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Abstract—Recently, there have been many studies attempting
to take advantage of advancements in Artificial Intelligence (AI)
in Analog and Mixed-Signal (AMS) circuit design. Automated
circuit sizing optimization and improving the accuracy of per-
formance models are the two predominant uses of AI in AMS
circuit design. This paper first introduces and explains the basic
concepts in AI especially the ones that are more suitable to
this application. Next, it surveys some recent studies of various
AI techniques for AMS circuit design. Then, it discusses the
main approaches as well as the pros and cons of each method.
Finally, it gives meaningful insights about the current challenges
and open issues, as well as recommends approaches for specific
applications.

Index Terms—Analog and mixed-signal circuits, artificial in-
telligence, circuit optimization automation, circuit performance
modeling.

I. INTRODUCTION

CUSTOM Analog and Mixed-Signal (AMS) circuits have
broad applications in wireless communication, biosen-

sors, etc. [1]–[4]. Traditionally, the design parameters of AMS
circuits e.g. transistor size and biasing are calculated manually
by designers [5]. However, the complexity of physical models
and severe process variations with downscaling of technology
node for large AMS circuits leads to inefficiency and hardship
of robust manual design especially in corner extraction [6],
[7]. Moreover, generating post-layout simulation is very time-
consuming. Therefore because of the growing demand of
high performance, low power and time-to-market Integrated
Circuits (ICs), there is a crucial need of autonomous AMS
circuit design. This would catch up with the digital circuit
designs, which have been automated for a long time [8], [9].

Automating AMS circuit design procedure has always been
challenging as it tightly ties to human expertise and in-
tuition to make a relationship between various parameters
and performances. Given the main circuit topology, in order
to satisfy the desired specifications, the circuit parameters
should be chosen optimally [10]. So, this circuit optimization
problem, i.e. determining the circuit parameter values to meet
the required specifications, can be solved using mathematical
optimization methods. As a result, a Computer-Aided Design
(CAD) tool would be able to automate this circuit sizing

All authors are with the Department of Electrical and Computer
Science, University of Michigan, Ann Arbor, MI, 48109 USA (e-
mail: fayazi@umich.edu, zcolter@umich.edu, afshari@umich.edu, rdres-
lin@umich.edu).

optimization procedure leveraging techniques such as gradient-
based, convex optimization, and evolutionary algorithms [11],
[12]

The main approaches for AMS circuit parameter search
automation are deterministic techniques (e.g. Linear Pro-
gramming (LP), convex Nonlinear Programming (NLP), and
nonconvex Mixed-Integer Nonlinear Programming (MINLP)
[13]), particle swarm intelligence, simulated annealing, evo-
lutionary algorithm, and Bayesian Optimization (BO) [14]–
[17]. Although each of these methods has its own advantages,
they have some drawbacks as well. For instance, PSO suffers
from a low convergence rate and BO is subjected to having
a very long runtime. Furthermore, annealing can readily fall
into the local minimum. Also, evolutionary algorithms are
stochastic and lack reproducibility. Artificial Neural Networks
(ANNs) are another promising method for AMS circuit design
automation which can address the aforementioned difficulties
[18].

Additionally, artificial intelligence algorithms along with
other methods are suitable for yield estimation and making
high-order models which can be used instead of complex phys-
ical models with a less computational cost for AMS circuit
design [19]–[21]. Also, Deep Reinforcement Learning (DRL)
can solve many human decision making problems in general
[22]. Furthermore, AI can be leveraged to replace lengthy and
costly measurements by a set of simpler measurements to ease
the AMS production test [23]. The main AI challenge to have
an accurate model is providing robust and enough simulation
data for training sets due to essential high-dimensional varia-
tion space to model the process variation and costly simulation
in a growing AMS system size. Also, providing Intellectual
Properties (IPs) from different IC companies [18], [24], [25] is
another barrier of dataset collection. Automatically optimized
AMS circuit sizing is another application of AI. In such
approaches, Electronic Design Automation (EDA) tools try
combinations of design variables to find a sizing that meets
the desired specifications instead of the traditional circuit
sizing approach i.e. going from the target specification to
the corresponding device sizes [26]. After automation of each
AMS block sizing, automation of whole System on Chip (SoC)
is doable with integrating these pieces [27], [28].

The layout is another important part of AMS design and
there have been many recent studies on applications of AI
in AMS layout design that have been reviewed thoroughly in
[29], [30]. However, this paper focuses on recent applications
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of AI methods in modeling and optimization of AMS circuit
design. After introducing the main concepts and techniques of
AI in Section II, the state-of-the-art techniques for using AI in
automated AMS circuit sizing optimization and performance
modeling are explained, respectively in Sections III and IV.
Next, Section V discusses the main challenges and gives some
ideas about future works. Finally, the paper is concluded in
Section VI.

II. ARTIFICIAL INTELLIGENCE & MACHINE LEARNING
MAIN CONCEPTS AND TECHNIQUES

A. General Terminology

Artificial intelligence and Machine Learning (ML) are terms
used to describe algorithms that can learn patterns without
direct human involvement. Generally, these algorithms are
trained, meaning that they learn patterns from some dataset,
then they are used for inference. There are several common
ways to train a machine learning model e.g. supervised,
unsupervised, semi-supervised, and Reinforcement Learning
(RL).

1) Supervised learning: Supervised learning is when the
correct corresponding outputs, called labels, are known for
every input [31]. This is helpful to train a model to recognize
specific useful patterns. Supervised learning allows models to
achieve high accuracy in many tasks, such as classification
or regression, when enough data is present [32]. The largest
drawback of supervised learning is that it either requires the
training dataset to already have properly labeled data or it
requires a significant amount of work to create and maintain a
properly labeled dataset which is both time-consuming and
is hard to achieve. Additionally, the designers need to be
careful when choosing their training data. If this subset is
not representative of the entire set, the model may output
inconstant results during inference.

2) Unsupervised learning: In contrast to supervised learn-
ing, unsupervised learning does not require labeled data. This
means that less effort is required to obtain proper data, but
in exchange, it can be harder to train the model to create
the desired output. A powerful approach with unsupervised
learning is to cluster the data [33]. Clustering can lead to
finding similarities between the features of various inputs to
help classification or data extraction.

