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30.1 Introduction (s,complex,intro)s,complex,intro

For many of the applications considered in this book, all quantities are real. This appendix addresses special issues
that arise when the image x, the data y, and/or the system matrix A have complex elements, such as in MRI. This
subject can be subtle [1–6].

30.2 Minimization over complex vectors (s,complex,min)
s,complex,min

Often we want to apply gradient-based optimization methods to a cost function Ψ(x) where x has complex elements.
However, many of the functionals of interest do not have a derivative when viewed in Cnp . This complication is
related to the fact that |z|2 for z ∈ C is differentiable only at z = 0 [7, p. 31]. This section addresses such issues in
the context of optimization.

30.2.1 Fréchet differentiability (s,complex,frechet)s,complex,frechet

We say g : Cn → Cm is Fréchet differentiable at x ∈ Cn if there exists a bounded linear operator Gx : Cn → Cm
such that

lim
h→0

‖g(x + h)− g(x)−Gxh‖2
‖h‖2

= 0. (30.2.1)
e,complex,frechet

30.1

http://en.wikipedia.org/wiki/Fr%C3%A9chet_derivative


© J. Fessler. [license] May 5, 2021 30.2

(The limit must not depend on how h approaches 0, i.e., we must reach the same limit for any sequence {h(n)} in
Cn that converges to 0.) The norm in the numerator of (30.2.1) is for Cm whereas the one in the denominator is for
Cn. The Fréchet differential of g at x, if it exists, is unique [8, p. 172]. Unfortunately, often it does not exist for cost
functions of interest in image reconstruction, as shown in the next example.

30.2.2 Euclidean norm on Cnp (s,complex,min,norm2)s,complex,min,norm2

Consider the simple Euclidean norm functional Ψ : Cnp → R defined for x ∈ Cnp by

Ψ(x) =
1

2
‖x‖2 =

1

2
〈x, x〉 =

1

2

np∑
j=1

|xj |2 .

For h ∈ Cnp we have

Ψ(x + h)−Ψ(x) =
1

2
〈x, h〉+1

2
〈h, x〉+1

2
‖h‖2 = real{〈x, h〉}+

1

2
‖h‖2 ,

which is not linear in h (even ignoring the ‖h‖ term), because 〈x, αh〉 = α∗ 〈x, h〉 6= α 〈x, h〉 when α is complex.
So the functional Ψ does not have a Fréchet differential [8, p. 172] when we view Ψ : Cnp → R.

However, if we separate the real and imaginary parts: x = a + ıb, where ı =
√
−1, then we can instead consider

the function ψ(a, b) , Ψ(a + ıb) = 1
2 ‖a‖

2
+ 1

2 ‖b‖
2
. Clearly ∇aψ(a, b) = a and∇bψ(a, b) = b, so

∇aψ + ı∇bψ = a + ıb = x.

So if we somewhat abuse notation and write

∇Ψ(x) = ∇1

2
‖x‖2 = x, (30.2.2)

e,complex,min,norm2,cgrad

then we must remember that this expression does not satisfy the usual definition of a derivative, i.e., the limit (30.2.1)
does not exist, except at x = 0, because in general the limit depends on how h ∈ Cnp approaches zero. (See [9] for
discussion of Wirtinger calculus for differentiation and [10] for its application to phase retrieval.) The next section
provides a useful interpretation and generalization of (30.2.2).

30.2.3 Steepest ascent direction for functionals on Cnp (s,complex,min,steep)s,complex,min,steep

Having seen that even the simple Euclidean norm functional involves subtleties, we need a systematic way to work with
more general functionals Ψ : Cnp → R. Fortunately, for the purposes of optimization algorithms, Fréchet derivatives
are not essential. To apply a gradient-based minimization method to suitably smooth cost functions, we need only to
be able to identify a descent direction. Our starting point for that is the “direction of steepest ascent,” i.e., the vector
s ∈ Cnp for which Ψ(x + α s) increases most rapidly for small, real, positive values of α. We define such directions
using directional derivatives.

d,complex,min,steep

Definition 30.2.1 A vector s∗ = s∗(x) ∈ Cnp is a direction of steepest ascent of Ψ : Cnp → R at x ∈ Cnp if

lim
α↘0+

Ψ(x + α s∗)−Ψ(x)

α
≥ lim
α↘0+

Ψ(x + α s)−Ψ(x)

α
, ∀ {s ∈ Cnp : ‖s‖ ≤ ‖s∗‖} , (30.2.3)

e,complex,min,ascent

where α is real.

