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Abstract—We present the world’s first autonomous mixed-
signal SoC framework, driven entirely by user constraints, along
with a suite of automated generators for analog blocks. The
process-agnostic framework takes high-level user intent as inputs
to generate optimized and fully verified analog blocks using a
cell-based design methodology.

Our approach is highly scalable and silicon-proven by an
SoC prototype which includes 2 PLLs, 3 LDOs, 1 SRAM,
and 2 temperature sensors fully integrated with a processor
in a 65nm CMOS process. The physical design of all blocks,
including analog, is achieved using optimized synthesis and APR
flows in commercially available tools. The framework is portable
across different processes and requires no-human-in-the-loop,
dramatically accelerating design time.

Index Terms—analog synthesis, analog generator, SoC gener-
ator

I. INTRODUCTION

There is an ever-growing need for automation in analog
circuit design, validation, and integration to meet modern-day
SoC requirements. Time-to-market constraints have become
tighter, design complexity has increased and more functional
blocks (in number and variety) are being integrated into SoCs.
These challenges often translate to increased manual engi-
neering efforts and non-recurring engineering (NRE) costs.
We present FASoC, an open-source1 framework for Fully-
Autonomous SoC design. Coupled with a suite of analog gen-
erators, FASoC can generate complete mixed-signal system-
on-chip (SoC) designs from user specifications. The frame-
work leverages differentiating techniques to automatically
synthesize correct-by-construction RTL descriptions for both
analog and digital circuits, enabling a technology-agnostic, no-
human-in-the-loop implementation flow.

Analog blocks like PLLs, LDOs, ADCs, and sensor inter-
faces are recasted as structures composed largely of digital
components while maintaining analog performance. They are
then expressed as synthesizable Verilog blocks composed of
digital standard cells and auxiliary cells (aux-cells). We em-
ploy novel techniques to automatically characterize aux-cells

1Source code for the framework and all generators developed as part of
this work can be downloaded from https://fasoc.engin.umich.edu

and develop models required for generating bespoke analog
blocks. The framework is portable across processes, EDA tools
and scalable in terms of analog performance, layout, and other
figures of merit.

The SoC generation tool translates user intent to low-level
specifications required by the analog generators. To achieve
full SoC integration, we leverage the IP-XACT [1] standard
and added vendor extensions to capture additional meta-data
from the generated blocks. This enables the composition
of vast numbers of digital and analog components into a
single correct-by-construction design. The fully composed
SoC design is finally realized by running the Verilog through
synthesis and automatic place-and-route (APR) tools to realize
full design automation.

II. FRAMEWORK ARCHITECTURE
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Fig. 1. FASoC Framework Overview

A high-level representation of the framework is shown in
Fig. 1. The Process setup and modeling phase is performed
once for the process design kit (PDK), and it involves the
generation of the aux-cells and models for the generator.
The SoC generation phase begins by translating high-level
user-intent into analog specifications that satisfy the user
constraints. The block generators are invoked as needed and
the SoC integrator stitches the composed design and walks
it through a synthesis and APR flow to create the final SoC
layout. The FASoC framework is tightly integrated with analog
generators for PLL, LDO, temperature sensor, and SRAM
blocks. Section III describes the circuit architecture adopted
by the different generators.978-1-7281-5409-1/20/$31.00 ©2020 IEEE
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FASoC employs a synthesizable cell-based approach for
generating analog blocks, significantly cutting back on manual
layout and verification efforts. Aux-cells are small analog
circuits that buttress the standard cell library and provide
specific analog functionality required by the generators. Each
cell is no larger than a D flip-flop and can be placed on
the standard cell rows. We simplify the creation of aux-
cells by using a suite of design templates in tandem with
PDK characterization scripts. The templates capture the aux-
cell’s precise circuit behavior without including any PDK-
specific information. The characterization scripts operate on
the PDK to derive technology-specific parameters required to
set knobs within the templates. Example parameters extracted
from the PDK include threshold voltage, metal parasitics,
MOSFET behavior, and Fan-out of 4. The knobs set within the
template include device type, transistor sizing, and other circuit
design options. The results from aux-cell generation include
the netlist, layout, timing library, and other files required to
proceed with conventional synthesis and APR. At present, the
layouts for the aux-cells are manually created, however, we
are currently evaluating several layout automation tools [2]–
[4] that are showing promising results. We find our template-
based methodology for creating aux-cells enhances process-
portability and significantly cuts down on design time. All of
the generators presented in this work leverage 8 aux-cells that
are depicted in Fig. 3.
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Fig. 3. Schematic for aux-cells used across PLL, LDO and temperature sensor
generators

