
Fully-Autonomous SoC Synthesis using

Customizable Cell-Based Synthesizable Analog

Circuits

Ronald Dreslinski, David Wentzloff,

Morteza Fayazi, Kyumin Kwon,

 David Blaauw, Dennis Sylvester

Department of Electrical Engineering

and Computer Science

University of Michigan

 Ann Arbor, MI, 48109

{rdreslin, wentzlof, fayazi, kmkwon,

blaauw, dmcs}@umich.edu

Benton Calhoun

Department of Electrical and Computer

Engineering

University of Virginia

Charlottesville, VA, 22904

bcalhoun@virginia.edu

Matteo Coltella, David Urquhart

Arm Holdings plc

Galway, Ireland

{matteo.coltella,

david.urquhart}@arm.com

Abstract—This paper will show developing a system-on-chip

(SoC) synthesis tool which is able to automatically generate a set

of analog blocks. Our approach leverages a differentiating

technology to automatically synthesize “correct-by-construction”

Verilog descriptions for both analog and digital circuits and

enable a portable, single pass implementation flow. The SoC

synthesis tool realizes analog circuits, including phase locked loops

(PLL), power management, analog to digital converters (ADC),

and sensor interfaces by recasting them as structures composed

largely of digital components while maintaining analog

performance. They are then expressed as synthesizable Verilog

blocks composed of digital standard cells augmented with a few

auxiliary cells generated with an automatic cell generation tool. By

expanding the IPXACT format and the Socrates tool from ARM,

we then enable composition of vast numbers of digital and analog

components into a single correct-by-construction design.

Keywords— Automatic synthesis tool; SoC; Synthesizable

analog block; IPXACT; Differentiating technology

I. INTRODUCTION

Wide usage of system-on-chips (SoC) in different
applications such as smartphones, the Internet of Things (IoT),
etc. leads to design huge number of such SoCs. As a result,
circuit designers spend abundant amount of time on designing
SoCs while most of this time is wasting because of being human
in the design loop. Integration, debugging, and tuning are just
few examples of time consuming tasks in circuit designing
which can be performed in notable less amount of time if is
implemented by a tool without interference of any human.
Furthermore, although it is most likely that another circuit
designer has designed exactly or very similar chip that one wants
to design, but just because of various numbers of academic
papers or datasheets it is impossible for a designer to read and
find such similar work and hence remarkable time should be
spent on redundant work.

Traditionally one of the most important reasons that analog
circuit designing has not been automated yet is impossibility of

describing an analog circuit as a human understandable code. As
a consequence, in analog circuit design significant amount of
designers’ time is just being spent on analog chip layout since is
not automated as it is on digital part.

Our approach to SoC synthesis is unique in that we leverage
a differentiating technology to automatically synthesize Verilog
descriptions of analog circuits while maintaining analog
performance that are customizable based on user inputs. Here,
the analog and digital design blocks are replaced with a single
SoC synthesis tool that produces Verilog descriptions for both
analog and digital designs. This register-transfer level (RTL) is
passed only to the digital chip layout tool for automatic
placement and routing (APR) and, therefore no analog chip
layout tool is required. On the other hand, with extending the
IPXACT format we are able to save and summarize circuit
functionality (circuit specs) in extensible markup language
(XML) format, which is suitable for searching process and eases
finding similar work for circuit designers.

Fig .1 shows a block diagram of the overall program, and
how the tasks interact with each other. The SoC synthesis tool
takes in user specifications and generates an SoC from models,
Commercial Off-The-Shelf (COTS) libraries, and generated
analog blocks. When one of the generated analog blocks is
required in an SoC, including clock generation, skew correction,
data converters, temperature sensors, and memories, the specs
for that block will be passed to the analog generation tool that
will produce the synthesizable analog design. These analog
generation tools function as sub-routines to the SoC synthesis
tool, and therefore will be used as a part of the optimization
process. Finally, if one of the analog generation functions cannot
meet specifications using standard cells, an auxiliary cell is
synthesized and added to the cell library. In summary, users will
provide their desired functionality and our computer program
proposes a finely optimized SoC that meets their specifications
and constraints. Such an advantageous tool is highly sought after
as it eliminates the need for the cumbersome and tedious process
of designing and tuning an SoC.