3) Semi-supervised learning: Semi-supervised learning, as
the name implies, is a hybrid between the previous two
types of learning [33]. Generally, this approach first uses
unsupervised learning on a large set of unlabeled data to learn
robust patterns. Then, using the labeled data, the model is
trained to use those learned patterns to output relevant data.
This approach, if implemented correctly, can achieve the best
of both worlds. It does not need a vast set of labeled data, yet
the training can still be directed. However, additional effort is
needed to make sure that both parts of the network properly
converge.

4) Reinforcement learning: Reinforcement learning is a
version of machine learning where a software agent, a program
with the ability to learn, is rewarded for certain actions [34].
Even though RL models are trained for a specific set of

specifications and their reuse is not guaranteed, a major benefit
of them over supervised learning is that optimal solutions to
problems do not need to be known beforehand. For instance,
Wang et al. [18] use RL to optimize the circuit parameters.
They “reward” the model when it outputs a circuit with the
required specifications and low power consumption and area.

5) AI model verification and performance evaluation:
During training a model, the designer has to be wary of
underfitting and overfitting. Underfitting happens when the
model has not recognized all of the general patterns that
exist in the training data. To fix this issue, the model can be
trained longer on the data in order to reach a local minimum
or even the global minimum. However, if the model is too
simple to learn all of the patterns, then further training will
not be beneficial. In this case, a larger or more complex model
is needed in order to get better results. On the other hand,
overfitting occurs when the model learns to identify non-
generalizable patterns within the training data. For instance,
a model that detects human faces would be overfitting if it
could only detect faces indoors. This might happen because
all of the training data with faces came from pictures taken
indoors. Adding more diverse training data can help reduce
this problem. Overfitting occurs more readily in larger, more
complex models since they can identify and use more features
compared to simpler models. To combat this, several tricks
have been proposed to reduce this issue in various types of
models, but there is no perfect solution to stop overfitting [35].

Once a model has been created and trained, it is necessary
to verify that it predicts the output with sufficient accuracy. To
verify the model, data not used in the training process is used.
Testing the model on the training data only shows how well
the model learns that particular data and it would be unknown
if the model could accurately predict a new input. When a
model is continuously modified, in order to achieve a high
accuracy or a lower computation requirement, a designer may
withhold another set of data for further testing. This can be
done to guarantee that an increase or decrease in performance
is not due to the model’s hyper-parameters overfitting.

Precision, recall, accuracy, and F1-Score are measures used
to evaluate the performance of a classification model. For
instance, if a classification model tries to recognize “good” and
“bad” candidate circuit designs [22], true positives (TP) denote
correctly identified “good” designs. While, false positives (FP)
result from an incorrect classification of a circuit as a “good”
design. Similarly, true negatives (TN) refer to correctly diag-
nosed ”bad” designs and false negatives (FN) represent ”good”
circuits incorrectly recognized as ”bad” designs. Precision,
recall, accuracy, and F1-Score can be calculated by TP

TP+FP ,
TP

TP+FN , TP+TN
TP+FP+TN+FN , and 2∗Precision∗Recall

Precision+Recall respectively.

K-fold cross-validation is an even more rigorous process to
verify a model, when compared to the traditional testing and
training split [36]. In this process, the input is split into K
different subsets. The model is run K times, with every time
using a different subset for the verification. In every run, all
the data except for that one slice is used to train the model.
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Fig. 1. An image showing a Support Vector Machine (SVM) separate two
different classes (red dots and green starts) with two different features [38].
The support vectors are represented by the ”+” symbol in this diagram.
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Fig. 2. An image showing an Artificial Neural Network (ANN) with several
intermediate, hidden, layers [40]. If x and w are the activations and the
learned weight of the previous layer that are connected to a node, the output
(activation) of that node would be a = f(

∑k
j=1 wjxj + b). In this equation,

b is a learned constant bias and f is a non-linear function e.g. ReLU, sigmoid,
etc.

B. Common AI & ML Models

1) Support vector machines: Many different types of artifi-
cial intelligence and machine learning models have been tested
over the years. One such model, Support Vector Machine
(SVM) is a supervised learning model that is mostly used
for classification or regression problems. For classification,
SVMs operate by finding an optimal hyperplane to separate
the features of two or more classes [37]. An SVM can be seen
separating two classes in Fig. 1. SVMs are used for regression
by including a distance measure in the loss function. SVMs
are widely praised at the start of the twenty-first century for
their resilience to overfitting when compared to other ML
techniques such as neural networks [37]. Today SVM models
can still achieve state-of-the-art performance in certain circuit
design applications such as a seizure detection sensor [20].

2) Artificial neural networks: Another type of ML model,
artificial neural networks, are designed to imitate how real
neurons transmit and interpret data [39]. Groups of neurons,
or nodes, that are not connected with one another are called
layers. Multiple layers can be used to allow complex non-
linear patterns to be learned as shown in Fig. 2. The output or
activation, of a single neuron in an ANN can be represented
with the following equation.

a = f(

k∑
j=1

wjxj + b),

where k is the number of activations from the previous layer
that are connected with this node. Each of these activations, x,
is multiplied by a unique learned weight w, then all of these
products are summed together. Next, a learned constant bias b
is added to the sum before the result is sent into a non-linear
function f . Many non-linear functions can be used including
the Rectified Linear Unit (ReLU), the sigmoid function, and
the hyperbolic tangent. ANNs have broad applications in NLP,
computer architecture and circuit design [41], [42].

3) Deep neural networks: With the advent of more compu-
tational power and efficient training methods, neural networks
began to get larger and deeper. A new term was coined
for networks with tens to hundreds of layers, Deep Neural
Networks (DNN). The layers in between the input and output
layers are called hidden layers because their values are hidden
to the outside world. This leads to DNNs being treated as
black boxes where inputs are converted into corresponding
outputs [43].

The standard implementation of a DNN has dense connec-
tions between the layers, meaning that every node in every
layer connects to every node in the next layer. However, other
implementations exist with various benefits. One problem
with traditional dense DNNs is how quickly the memory
requirement increases with the model size. Because of this,
the maximum size of a traditional DNN is still limited [43].
A simple method to reduce the memory requirement would be
to connect nodes in layer K to only a subset of the nodes in
layer K + 1.

