
Tablext: A Combined Neural Network And
Heuristic Based Table Extractor

Zach Colter
Department of EECS
University of Michigan

Ann Arbor, US
zcolter@umich.edu

Morteza Fayazi
Department of EECS
University of Michigan

Ann Arbor, US
fayazi@umich.edu

Zineb Benameur-El
Department of EECS
University of Michigan

Ann Arbor, US
zinebbe@umich.edu

Serafina Kamp
Department of EECS
University of Michigan

Ann Arbor, US
serafibk@umich.edu

Shuyan Yu
Department of EECS
University of Michigan

Ann Arbor, US
shuyan@umich.edu

Ronald Dreslinski
Department of EECS
University of Michigan

Ann Arbor, US
rdreslin@umich.edu

Abstract—A significant portion of the data available today is
found within tables. Therefore, it is necessary to use automated
table extraction to obtain thorough results when data-mining.
Today’s popular state-of-the-art methods for table extraction
struggle to adequately extract tables with machine-readable text
and structural data. To make matters worse, many tables do
not have machine-readable data, such as tables saved as images,
making most extraction methods completely ineffective. In order
to address these issues, a novel, open-source, general format table
extractor tool, Tablext, is proposed. This tool uses a combination
of computer vision techniques and machine learning methods
to efficiently and effectively identify and extract data from
tables. Tablext begins by using a custom Convolutional Neural
Network (CNN) to identify and separate all potential tables.
The identification process is optimized by combining the custom
CNN with the YOLO object detection network. Then, the high-
level structure of each table is identified with computer vision
methods. This high-level, structural meta-data is used by another
CNN to identify exact cell locations. As a final step, Optical
Characters Recognition (OCR) is performed on every individual
cell to extract their content without needing machine-readable
text. This multi-stage algorithm allows for the neural networks to
focus on completing complex tasks, while letting image processing
methods efficiently complete the simpler ones. This leads to the
proposed approach to be general-purpose enough to handle a
large batch of tables regardless of their internal encodings or
their layout complexity. Additionally, it becomes accurate enough
to outperform competing state-of-the-art table extractors on the
ICDAR 2013 table dataset.

Index Terms—Table extraction, CNN, deep learning, image
processing, OCR

I. INTRODUCTION

Tables are widely used in documents, articles, web-pages,
etc. as they can concisely show complex information in a
way that is suitable for human readers [1]. Autonomous
table extraction enables translating this abundant amount of
information to a machine-readable format which has broad
applications in data-mining and information-retrieval [2], [3].
The complexity of some tables’ layouts and the various
formats in which they may be found are current problems
that prevent the existence of a universal, highly-accurate,

automatic table extraction tool. The purpose of this paper
is to introduce a highly accurate extractor that can extract
previously unobtainable information.

Formats such as Hypertext Markup Language (HTML),
Portable Document Format (PDF), and Portable Network
Graphics (PNG) are common encodings that may contain
tables. Because of the many different ways to represent a
table, designing separate extraction methods for every en-
coding is time-consuming and prone to errors. Moreover, an
environment may have multiple formats that are not encoded
uniformly. For instance, a web-page may contain an image
that is not encoded in HTML. Unifying internal encodings of
files is the first step to overcome universality issues.

In this work, we present an open-source1 table extractor
tool, Tablext, which addresses all the above-mentioned prob-
lems. Tablext solves the universality issue by extracting data
from images. There are several Java and Python open-source
libraries to convert specific file formats to images such as
pdf2image [4] (PDF to PNG), GrabzIt [5] (HTML to PNG),
etc.

Tablext uses separate Convolutional Neural Networks
(CNNs) [6], [7] to identify and extract information from
tables, but it does not solely rely on them. Before data
extraction, Tablext uses common conventional computer vision
techniques, such as line identification, to extract positional
information from tables before another CNN is used to fix
small mistakes. This approach can be both faster and more
accurate than having a single neural network.

By first identifying important features within the tables,
each neural network only has to solve a small sub-task. This
means that the size required for each network is drastically
reduced. The smaller size of the neural networks reduces the
computation requirement as well as the risk of overfitting.

Tablext begins by using an efficient CNN to identify the

1Source code for the Tablext can be downloaded from https://github.com/
idea-fasoc/datasheet-scrubber/tree/master/src/table extraction

https://github.com/idea-fasoc/datasheet-scrubber/tree/master/src/table_extraction
https://github.com/idea-fasoc/datasheet-scrubber/tree/master/src/table_extraction

exact location of the tables within the input images. Using an
ensemble of this CNN and an object detection network, YOLO
[8], allows for the extraction algorithm to be confined to
relevant areas. By isolating the relatively expensive extraction
algorithm to areas found by the identification CNN, Tablext
is efficient in handling massive databases.

Tablext achieves a high extraction accuracy by both identify-
ing the lines separating various cells, as well as looking at the
positions of the text within the tables. Together, these methods
can recognize complex table structures. It can generally be
assumed that the identified lines correctly split the table into
cells, but when no lines exists or they cannot be correctly
identified, the positional data is used to separate the cells.
After correctly segmenting the table into cells, the data is
cleaned by a CNN before the open-source Optical Character
Recognition (OCR) software, Tesseract [9], identifies the text
in every individual cell.

The main contributions of this paper can be summarized as
follows.

• A new method to identify cells that utilizes the positions
of the data and lines in order to obtain high precision
preliminary results at a low computational cost.

• A hybrid pipeline that allows the neural network to focus
its attention on complex problems, resulting in a high
accuracy.

• A novel, general format, open-source tool that identifies
and extracts all complex layout tables with a high accu-
racy within various internal encodings files.