To analyze (30.2.3), define f : R→ R by

f(α) , f(α; s) = Ψ(x + α s),

for which

ḟ(0) = lim
α↘0+

f(α)− f(0)

α
= lim
α↘0+

Ψ(x + α s)−Ψ(x)

α
.

As in §30.2.2, define
ψ(a, b) , Ψ(a + ıb) .

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://en.wikipedia.org/wiki/Fr%C3%A9chet_derivative
http://en.wikipedia.org/wiki/Wirtinger_derivatives
http://en.wikipedia.org/wiki/Phase_retrieval
http://en.wikipedia.org/wiki/Descent_direction
http://en.wikipedia.org/wiki/Directional_derivative
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Then by the usual chain rule for differentiation:

ḟ(0) = lim
α↘0+

ψ(xR + α sR,xI + α sI)− ψ(xR,xI)

α
= s′R∇aψ(xR,xI) + s′I∇bψ(xR,xI)

= real{s′ g(x)} = real{〈s, g(x)〉}, (30.2.4)
e,complex,min,fdot

assuming that ψ is differentiable in both arguments a and b, where we define the following complex function:

g(x) , ∇aψ(a, b) + ı∇bψ(a, b)
∣∣∣
a=xR, b=xI

. (30.2.5)
e,complex,min,steep,vg

The expression (30.2.4) for ḟ(0) is useful for line search operations.
By the Schwarz inequality (28.4.2):

real{〈s, g〉} ≤ |〈s, g〉| ≤ ‖s‖ ‖g‖ ,

with equality if g = 0 or s = β g for β ∈ [0,∞). Thus s∗(x) = g(x) is a direction of steepest ascent. To summarize,
for the purposes of gradient-based optimization, the following “definition” works:

∇Ψ(x) , ∇aψ(a, b) + ı∇bψ(a, b)
∣∣∣
a=xR, b=xI

. (30.2.6)
e,complex,min,cgrad

Throughout this book we use “gradient” to mean such a direction of steepest ascent (rather than a Fréchet differential)
for real-valued functionals of complex arguments. It is also called the conjugate cogradient [11] [12]. We call such
functionals differentiable when the gradients on the right side of (30.2.6) exist.

Although the limit (30.2.1) often does not exist for cost functions of interest on Cnp , if ψ(a, b) is differentiable in
both arguments (i.e., on Rnp × Rnp ) then we do have the following limit:

lim
h→0

Ψ(x + h)−Ψ(x)− real{〈∇Ψ(x), h〉}
‖h‖

= 0,

i.e., we have the following property that generalizes the 1st-order Taylor series (29.8.3):

Ψ(x + h) = Ψ(x) + real{〈∇Ψ(x), h〉}+o(‖h‖) (30.2.7)

= Ψ(x) + real

{∫ 1

0

〈∇Ψ(x + τh), h〉dτ
}
. (30.2.8)

e,complex,taylor1

This property suffices for analyzing most optimization problems.
x,complex,min,steep,bx

Example 30.2.2 For the cost function Ψ(x) = real{〈b, x〉} = 〈bR, xR〉+ 〈bI, xI〉, the gradient is∇Ψ = b.

30.2.4 Holomorphic functions (s,complex,holo)s,complex,holo

To proceed we will need the following definition.
d,complex,holo

Definition 30.2.3 A function g : Cn → Cm is called holomorphic (often called analytic) if it is Fréchet differentiable
per (30.2.1) on Cn.

For our purposes, the key property of holomorphic functions is the following. If g : Cn → Cm is holomorphic,
then writing g(a + ıb) = u(a, b) +ıv(a, b), its components u and v satisfy the Cauchy-Riemann equations:

∂

∂aj
ui(a, b) =

∂

∂bj
vi(a, b),

∂

∂bj
ui(a, b) = − ∂

∂aj
vi(a, b), i = 1, . . . ,m, j = 1, . . . , n. (30.2.9)

e,complex,holomorphic

Put another way:
∇a u(a, b) = ∇b v(a, b), −∇b u(a, b) = ∇a v(a, b) .

x,complex,holo

Example 30.2.4 The function g(x) , Ax for A ∈ Cnd×np is holomorphic, because u(a, b) = ARa − AIb,
v(a, b) = AIa + ARb,∇a u(a, b) = ∇b v(a, b) = AR, and −∇b u(a, b) = ∇a v(a, b) = AI .

x,complex,holo,not

Example 30.2.5 Consider the function g(x) , αxR + βxI , corresponding to the gradient (30.2.6) of a regularizer
(2.9.1) where R(x) = α

2 ‖xR‖
2
2 + β

2 ‖xI‖
2
2 , motivated by separately regularizing the real and imaginary parts with

α 6= β [13–16]. In this case u(a, b) = αa, v(a, b) = βb, ∇a u(a, b) = αI 6= ∇b v(a, b) = βI, so g(x) is not
holomorphic.