4) Convolutional neural networks: Another method is to
instead have a moving window of weights. In this approach, a
small group of weights moves across the entire image, often
with a stride of 1. Several of these groups, which are called
filters, are used in order to identify many different types of
features. This approach is known as a Convolutional Neural
Network (CNN) [44].

CNNs have multiple layers to break down complex patterns
into more manageable ones. A pooling layer is often used in
conjunction with a CNN. Pooling layers condense a model-
defined amount of nearby data into a representation that
requires less space. A common type of pooling is max-pooling.
In this type, only the maximum value within each subset of
data is propagated to later layers. Pooling layers help reduce
computation complexity as well as help reduce overfitting [44].

Despite the wide applications of CNNs, there are many
problems that deal with data that are in a non-Euclidean
structure such as chemical molecules, social networks, and
functional networks of the brain. However, CNNs inputs are
required to be tensor e.g. images that are modeled as 2-D struc-
ture [45]. On the other hand, the non-Euclidean data structures
can be represented as graphs. In a Graph Convolutional Neural
Networks (GCNN), a node is represented by aggregating its
own features and the features of nodes that are connected to
it [46]. Settaluri et al. and Kunal et al. [47], [48] use GCNN
to identify sub-circuit structures from the schematic netlist.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS 4

Generally, CNNs work best on patterns that can be found
in isolated parts of the input. For this reason, CNNs are often
used for image processing [44]. But because of how efficiently
CNNs use memory, they have been exploited for many other
types of tasks, such as text classification and digital signal
processing, which traditionally were run on Recurrent Neural
Networks (RNN).

5) Recurrent neural networks: RNNs are a subset of neural
networks where some data altered by the network is fed back
into it. Traditionally, these networks have worked best with
data that has a clear sequential order. For instance, RNNs are
very effective when the inputs are time dependant, like speech
recognition [49]. By using feedback, RNNs can recognize
patterns over long distances or periods of time.

RNNs are generally more computationally expensive than
feedforward networks. This leads to RNNs typically having
less individual nodes than traditional networks. Additionally,
RNNs do not work well with traditional dropout layers, layers
that ignore certain nodes during training to force the usage
of multiple features. For these reasons, they have a high
probability of overfitting. Fig. 3 summarizes different types
of neural networks. Fig. 3 d) shows an RNN. In this diagram,
the inputs, Xt ∀t ∈ {1, . . . , T}, are separated by time instead
of space like the other models. Whh, bh is the computed value
that is propagated back into the network when there is a new
input Xt. For every input there is a corresponding output, Ot
∀t ∈ {1, . . . , T}, that is computed from the current input and
the propagated data [50].

C. Other AI Models

With the popularity of artificial intelligence many unique
and specialized approaches have been proposed. Some of these
approaches simply learn in different ways from more common
approaches, while some of the other approaches are made for
specific types of datasets.

If a dataset is sparse, meaning that most of the features are
near zero, a Sparse Regression (SR) method can be used to
achieve greater efficiency [52]. A sparse regression method
can exploit the sparse dataset by optimizing the model to be
more efficient with the use of sparse polynomials.

Another type of artificial intelligence is a family of ap-
proaches called population-based algorithms. These algorithms
take a group of solutions made by candidates, agents that
search for solutions, and stores them. In these algorithms,
multiple agents interact and trace out multiple paths to get a
population of solutions [53]. Many algorithms are population-
based such as Particle Swarm Optimization (PSO) and Evolu-
tionary Algorithms (EA).

Evolutionary algorithms take inspiration from the natural
process of evolution. Like most population-based algorithms,
EAs have a population where every individual represents a
search point in the space of potential solutions. They also keep
track of the currently known rules about their environment
[12]. The members of the population undergo three different
types of modifications: cross-over, mutation, and selection.
These steps are repeated until a sufficient solution is reached.
Cross-over is when members of the population combine with

others and mutation is when members have random changes.
While selection is the culling of a percentage of the population.
Similar to natural evolution, the selection process is based on
the members’ quality score or fitness [54]. EAs can cover a
vast search space when enough members of the population are
active.

III. ANALOG AND MIXED-SIGNAL CIRCUIT OPTIMIZATION

A. Overview and Main Concepts

AMS circuit designers first, decide the circuit topology
[55]–[57] then optimize the corresponding design parameters
e.g. component sizing, and finally generate the layout [58].
A significant amount of effort has been put into optimizing
components sizing because of the large effect that it has on a
circuit’s performance and power usage.

1) Problem formulation: The AMS design circuit sizing
optimization problem can be formulated as follows.

minimize f1(x), . . . , fm(x)

subject to: ci(x) < 0,∀i ∈ {1, . . . , Nc},
(1)

where x ∈ Rd denotes d design variables e.g. width and
length of MOS transistors, and fl(x) ∀l ∈ {1, . . . ,m} are
the Figure of Merit (FOM) of the AMS circuits. Each FOM
can be deterministic or noisy depending on the design spec-
ification. Nc represents the total number of constraints and
ci(x) corresponds to the i-th constraint e.g. xj ∈ [p−j , p

+
j ].

When m 6= 1, usually there is no best design as objectives
can be conflicting and it is unlikely to optimize all of them
simultaneously. The goal then would be concluding the best
trade-off between a set of solutions.

2) Classical approaches: The classical AMS circuit opti-
mization approaches can be classified into the model-based
(e.g. geometric programming, SVM, ANN, Gaussian Process
(GP), etc. [59]–[70]) and simulation-based methods (e.g. Sim-
ulated Annealing (SA), PSO, EA, and gradient-based local
search with Multiple Starting Points (MSP) which has a better
convergence rate than the others [15], [71]–[81]). Analytical
manually derived or regression models with simulated data are
leveraged to build global models of the FOM in the model-
based approaches, while the optimization is driven directly by
the circuit simulations for simulation-based methods.

The model reusability and low computational cost, espe-
cially in the case of using Electro-Magnetic (EM) components,
are the main advantages of model-based approaches. However,
the accuracy of these models are not usually high as the
number of design parameters are usually large and object and
constraint functions are highly nonlinear [17].