The rest of the paper is organized as follows. Section II
briefly presents related works. Section III describes the pro-
posed method for identifying the location of the tables.
Section IV explains Tablext’s approaches for data extraction.
Section V shows the final results and comparisons to other
table extractors. Finally, the paper is concluded in Section VI.
Throughout this paper, four different tables (Table A, Table
B, Table C, Table D) are used to explain various concepts.
For clarity, figures will declare which original table they are
referencing.

II. RELATED WORK

Several methods have been studied table identification
and extraction. However, some of them describe various ap-
proaches to identify tables from different types of documents
and do not focus on data extraction [10]–[16].

Several systems have been proposed for the identification
and extraction of tables within PDF files [2], [17]–[20]. Oro
and Ruffolo [2] find positional data for the text and they
use an agglomerative hierarchical clustering algorithm [21] to
combine words into lines. The main limitation of this approach
is that it only supports unlocked, machine-readable PDFs.
However, a large amount of tables are found in locked PDFs
or images. Perez-Arriaga et al. [17] find columns and rows by
comparing the locations of the text-boxes and combining text-
boxes below a distance threshold. Although the method has
a decent recall, its false-positive rate is high. Liu et al. [20]
propose a method in which, tables are found by grouping text

with similar positions and font size. This approach works with
HTML format in addition to PDF files. However, it is only
optimized for research papers and its extraction performance
is poor especially on general documents. Similar to the other
mentioned studies, this method cannot work with locked PDF
files or images.

Some other studies focus on table extraction that are not
related to PDFs [1], [3], [22]. Tengli et al. [1] propose a
machine-learning-based technique for table extraction from
HTML files. Nishida et al. [22] focus on HTML extraction
too. They use a Recurrent Nerual Network (RNN) model to
extract data from HTML tags. These such approaches are not
applicable to formats other than HTML and are therefore,
limited in scope. Pinto et al. [3] propose a method to identify
the horizontal lines within tables that are formatted using white
space and fixed fonts to align columns in Web pages, however
they do not concentrate on table extraction.

Koci et al. and Puha et al. [23], [24] propose methods that
can handle tables in more diverse formats. Koci et al. [23]
propose a graph representation of tables so that they can
use heuristics approaches in order to extract information.
Their proposed methodology is optimized to extract data from
various spreadsheets. Puha et al. [24] propose a heuristic
method for general table extraction. They recognize tables in
images by first using OCR to identify data within cells, then
using the locations of the data.

Many state-of-the-art general table extraction methods
solely use neural networks. Qasim et al. [25] use a Graph
Neural Network (GNN) to identify cell locations within ta-
bles. DeepDeSRT [26] uses separate, specially made neu-
ral networks to identify tables and extract their data, while
TableNet [27] uses a single network for both identification and
extraction. They argue this is an efficient approach since these
tasks are interdependent. However, this also means that the
network is less optimized for both tasks. Tablext outperformed
both of these methods when tested on a common dataset. A
comparison between the related works has been summarized
in Table I.

By utilizing Machine Learning (ML), modern table extrac-
tors can handle more diverse tables than earlier works. How-
ever, identifying and extracting data is a difficult undertaking
that requires many sub-tasks to be completed. Many of these
tasks, such as identifying lines that can make up a table’s
structure, are good candidates for conventional computer vi-
sion methods. Instead of forcing a neural network to learn
and solve every one of these tasks, Tablext introduces a new
approach that combines both conventional computer vision and
ML techniques. This allows the neural network to be smaller in
size and focused on its particular task of identifying abnormal
cells. This is especially important given the limited amount of
labeled training data available for tables.

III. TABLE LOCATION IDENTIFICATION

While the main focus of this paper is table extraction, a
novel algorithm is created and used to identify tables before
extraction. It is imperative to find the table locations before

TABLE I
COMPARISON OF RELATED WORKS.

Work Table
identification

Table
extraction File format Approach

[10],
[12], [16] ✓ ✗ All Image processing w/o

ML
[11] ✓ ✗ PDF PdfExtra paradigm
[13] ✓ ✗ All DNN
[14] ✓ ✗ PDF CNN
[15] ✓ ✗ All SVM
[1] ✗ ✓ HTML ML

[22] ✗ ✓ HTML RNN
[23] ✗ ✓ Spreadsheets Graph representation

[24] ✗ ✓ All Image processing w/o
ML

[25] ✗ ✓ All GNN

[2] ✓ ✓ PDF
Agglomerative

hierarchical clustering
algorithm

[17] ✓ ✓ PDF
Comparing the
locations of the

text-boxes

[20] ✓ ✓
PDF &
HTML Grouping text

[26] ✓ ✓ All NN
[27] ✓ ✓ All NN

Tablext ✓ ✓ All Heuristic-based +
CNN

extraction because doing so increases both the performance
and accuracy of the algorithm. The boost in performance
comes from reduced search space for the complex information
extraction. The increased accuracy is a result of the table
identification network separating tables from one another
and removing irrelevant text and lines that could potentially
confuse the table extractor. To further increase the accuracy
of the table identification, it is later combined with YOLO.

The identification algorithm needs to find both the minimum
and maximum X and Y coordinates for each table that exists
within each page. To efficiently calculate these coordinates,
two relatively simple CNNs are used in succession. These two
networks identify at which Y and X coordinates, respectively,
a table exists.

All input images, after being converted from any file format,
are first converted to gray-scale and resized. Preliminary
tests show that a width of 800 pixels allows for accurate
table extraction without a significant performance penalty. The
height at this stage is scaled proportionally to avoid distortion.
This resized image cannot directly be sent to a conventional
CNN because its height is variable. Additionally, the large
size of the input data would require a significant amount of
memory for each batch, slowing down the training process. In
order to reduce the input size and make the input regular, the
image is sliced into horizontal strips, each with a height of
64 pixels. This number is chosen to reduce the training time
without significantly degrading accuracy.