For reconstructing complex images, usually the cost functions of interest are not (Fréchet) differentiable, but
fortunately often the “gradients,” as defined by (30.2.6), are holomorphic. Thankfully, Example 30.2.5 is the exception,
not the rule, but one must be aware of such exceptions.

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://en.wikipedia.org/wiki/Holomorphic
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30.2.5 Quadratic case (s,complex,quad)s,complex,quad

Consider the quadratic cost function Ψ : Cn → R defined by

Ψ(x) =
1

2
real{x′Mx} (30.2.10)

e,complex,quad,cost

for a general complex matrix M ∈ Cn×n. Write M = U + ıV where U ,V ∈ Rn×n, then

ψ(a, b) , Ψ(a + ıb) =
1

2
real{(a + ıb)′(U + ıV )(a + ıb)}

=
1

2
(a′Ua− a′V b + b′V a + b′Ub) .

Thus using (29.8.2) the gradient components are

u = ∇aψ =
1

2
(U + U ′)a− 1

2
(V − V ′)b = Sa− Tb

v = ∇bψ =
1

2
(U + U ′)b +

1

2
(V − V ′)b = Sb + Ta,

where we define the following symmetric real matrix S and anti-symmetric real matrix T :

S ,
1

2
(U + U ′)

T ,
1

2
(V − V ′).

Combining yields the gradient expression

∇Ψ = u+ıv = (S + ıT )x =
1

2
(M + M ′)x.

In most (if not all) cases of interest, M is Hermitian symmetric, e.g., for the quadratic cost function Ψ(x) = 1
2 ‖Ax‖2

we have M = A′A. In such cases the “real” operator in (30.2.10) is unnecessary and the gradient expression
simplifies:

∇Ψ = ∇1

2
x′Mx = Mx.

Note that
∇bu = ∇b∇aψ = −T
∇av = ∇a∇bψ = T .

Thus the symmetry of second derivatives holds:

∇b∇aψ = (∇a∇bψ)
′
.

Furthermore,
∇au = ∇bv = S

−∇bu = ∇av = T ,

so the complex gradient function∇Ψ = u + ıv is holomorphic.

30.2.6 Nonlinear WLS cost functions (s,complex,min,nwls)s,complex,min,nwls

Now specialize §30.2.3 by considering the WLS cost function

Ψ(x) =
1

2
(ȳ(x)−y)

′
W (ȳ(x)−y) , (30.2.11)

e,complex,min,nwls,cost

where x ∈ Cnp , W is Hermitian positive-semidefinite, y ∈ Cnd and ȳ : Cnp → Cnd is possibly nonlinear. Defining

e(x) , W 1/2 (ȳ(x)−y) = u(xR,xI) +ıv(xR,xI), (30.2.12)
e,complex,min,e

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://en.wikipedia.org/wiki/Symmetry_of_second_derivatives
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we would like to apply (30.2.6) to the following:

ψ(a, b) =
1

2
(u(a, b) +ıv(a, b))

′
(u(a, b) +ıv(a, b)) =

1

2
‖u(a, b)‖2 +

1

2
‖v(a, b)‖2 .

To find a concise and convenient expression, we assume that e(x) is holomorphic, per Definition 30.2.3. Under this
assumption, (

∂

∂aj
+ ı

∂

∂bj

)
ψ(a, b) =

nd∑
i=1

(
∂

∂aj
ui + ı

∂

∂bj
ui

)
ui +

nd∑
i=1

(
∂

∂aj
vi + ı

∂

∂bj
vi

)
vi

=

nd∑
i=1

(
∂

∂aj
ui − ı

∂

∂aj
vi

)
ui +

nd∑
i=1

(
∂

∂aj
vi + ı

∂

∂aj
ui

)
vi

=

nd∑
i=1

(
∂

∂aj
ui + ı

∂

∂aj
vi

)∗
(ui + ıvi) =

nd∑
i=1

g∗ijei = [G′e]i ,

where G is the nd × np matrix having elements

gij ,
∂

∂aj
ui + ı

∂

∂aj
vi.