Recently, to combat these drawbacks, hybrid methods that
combine both models have been proposed for analog circuits
[82], [83] as well as mm-wave and Radio Frequency (RF)
circuits [84]–[87]. These hybrid methods run simulations
during the optimization procedure to update online models
gradually, instead of using pre-built offline models [88]–[90].
Initially, the model is constructed by the data gathered from
random sampling and it guides the selection of the next point
towards more optimized performance.
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Fig. 3. Different types of neural networks: a) Artificial Neural Network (ANN) [40], b) Deep Neural Network (DNN) [40], c) Convolutional Neural Network
(CNN) [51], d) Recurrent Neural Networks (RNN): Whh, bh are the computed back-propagated values. Xt are the inputs and Ot are the corresponding
outputs ∀t ∈ {1, . . . , T} [50].

B. Bayesian-Based Approaches

The Bayesian optimization method after initial sampling,
constructs the probabilistic surrogate model of the objective
function, which is refined incrementally based on the new
data that optimizes the acquisition function e.g. Expected
Improvement (EI), Lower Confidence Bound (LCB), Proba-
bility of Improvement (PI) [91]–[93]. The model uncertainty
is evaluated to balance the exploration, i.e. the next point
tends to explore the unknown regions with high uncertainty
in the surrogate model, and exploitation, i.e. the next point
tends to be the optimum with high probability of predic-
tion by the surrogate model, during the optimization [94].
The de facto surrogate model used in BO is the Gaussian
process model [95], [96] which reduces the required num-
ber of circuit simulations and has closed-forms for both its
model prediction and model uncertainty. In a GP, letting
f : X → R be a black-box indicating the performance
function, for any finite samples {x1, . . . , xn} ∈ χn, the
vector [f(x1), . . . , f(xn)]T follows joint multivariate Gaussian

distribution i.e.

f(x1)
...

f(xn)

 ∼ N(µ,K), where µ is an n× 1

mean vector and K is an n×n covariance matrix. The GP can
be fully characterized by its mean function, m(x), and its co-
variance function k(x1, x2) i.e. µi = m(xi),Kij = k(xi, xj)
for all i, j ∈ {1, . . . , n}. Kij denotes the i−th row j−th
column covariance matrix element.

Let training set D = {X, y}, where X = {x1, . . . , xN},
y = {f(x1), . . . , f(xN )}, m = [m(x1), . . . ,m(xN )]T , given
a new point, x∗,{

k(x∗, X) = [k(x∗, x1), . . . , k(x∗, xN )],
k(X,x∗) = k(x∗, X)T .

Moreover, the function value, y∗ = f(x∗), and y follow the
joint Gaussian distribution. The mean µy∗|y and the variance

σ2
y∗|y can be viewed as the prediction, and the confidence of

the prediction respectively.{
µy∗|y = m(x∗) + k(x∗, X)K−1N (y −m),
σ2
y∗|y = k(x∗, x∗)− k(x∗, X)K−1N k(X,x∗).

(2)

A Gaussian noise ε ∼ N(0, σ2
n) should be added to f(x) in

order to avoid overfitting of the simulation model where σ2
n

is the variance of the Gaussian noise. If we take noise into
consideration, Equation (2) can be rewritten as:{

µy∗|y = m(x∗) + k(x∗, X)(KN + σ2
nI)−1(y −m),

σ2
y∗|y = k(x∗, x∗)− k(x∗, X)(KN + σ2

nI)−1k(X,x∗).

Acquisition functions optimally balance the exploration and
exploitation. The improvement of y can be formulated as

I(y, τ) =

{
τ − y y < τ
0 otherwise, (3)

where τ is the minimal value of found f(x). In the GP model,
the expectation of improvement can be written as:

EI(x) = E[I(y, τ)]

=
∫ +∞
−∞ p(y|D, θ)dy

= (τ − µ(x))Φ( τ−µ(x)σ(x) ) + σ(x)φ( τ−µ(x)σ(x) ),

where D denotes the given training set, θ is the vector of
hyper-parameters, Φ(.) is the Cumulative Distribution Func-
tion (CDF) of the standard normal distribution, and φ(.) is
the Probability Distribution Function (PDF) of the standard
normal distribution.

Lyu et al. [17] propose Weighted EI (WEI) based [97], [98]
BO approach for automated multi-objective AMS circuit sizing
which can deal with constraints as well. It leverages a GP
as its online surrogate model in contrast with the previous
AMS circuit optimization methods which consider GP as
either offline models or as assistance for EA. This means the
surrogate model is refined incrementally when new data are
observed. The reason that EI is used as the acquisition function
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is that it can deal with constraints as well as the fact that it
has a closed-form.

ωEI(x) = E[Ic(x)] = EI(x)

Nc∏
i=1

PFi(x),

where PFi(x) shows the probability that each constraint,
ci(x), be satisfied e.g. ci(x) < 0. Moreover, they propose an
algorithm for handling multi objective optimization problems.

First, using weighted min-max formulation [99],
Lyu et al. [17] translate Equation (1) to Equation (4).

minimize max
j∈{1,...,m}

ωj(fj(x)− f∗j )

subject to: ci(x) < 0,∀i ∈ {1, . . . , Nc},
(4)

where f∗j denotes the minimum of the j-th objective function.
For this purpose, Equation (4) is transformed into multi
single-objective optimization problems and then, the Bayesian
approach can be applied for solving each. However, max-
min objective function that is described in Equation (4) is
not appropriate for the GP model and causes requiring more
training set. For solving this issue, they transform Equation (4)
to

minimize λ
subject to: ωj(fj(x)− f∗j ) < λ,∀j ∈ {1, . . . ,m},

ci(x) < 0,∀i ∈ {1, . . . , Nc},

by leveraging a new variable λ. For evaluating their approach,
they optimize a variety of circuits and EM components such
as 60GHz inductor, a power amplifier, a charge pump, etc. As
an example, they solve the following optimization problem for
the power amplifier.

minimize output efficiency
subject to: output power > 23 dBm,

total harmonic distortion < 12.65 dB.