While cutting the image into strips reduces the input and

output size of the network, this process introduces a new
problem. The accuracy of identifying a table at the top and
the bottom of the slices is lower than identifying a table
near the middle. Intuitively this is because the network only
has information in one direction from these edge outputs. To
combat this issue, each strip only detects the existence of a
table within its innermost 32 rows of pixels. To cover the
entire table, a moving window approach is used where each
input strip partially overlaps its adjacent strips.

The neural network has 4 output nodes for every horizontal
strip. Each node determines if there is a table at a particular
location within the centermost 32 pixels. In the innermost 32
pixels, node i, 0 ≤ i ≤ 3, of the neural network is trained to
identify if a table exists between any of the [8 ∗ i, 8 ∗ i + 7]
pixels. The outputs of all the slices are concatenated and stored
in an array that identifies in which rows a table exists. With this
approach, the top and bottom of each page cannot be searched
for tables, because only the inner pixels are represented in the
outputs. To fix this problem, the input image is extended by
16 pixels at the top and bottom with a white border.

Fig. 1 shows the concatenated output of all the slices from
the neural network. In this figure, the thin horizontal boxes
represent every row the network checked for a table. These
boxes show the Y locations where the neural network predicts
a table exists. While this particular example shows a table that
takes up the entire width of the document, this network can
also identify tables that are within one of several columns on
the page.

The next step is to clean the output by concatenating rows
of positively identified tables into groups. If no groups are
created, because none of the rows contain a table, Tablext
outputs that no table is found in the image. Otherwise, the
groups are prepared and sent to the second neural network in
order to find the correct X coordinates. This process is simpler
than having to find the correct Y coordinates as the amount
of area to search is smaller. For this reason, a CNN is used
without a sliding window approach.

Each group of rows is resized into a 400×400 pixel square
to efficiently achieve high accuracy. This input size is obtained
by preliminary testing. The image is sent into a CNN that
identifies which columns contain a table. Fig. 2 shows this
technique being applied to the bottom group of rows in Fig. 1.
The actual result produced by the network looks distorted to
a human because the table is scaled into a square. Instead
a representative, recreated image is shown. Here the vertical
boxes show where the network predicts that a table exists. If
the table is only in a single column of a multi-column image,
the lines would cover only that section. This network can
also identify two separate adjacent tables. This is achieved
by not identifying a table in between the two table groups.
Each vertical group is separately sent to this second stage. As
an example, Fig. 1 would send three separate images into the
second network.

The columns are concatenated into groups, in a similar
manner to the rows. The scaling that converted the group of
rows into the square, shown in Fig. 2, is inverted and applied

to the X coordinates. Additionally, the scaling used to convert
the original image into the resized image, shown in Fig. 1, is
inverted and applied to the Y coordinates. Doing this gives
accurate coordinates of each table’s start and end position
regarding the original image. Fig. 3 shows a cutout of the
first table, using the found X and Y coordinates.

The CNN by itself tends to over propose table regions
because the existence of lines on the page are very influential
to the model. This causes the CNN to predict areas around
these lines as tables whether these lines correspond to tables
or not. This will cause the extraction portion of the algorithm
to take more time as it has to run OCR on these extra regions
to figure out they are not tables. To counteract this, a YOLO
[8] network is trained on table images to see if this more
popular object detection method could outperform the CNN.
YOLO typically identifies all the right table regions, but the
bounding boxes that it proposes do not cover the entire table.
For this reason, an ensemble of the CNN and YOLO is
used to create an optimal identification model. Both networks
first independently propose table regions. When these models
propose regions that overlap, the union of these two regions
is taken. This ensures both that the final regions are likely
to contain tables and that the regions will likely contain the
entirety of the tables.

While this approach can perfectly identify tables in multiple
columns, there is an extremely rare case where two adjacent
tables in separate columns have vastly different heights. In this
case, extra data could be identified as a table. This rare issue
is rectified later because the proposed extraction method can
tolerate some extra area identified as a table.

IV. TABLE EXTRACTION

After all of the tables are identified, the extraction method
starts independently on each table. In order to process high
resolution images efficiently, a resized copy of each individual
table is created with a width of 800 pixels and a proportional
height. This copy is used for a majority of the cell identifi-
cation steps, however the original image is kept because it is
used later during OCR.

Several methods are used to identify and isolate the cells
within each table. The table extraction begins by identifying
the high-level, general structure of the table. It identifies the
vertical and horizontal lines, both visible and implied, that
correctly divide a majority of the cells. There are several ways
to locate this information within the tables. One approach is
to identify the visible lines separating various cells. Another
method is to look at the positions of the text within the tables
and extrapolate how the cells should be positioned in accor-
dance to each other. Tablext uses both of these approaches in
order to obtain the structure of the table. Afterwards, a neural
network is used to clean up any cells that do not conform to
the general structure. Fig. 4 shows a table that already went
through table identification. This will be used as an example
to explain the steps of the table extraction.

Fig. 1. (Table A) Each horizontal boxes represents a row where a table
is identified. The bottom group is highlighted with a thick box (red) for
clarification.

Fig. 2. (Table A) Vertical boxes represent every column where a table is
identified.

MCP3021

DS20001805C-page 4 ¤ 2003-2017 Microchip Technology Inc.