Thus, if ȳ(x) is holomorphic, the direction of steepest ascent is

∇Ψ(x) = (∇x ȳ(x))
′
W (ȳ(x)−y) , (30.2.13)

e,complex,min,nwls,cgrad

where we define∇x ȳ(x) to be the nd × np matrix having elements

[∇x ȳ(x)]ij =
∂

∂aj
real{ȳi(aj + ıbj)}+ı

∂

∂aj
imag{ȳi(aj + ıbj)} . (30.2.14)

e,complex,min,rgrad,yb

This matrix depends only on the derivatives with respect to the real part of x.
See Problem 30.4 for an example related to MRI parameter estimation.

30.2.7 WLS cost functions (s,complex,min,wls)s,complex,min,wls

A particularly important special case of (30.2.11) is the linear model where ȳ(x) = Ax, which one can verify is
holomorphic, for which

Ψ(x) =
1

2
(Ax− y)

′
W (Ax− y) . (30.2.15)

e,complex,min,wls

In this case one can check that∇x ȳ(x) = A, so the direction of steepest ascent (30.2.13) simplifies to

∇Ψ(x) = A′W (Ax− y) . (30.2.16)
e,complex,min,wls,cgrad

More generally, if for some φ : R→ R we have

Ψ(x) = φ

(
1

2
(Ax− y)′W (Ax− y)

)
,

then by similar arguments the corresponding gradient, in the sense of (30.2.6), is:

∇Ψ(x) = φ̇

(
1

2
(Ax− y)′W (Ax− y)

)
A′W (Ax− y). (30.2.17)

e,complex,grad,Kx,g

30.2.7.1 Step sizes (s,complex,min,step,r)s,complex,min,step,r

After choosing a search direction d (such as −∇Ψ(x(n)), the steepest descent direction, or alternatively by the conju-
gate gradients method), often the next problem in a gradient-based algorithm is to find the step size:

α∗ = arg min
α∈[0,∞)

f(α), f(α) = Ψ(x + αd) . (30.2.18)
e,complex,min,argmin,alf,real

https://creativecommons.org/licenses/by-nc-nd/4.0/
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For the WLS case in (30.2.15), one can verify:

Ψ(x + αd)−Ψ(x) =
1

2
α2(Ad)′WAd + α real{d′∇Ψ(x)} .

Letting g = ∇Ψ(x) = A′W (Ax− y), the minimizing α is

α =
− real{d′ g}
(Ad)′WAd

. (30.2.19)
e,complex,min,wls,alf

For non-quadratic problems, one can often find an approximate minimizer of (30.2.18) using Newton’s method:

α0 = −ḟ(0)/f̈(0),

where ḟ(0) = real{d′∇Ψ(x)} per (30.2.4). Generalizing, one can verify that ḟ(α) = real{d′∇Ψ(x + αd)}, so

f̈(0) ≈ ḟ(ε)− ḟ(0)

ε
=

1

ε
real{d′ [∇Ψ(x + εd)−∇Ψ(x)]} .

Using this requires choosing ε, which is not unlike choosing α in the first place. Indeed the “best” choice for ε would
be ε = α∗ because then ḟ(α∗) = 0, so the above approximation would yield f̈(0) = −ḟ(0)/α∗ and the Newton step
size would be exactly α∗. But of course α∗ is unknown, so one must use other heuristics to choose ε. One should
verify that Ψ(x + α0d) < Ψ(x) . (See §11.5.)

30.2.7.2 Complex step sizes? (s,complex,min,step,c)s,complex,min,step,c

In (30.2.18) we restricted the step size α to be real, which is the usual practice. As a curiosity, what would happen if
we allowed α ∈ C? Then we would have

Ψ(x + αd)−Ψ(x) =
1

2
|α|2 (Ad)′WAd + real{α∗d′ g},

where g(x) = ∇Ψ(x) . Let γ = (Ad)′WAd, which is real and positive, and define β = d′ g /γ. Then

Ψ(x + αd)−Ψ(x)

γ
=

1

2
|α|2 + real{α∗β} =

1

2

[
|α+ β|2 − |β|2

]
,

so clearly the minimizing α ∈ C is

α = −β =
−d′ g

(Ad)′WAd
. (30.2.20)

e,complex,min,wls,alf,complex

For PSD, the search direction is d = −P g, where P is Hermitian positive definite, so −d′ g = g′P g is real and
nonnegative, so the choices (30.2.19) and (30.2.20) for α are identical. But for other methods for choosing the search
direction, such as PCG, it seems plausible that d′ g could be complex. However, see [17, Section 3] for a PCG method
where α is always real.