DISTRIBUTION STATEMENT A. Approved for public release:

distribution is unlimited.

1111

The rest of this paper is organized as follows. In Section II,
we describe SoC synthesis tool. In Section III, we present our
analog circuit generation methodology. Finally, we conclude in
Section IV.

II. SOC SYNTHESIS TOOL

A. Extending IPXACT

Current version of IPXACT just includes information about
interface types and parameters, which makes it appropriate for
SoC integration tools to have an intelligent configuration,
automatic integration, and easy problem debugger. Our goal was
extending the IPXACT format to encapsulate all information
needed for system generator, and port known parts to the
database. This mean IPXACT++, our updated version of
IPXACT, was defined for facilitating finding the optimum
circuit. For this purpose, this new IPXACT version would
include an optional meta-information portion that will contain
details about previous implementations of the block
(functionality of the circuit) which has not been mentioned in
the current version of IPXCAT. This resulted in IPXACT++
having two kinds of information: 1. The information which
summarizes circuit functionality, e.g. circuit power
consumption. 2. The information which is crucial for
appropriate functionality of the circuit, e.g. circuit input voltage
range. Saving this information alongside the circuit netlist or
Verilog file facilitates the search processing among an
extremely large number of circuits to find the most desired one.

In order to ease searching among circuits with the same
scope to find the most appropriate one, we make IPXACT++ to
contain two parts: general and specific. General would be
common in all circuits like area and power consumption values.
Specific would be the circuit type in addition to specs values of
the circuit, which is different based on the circuit type.
Therefore, meta information in the specific part of analog to
digital conversion (ADC) circuit differs from phase locked loop
(PLL). As an instance, for a circuit that categorized as ADC,
“ADC” (as a circuit type) and integral nonlinearity (INL) value
are two samples of specific information while for a PLL circuit,
“PLL” and jitter value are stored as specific information.

B. Automatically scrubbing datasheets for individual pieces

of intellectual property (IP) component information

Extracting circuit information requires reading relevant
datasheets or academic papers. It is too time consuming to
manually do this as the dataset scales to 10M+ parts. So, we need
to perform automatic text processing. For this aim we first
realize the datasheet title (circuit type class) and then extract
relevant data (specs). In both of these approaches, first Portable
Document Format (PDF) file is converted to text file which is
more suitable for text processing while may causes to lost text
connectivity during this conversion.

For the circuit type class realization we use two approaches:
machine learning (ML) and Key word searching

 There is a well-known model which is called bag of words
and is a subset of classification ML approach. In this method,
first the text file is segmented into words. Then, occurrence
numbers of each word is counted and is assigned as an ID to
words. Using a naïve Bayes classifier, with calculated
probability coefficients based on training set and using these
equations, we can estimate the most probable title of each
document using a maximum a posteriori (MAP) approach for
testing set.

Since the most important part of supervised ML is having
appropriate labeled data, we tried to limit our analyzing region
from whole text to a small part of the document that is more
likely to mention more important and unique information. This
issue become more important when we deal with datasheets as
most part of them are tables, numbers, and figures that do not
help us because such information do not convey unique
information regarding the circuit category. Usually, such unique
and important information, which describes the main circuit
functionality are written in a section titled such as introduction,
circuit description, etc. in both academic papers and datasheets.
So, we search for these titles inside the document and if we are
successful in finding them on the 𝑖′𝑡ℎ page, we crop the PDF file
to just include 𝑖′𝑡ℎ and (𝑖 + 1)′𝑡ℎ pages, otherwise we crop the
first two pages as it is more likely to cover more important
information. Moreover, we divide our training set to two parts:
pure-training and test-training sets. There are several options in
bag of words and naïve Bayes classifier to use in order to

Fig. 1. Block diagram of the interactions among tasks

Fig. 2. Example of IPXACT++

1112

conclude to the best results. N-gram model which improves
inherent orderlessness of bag of words with segmenting text to
n subsequent words, Gaussian, Multinomial, and Bernoulli
distribution as event model used in Naïve Bayes classifier, and
using term frequency–inverse document frequency (TF-IDF)
which leads to care more to unique words instead just common,
more occurrence words such as “the”, “this”, etc. and take into
account that occurrence number of words is related to the text
length (total words) that they are part of it are some examples of
these options. So, we train our pure-training set with different
combinations of above options and observe results on test-
training set using confusion matrix and at the end pick the
combination that leads to higher average of percentages in
confusion matrix. These approaches improve the accuracy of
category realization by 20%.

