplicity). We

are interested in the intensity “recorded” on the detector.

P
o

in
t 

S
o

u
r
c

e

y0

d

r Y

y

φ

Θ

0

The angle of emission is Θ ∼ Uniform[−π, π].
Some detectors only accept photons that are incident within a certain critical angle φ, where 0 < φ ≤ π/2. (For

other detectors we can simply let φ = π/2 in our final expressions.)

Provided |Θ| ≤ φ, the photon strikes the detector at position

Y = y0 + d tan Θ.

We define the intensity on the detector to be

I(y) = fY |C(y|C)P (C)

where fY |C(y|C) is the conditional probability density function (pdf) of Y and where C is the event

C = [|Θ| ≤ φ].

Interpretation of intensity: if the source emits a photon, the probability that a photon emitted from the source will

strike the detector between y1 and y2 is:

P [y1 ≤ Y ≤ y2] =

∫ y2

y1

I(y) dy.

From elementary probability:

fΘ(θ) =

{

1
2π , |θ| ≤ π
0, otherwise,

and fΘ|C(θ|C) =
fΘ(θ)

P (C)
1{|θ|≤φ} =

{ 1
2φ , |θ| ≤ φ

0, otherwise,

where P (C) = (2φ)/(2π) = φ/π.

For |Θ| ≤ φ there is a monotone differentiable relationship between Y and Θ. Thus this is a simple transformation

of random variables problem. From elementary transformation of random variables:

fY |C(y|C) = fΘ|C(θ|C)

∣

∣

∣

∣

dθ

dy

∣

∣

∣

∣

∣

∣

∣

∣

θ=tan−1[(y−y0)/d]

.

Since d/dx tan−1 x = 1/(1 + x2),

dθ

dy
=

d

d2 + (y − y0)2
=

cos2 θ

d
=

cos θ

r
,
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which can be interpreted as a 1/r falloff of intensity (since circumference of circle is 2πr ∝ r) times an obliquity

factor cos θ “due to angle of incidence between photons and detector”. (More on that later.)

Thus

fY |C(y|C) =

{ 1
2φ

d
d2+(y−y0)2

, |y − y0| ≤ d tan φ

0, otherwise.

Alternative derivation:

FY |C(y|C) = P [Y ≤ y |C] = P [y0 + d tanΘ ≤ y |C] = P [Θ ≤ tan−1((y − y0)/d) |C]

= FΘ|C(tan−1((y − y0)/d)|C)

then take derivative of both sides w.r.t. y.

Mean:

E[Y |C] =

∫ ∞

−∞
yfY |C(y|C) dy =

∫ y0+d tan φ

y0−d tan φ

y
1

2φ

d

d2 + (y − y0)2
dy = y0

where the integral is y0 due to the symmetry of the pdf fY |C(y|C). However, for φ = π/2 the mean is undefined. (For

φ = π/2 the pdf is a Cauchy distribution, for which the mean is not defined.)

Variance (a measure of the spread of the PSF):

Var{Y |C} = E[(Y − E[Y |C])2|C] =

∫ ∞

−∞
(y − y0)

2fY |C(y|C) dy

=

∫ y0+d tan φ

y0−d tan φ

d[(y − y0)/d]2
1

2φ

1

1 + [(y − y0)/d]2
dy

= d2

∫ +tan φ

− tan φ

1

2φ
x2 1

1 + x2
dx =

d2

2φ
(x− tan−1 x)

∣

∣

∣

∣

+ tan φ

− tan φ

=
d2

φ
(tanφ− φ).

where x = (y − y0)/d and dy = d dx. The variance approaches infinity as φ→ π/2.

x,photon Example 25.7.1 Suppose n = 1000 photons are emitted. Let X denote the number that strike detector between y1

and y2. Find the PMF of X .

The probability that a given photon strikes between y1 and y2 is p =
∫ y2

y1
I(y) dy. Assuming photons are independent,

X is a Binomial random variable:

P [X = k] =

(

n
k

)

pkqn−k

where q = 1− p. Mean of X is E[X ] = np, variance is σ2
X = npq.
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25.8 Photon/detector interaction: General detector (s,emis,photon,general)s,emis,photon,general

Again consider the 2D case for simplicity, but now suppose that the emitter is “surrounded” by detecting material with

linear attenuation coefficient µ(~x).
Define D to be the event that an emitted photon is detected, i.e., interacts with the detecting material.

P{D|Θ = θ} = 1− e−
R

∞

0
µ(ℓ~xθ) dℓ , pθ

where, in 2D:

~xθ , [cos θ, sin θ]

is a direction cosine ???