If the minimizing α were complex, then we could write it as α = |α| eı∠α and define a modified direction vector
d̃ = eı∠α d. With respect to this new vector the minimizing α would again be real1. So if α is complex, it must be due
to some “defect” in the direction vector. I do not know if using a complex α would ever be beneficial.

30.3 Real constraints (s,complex,real)s,complex,real

In some applications with complex data y, we know that x should be real, e.g., [18]. (Or essentially equivalently, we
may know the phase of each element xj , so we only want to estimate the magnitude. See also §7.23.) Often in such
applications we must minimize a WLS cost function of the form

Ψ(x) =
1

2
‖ȳ(x)−y‖2W 1/2

1Thanks to Angel Pineda for this remark.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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over x ∈ Rnp , where W is diagonal with real elements, y ∈ Cnd and ȳ : Rnp → Cnd . In this case, Ψ : Rnp → R,
so the gradient of Ψ must be a real vector even though the data is complex. In particular,

Ψ(x) =
1

2
‖y‖2W 1/2 − real{y′W ȳ(x)}+

1

2
‖ȳ(x)‖2W 1/2

≡ −y′RW ȳR(x) +y′IW ȳI(x) +
1

2
‖ȳR(x)‖2W 1/2 +

1

2
‖ȳI(x)‖2W 1/2 ,

where y = yR + ıyI . Taking the gradient and collecting like terms, one can verify that:

∇Ψ(x) = real
{

(ȳ(x)−y)
′
W∇ ȳ(x)

}
, (30.3.1)

e,complex,real,wnls,rgrad

where we define
∇ ȳ(x) , ∇ real{ȳ(x)}+ı∇ imag{ȳ(x)} .

x,complex,real,wls

Example 30.3.1 For the WLS cost function Ψ(x) = 1
2 ‖Ax− y‖2W 1/2 , we have ȳ(x) = Ax. When x is real,

∇ ȳ = A, and by (30.3.1) the gradient is:

∇Ψ(x) = real{A′W (Ax− y)} = real{A′WA}x− real{A′Wy} . (30.3.2)
e,complex,real,wls,cgrad

So even when A and y are complex, we can use existing methods for multiplication by A and A′ to evaluate the
gradient with respect to x. Then simply take the real part at the end.

It is clear from (30.3.2) that the Hessian matrix in this case is

∇2 Ψ(x) = real{A′WA} . (30.3.3)
e,complex,real,wls,hess

x,complex,real,wls,cov

Example 30.3.2 Continuing Example 30.3.1, it follows from (30.3.2) that the minimizer satisfies real{A′Wy} =
real{A′WAx̂} . Equivalently, because x̂ is real:

x̂ = [real{A′WA}]−1 real{A′Wy} . (30.3.4)
e,complex,real,wls,xh

(Note that it is not necessary to split A into separate real and imaginary parts as some authors have done [18].) Thus

Cov{x̂} = [real{A′WA}]−1 Cov{real{A′Wy}} [real{A′WA}]−1 .

To simplify, let y = yR + yI and assume yR and yI are independent with Cov{yR} = Cov{yI} = 1
2W

−1, so W is
real valued. Then Cov{y} = Cov{yR}+Cov{yI} = W−1 and

Cov{real{A′Wy}} = Cov{real{A′W }yR − imag{A′W }yI}

= real{A′W } 1

2
W−1 (real{A′W })T + imag{A′W } 1

2
W−1 (imag{A′W })T

=
1

2
ARWA′R +

1

2
AIWA′I =

1

2
real{A′WA} .

After choosing a real search direction d ∈ Rnp , e.g., based on the negative of the gradient in (30.3.2), for a line-
search type of method we must find the step α ∈ R that minimizes Ψ(xR + αd). From the analysis in §30.2, the
minimizer is clearly α = −d′ g

(Ad)′WAd , where g = real{A′W (AxR − y)} .
So by judicious addition of real statements, existing QPWLS-PCG routines are adapted easily to the case where

A and y are complex but x is real.

30.3.1 Bound analysis
Because x = xR + ıxI, for general complex problems one must estimate both xR and xI. On the other hand, if
x is known to be real, then we only need to estimate xR, i.e., half as many unknown parameters. Having fewer
unknowns should reduce the estimator variance. This section uses the Cramer-Rao lower bound (CRLB) to quantify
this reduction. See also [19].