The analog generators use models to predict performance
and select design parameters to create optimized block de-
signs that satisfy the input specifications. The models are
derived from the parameterized templates that incorporate
the aux-cells. The models for each generator vary and are

developed from a combination of mathematical equations,
machine learning, and design space exploration. The modeling
exercise is also performed once per PDK and the results are
saved into a model file. Sections III briefly describes the
modeling approach adopted by each generator integrated into
the framework.

B. SoC Generator

This stage begins with an iterative SoC solver to deter-
mine the optimal composite design description which is a
combination of blocks, analog specifications, and connections.
The strategy is guided by high-level user intent (i.e. target
application and power/area budgets), available analog block
generators, and a database of IPs. Analog generators are
invoked as necessary to generate bespoke blocks required to
satisfy the specifications within the composite design. The gen-
erator outputs include all artifacts required to push the block
through standard synthesis and APR tools. The outputs are
also cached in an IP database, allowing for block generation
to be skipped if a matching entry already exists. Entries in
the database can also be populated with 3rd party IPs such as
processors and other peripherals.

We adopt the IP-XACT format to describe the composite
design as well as the block designs stored in the database. We
use an extended format [5] to capture additional analog data,
simulation, and verification information.

The SoC integrator begins by stitching the composite design
together and translating it to its structural Verilog equivalent
that can be run through digital simulation tools. The structural
Verilog, along with all required artifacts from the database,
is then passed through the embedded tool flow to generate
the final verified GDS. This same flow is pervasive across
the framework and is also used by all generators (aux-cell,
model, and analog). Tools within the flow cover all aspects of
chip design including SPICE simulations, digital simulations,
synthesis, APR, DRC, LVS, and extraction.

III. ANALOG GENERATOR ARCHITECTURE
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Fig. 4. Analog generator flow

Synthesizable analog blocks were introduced a few decades
ago and have continued to evolve, closely matching the
performance obtainable by full custom designs. Prior works
have described techniques for synthesizing analog blocks for
UWB transmitters [6], PLLs [7], DACs [8], and other types
of analog blocks [9]–[11]. This approach lowers engineering
design costs, increases robustness, eases portability across
PDKs, and continues to show promise even at advanced
process nodes [12]–[14]. The analog generators developed as
part of this work can be likened to ASIC memory compilers



that take in a specification file and produce results in industry-
standard file formats, which can then be used in standard
synthesis and APR tools. Unlike typical memory compilers,
our generators are open-source, process agnostic, and share a
scalable framework amenable to different types of blocks. The
framework is modular and share a similar process as depicted
in Fig. 4. The full generation process is broken down into
three steps:
Verilog Generation: This step leverages models to produce a
synthesizable Verilog description of the block that conforms to
the input specifications. It also generates guidance information
in a vendor-agnostic format. The guidance includes synthesis
constraints, placement instructions, and other information that
may be required by the synthesis and/or APR tool to generate
blocks that achieve the desired performance. In addition, this
step also reports early estimates on performance and the
characteristics of the block to be created.
Macro Generation: The Verilog and guidance information
is passed to a digital flow to create macros that can be
embedded into larger SoC designs. The digital flow in this
step performs synthesis, APR, DRC, and LVS verification. The
digital flow includes an adapter to translate the guidance into
vendor-specific commands used in synthesis and APR. The
adapter abstraction allows us to (1) express additional design
intent without exposing protected vendor-specific commands
and (2) easily support multiple cad tools including open-source
alternatives [15]–[17]
Macro Validation: The last step is a comprehensive verifi-
cation and reporting of the generated block. The full circuit
goes through parasitic extraction, SPICE simulations, require-
ment checks and other verification to culminate in a detailed
datasheet report.

The generators can be invoked standalone, outside of the
full SoC generator flow. To simplify the system integration, we
adopt the AMBA™ APB protocol as the register interface to all
blocks. The following sub-sections briefly describe the analog
generators currently integrated into the FASoC framework.