In 2D

fΘ(θ) =

{

1/2π, |θ| ≤ π
0, otherwise

and

P{D} =

∫

P{D|Θ = θ} fΘ(θ) dθ =
1

2π

∫ π

−π

pθ dθ

so by Bayes’ rule:

fΘ(θ|D) =
P{D|Θ = θ} fΘ(θ)

P{D} =
pθ/2π

1
2π

∫ π

−π
pφ dφ

.

Let ~X denote the interaction point for a detected emission (and for completeness, define ~X = ~0 for a non-detected

emission.

We are most interested in

f~X(~x|D)

Let R =
∥

∥

∥

~X
∥

∥

∥
denote the distance that the photon first interacts with the detector (e.g., is absorbed or scattered), or

R = 0 for undetected photons.

P{R ≤ r|Θ = θ, D} =
1− e−

R

r

0
µ(ℓ~xθ) dℓ

pθ

so

fR(r|θ, D) =
µ(r~xθ) e−

R

r

0
µ(ℓ~xθ) dℓ

pθ

and

P{R ≤ r|D} =

∫

P{R ≤ r|Θ = θ, D} fΘ(θ|D) dθ =

1
2π

∫ π

−π

[

1− e−
R

r

0
µ(ℓ~xθ) dℓ

]

dθ

1
2π

∫ π

−π pφ dφ
,

for r ≥ 0, so

fR(r|D) =

1
2π

∫ π

−π

[

µ(r~xθ) e−
R

r

0
µ(ℓ~xθ) dℓ

]

dθ

1
2π

∫ π

−π pφ dφ

Joint density:

f(r, θ|D) = fR(r|θ, D)f(θ|D) =
µ(r~xθ) e−

R

r

0
µ(ℓ~xθ) dℓ

∫ π

−π
pφ dφ

.

From this we can find f~X(~x|D) by pdf transformation with appropriate Jacobian.
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25.9 SPECT (s,geom,spect)s,geom,spect

In single photon emission computed tomography (SPECT), the system matrix A usually is less sparse than in X-

ray imaging because the collimator causes a system response that gets wider as distance to the collimator increases.

Therefore, usually it is impractical to precompute and store all the elements aij of the system matrix. Instead, matrix

multiplication by A or A′ are performed using forward and back-projection subroutines. Numerous forward and

back-projection methods have been proposed for SPECT. Of these, a particularly convenient approach for SPECT

with a parallel hole collimator is based on image rotation operations, e.g., [108–110]. To compute Ax with this type

of approach, one first uses image interpolation to rotate the 3D image x and the corresponding 3D attenuation map

transaxially (around z) by the angle corresponding to one of the projection views. One then convolves each y, z plane

at each distance from the detector with the appropriate detector/collimator response. Often a 2D FFT is used for each

such convolution. Finally one sums the blurred image along the x direction, accounting for the cumulative effects

of attenuation to form the projection view at that angle. This uses a central ray approximation for the effects of

attenuation. Multiple projection views can be computed simultaneously.

Many of the “high quality” methods for image rotation use basis functions that have negative values [111]. These

are problematic if used for ML algorithms for SPECT reconstruction because those algorithms generally are derived

assuming that aij ≥ 0.

Most rotation methods use a continuous-space interpolation model of the form (25.2.1). However, such methods

usually use point sampling of the rotated image model rather than reprojecting the rotated model back into a basis-

function representation of the form (25.2.1). Using such a representation both before and after rotating is an interesting

open problem.

For a possibly more accurate approximation, one could combine the rotation method with a partial system matrix

where one precomputes and stores only those elements corresponding to a single projection angle, e.g., ϕ = 0.

For SPECT with fan-beam or cone-beam collimators, more sophisticated methods are required, e.g., [109] [112].

Pinhole collimation presents a further challenge, e.g., [113].

25.10 Problems (s,geom,prob)s,geom,prob

p,geom,non2,gam0 Problem 25.1 Prove (25.3.2).

p,geom,trap,gauss Problem 25.2 Often a gaussian shape is used to model the PSF of PET systems. Determine the “blurred foot-

print” function Fϕ(r; ∆X) in (25.2.10) for the case of square pixels for β0(x, y) as in (25.2.22) and a gaussian PSF

hϕ(r) = 1
σ
√

2π
e−(x/σ)2/2 . Compare numerically the blurred footprint for a gaussian PSF to the blurred footprint for

a rectangular PSF having the same FWHM as the gaussian, for various values of σ. (Need typed.)
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