Because A = AR + ıAI, we have

Ax = (AR + ıAI)(xR + ıxI) = (ARxR −AIxI) + ı(AIxR + ARxI)

https://creativecommons.org/licenses/by-nc-nd/4.0/
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A′A = (A′R − ıA′I)(AR + ıAI) = (A′RAR + A′IAI) + ı(A′RAI −A′IAR).

Expanding the model (6.1.9) where x is complex:[
yR

yI

]
=

[
AR −AI

AI AR

] [
xR

xI

]
+

[
εR

εI

]
.

For white gaussian noise with variance σ2, the corresponding Fisher information is

1

σ2

[
A′R A′I
−A′I A′R

] [
AR −AI

AI AR

]
=

1

σ2

[
A′RAR + A′IAI A′IAR −A′RAI

A′RAI −A′IAR A′RAR + A′IAI

]
=

1

σ2

[
R M ′

M R

]
,

where R = real{A′A} and M = imag{A′A} .
Using (28.1.11), the covariance of an unbiased estimate of the real component of x has the following lower bound

Cov{x̂R} � σ2
[
R−M ′R−1M

]−1
.

The model where x is assumed to be real is:[
yR

yI

]
=

[
AR

AI

]
xR +

[
εR

εI

]
,

so the Fisher information is
1

σ2

[
A′RAR + A′IAI

]
=

1

σ2
R.

In this case the CRLB is
Cov{x̂R} � σ2R−1.

By Theorem 28.2.4 [
R−M ′R−1M

]−1 � R−1,

so as expected the variance is smaller when we enforce the constraint that x is real.
If the columns of A are orthogonal, then M = 0 and the two cases lead to the same covariance of xR. But for

nonuniform frequency samples, the columns of A are not orthogonal.

x,complex,real,A,2x2

Example 30.3.3 If A =

[
1 1

e−ıα e−ıβ

]
, then one can show that

[
R−M ′R−1M

]−1
= λR−1, (30.3.5)

e,complex,real,example

where λ = 3+cos(α−β)
2 ∈ [1, 2]. So the covariance without the real constraint can be up to a factor of two larger than

the constrained case.

30.4 Taylor series (s,complex,taylor)
s,complex,taylor

This section examines Taylor series in the complex case of a function Ψ : Cnp → R. Assume that ψ(a, b) =
Ψ(a + ıb) is twice differentiable on Rn × Rn, and define

u , ∇aψ

v , ∇bψ.

Now expand ψ around (0,0) use the multivariate 2nd-order Taylor series (29.8.4):

ψ(a, b) = ψ(0,0) : +

[
u(0)
v(0)

]′ [
a
b

]
+

[
a
b

]′ ∫ 1

0

(1− τ)(∇2ψ)(τa, τb) dτ

[
a
b

]
= Ψ(0) + real{〈∇Ψ(0), x〉}+

[
a
b

]′ ∫ 1

0

(1− τ)(∇2ψ)(τa, τb) dτ

[
a
b

]
,

https://creativecommons.org/licenses/by-nc-nd/4.0/
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where∇Ψ = u + ıv, per the convention (30.2.6), and

(∇2ψ)(a, b) =

[
∇2

aψ ∇b∇aψ
∇a∇bψ ∇2

bψ

]
=

[
∇2

aψ ∇bu
∇av ∇2

bψ

]
.

To proceed, we assume that∇Ψ is holomorphic per Definition 30.2.3, i.e., satisfies

∇au = ∇bv , S

−∇bu = ∇av , T .

Note that S = ∇2
aψ = ∇2

bψ is symmetric, and T = ∇av = ∇a∇bψ = (∇b∇aψ)′ = (∇bu)′ = −T ′ is anti-
symmetric.

Expanding the quadratic form:[
a
b

]′ [ ∇2
aψ ∇bu
∇av ∇2

bψ

] [
a
b

]
= a′Sa− a′Tb + b′Ta + b′Sb.