Although the standard BO has shown to be promising for the
automated AMS circuit design, because of its sequentiality, it
chooses only one point at each iteration by optimizing the ac-
quisition function. Lyu et al. [5] leverage the idea of selecting
a batch of points at each iteration [100]–[102] and propose
a parallelized BO algorithm via Multi-objective Acquisition
Ensemble (MACE) to accelerate the optimization. MACE
chooses the best trade-off between acquisition functions by
selecting multiple of them and capturing the Pareto front of
these functions after the GP model is updated at each iteration.
They test their approach by applying it to an operational
amplifier, a class-E power amplifier, etc. For instance, they
define a FOM = −3×power added efficiency−output power
and optimize it.

Yield determines the robustness of a design under process
and condition variation [103]. SRAMs need extremely high
yield, e.g. around 10−7 failure rate, which makes the conven-
tional yield estimation techniques such as Monte Carlo-based
and corner-based approaches [104], [105] computationally
expensive. Yield is inherently a stochastic function which
makes it impossible to be accessed directly, estimated by yield
analysis tools, or optimized by many efficient optimization

DC gain

Power

GBW

etc.

Circuit 

performance

Design

variables

Length

Width

etc.

a) b)

Optimization

Tentative

design

Design

variables
Circuit 

performance

Circuit simulator

Fig. 4. The different methods of AMS circuit sizing: a) Conventional
optimization-based sizing (inverse approach) i.e. from design variables to
circuit performances in an iterative loop; b) Artificial Neural Networks
(ANNs) (direct approach) i.e. from circuit performances to design variables
[26].

algorithms such as gradient-based techniques. All conven-
tional yield optimization approaches reduce the computational
costs instead of decreasing the number of yield estimations.
Wang et al. [106] apply BO optimization using the GP model
with an EI acquisition function to reduce the number of yield
estimations invoking during the optimization procedure. They
test their approach on a few analog circuits such as a low
noise amplifier, and a comparator as well as an SRAM, etc.
It is worth mentioning that an accurate SRAM yield estimator
should consider the impacts of peripherals such as the sense
amplifier into account as the SRAM performance is related to
them in addition to the local process and mismatch variations.

C. Multiple Starting Point Approach

MSP optimization generally begins by randomly selecting
large amounts of starting points that cover the design space.
This first step is called the global phase. Afterward, in the local
phase, an efficient local search such as Sequential Quadratic
Programming (SQP) [107] is applied to each starting point
found in the global phase.

MSP can successfully approximate the global optimum by
choosing the best local optimum. Yang et al. [108] improve
the inherent large MSP computation time by proposing smart-
MSP. A heuristic-biased starting point selection is imple-
mented in the global phase to find the starting points that
are likely to be close to optimums instead of using ran-
domly selected points. Furthermore, an intermediate phase
is added where sparse regression is applied to predict the
circuit performances around the starting points. Moreover, in
the local phase, model optimums are used as the starting
points for SQP and coupled with Probabilistic-TABU (P-
TABU) approach [109], [110] to improve the efficiency of
local searches. For evaluating their approach, they optimize
a variety of circuits such as an amplifier, a charge pump, a
Voltage Control Oscillator (VCO), etc. in different technology
nodes.

D. Neural Network Based Approaches

In the conventional circuit sizing approaches, designers or
EDA tools try to find the circuit parameters in an iterative loop
while using a simulator in each iteration to evaluate the design.
In order to avoid time-consuming simulations, several studies
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[111]–[113] have used ANN models to replace and comple-
ment the SPICE simulator with an approximated model. They
implement the simulator in later stages just to maintain the
accuracy. Even though using an ANN instead of a simulator
saves time considerably, the training set of such an ANN
model should cover the entire design space which consumes
a lot of resources. On the other hand, Lourenço et al. [26],
as it is illustrated in Fig. 4, train an ANN model to directly
size and optimize the circuit for given specifications instead
of invoking the simulator many times in an iterative loop
to achieve the optimized sizing. Although they use circuit
sizing solutions from previous optimizations as the training
set, they are able to optimize circuit sizes for specifications
outside the ones in the training dataset. To have a better NN
model, Lourenço et al. [26] take into account the following
considerations for selecting the ANN hyperparameters e.g.
number of layers, number of nodes in each layer, etc. First, in
order to have a rich encoding, the number of nodes in each
layer is increased in the first layers then is decreased toward
the output layer. Second, to find a less complicated model, it
is better to design it for having a low error model during the
training and compensate the overfitting using L2 regularization
[114]. Third, for achieving a model which gives the best cross-
validation score, it is necessary to explore the hyperparameter
space. Two general approaches are grid search which considers
all combinations of the specified hyperparameters and random
search which takes samples from a hyperparameter space with
a specified distribution [115]. In their ANN approach, the
circuit specifications are given to input nodes and output nodes
determine the circuit sizing.

Although it successfully predicts the analog IC sizing for
the target performance, its cost for providing training data is
still too high, which makes it impractical. Pan et al. [116]
propose a performance exploration method to tackle the ma-
jor evolutionary-based approaches shortcoming, low accuracy,
while significantly speeding up the runtime. For this purpose,
they apply Bayesian regression to better model the device
variables and use an SVM to increase the model performance
space. In other words, they replace the performance evaluation
process with SVM predictions. However, they leverage super-
vised learning which requires a large dataset. This dataset is
difficult to obtain because most analog IPs are not available to
the public. In order to evaluate their approach, they compare
the specifications of an operational amplifier and a radio-
frequency distributed amplifier e.g. voltage gain, DC power,
bandwidth, etc. optimized by their method with [117], [118].