TEMPERATURE SPECIFICATIONS

Input Leakage Current ILI -1 — +1 µA VIN = VSS to VDD
Output Leakage Current ILO -1 — +1 µA VOUT = VSS to VDD
Pin Capacitance
(all inputs/outputs)

CIN,
COUT

— — 10 pF TA = 25°C, f = 1 MHz;
(Note 2)

Bus Capacitance CB — — 400 pF SDA drive low, 0.4V
Power Requirements
Operating Voltage VDD 2.7 — 5.5 V
Conversion Current IDD — 175 250 µA
Standby Current IDDS — 0.005 1 µA SDA, SCL = VDD
Active Bus Current IDDA — — 120 µA Note 4
Conversion Rate
Conversion Time tCONV — 8.96 — µs Note 5
Analog Input Acquisition Time tACQ — 1.12 — µs Note 5
Sample Rate fSAMP — — 22.3 ksps fSCL = 400 kHz (Note 1)

Electrical Characteristics: Unless otherwise noted, all parameters apply at VDD = 5.0V, VSS = GND.

Parameter Sym. Min. Typ. Max. Units Conditions

Temperature Ranges
Operating Temperature Range TA -40 — +125 °C
Extended Temperature Range TA -40 — +125 °C
Storage Temperature Range TA -65 — +150 °C
Thermal Package Resistances
Thermal Resistance, SOT-23 TJA — 256 — °C/W

DC ELECTRICAL SPECIFICATIONS (CONTINUED)
Electrical Characteristics: Unless otherwise noted, all parameters apply at VDD = 5.0V, VSS = GND, RPU = 2 k:
TA = -40°C to +85°C, I2C Fast Mode Timing: fSCL = 400 kHz (Note 3).

Parameter Sym. Min. Typ. Max. Units Conditions

Note 1: Sample time is the time between conversions after the address byte has been sent to the converter. Refer
to Figure 5-6.

2: This parameter is periodically sampled and not 100% tested.
3: RPU = Pull-up resistor on SDA and SCL.
4: SDA and SCL = VSS to VDD at 400 kHz.
5: tACQ and tCONV are dependent on internal oscillator timing. See Figure 5-5 and Figure 5-6 in relation to

SCL.

Fig. 3. (Table A) A cutout of the original table using the coordinates identified.

Fig. 4. (Table B) A table sample identified by the proposed table identification
method.

A. Real Line Identification

Vertical and horizontal lines are commonly used to separate
and organize the contents of tables. To identify these lines, the
second-derivative gradient field is approximated for the gray-
scale image of the table. Assuming that f(x, y) represents
the brightness of a pixel at the location (x, y). The values of
∂2

∂x2 f(x, y) and ∂2

∂y2 f(x, y) are approximated for each pixel
by looking at their adjacent pixels and the gradients of them.
These gradients are then stored into separate matrices. Then a
3× 3 max pooling is independently applied to these matrices,
to account for noise in the image and imperfect lines. The max
pooling has a stride of 1 in both X and Y directions to retain
as much precision as possible when identifying the lines.

With this information, the vertical lines are found by search-
ing for vertical segments where all the pixels in the segment
have high ∂2

∂x2 f(x, y) values relative to the pixels in rest of the
image and similar ∂2

∂y2 f(x, y) values to one another. Similarly,
horizontal lines are found by searching for horizontal segments
where all the pixels in the segment have high ∂2

∂y2 f(x, y)
values relative to the pixels in rest of the image and similar
∂2

∂x2 f(x, y) values to one another.
The segment length has to be a small fraction of the table’s

height or width for the vertical and horizontal lines respec-
tively. However, once a line is found, that line is extended to
cover the entire width or height of the table. Identifying lines
in this way helps define the structure of the table, but some
cells that do not conform to the general format might be split
by lines that do not cover the entire width or height of the
table. This issue is solved later with a neural network that
stitches together improperly cut cells. Fig. 5 depicts a debug
image, created by the real line identification algorithm, that
shows the few real lines in dark blue. The rest of the lines
in this figure are created with another process that will be
explained in the following section.

B. Inferred Line Identification

Real line identification alone is sufficient for regular tables
that have all of their data properly split into cells with defined
borders. However, as Fig. 4 shows, many tables only have

Fig. 5. (Table B) Inferred lines shown with thick bright (yellow) lines and
real lines shown with thin dark (blue) lines.

Fig. 6. (Table C) Initial sparse table before inferred vertical lines. A red box
has been placed around the, difficult to handle, referenced sparse column for
clarity.

proper borders for some of the cells or do not have any well
defined lines at all. To correctly identify cells that real line
identification alone could not, Tablext uses the positions of
the data. Finding the locations of the data is trivial. All of
the high contrast pixels, not already identified as a real line,
belong to the data. With the locations of the data known,
Tablext attempts to segment the pieces of data into columns
and rows. To achieve this, Tablext creates straight lines that
do not intersect the data. These such lines will be referred to
“inferred lines” as the table requires these non-existent lines to
properly convey its information. Fig. 5 shows when all inferred
and real lines of Fig. 4 are drawn.

The task of finding inferred lines is made harder by the
existence of cells that do not conform to the general table’s
structure. In Fig. 4, multiple cells span two columns. If inferred
lines are defined as lines that do not overlap any pieces of data,
the columns underneath the cells that span multiple columns
would not be separated. In order to solve this issue, Tablext
starts by defining the term “threshold distance”.

For vertical lines, the threshold distance is the proportion
of the table’s height an inferred line must not touch any data
in order to be considered valid. If the table is dense, meaning
that most cells contain data, a small, static threshold distance
would produce accurate results. However if the table is sparse,
meaning that many cells do not contain data, this approach

Fig. 7. (Table C) Sparse table with initialized inferred vertical lines.

would not work. A small, static threshold distance would
combine adjacent empty cells, into wide inferred lines. Fig. 6
and Fig. 7 show the inferred vertical lines initialization. Fig. 7
illustrates that a few pieces of data within these columns or
rows could be overwritten by the inferred lines.