Defining H = S + ıT , one can rewrite the quadratic form as x′Hx. Thus we define the (Hermitian) Hessian of Ψ as

∇2Ψ = S + ıT = ∇2
aψ + ı∇a∇bψ, (30.4.1)

e,complex,hess

provided∇Ψ is holomorphic. With this definition, we can write the 2nd-order Taylor series as

Ψ(x) = Ψ(z) + real{〈∇Ψ(z), x− z〉}+ (x− z)
′
∫ 1

0

(1− τ)∇2Ψ(τx + (1− τ)z) dτ (x− z) . (30.4.2)
e,complex,taylor2

Similarly, using the multivariate 1st-order Taylor series (29.8.3):[
u(a, b)
v(a, b)

]
=

[
u(0,0)
v(0,0)

]
+

∫ 1

0

(∇2ψ)(τa, τb) dτ

[
a
b

]
=

[
u(0,0)
v(0,0)

]
+

∫ 1

0

[
S −T
T S

]
dτ

[
a
b

]
,

so

∇Ψ(a + ıb)−∇Ψ(0) =

∫ 1

0

(Sa− Tb + ı (Ta + Sb)) dτ

=

∫ 1

0

(S + ıT )(a + ıb) dτ .

More generally and succintly using the Hessian definition (30.4.1):

∇Ψ(x) = ∇Ψ(z) +

∫ 1

0

∇2Ψ(τx + (1− τ)z) dτ (x− z) . (30.4.3)
e,complex,taylor,grad

30.5 Convex functions of complex arguments (s,complex,convex)
s,complex,convex

Definition 29.9.7 is equally applicable to functions defined on a convex domain in Cn. If D ⊂ Cn is convex, then
the set D2 , {(a, b) ∈ Rn × Rn : a + ıb ∈ D} is convex in Rn × Rn. Clearly Ψ is convex over D ⊂ Cn iff
ψ(a, b) , Ψ(a + ıb) is convex over D2.

Most of the properties in §29.9.3 carry over directly to convex functions on Cn. The properties that require more
care are those that involve derivatives or gradients. Throughout this section, we define the gradient of Ψ using (30.2.6),
and we call Ψ “differentiable” on an open set D ∈ Cn if ψ(a, b) , Ψ(a + ıb) is differentiable on D2.

The support property (29.9.9) and its converse must be modified as follows.
l,complex,convex,support

Lemma 30.5.1 If Ψ is convex on D ⊂ Cn and differentiable at some z ∈ D, then

Ψ(x) ≥ Ψ(z) + real{〈∇Ψ(z), x− z〉}, ∀x ∈ D. (30.5.1)
e,complex,convex,tangent

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Proof:

Using (29.9.9) and the convexity of ψ: Ψ(x) = ψ(xR,xI) ≥ ψ(zR, zI) +

〈[
∇aψ(zR, zI)
∇vψ(zR, zI)

]
,

[
xR

xI

]
−
[

zR

zI

]〉
= Ψ(z) + real{〈∇Ψ(z), x− z〉} . 2

l,complex,convex,support,converse

Lemma 30.5.2 If Ψ is differentiable on D ⊂ Cn, and if inequality (30.5.1) holds ∀x, z ∈ D, then Ψ is convex on D.
Proof:
For any x, z ∈ D and α ∈ [0, 1], let w = αx + (1− α)z. Applying (30.5.1) twice yields

Ψ(x) ≥ Ψ(w) + real{〈∇Ψ(w), x−w〉}
Ψ(z) ≥ Ψ(w) + real{〈∇Ψ(w), z −w〉} .

Thus αΨ(x) +(1− α) Ψ(z) ≥ Ψ(w) + real{〈∇Ψ(w), α(x−w) + (1− α)(z −w)〉} = Ψ(αx + (1− α) z). 2

l,complex,convex,line

Lemma 30.5.3 If Ψ is convex on D ⊂ Cn and Ψ(x) = Ψ(z) + real{〈∇Ψ(z), x− z〉} where Ψ is differentiable at
some z ∈ D, then for α ∈ [0, 1]: Ψ(αx + (1− α)z) = Ψ(z) +α real{〈∇Ψ(z), x− z〉} .
Proof:
Applying (30.5.1) at the point w = αx + (1− α)z: Ψ(z) +α real{〈∇Ψ(z), x− z〉}
= Ψ(z) + real{〈∇Ψ(z), w − z〉} ≤ Ψ(w) ≤ αΨ(x) +(1− α) Ψ(z)
= Ψ(z) +α (Ψ(x)−Ψ(z)) = Ψ(z) +α real{〈∇Ψ(z), x− z〉} . 2

The next two Lemmas are similar results for strict convexity.
l,complex,convex,support,strict

Lemma 30.5.4 [20, p. 9] If Ψ is strictly convex on D ⊂ Cn and differentiable at some z ∈ D, then