Wang et al. [18] leverage RL which learns to efficiently
optimize the transistor parameters automatically without any
prior knowledge about circuit design rules. In each iteration,
after observations, including monitoring DC operating points,
AC magnitude, and phase responses, they change the circuit
parameters based on the simulator results. Then, a reward
would be received to optimize the desired FOM. They compare
their approach for optimizing an amplifier and meet the
specifications constraints such as the specified bandwidth,
gain, power, area, etc. with other methods such as a human
expert, [5], etc. The results show that the other compared
methods either are not able to meet the constraints at the same

runtime or they have a less efficient design in comparison to
[18]. Hakhamaneshi et al. [22] find the optimal size of analog
circuits by predicting the feasibility of a design using a DNN
classifier. They propose a framework that in each iteration
utilizes an evolutionary algorithm to create new candidate
designs and leverage a DNN classifier to recognize “bad” new
offspring by comparing with a reference design that is chosen
from the previous “good” population. By passing just these
high quality samples to a layout-aware design methodology
such as BAG [119], it achieves more than a 200×runtime
improvement in comparison to just an evaluation method
without the DNN classifier.

E. Other Approaches & Comparison

The computational complexity of the GP with pre-defined
stationary kernel is O(N3) and O(N2) for training and
prediction respectively where N is the number of training data.
Zhang et al. [8] propose a neural-network-based BO approach
which extracts “good” features and then define the GP using
the extracted features [120], [121]. As neural networks are
appropriate for providing high-quality feature extraction and
the GP kernel function is similar to an inner product of
nonlinear feature maps, they automatically learn a kernel
function of the GP and reduce the computational complexity to
O(N) and a constant for training and prediction respectively.

Zhang et al. [20] relax the performance required, e.g.
noise, INL, power of the frontend Analog-to-Digital Converter
(ADC) and analog multiplier, in a sensor for seizure detection
using an SVM classifier. The error-aware model is a model
that its training data comes from a non-ideal system. Despite
the presence of significant errors because of nonideality, error-
aware models can achieve high accuracy in classifications
[122]. In this regard, instead of having high power, high
accuracy ADC for data conversion, the data conversion’s errors
are compensated by a simple non-ideal ADC followed by an
appropriately trained error-aware SVM model classifier. It is
worth mentioning that the SVM model is preloaded offline to
the chip from the trained data.

Table I summarizes the different methods of AI-based AMS
circuit sizing optimization approaches.

IV. ANALOG AND MIXED-SIGNAL CIRCUIT
PERFORMANCE MODELING

A. Overview and Main Concepts

The main goal of performance modeling is finding f as a
function of device-level variations, x, and device-level oper-
ation point to approximate the Performance of Interest (PoI).
The PoI is represented with the variable y. An example of
device-level variations is ∆VTH

. DC bias voltage and voltage
gain of an operational amplifier are examples of device-level
operations and a performance model respectively. In other
words, performance modeling tries to find f which establishes
a mapping from x to y such that:

y ≈ f(x) = α.g(x) (5)

Equation (5) shows an inner product of
α = [α1, α2, . . . , αM ], the model coefficients vector,
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TABLE I
EXAMPLES OF AMS CIRCUIT SIZING OPTIMIZATION METHODS.†

Reference AI Method Surrogate model &
acquisition function

Applications & advantages Test results

# design
variables

Compared
algorithms

Advantage

[17] BO Online GP & WEI Handling multi-objective optimizations
and optimization constraints

3− 36 [87], [75],
[72], [71], [15]

Higher accuracy,
fewer training number

[5] BO GP & multi-functions Multi-objective acquisition function
selection, parallelized BO

10− 12 [123], [124], [100] Higher accuracy,
fastest convergence rate

[106] BO GP & EI Yield optimization 6− 24 [125], [103] Higher accuracy,
fewer training number

[8] BO & DNN GP & WEI Low computation complexity,
handling optimization constraints

10− 36 [17], [72], [87] Higher accuracy,
fewer training number

[22] EA & DNN - High sample efficiency 21 EA Much faster runtime
[108] MSP - Significantly fast 11− 36 [78], [80], [90],

[72], [15], [71]
Fewer training number,
faster runtime

[116] BR & SVM - Short runtime - [117], [118] Higher accuracy,
much faster runtime

[18] RL - High sample efficiency - Human expert, [5]
random search

Higher accuracy

[20] SVM - Relaxing the circuit performance
for an ADC

- - -

† Abbreviation list: BO: Bayesian Optimization, GP: Gaussian Process, WEI: Weighted Expected Improvement, EI: Expected Improvement,
DNN: Deep Neural Network, EA: Evolutionary Algorithms, MSP: Multiple Starting Points, BR: Bayesian Regression, RL: Reinforcement
Learning, SVM: Support Vector Machine, ADC: Analog-to-Digital Converter.
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Fig. 5. The CL-BMF procedure [126]. After fitting the less com-
plex model, f1, using a small number of labeled samples col-
lected by simulations i.e. [(x1, z1, y1), . . . , (xR, zR, yR)], a set of
pseudo samples i.e. [(xR+1, zR+1, f1(zR+1)), . . . , (xN , zN , f1(zN ))]
are generated with almost no cost. The more complex model, f ,
is trained then with all the labeled and the pseudo samples i.e.
[(x1, z1, y1), . . . , (xR, zR, yR), (xR+1, zR+1, f1(zR+1)), . . . ,
(xN , zN , f1(zN ))].

and g(x) = [g1(x), g2(x), . . . , gM (x)]T , the basis functions
vector. Linear and quadratic polynomials are examples of
these basis functions. Finding the model coefficients is the
only way for solving Equation (5). One way for doing so is
the traditional least-squares fitting approach which collects
N sampling points of x and y where y = [y1, y2, . . . , yk]T .
Then, it solves min

α
‖y −G × αT ‖22. G is a N ×M matrix

where M denotes the total number of basis functions and
‖ � ‖22 stands for the L2-norm.

Providing a large number of samples in today’s high
dimensional variation space to fit a complex AMS circuit
model is time-consuming and expensive especially when it
includes post-layout simulation. Several studies [127]–[133]
have proposed to tackle this issue. These approaches leverage
the Coefficient Side Information (CSI) which is an extra prior

knowledge related to the model coefficients. An example of
such knowledge is the fact that the coefficients are sparse,
meaning that most of them are close to zero [128]–[131],
[133]. A model that captures this inherent sparsity avoids over-
fitting to noisy data in addition to decreasing the computational
cost.