To accommodate both sparse and dense tables, the threshold
distance is adaptable. Algorithm 1 describes a simplified
procedure of acquiring the final inferred lines with a variable
threshold distance. In the algorithm, possible inferred lines
refers to inferred lines found at the given threshold distance,
∆ is a small learned constant, and number of groups refers
to the amount of separable groups of inferred lines that exist
within the possible inferred lines.

Algorithm 1: Setting the threshold distance
1: Variables: num group1, num group2, thresh-

old distance, temp lines
2: Output: final lines
3: Start:
4: threshold distance = 0.6; num group1 = 0;

final lines = [];
5: Loop:
6: temp lines = possible inferred lines;
7: num group2 = number of groups;
8: if num group2 ≥ num group1:
9: num group1 = num group2;

10: final lines = temp lines;
11: threshold distance += ∆;
12: go to Loop;
13: return final lines;

For a visual representation of this algorithm, images of this
process are produced by the code. Fig. 8 shows the final
output after applying this algorithm to the sparse table in
Fig. 7. At the start, the vertical inferred lines, represented as
black columns, completely cover the column beginning with
“Typ”. If the threshold distance was a low static number,
this column would be merged with one of its neighboring
columns. However, by using Algorithm 1, the lines, over
several iterations, split around the “Typ” column as shown
by Fig. 8.

During this process, every inferred line is assigned a
“quality score”. The quality score is the percentage of the
maximum possible line length that a particular inferred line

Fig. 8. (Table C) Sparse table with incremented inferred vertical lines.

covers without intersecting a piece of data. These quality
scores are used later for combining the various lines.

Inferred horizontal lines are created in a similar manner
as inferred vertical lines, except the threshold distance is a
percentage of the table’s width instead of the table’s height. To
better show this complete process, both vertical and horizontal
inferred line identification are used on Fig. 4. The resulting in-
ferred lines are used in conjunction with previously calculated
real lines to create the debug image shown in Fig. 5.

C. Final Structural Line Identification

Now that all of the real and inferred lines have been located,
Tablext begins to group all of this information so that it has
a high level understanding of the particular table’s layout.
Inferred lines are combined with their neighbors, if they are
within close proximity, to create different groups of inferred
lines. If a real line is within a group of inferred lines, or it
is only several pixels away from a group, only the real line
is kept. The real lines are considered to be the ground truth,
so nearby inferred line groups are redundant. If there are no
real lines near an inferred line group, the quality scores of
the inferred lines are used to determine which line in the
group is the best line to split the cells. A Simple Moving
Average (SMA) of the quality scores, looking both forwards
and backwards two pixels, is calculated for each group. Lines
that do not have a valid inferred line are given a zero quality
score. Using an SMA helps reduce the impact of noise in
the image, while also fixing corner cases where a single pixel
thick inferred line might sneak between characters in a piece
of data.

The index that contains the maximum SMA value is taken
for each inferred group which is not near a real line. Then,
the locations of the real lines and the maximum SMA indexes
are concatenated together. These combined lines are the final
lines for the high level table identification. This process is
completed independently for both the vertical and horizontal
lines. Fig. 9 is created by applying this process on the lines
found in Fig. 5.

D. Neural Network Correction

Since the final lines describe the regular structure of the
table, cells that do not conform to that structure might be
sliced into two or more pieces. Fig. 9 shows several cells that
are cut in half by the final lines. In order to fix this issue, a
CNN is used to recombine improperly sliced cells. A simpler

Fig. 9. (Table B) The merged lines (thin green) created by the final line
identification. Vertically split cells highlighted with thick boxes (red).

solution would be to check if any high contrast pixels exist
underneath an inferred line. However, this method has several
problems. One issue is if characters in a cell are spaced out
significantly, a vertical inferred line could exist in between
two characters and the cell’s contents would be split into two
cells.

While these concerns can be partially alleviated by looking
a certain distance to the left and right for high contrast pixels,
this introduces a new risk of merging cells unnecessarily.
Additionally, merging with that method can be triggered by
noise in the tables. For these reasons, a neural network has
been created to handle the possible merging of cells.

The CNN takes in two adjacent cells as inputs and resizes
them to be 100×100 pixels each. Testing shows that this size
allows the OCR to accurately extract data. The cells are resized
independently so that the line that divides them is always in the
center of the two cells. If instead, the cells are merged and then
resized, the CNN would need to predict which data belongs to
which cell or it would require the location of the dividing line
as an additional input. These approaches result in significantly
lower accuracy and higher complexity, respectively.

The proposed CNN outputs the chance that these two cells
are merged and if one or both of the cells are empty. By
using a neural network to compute this information, the effect
of imperfections in the image can be greatly reduced. It is
important to know which cells are empty to avoid running
OCR on those cells. This increases performance, as the OCR
is the most time consuming step. The following sections talk
about the implementation details of the CNN, the training data,
and the post CNN concatenation.

1) CNN Construction: The two cells that have been sent
into the CNN are merged and rotated so that the potential
improper line separating these two be always a vertical line
in the center of the merged image. The merged image, as the
CNN sees it, always has a dimension of 200× 100.

The CNN has three branches that are concatenated into
a dense network. The first branch has three 2D convolution

Fig. 10. (Table B) The table after the CNN merged problematic cells. Rows
kept are separated for accurate OCR.

layers with 16 filters with a size of 3×3, each layer is directly
followed by a max pooling layer of size 2× 2. This branch’s
main purpose is to give low fidelity information around the
possibly improper line that splits the cells, but it also helps
identify which cells contain data.