Alongside of many applications of bag of words model, it
has not enough accuracy because of its inherent ML inaccuracy
that we want since all of our subsequent tasks are dependent to
this circuit category realization. Therefore, we improve this with
key word searching method. In the key word searching method,
we count the number of each circuit class type name occurrence
in each document, pick the maximum, and check whether the
relevant specs are mentioned in the document. If the result of
these two approaches is not the same, we use an arbitration. Key
word searching improves the category realization correctness
rate by 15%. Table. I shows confusion matrix of circuit category
realization over more than 3000 different PDF datasheets and
academic papers.

TABLE I. CIRCUIT CATEGORY REALIZATION CONFUSION MATRIX

Category
ADC CDC DCDC

PLL Temp

Sense

SRAM LDO

ADC 97% 2% 0% 0% 0% 1% 0%

CDC 3% 95% 0% 0% 2% 0% 0%

DCDC 0% 0% 98% 0% 0% 0% 2%

PLL 1% 0% 0% 99% 0% 0% 0%

Temp

Sense
0% 2% 0%

0% 97% 1% 0%

SRAM 0% 0% 0% 0% 0% 100% 0%

LDO 0% 0% 4% 0% 0% 0% 96%

After determining the document circuit class type, we can
start extracting specs from those documents as we should look
for specific specs based on circuit category. Information may be
reported in either text or tables. We use regular expression to
fulfill this goal if the information is as a text. Because of inherent
drawback of conversion a PDF to a text file, we first do a text
cleaning which includes making all letters to lower case letters
to be case insensitive and retrieving paragraphs in the text file as
it is in the PDF file. Since there are various ways for reporting
different specs, we tried to define our expression such that not
be too much tight to include nothing and not be too much general
to include everything.

In the table extraction section, it first converts PDF to
Comma Separated Values (CSV) file which is more suitable for
table processing while there exist lots of imperfection during this
conversion. We should find the appropriate row and column that

intersection of these two results in target cell. The cell contains
“Parameter”, “Specification”, etc. demonstrates the origin of
table which usually locates at top-left corner. Using this cell we
can define the territory of each table if there exists more than
one table in a page. There exists two mail types of tables as
shown in Fig. 3, XY and XX. In XY, desired value, Vi, is located
at the intersection of target row, Ai, and target column. Target
columns usually have titles such as “this work”, “Max”, “Min”,
etc. In XX, “Max”, “Min”, “Typ” are located at the same row
with target values. After recognition table type, we can extract
the desired values.

As it was mentioned earlier, there are many defects when a
table in PDF file converts to a CSV file. Merging multiple
columns/rows, inserting blank column/row at the middle of
table, splitting a column/row to multiple columns/rows, etc. are
few examples of this imperfection. The most challenging part of
table extraction is how to recognize and solve these errors.

As we test our algorithms for data extraction over more than
3000 different PDF datasheets and academic papers, we can
successfully extract at least two specs automatically from each
document in either text or table extraction.

C. Extending Socrates Infrastructure

The objective of this task is to capture the changes to the
IPXACT format into the Socrates SoC design tool. Socrates is a
tool that guides a user through the selection and configuration of
IP and its assembly into subsystems. Socrates will be extended
to be more aware of physical floorplanning and timing and
bandwidth constraints. Socrates will also be adapted to provide
the necessary details (RTL plus metadata) for the Correct-by-
construction wrapper to design systems. The interaction
between data recorded in the database, the Socrates
configuration file, and the tool itself is important. Initially, the
requirements of the design need to be analyzed, including
physical data (power, performance and area expectations for the
block), technology (process node and variants), floorplan
information, and target system definition and configuration
options.