In order to make sparse regression more tractable, two
broad approaches, relaxation-based and heuristics, have been
proposed. Relaxation-based approaches usually use Lasso and
ridge regression [134], [135] while a Laplace and a Gaussian
distributions have been applied prior on the model coef-
ficients respectively. The main disadvantages of relaxation-
based methods are penalizing model coefficients with high
values, not being able to identify a subset of important
variables i.e. true variable selection, and not directly capturing
uncertainty. On the other hand, while heuristics approaches
directly perform variable selection and clearly identify the
important features, they may be unstable when the number
of labeled samples is very small and some information can be
lost during the feature selection process [21]. Although sparse
regression has a lot of practical applications, it still requires a
large training set for a typical high-dimensional AMS circuit
performance model.

Afcan et al. [29] review the old studies of applying
machine learning on analog circuit modeling which mainly
leverage SVM and ANN. However, recent studies focus more
on Bayesian model fusion and semi-supervised learning ap-
proaches.

B. Bayesian Model Fusion Based Approaches
There are several studies which have applied Bayesian

Model Fusion (BMF) [24], [126], [136]–[141] to accurately
estimate the parametric and the statistical distribution of circuit
performance for both pre-silicon verification and post-silicon
validation. Wang et al. [138] leverage the idea of BMF for
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performance modeling. The fusion in BMF means passing
information as the prior knowledge from a simple early-stage
model, e.g. schematic-level, to a late-stage performance model,
e.g. post-layout, to reduce the expensive late-stage modeling
cost. Hence, BMF after approximating the early-stage perfor-
mance model using simulated data, generates sample points for
the late-stage model for the same performance using this early-
stage model. This prior knowledge is then combined with very
few late-stage sampling points to solve the late-stage model
coefficients via Bayesian inference [142]. As a result, only a
small number of sampling points are required to fit a high-
dimensional late-stage model.

In addition to AMS performance modeling, BMF has ap-
plications on other AMS design aspects. In order to have
a reliable circuit, yield should be estimated and optimized
accurately by designers. The conventional yield estimation
approaches e.g. Monte Carlo based and corner-based ap-
proaches require collecting many simulation samples to accu-
rately estimate the performance which makes them extremely
computationally expensive. Li et al. [136] propose BMF for
AMS circuit parametric yield estimation. Fang et al. [140]
use BMF to estimate Bit Error Rate (BER) in high-speed I/O
links. While all the aforementioned studies consider modeling
a single performance, Huang et al. [139] leverage BMF for
approximating multiple correlated performances assuming the
probability distribution of these metrics is jointly Gaussian.

Wang et al. [126] use the concept of co-learning [143]
and propose Co-Learning BMF (CL-BMF) to even reduce the
training set in the early-stage model. They pass the knowledge
from a less complex model which predicts the performance of
a circuit with a small trained dataset to a more complex model
that predicts the performance of the same circuit. Using this
prior knowledge, the complex model skips the initial steps of
training which saves time. In other words, the more complex
model reuses the information generated accurately from the
less complex one for its training set instead of relying on the
expensive training data only. Fig. 5 depicts CL-BMF steps
where z is a vector of performance metrics that 1) is low-
dimensional, inexpensive to simulate, 2) does not share any
common element with x, and 3) y ≈ f1(z) such that f1 is a
less complex model and needs smaller training set than f in
Equation (5).

C. Semi Supervised Learning Approaches

All the aforementioned approaches are classified as su-
pervised learning as they use only labeled training sets. To
reduce the amount of work required for gathering the labeled
data, several studies have shifted gears toward semi-supervised
learning [21], [24], [52], [141]. This is used because less
labeled data is required to build accurate models. Alaw-
ieh et al. [24], [141] propose Bayesian co-learning hierarchical
performance modeling. It is called as such because they
partition the entire circuit into multiple blocks, e.g. Low Noise
Amplifier (LNA), mixer, etc. for a transceiver circuit and use
the concept of co-learning. In this semi-supervised learning
approach, the block-level performance can be modeled with
low computational cost. After partitioning the circuit, they

Ωx Ωz

Update Ωz 

and Θx

Update Ωx 

and Θz

Build f(x) 

using Ωx 

Build f1(z) 

using Ωz 

Exit if criterion
is met, else 

Evaluate Θx  

using f(x)   

Evaluate Θz  

using f1(z)   
ΩzΩx

Choose yU,zChoose yU,x

Fig. 6. The semi-supervised co-learning framework [52]. Ω and Θ denote
training and unlabeled dataset respectively, while yU,x and yU,z represent
pseudo labels for unlabeled samples Θx and Θz respectively. After building
f and f1 models from the training set, highly-confident pseudo samples are
chosen from the unlabeled dataset. These highly-confident pseudo samples
are used to update the training set of the other model at the next iteration.

map block-level performance metrics, e.g. gain of an LNA,
to the PoI at the circuit level using a low-dimensional model.
They train both block-level and mapping models on a small
number of labeled samples and these models generate pseudo
samples of un-labeled data at almost zero cost. Finally, the
high-dimensional circuit level model is fitted by combining
the aforementioned low-dimensional block-level and mapping
models. This leverages both labeled and unlabeled data at a
very low cost. Although this approach remarkably reduces the
modeling cost, its application is limited to circuits where a
block-level partitioning is possible and intuitive.

Alawieh et al. [52] propose a semi-supervised co-learning-
based framework without any assumption about the AMS
circuit structure that leverages two views for each device
in the circuit. The device level variations e.g. ∆VTH

, and
independent random Process Variables (PV). They use a small
number of labeled samples to build an initial model for each
view. Then, at each iteration, highly-confident pseudo samples
which are generated by the other model are combined with
the small number of available labeled samples to update the
model. In other words, they build y ≈ f1(z) = β.c(z) model
along with y ≈ f(x) = α.g(x) where y is the PoI, x and
z are vectors containing the device level variations and PV
respectively. Then, to update, i.e. make a better estimation
of y ≈ f(x) = α.g(x), they use the combination of pseudo
samples generated by y ≈ f1(z) = β.c(z) and a small number
of labeled samples. This procedure is shown in Fig. 6.