A. PLL
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Fig. 5. DCO architecture indicating the aux-cells and designs parameters

The generated PLLs (Fig. 5) share the same base architec-
ture as ADPLL [18]. The phase difference of the reference
and output clocks are captured by the embedded time-to-
digital converter (TDC), while the digital filter calculates the
frequency control word for the digitally controlled oscillator
(DCO). The input specification to the generator defines the
nominal frequency range and in-band phase noise (PN). The
PLL generator uses a physics-based mathematical model [19]
for characterization. We first build a mathematical relationship
between DCO design parameters (number of aux-cells and
stages) and the required DCO specifications. Using simulation
results from a parametric sweep, we then find the effective
ratio of drive strength and capacitance for each aux-cell. This
ratio enables us to predict frequency and power results (fre-
quency range, frequency resolution, frequency gain factor, and
power consumption) given a set of input design parameters.

B. LDO
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Fig. 6. LDO architecture indicating the aux-cells and design parameters
derived from input specifications of VIN , Iload and desired transients

The generated LDOs (Fig. 6) share the same base ar-
chitecture as DLDO [20]. The LDO leverages an array of
small power transistors that operate as switches for power
management. Based on design requirements, the generator can
swap the clocked comparator with a synthesizable stochastic
flash ADC [21] to improve transient response. The input
specifications to the LDO generator are the VIN range, Iload,max
range, and the dropout voltage. The generator uses a poly-fit
model of the load current (Iload,max) performance with respect
to various combinations of aux-cell connections (connected in
parallel and for different VDD inputs) in both ON and OFF
states. We create the model by simulating various test circuits
after parasitic extraction.

C. Temperature Sensor

The generated sensors (Fig. 7) share the same base architec-
ture as [22]. The sensor relies on a temperature-sensitive ring
oscillator and stacked zero-VT devices for better line sensitiv-
ity. The input specifications include the temperature range and
optimization strategy, for either error or power. For a given
temperature range, the models attempt to select the optimal
circuit topology that minimizes error and/or performance. The
generator relies on a predictive Bayesian neural network model
to select design parameters that satisfy the input specifications.
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D. SRAM

The compiled SRAMs (Fig. 8) follow a standard multi-
bank memory architecture. Unlike other generators in the
framework, the memory generator uses a combination of
macros instead of aux-cells. The macros used include a 6T
bitcell, a row decoder, column mux, wordline driver, sense
amplifier, write driver, and a pre-charge circuit. The macros
are stitched together, bottom-up, to form a bank. The user
input specifications are capacity, word size, operating voltage,
and operating frequency. The generator adopts a hierarchical
meta compiler (HMC) [23] for technology characterization and
a hierarchical memory model to determine the optimal row
and column periphery. The model helps to select the SRAM
architecture and the leaf-level components that best satisfy the
user specifications while minimizing energy consumption and
delay.

IV. EVALUATION

The framework has been fully validated in a 65nm process.
Our evaluation begins with a focus on the individual genera-
tors. We present results that explore the design-space possible
with each generator and demonstrate full adherence to the user
input specification. We then present results from a prototype
SoC created using this framework.

A. Analog Generation Results

Fig. 9 presents the results of several PLLs generated using
different input specifications. It compares the input require-
ments against the simulated results after parasitic extraction.
The results show that the generated frequency ranges cover
that of the input requirements and with better phase noise

PLL 1

Fig. 9. Generated PLL designs for eight different input specifications. PLL1
is taped-out in the SoC prototype

levels. The highlighted PLL 8, corresponds to one of the PLLs
integrated into the SoC prototype and also shows measured
results that satisfy the given specifications
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Fig. 10 shows the spice simulation results of multiple LDO
designs after parasitic extraction. The graph shows the max-
imum load current at different input voltages corresponding
to the input parameter array size for a dropout voltage of
50mV. The highlighted measurements correspond to the input
specification for blocks integrated into the SoC prototype with
VIN = 1.3V and VREG = 1.2V .
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Fig. 11 presents the simulation results of various memory
capacities across a broad range of architectural options and op-
erating voltages (VDD). Each point on the curve corresponds
to an energy-delay pair specific to an architecture (rows,
columns, and banks) and VDD combination. The generator
selects the Pareto-optimal design that satisfies the user require-
ments. The highlighted point on the 16KB curve corresponds
to the memory block integrated into the SoC prototype.
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Fig. 12 shows the spice simulation results of multiple
temperature sensor designs after parasitic extraction.