The second branch begins with an asymmetric average
pooling layer of size 1 × 100. The output of this layer has
the dimension of 200 × 1. This layer is followed by five 1D
convolution layers with four filters each with a size of 3. The
average pooling gives a good noise resistant indication if any
data exists within the particular columns. This information
helps identify the existence of data within one or both of the
cells, but also helps confirm the presence of an improper split
of the two cells.

The third and final branch does not take in the full merged
image like the first two, instead it takes in the centermost 20×
100 pixels. The exclusive purpose of this branch is to identify
an improper splitting of the cells. Intuitively, the pixels where
the cells are merged and the surrounding pixels contain the
most crucial information regarding whether the cells should
be merged. More complex neural network layers are used in
this branch due to the importance of the information and the
limited amount of inputs. Five convolutions layers, each with
64 filters of size 3× 3, are stacked upon one another.

All of these branches are individually passed through a
dropout layer with a 20% dropout rate before they are flattened
and concatenated. The concatenated data is sent into a dense
layer of size 256, which is followed by another dropout layer,
with a dropout rate of 50% and another dense layer of equal
size. This second dense layer is then connected to the final
output which contains 3 nodes. The first two nodes signify if
the two cells contain data and the third node is high when two
cells should be merged. The first dropout layers help guide
the network away from relying purely on a single branch.
Additionally, all of the dropout layers help avoid overfitting
that would otherwise be present due to the limited amount of
training data.

Fig. 11. (Table B) Tablext output of the table in Fig. 4, in CSV format. Thick boxes (red) show the horizontally merged cells. Cells with multiple rows are
kept separated for readability.

2) CNN Training: To train this CNN, a dataset that in-
cludes over 1000 tables from various domains is procured
and manually annotated. The ground truth of every table’s
location, along with its respective cells’ locations, is stored
within Extensible Markup Language (XML) files. To translate
this dataset into useful data for training purposes, Tablext’s
line identification techniques are used to split up the cells.
All possible pairs of adjacent cells are then merged and these
merged cells are used as the training data.

To create correct labels for training, the cells’ locations are
used. If a cell that contains data, according to the XML data,
exists on either half of the merged cell, the respective half is
considered to have data. When the XML data signifies that a
single cell covers some part of both halves of the merged cell,
the label for concatenation is high.

3) Post CNN Concatenation: The outputs of the CNN fill
in matrices that record which cells should be merged and
which cells contain data. Multiple cells in both the vertical
and horizontal directions can be combined, if necessary, into
a single large merged cell. Fig. 10 is a debug image that shows
this result. Cells with multiple independent horizontal lines are
not combined at this stage, so that the OCR is fed a single
line of data for having a higher accuracy. These horizontal
lines can be merged later to allow for a more concise table,
or left separated to better represent a table’s proportions. With
the cells properly defined, the data is almost ready for OCR.
However, the pixel resolution used by the table extractor, 800
pixels, is generally not sufficient to obtain accurate results
from OCR. To address this problem, the lines defining the cell
boundaries are scaled and used to cut cells into the original
image.

E. OCR

All the non-empty, individual cells are sent to Tesseract,
an open-source OCR tool. The returned text is then stored in
a Column Separated Values (CSV) format with the location
provided by Tablext. The output is shown in Fig. 11. All the
data within an extended cell is placed within a single cell
in the CSV. To allow for accurate data interpretation, all of
the merged cells point back to that original data by using the
keyword “EXTEND” and a directional arrow. These cells are

emphasized with boxes in Fig. 11. For clarity, cells that take
up multiple horizontal lines are not merged in the CSV.

V. EVALUATION

Unlike Tablext, most state-of-the art table extraction papers
do not have their code available for download. However,
both DeepDeSRT [26] and TableNet [27] have tested their
design on the ICDAR 2013 table competition dataset [28]. To
compare Tablext quantitatively to these works, Tablext is also
tested against this dataset. Additionally, Tablext’s extraction
capability is compared against the popular, open-source, PDF
extractor Tabula [29] on a manually procured diverse dataset
with over 100 tables. Although table identification is not the
focus of this paper, the proposed method produces high quality
results, while only using a small fraction of the total runtime.

A. Table identification results

The table identifier is tested on a dataset with over 400
tables from various domains. This dataset includes many
abstract tables without any lines that are much harder to
identify than most tables.

Let AP be the area predicted in an image and AL be the
true occupied area. Precision and recall, for an image, can
be calculated by precision = AP∩AL

AP and recall = AP∩AL
AL .

The results of the custom CNN, the YOLO model, and a
combination of the custom CNN and YOLO model have been
summarized in Table II. After averaging the precision and
recall across the dataset, with each image weighted equally,
final results of 86% and 87% are achieved for precision and
recall respectively for the combined model.

Although the YOLO only model achieves higher precision,
the higher recall of the combination of the custom CNN and
YOLO is preferable since it is better to over propose regions
rather than to miss any tables. This is because regions that
are not tables can be discarded later in the extraction process
while completely missed tables cannot be recovered.

B. Table extraction result comparison

1) ICDAR comparision: Both DeepDeSRT and TableNet
use 34 randomly selected images from the ICDAR dataset for
their testing set. Then, they calculate precision and recall in

Fig. 12. (Table D) A text-based PDF page in our testbench with potentially
problematic columns highlighted with boxes (red).

TABLE II
TABLE IDENTIFICATION YOLO COMPARISON.

Recall Precision F1-Score
Custom CNN Only 0.5093 0.3802 0.4354

YOLO Only 0.8654 0.8989 0.8818
Custom CNN + YOLO 0.8716 0.8663 0.8689

the specific way mandated by ICDAR. For every cell within a
table, “adjacency relations” defined by ICDAR, are found with
its nearest horizontal and vertical neighbors. In order to get
precision and recall, the adjacency relations are compared with
the ground truth. Precision and recall are computed for each
document then the average is taken across all the documents.