D. Correct-by-Construction Design

The objective of this part is to intelligently design systems
from high-level user input. The work will be a wrapper around
Socrates, that takes as input user block level-designs and
approximate throughputs for the system. The tool has two main
ways that users can start designing, customized, and
recommended. In the customized mode, users will determine
exactly the blocks and their specs by their own and connect them
together. In this way, the tool is going to find the best candidate
for each block. In the recommended mode, users can benefit
from existed SoC samples of the tool such as SoC for measuring
temperature, pressure or both. Each of these samples contains all
blocks, which are needed for appropriate function of the SoC

Fig. 3 Different table types: a:XY b:XX

1113

and their connection. In this mode, user will specify the sensor
specs and high level specs for whole SoC. In other words, even
though users can determine each block specs separately they
can, at the same time, just specify the overall SoC specs such as
total power or area.

In general, our COTS database is divided into four regions:
fixed components e.g. board regulators that needs to be mined
from existing sources as described in the section B, analog
generators e.g. parameterized ADC, instances i.e. an instance
circuit that is output of analog generator that we used once
before, and database of synthesis and placement and routing
(P&R) directives i.e. a circuit that has been generated by the
whole system once. Fig. 4 shows this COTS database and their
interactions.

COTS Database

Fixed Components

e.g. Board Regulator

Generators

e.g. Parameterized ADC

Instances

e.g. ADC with 8 bit

resolution, 0.5 INL

Database of Synthesis

and P&R Directives

The searching process begins with fixed components. As
shown in Fig. 2, using max and min we can cover intervals
during our searching process. Therefore, even with tons of
circuits, it takes short time to categorize them regarding to their
circuit functionality and inside each category they can be sorted
from smallest to largest respectively the first to the last spec
value which dramatically eases the searching process. If we are
not able to find the desired circuit in the target technology node,
the tool will call analog generator if the circuit category is
included in its domain. Otherwise, it tries to estimate the
throughputs using technology model estimator. In both
conditions, it will populate the database with the generated
circuit or estimated values in IPXACT format since calling,
generating or estimating are time consuming tasks in
comparison to just searching among existed files. Once
everything including whole SoC schematic, and P&R is done we
will add this SoC to our COTS database to use it in the future if
it is needed and not repeating this entire process again.

The inputs will then be used to generate several candidate
architectures that will be fed through Socrates for analysis. Fig.
5 shows how these candidates are found. The user will be asked
to select optimization priorities from the constraints. This maybe
area or power. The tool first tries to find the blocks with
minimum area/power. If the summation of power/area for all
blocks is larger than our budget which defined as a constraint by
the user, it means this SoC with such constraints is infeasible.
Otherwise, it checks the other constraints. If the suggested SoC
satisfied them it means the tool is done. If not the tool needs to

do compromising i.e. degrading the first priority spec of each
block in order to improve the other constraints. A final design
RTL will be generated along with associated timing constraints
and relative/structured placement scripts to be used in
synthesis/APR. The design will also identify potential timing
critical paths and insert latency insensitive interfaces that allow
register slices to be added if timing cannot be met. This
information can be fed to automated synthesis and APR scripts
to insert register slices when appropriate. In addition, the
wrapper will also output the configuration parameters for the
analog blocks in the system. The analog tools will be run and
candidate designs fed back to the wrapper. The final analog
design will be output as a structured netlist for the block.

III. ANALOG GENERATION

Analog circuit design using authentic analog architecture
requires delicate layout and sizing of transistors, which are yet
ready to be realized with automation flow. The cell-based
architectures, on the other hand, are promising for portability
and scalability in terms of analog performance and layout
generation since the circuit aspects are controlled by the number
of cells being used and are capable to utilize existing digital APR
tools. This makes cell-based analog block a credible candidate
for automated analog circuit generation, which we use in our
flow. The cell-based analog blocks are proven in its performance
by various groups [1-6]. Synthesizable all digital phase locked
loop (ADPLL), for particular, have been made by full digital
flow with APR tool [1][6]. Since these blocks are described in
Verilog description and layout constraints, the objective of our
Analog Generation tool is to provide RTLs and APR
descriptions of each block that support user given specifications.
The design flow is identical for all supported analog blocks, and
is divided in to two steps: 1. Modeling, 2. Deliverables

Fig. 4 COTS database

Fig. 5 Constraint satisfaction algorithm

1st optimization

priority and constraints

Finding optimized blocks
individually regarding 1st priority

Infeasible

1st priority

satisfied?