D. Other Approaches & Comparison

Alawieh et al. [21] utilize Bayesian spike and slab fea-
ture selection techniques [144] to tackle relaxation-based and
heuristic methods in sparse regression. Spike and slab models
explicitly classify variables as important or non-important
independently of the feature selection mechanism. They build
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TABLE II
EXAMPLES OF AMS CIRCUIT MODELING METHODS. †

AI Method Prior knowledge source/ CSI Application Modeling Scope
Li et al. [136] BMF Schematic Yield estimation Post-layout

Wang et al. [138] BMF Schematc Performance modeling Post-layout
Wang et al. [126] CL-BMF Simple performance model Performance modeling Schematic

Alawieh et al. [141] Hierarchical Bayesian co-learning Block-level performance,
Sparsity

Performance modeling Schematic

Alawieh et al. [52] Semi-supervised co-learning Sparsity Performance modeling Schematic
Alawieh et al. [21] Bayesian spike & slab feature selection Spike and slab sparsity Performance modeling Schematic
† Abbreviation list: CSI: Coefficient Side Information, BMF: Bayesian Model Fusion, CL-BMF: Co-Learning Bayesian Model Fusion.

a hierarchical Bayesian framework to learn the importance
and coefficients values. Leveraging a Gibbs sampler [145]
enables directly capturing the estimation uncertainty, unlike
optimization-based methods.

Table II summarizes the different methods of AI-based AMS
circuit modeling methods.

V. FUTURE WORKS & CHALLENGES

As mentioned earlier, one of the main challenges of AMS
circuit automation is its dependency on circuit knowledge
expertise. This fact leads to shifting gears from viewing an
AMS circuit design problem as a physics-based question
to a math problem. Viewing an AMS circuit optimization
task as a mathematical optimization problem, especially an
AI problem, causes significant breakthroughs in the circuit
design automation. However, a lot of circuit insight, that
would help make a more efficient design, has been thrown
away. Leveraging this circuit knowledge helps in both circuit
optimization and performance modeling by either having a
more optimized algorithm or by decreasing the amount of
required training data.

While using a math model, instead of a highly complex
physical model, brings many advantages, some trade-offs are
made. The physical model still contains some information that
the pure math model has trouble identifying. Therefore having
a hybrid approach could potentially lead to better results. For
instance, having a very simple circuit design insight which
can be used as the design rule of thumbs can guide a better
search to find the most optimum design. Moreover, it can lead
to narrowing down the required training set and providing a
ground truth to evaluate the AI model.

As an example, consider the operational amplifier shown in
Fig. 7. Some of simple circuit design principles for this circuit
can be written as follows.

• In order to eliminate the common-mode gain, which
contradicts the purpose of having a differential circuit
we should have M1 = M2, M3 = M4, M5 = M6, and
M7 = M8.

• The gain is independent of M7 and M8 widths. Moreover,
in a well-designed circuit, M10 and M11 have a minimal
contribution to the amplifier gain as they work as a unity-
gain buffer.

• As far as the input-referred noise is concerned, M1, M2,
M7, and M8 are the main contributors. The remaining
devices have minimal to no effect.

• Unity-gain bandwidth, which denotes the maximum fre-
quency that the circuit can amplify a voltage, to a first-
order, equals gm1

C . This means that it is independent from
the other design parameters.

• Slew rate is a function of Vb1, M9, and C. The rest of
the circuit does not play a role.

These very simple principles can significantly reduce the de-
sign space in the circuit design automation. For example, if the
tool knows the slew rate is just a function of three parameters,
i.e. Vb1, M9, and C, its design space would shrink consider-
ably. Similarly, determining parameters that are independent
of gain, input-referred noise, and unity-gain bandwidth avoids
the necessity to optimize them, making the optimization model
more efficient. Moreover, as it is described in Section III and
IV, one technique that accelerates the searching procedure of
finding the optimum sizing or performance model with less
training set is the ability to guide the prediction procedure.
For instance, Hakhamaneshi et al. [22] detects “good” and
“bad” candidates to avoid processing all of them in order to
guide the learning procedure. A similar guidance mechanism
can be applied using these simple circuit design principles.

Training can be guided by simple circuit design principles
such as methods to avoid common-mode gain or which at-
tributes are proportional or inversely proportional to specifica-
tions. It is worth mentioning that applying these circuit design
principles is not in contradiction with the goal of artificial
intelligence and circuit design automation. These are just very
simple rules for a better guidance which significantly increases
the design procedure efficiency while the rest of the design
would be still using pure artificial intelligence and circuit
design automation techniques.

Moreover, even it is possible that the tool learns these circuit
principles which opens a new window for the future works. As
it is explained in Section IV, the idea of hierarchical learning,
e.g. [24], [141] can be very useful as it breaks down a large
design space into multiple smaller ones. In this case, at the first
level of the hierarchy, the tool can learn the effects of each
parameter or a group of parameters on every specification, then
in the second level of the hierarchy, the learned principles of
the first level can be leveraged to design the circuit.

The other perspective for the future works would be using
AI to improve the efficiency or relaxing the complexity of a
specific AMS circuit design. Most studies so far have focused
on either AMS circuit optimization or performance modeling
in general. However, narrowing down the scope for a specific
circuit type e.g. Phase Lock Loop (PLL), ADC, etc. and
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Fig. 7. An example of an operational amplifier.

then analyzing them can be more efficient. Moreover, each
of these circuits could benefit from AI in a unique way. For
example, in [20], applying AI to an ADC leads to a more
efficient and less complex design. Another application of AI
for AMS circuit design would be using a simple AI model
to detect and remove noise instead of a complex conventional
circuit. In order to automate this procedure, one of the main
challenges is first identifying and classifying different circuit
types from their netlist. This task would be an extrapolation
of what Liou et al. [146] propose for classifying sub-circuits
into digital and analog. This can be considered as one example
of AMS circuits self-healing. Using AI for automating 1)
diagnosis failure and degraded specifications, and 2) solving
them can address many circuit design challenges [147].

VI. CONCLUSION

This paper studies the recent applications of artificial intel-
ligence for AMS modeling and optimization. After reviewing
the main concepts and techniques of AI, previous works have
been divided into two main classes i.e. circuit optimization
and performance modeling. The main motivation of each work
along with their advantages and disadvantages are explained.
Finally, the current challenges of using AI in AMS circuit
design and future works have been discussed.
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