To compare Tablext to the other papers, the same method
to calculate precision and recall is used. It should be noted
that both DeepDeSRT and TableNet fine tune their networks
by training on the remaining ICDAR dataset. In order to
prove its ability to extract data from tables in general formats,
Tablext does not use any ICDAR data to train with. The results
comparing the different methods can be found in Table III.
Tablext has both the highest precision and overall F1-Score
out of the methods.

2) Diverse Dataset comparison: Without the source code
for DeepDeSRT or TableNet, Tablext cannot compare to them
qualitatively or quantitatively on a large diverse dataset. There-
fore, a comparison is made with the popular PDF extractor
Tabula. Tabula can only extract non-scanned, text-based PDFs.
So a testbench, that exclusively contains text-based PDFs, is
created by randomly selecting over 100 tables within PDFs
from various domains. Tabula is given the PDF pages with the
text and meta-information, while Tablext is given a scanned
image of each PDF page. Fig. 12 is an example of one such
page within our testbench.

Fig. 12 is extracted by both Tablext and Tabula. With
this input, Fig. 13 and Fig. 14 respectively show Tablext’s

TABLE III
ICDAR DATA EXTRACTION RESULTS COMPARISON. BOTH

DEEPDESRT AND TABLENET ARE TRAINED ON A SUBSET OF
ICDAR DATASET WHILE TABLEXT DOES NOT USE ANY ICDAR
DATA TO TRAIN WITH WHICH PROVES TABLEXT’S ABILITY TO

EXTRACT DATA FROM TABLES IN GENERAL FORMATS.

Work Recall Precision F1-Score
Tablext 0.9091 0.9221 0.9156

DeepDeSRT 0.8736 0.9593 0.9144
TableNet 0.9001 0.9307 0.9151

TABLE IV
DIVERSE DATA EXTRACTION RESULTS COMPARISON.

Work Recall Precision F1-Score
Tablext 0.9192 0.9437 0.9313
Tabula 0.7110 0.734 0.7223

and Tabula’s final CSV output. Both have a high accuracy
when reproducing the cells’ contents, though Tabula is simply
reading text provided to it, while Tablext is using OCR. One
issue with the Tablext output is that Tesseract appears to
not recognize the plus-minus character. Tabula also did not
perfectly print the data within the cells, despite reading straight
from the PDF. The minus character could not be recognized
by Tabula. This problem appears because this PDF is using an
abnormal character instead of the standard ASCII symbol.

Several severe structural errors appear in Tabula’s output
and these errors have been highlighted in Fig. 14. Looking
back at the original image in Fig. 12, it becomes clear what
caused these errors. The cells “A Grade” and “B Grade”
overlap both the columns beginning with “Typ” and “Max”.
Errors like this are common for conventional text-based ex-
tractors [30]. Tablext meanwhile, with its dynamic threshold
ratio, easily separates these two columns then merges the split
“A Grade” and “B Grade” cells back into a single cell.

The highlighted cells in Fig. 14 emphasize the importance
of accurate cell location identification. Even with clever post-
processing, it would be impossible to tell which column the
merged cells with a single piece of data belong to. For

Fig. 13. (Table D) Tablext’s final output in CSV format. Boxes (red) are
showing the correct handling of problematic cells.

Fig. 14. (Table D) Tabula’s final output in CSV format. Boxes (red) are
showing the incorrect handling of problematic cells

instance, looking at the row beginning with “Transition noise”,
there is no way to know if the data belongs to the “Typ” or
“Max” column.

The results comparing the two methods can be found in
Table IV. Tablext’s ability to handle complex tables greatly
surpasses Tabula’s, despite all of the extra meta-information
that Tabula has access to.

VI. CONCLUSION

This paper introduces a novel, general approach for table
extraction. By utilizing both deep learning and computer vision
techniques, the neural network can focus its attention on
complex problems, while allowing more conventional meth-
ods to handle the simpler tasks. This focus allows Tablext
to beat competing state-of-the-art neural-network-based table
extraction methods as well as a popular open-source tool that
requires table meta-data.

ACKNOWLEDGEMENT

This material is based on research sponsored by Air Force
Research Laboratory (AFRL) and Defense Advanced Research
Projects Agency (DARPA) under agreement number FA8650-
18-2-7844. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon.

REFERENCES

[1] A. Tengli, Y. Yang, and N. L. Ma, “Learning table extraction from
examples,” in Proceedings of the 20th international conference on
Computational Linguistics. Association for Computational Linguistics,
2004, p. 987.

[2] E. Oro and M. Ruffolo, “Trex: An approach for recognizing and
extracting tables from pdf documents,” in 2009 10th International
Conference on Document Analysis and Recognition. IEEE, 2009, pp.
906–910.

[3] D. Pinto, A. McCallum, X. Wei, and W. B. Croft, “Table extraction
using conditional random fields,” in Proceedings of the 26th annual
international ACM SIGIR conference on Research and development in
informaion retrieval, 2003, pp. 235–242.

[4] E. Belval, “pdf2image: Open source scientific tools for python,” https:
//github.com/Belval/pdf2image, last accessed 2019-07-28.

[5] “Grabzit: Open source scientific tools for python,” https://github.com/
GrabzIt/grabzit, last accessed 2019-07-29.

[6] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object recognition with
gradient-based learning,” in Shape, contour and grouping in computer
vision. Springer, 1999, pp. 319–345.

[7] M. Fayazi, Z. Colter, E. Afshari, and R. Dreslinski, “Applications of
artificial intelligence on the modeling and optimization for analog and
mixed-signal circuits: A review,” IEEE Transactions on Circuits and
Systems I: Regular Papers, 2021.