No

Yes

Other constraint

satisfied?

Finish

Compromising
Yes

No

1114

Generation and Verification. The flow is depicted on Fig 6.
Modeling is a procedure of capturing characteristics of specific
Aux-cell and process design kit (PDK), building a relationship
between design and specifications. This procedure takes
comparably long time due to numerous simulations and is done
once per PDK. Deliverables generation & verification stage is
repetitive for new user specifications. This will be conducted
repeatedly for new specifications. New designs are stored in
COTs library, and if an existing design supports a given spec, it
will be immediately pulled out, reducing the time of the task.
The details of each step are discussed below.

A. Model Generation

This part of the task is to capture the analog characteristics
of aux-cell of certain PDK by gathering sufficient simulation
results, and utilize it to predict optimum design for a given spec.
For this, the tool automatically generates test environments,
mainly netlists and testbenchs, run the simulation, read the
results and use it to build a model. There are two methodologies
to make a model from simulation data: 1. Mathematical equation
2. Machine Learning. Mathematical equation based model is to
use prior knowledge about circuit to link design and spec. For
digitally controlled oscillator (DCO), used in ADPLL, for
example, the average ratio of current and capacitance (I/C) of
each stage determines the delay of one stage and the frequency
is determined by this delay and the number of stages. With this
knowledge, we can obtain the average ratio (I/C) by back-
calculating the frequency results. This equation-based model
holds valid as long as the circuit operates within the property we
defined, shows solid accuracy for the frequency of DCO (error
< 0.8%, 850 results). Thus, the model is reliable on predicting
the frequency of certain design. But to find the optimum design
for a set of specs(frequency range, frequency resolution, phase
noise, jitter, area etc.) using the mathematical model, the tool
designer has to build an algorithm that narrows down the design
space and pick one that satisfies all the spec constraints. This is
limited since the algorithm relies on the equations and designer
intelligence. The algorithm relates the equations for each spec
and sequentially narrows down design parameters, using the
inequalities to satisfy the specs. This human-built algorithm
requires update for additional spec or design parameters. Thus,
equation-based algorithm is limited in terms of both reliability
and scalability.

Machine learning can be used to find the design solution for
a given spec, or the other way(spec of certain design), by
training it with sets(design, spec) of data. Once large sample data
is used for training, it can predict a design that is likely to have
a specific spec. If the design was in the range of that was used
for training, machine learning shows high accuracy. Table 2
shows the accuracy comparison of equation based and ML based
for predicting 4 DCO specs of 55 different designs. There are
specs that follows the equation accurately, while some shows
weak accuracy. ML shows reliable accuracy over all the specs.
It is robust in terms of the number of inputs (specs) and outputs
(design parameter), since it only needs new sample data to be
trained, unlike equation-based algorithm has to be renewed
relying on designer intelligence. It is also strong in predicting a
solution of specs with high equation complexity, while equation-
based algorithm has limits due to the error of the equation itself.
The difficulty of utilizing ML is to generate massive simulation
results for the learning data, and to define the valid range of
prediction.

To summarize the equation-based model, relatively fewer
simulation results are required since it has strength on
extrapolation. However, the equation-based design searching
algorithm has limitations because it relies on complex equations
and designer intelligence to link those. The ML based model, on
the other hand, requires huge simulation results to cover wide
range with solid accuracy, but once the reliable model exists, it
is easy to find a design solution accurately, and number of inputs
and outputs are scalable. Thus to leverage the strength of both
methods while covering each other’s weakness, we will use the
equations to generate sample data for ML without simulation
and use the trained ML to predict the design solution. This way,
the tool requires few simulations to build a model, and has a
strong design solution prediction.

TABLE II. MAXIMUM ERROR RATE COMPARISON OF DCO SPECS

BETWEEN MACHINE LEARNING AND EQUATION BASED MODEL

B. Deliverable generation and Verification

 This step is to convert the design parameters decided in the
modeling stage to a Verilog format and verify the performance
with the layout parasitic included. To automate the procedure,
the design parameters are written in parameterized form in RTL
descriptions so that the tool can simply replace those parameters
with the set the modeling stage provided. The synthesis and APR
scripts are written in the same way to ease automation.