B. Prototype Chip Results

The prototype SoC design (Fig. 13) includes 2 PLLs, 3
LDOs, 1 16KB SRAM, and 2 temperature sensors fully
integrated with an Arm® Cortex™-M0 in a 65nm CMOS
process. Using off-chip connections, we were successfully able
to power the entire SoC using one of the LDOs and clock it
using the PLLs while monitoring the temperature of the chip.

Fig. 9 presents results for 8 PLL designs generated from
different input specifications, including one from the proto-
type, and the results show output performances in-line with the
input specifications. The measured frequency is 10% slower
while the phase noise matches the simulation and specification
requirement. Table I summarizes the results for all PLLs in the
prototype.
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Fig. 13. Simplified block diagram (a) and annotated die photo (b) for the
65nm prototype SoC

TABLE I
PLL SIMULATION VS MEASUREMENT RESULTS

Output Specifications PLL1 PLL2
Sim Meas Sim Meas

Min Freq (MHz) 200 190 170 150
Max Freq (MHz) 1,060 920 1,080 930
Fnom (Mhz) 643 558 627 548
Power@Fnom (mW) 7.20 6.90 8.06 7.70
Area (µm2) 167,639.04 167,639.04

Table II shows the LDO Iload,max measurements closely
matching the input specification requirements. Compared to
the comparator-based architecture (LDO1/2), the ADC based
controller architecture (LDO3) achieves better transient per-
formance with a 10x and 7x improvement in settling time and
undershoot voltage respectively. The line and load regulation
values are measured at VIN=1.3V, VREF=1.2V, and Iload=10mA.
LDO3 load regulation is comparatively worse due to the high
gain of the ADC based controller. As we operate at lower VREF
and Iload conditions, the line/load regulation degrades for all
the LDOs because of the increase in relative switch strength.

The temperature sensor has an area of 2,620µm2. A 2-pt
calibration is performed at 0°C and 80°C. Measured results
show a sensing range between -20°C and 100°C with an
accuracy of ±4°C.

Fig. 14 summarizes the SRAM measured and simulated
performance across the input operating voltage range of 0.8V
to 1.2V. The SRAM peak performance is at 65MHz with
the power consumption of 2.09mW at 1.2V, which exceeds
the targeted frequency of 50MHz. The measured power for

TABLE II
LDO SIMULATION VS MEASUREMENT RESULTS @ 200MHZ CONTROL

CLOCK

Output Specifications LDO1 LDO2 LDO3
Sim Meas Sim Meas Sim Meas

Dropout Voltage (mV) 50 70 50 80 50 80
Iload,max (mA) 15.00 15.38 25.00 24.84 25.00 23.72
Settling Time - Ts (µs) 1.1 1.8 2.1 2.9 0.12 0.19
Max Undershoot (V) 0.35 0.98 0.57 0.98 0.38 0.14
Max Current Eff. (%) 94.2 96.4 95.7 94.5 81.9 74.0
Load Regulation (mV/mA) - -1.00 - -0.35 - -3.6
Line Regulation (V/V) - 0.180 - 0.004 - 0.950
Area (µm2) 17,318.56 31,187.56 127,163.56
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the SRAM also include the leakage power of the processor
and peripheral interface. The generated SRAM has an area of
0.68mm2 with the custom bitcell area occupying 0.4mm2.

V. CONCLUSION

We presented an autonomous framework that generates a
completely integrated SoC design based on user input spec-
ifications. This framework is PDK agnostic and allows for
faster turn-around times when building custom analog blocks
and integrating them into larger SoC designs. The framework
includes generators for PLL, LDO, temperature sensor and
SRAM blocks. The framework can easily be extended to
support more generators and different PDKs. We fabricated
an SoC prototype in a 65nm process and presented silicon
measurements to validate the framework’s accuracy. Our work
establishes a new milestone in creating a silicon compiler [24]
that further reduces the complexity of realizing modern SoCs
and cuts down on design time.
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