[8] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

[9] R. S. et al.,, “Tesseract ocr: Open source scientific tools for python,”
https://github.com/UB-Mannheim/tesseract, last accessed 2019-07-29.

[10] F. Cesarini, S. Marinai, L. Sarti, and G. Soda, “Trainable table location in
document images,” in Object recognition supported by user interaction
for service robots, vol. 3. IEEE, 2002, pp. 236–240.

[11] M. Fan and D. S. Kim, “Table region detection on large-scale pdf files
without labeled data,” CoRR, abs/1506.08891, 2015.

[12] B. Gatos, D. Danatsas, I. Pratikakis, and S. J. Perantonis, “Automatic
table detection in document images,” in International Conference on
Pattern Recognition and Image Analysis. Springer, 2005, pp. 609–618.

[13] A. Gilani, S. R. Qasim, I. Malik, and F. Shafait, “Table detection
using deep learning,” in 2017 14th IAPR International Conference on
Document Analysis and Recognition (ICDAR), vol. 1. IEEE, 2017, pp.
771–776.

[14] L. Hao, L. Gao, X. Yi, and Z. Tang, “A table detection method for
pdf documents based on convolutional neural networks,” in 2016 12th
IAPR Workshop on Document Analysis Systems (DAS). IEEE, 2016,
pp. 287–292.

[15] T. Kasar, P. Barlas, S. Adam, C. Chatelain, and T. Paquet, “Learning
to detect tables in scanned document images using line information,”
in 2013 12th International Conference on Document Analysis and
Recognition. IEEE, 2013, pp. 1185–1189.

[16] F. Shafait and R. Smith, “Table detection in heterogeneous documents,”
in Proceedings of the 9th IAPR International Workshop on Document
Analysis Systems, 2010, pp. 65–72.

[17] M. O. Perez-Arriaga, T. Estrada, and S. Abad-Mota, “Tao: system for
table detection and extraction from pdf documents,” in The Twenty-Ninth
International Flairs Conference, 2016.

[18] T. Hassan and R. Baumgartner, “Table recognition and understanding
from pdf files,” in Ninth International Conference on Document Analysis
and Recognition (ICDAR 2007), vol. 2. IEEE, 2007, pp. 1143–1147.

[19] B. Yildiz, K. Kaiser, and S. Miksch, “pdf2table: A method to extract
table information from pdf files,” in IICAI, 2005, pp. 1773–1785.

[20] Y. Liu, K. Bai, P. Mitra, and C. Giles, “Searching for tables in digital
documents,” in Ninth International Conference on Document Analysis
and Recognition (ICDAR 2007), vol. 2. IEEE, 2007, pp. 934–938.

[21] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”
ACM computing surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[22] K. Nishida, K. Sadamitsu, R. Higashinaka, and Y. Matsuo, “Understand-
ing the semantic structures of tables with a hybrid deep neural network
architecture,” in Thirty-First AAAI Conference on Artificial Intelligence,
2017.

[23] E. Koci, M. Thiele, W. Lehner, and O. Romero, “Table recognition in
spreadsheets via a graph representation,” in 2018 13th IAPR Interna-
tional Workshop on Document Analysis Systems (DAS), 2018, pp. 139–
144.

[24] A. Puha, O. Rinciog, and V. Posea, “Enhancing open data knowledge
by extracting tabular data from text images,” in DATA, 2018.

[25] S. R. Qasim, H. Mahmood, and F. Shafait, “Rethinking table recognition
using graph neural networks,” in 2019 International Conference on
Document Analysis and Recognition (ICDAR). IEEE, 2019, pp. 142–
147.

[26] S. Schreiber, S. Agne, I. Wolf, A. Dengel, and S. Ahmed, “Deepdesrt:
Deep learning for detection and structure recognition of tables in
document images,” in 2017 14th IAPR International Conference on
Document Analysis and Recognition (ICDAR), vol. 1. IEEE, 2017,
pp. 1162–1167.

[27] S. S. Paliwal, D. Vishwanath, R. Rahul, M. Sharma, and L. Vig,
“Tablenet: Deep learning model for end-to-end table detection and
tabular data extraction from scanned document images,” in 2019 Inter-
national Conference on Document Analysis and Recognition (ICDAR).
IEEE, 2019, pp. 128–133.

[28] M. Göbel, T. Hassan, E. Oro, and G. Orsi, “Icdar 2013 table competi-
tion,” in 2013 12th International Conference on Document Analysis and
Recognition, 2013, pp. 1449–1453.

https://github.com/Belval/pdf2image
https://github.com/Belval/pdf2image
https://github.com/GrabzIt/grabzit
https://github.com/GrabzIt/grabzit
https://github.com/UB-Mannheim/tesseract

[29] M. Aristarán, T. Mike, J. B. Merrill, J. Das, D. Frackman, and
T. Swicegood, “Tabula: Open source scientific tools for python,” https:
//github.com/tabulapdf/tabula, last accessed 2019-07-29.

[30] R. Dreslinski et al., “Fully-autonomous soc synthesis using customizable
cell-based synthesizable analog circuits,” University of Michigan Ann
Arbor United States, Tech. Rep., 2019.

https://github.com/tabulapdf/tabula
https://github.com/tabulapdf/tabula

	Introduction
	Related Work
	Table Location Identification
	Table Extraction
	Real Line Identification
	Inferred Line Identification
	Final Structural Line Identification
	Neural Network Correction
	CNN Construction
	CNN Training
	Post CNN Concatenation

	OCR

	Evaluation
	Table identification results
	Table extraction result comparison
	ICDAR comparision
	Diverse Dataset comparison

	Conclusion
	References