 The key challenge of using APR for cell-based analog block
layout is the induced systematic mismatch due to the random
placement and interconnects. There has been prior research on
calibrating and utilizing the mismatch to enhance control
resolution [6]. Another way to deal with the issue is to constrain
the geometry of cell placement in the way that minimizes the
mismatch. This method has limited portability for different aux-
cells since the geometry should change according to the size of
aux-cell. We are in the stage of deciding the method to address

Max Error (%) 𝑓𝑚𝑎𝑥 𝑓𝑚𝑖𝑛 ∆𝑓𝑟𝑒𝑠 Area

Machine Learning 1.11 2.39 1.66 1.37

Equation model 0.35 0.64 8.83 0

Model
User
Spec

Design

Parameters Deliverable
Generation &

Verification

.v, .tcl

Performance

Failure

Repeat for every input

Model

Generation
Aux cell,

PDK

Once per PDK

Fig. 6 Block diagram of analog generation

1115

the issue, comparing strengths and weaknesses of various
techniques. Until now, we have used different power domains to
allocate limited area for placement of analog blocks. This can
reduce the parasitic effects by reducing interconnect metal
length.

 Once the layout is done, the tool automatically runs a post
extraction (PEX) simulation, which includes the layout parasitic
effects, to verify the performance. If the performance meets the
user specification, the tool will provide the RTL, APR
descriptions to the next stage. If it fails to meet the specs, it will
iterate the design process by tweaking the design variables that
improve the bottleneck specs. It will also modify the model, to
increase the margins of certain spec for layout parasitic.

IV. CONCLUSION

In this paper, we showed how to develop an autonomous
SoC synthesis tool that intelligently generate an SoC based on
user input. Using our COTS database the tool can find the most
optimized circuit which fulfill user’s requirement. One of the
unique features of this proposed program are that both analog
and digital designs are described in Verilog and are able to be
automatically placed and routed. Therefore, any synthesis tool
created as a part of Verilog, cell libraries, and directives to guide
the groupings of cells can be used to complete the physical
design of our fully synthesized SoC.

ACKNOWLEDGMENT

This material is based on research sponsored by Air Force
Research Lab (AFRL) and Defense Advanced Research Projects
Agency (DARPA) under agreement number FA8650-18-2-
7844.

REFERENCES

[1] W. Deng, D. Yang, and A. Matsuzawa, “A Fully Synthesizable All-

Digital PLL With Interpolative Phase Coupled Oscillator, Current-Output
DAC, and Fine-Resolution Digital Varactor Using Gated Edge Injection
Technique,” IEEE JSSC, vol. 50, pp. 68-80, Jan 2015

[2] S. Bang, D. Blaauw, and D. Sylvester, “ A Fully Integrated Successive-
Approximation Switched-Capacitor DC-DC Converter with 31mV
Output Voltage Resolution,” IEEE ISSCC Dig. Tech. Papers, pp. 370-
372, Feb 2013

[3] K. Yang, D. Blaauw, and D. Sylvester, “ A 0.6nJ -0.22/+0.19°C
Inaccuracy Temperature Sensor Using Exponential Subthreshold
Oscillation Dependence,” IEEE ISSCC Dig. Tech. Papers, pp. 160-161,
Feb 2017

[4] M. Shim, D. Blaauw, and W. Jung, “ An Oscillator Collapse-Based
Comparator with Application in a 74.1dB SNDR 20KS/s 15b SAR ADC,”
IEEE VLSI, Jun 2016

[5] W. Jung, D. Blaauw, and D. Sylvester, “A 0.7pF-to-10nF Fully Digital
Capacitance-to-Digital Converter Using Iterative Delay-Chain
Discharge,” IEEE ISSCC Dig. Tech. Papers, pp. 484-486, Feb 2015

[6] Y. Park and D. Wentzloff, “An All-Digital PLL Synthesized from a
Digital Standard Cell Library in 65nm CMOS,” IEEE CICC, Sep 2011

1116