Ψ(x) > Ψ(z) + real{〈∇Ψ(z), x− z〉}, ∀x ∈ D − {z} . (30.5.2)
e,complex,convex,tangent,strict

Proof:
By Lemma 30.5.1 Ψ(x) ≥ Ψ(z) + real{〈∇Ψ(z), x− z〉} . Suppose Ψ(x) = Ψ(z) + real{〈∇Ψ(z), x− z〉} for
some x 6= z. Then Lemma 30.5.3 would hold, which would contradict the strict convexity of Ψ. 2

l,complex,convex,support,strict,converse

Lemma 30.5.5 If Ψ is differentiable on D ⊂ Cn and (30.5.2) holds for all x 6= z on D, then Ψ is strictly convex.
(Problem 30.5.)

Lemma 29.9.14 becomes the following generalization to Cn of the monotonicity of the derivative of a convex real
function.

l,complex,convex,polyak,2

Lemma 30.5.6 [20, p. 10] If Ψ : D → R is convex and differentiable on D ⊂ Cn, then

real{〈∇Ψ(x)−∇Ψ(z), x− z〉} ≥ 0, ∀x, z ∈ D.
Proof:
Using Lemma 30.5.1: Ψ(z) ≥ Ψ(x) + real{〈∇Ψ(x), z − x〉} and Ψ(x) ≥ Ψ(z) + real{〈∇Ψ(z), x− z〉}, because
Ψ is convex. Now add. 2

The following Lemmas generalize the Hessian properties (29.9.5) and (29.9.6) to the complex case. These gener-
alizations assume that∇Ψ is holomorphic so that∇2Ψ can be defined as in (30.4.1).

l,complex,convex,hess1

Lemma 30.5.7 If Ψ is twice differentiable on Cn with holomorphic gradient ∇Ψ, and ∇2Ψ(x) � 0 for all x ∈ D,
where∇2Ψ is defined in (30.4.1), then Ψ is convex on D. Furthermore, if ∇2Ψ � 0 then Ψ is strictly convex.
Proof:
Using the 2nd-order Taylor series (30.4.2), when ∇2Ψ � 0 clearly Ψ(x) ≥ Ψ(z) + real{〈∇Ψ(z), x− z〉} . Now
invoke Lemma 30.5.2. Similarly, when ∇2Ψ � 0, again use the 2nd-order Taylor series (30.4.2), and invoke
Lemma 30.5.5. 2

l,complex,convex,hess1,converse

Lemma 30.5.8 If Ψ is twice differentiable and convex on an open convex setD ⊂ Cn with holomorphic gradient∇Ψ,
then∇2Ψ(x) � 0 for all x ∈ D, where ∇2Ψ is defined in (30.4.1),

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Proof:
For x ∈ D, another form of the 2nd-order Taylor series (30.4.2) is (for ε sufficiently small):

Ψ(x + εw) = Ψ(x) + real{〈∇Ψ(x), εw〉}+
1

2
(εw)

′∇2Ψ(x) (εw) + ‖εw‖2 o(εw).

Using the inequality (30.5.1):

0 ≤ ε2
(

1

2
w′∇2Ψ(x)w + ‖w‖2 o(‖εw‖)

)
.

Dividing by ε2 and letting ε→ 0 shows that w′∇2Ψ(x)w ≥ 0 and because w was arbitrary,∇2Ψ(x) � 0.

30.6 Problems (s,complex,prob)s,complex,prob

Problem 30.1 Prove the WLS gradient expression (30.2.17). (Need typed.)

Problem 30.2 Prove the CRB equality in (30.3.5).

Problem 30.3 In (30.2.3), we assumed that α was real. An alternative definition of the “direction of steepest ascent”
that allows α to be complex might be:

arg max
s:‖s‖=1

lim
|α|→0

Ψ(x + α s)−Ψ(x)

α
,

where α is allowed to be complex. Assuming ψ(a, b) = Ψ(a + ıb) is differentiable, does this definition lead to a
unique value for s? If so, compare to (30.2.3). (Need typed.)

p,complex,mri,relax

Problem 30.4 Consider the model ȳ(x) defined by ȳi(x) = fi exi where fi, xi ∈ C and fi are known constants.
(This model arises in certain MRI applications where one is estimating relaxation parameters and phase parameters.)
Determine whether ȳ(x) is holomorphic, and if so, find an expression for∇Ψ(x).

p,complex,convex,support,strict,converse

Problem 30.5 Prove Lemma 30.5.5 that relates (30.5.2) to strict convexity.
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