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Abstract—Designing Single-Board Computers (SBCs) is be-
coming more challenging given the growing number of discrete
components that are made available and the rate at which this
number grows. Keeping track of all available components options,
revisions, and functionalities is challenging for SBC designers
who are striving for faster design cycles. Moreover, the procedure
of deciding peripheral components, their values, and connections
of an SBC is not only difficult because of various parameters
that need to be considered, but also is time-consuming as there
exist numerous components on a typical SBC nowadays. In this
paper, an SBC generator tool, FASCINET, is presented that uses
a Neural Network (NN) model to design customized peripheral
circuits for SBCs. The tool creates a large Commercial Off-the-
Shelf Database (COTS DB) of existing components, efficiently
searches through them, and selects optimal components for
both main and peripheral components based on the user’s
requirements.

Creating such a broad COTS DB requires processing abundant
datasheets. A manual approach is time-consuming, even if only
a fraction of all available datasheets is considered. In order
to automate this process, this paper describes a novel NN-
based approach for automatically categorizing datasheets and
proposes an extraction technique for parsing relevant functional
information from tables within. Our evaluation using a test set
that contains over 770,000 components shows that the category
of datasheets is identified correctly over 95% of the time.
Additionally, the table extractor has a precision above 96%. Our
proposed fully autonomous SBC design approach reduces the
time for generating the schematic of an SBC to as little as two
minutes. For validating the accuracy of our model, the netlists of
400 SBCs designed by FASCINET are compared to the human-
designed versions. This evaluation shows that FASCINET is able
to design SBCs that are identical to the manually-designed ones
except for minor differences.

Index Terms—Single-board computer, automatic peripheral
circuit generator tool, neural network, COTS DB, datasheet, data
mining, category recognition, table extraction.

I. INTRODUCTION

S INGLE Board Computers (SBCs) are widely used in
electronic industries, medical instruments, etc. They are

low cost and have broad applications from control and mea-
surement to online communication [1], [2]. Typically, SBCs
include two parts: one or more main discrete components such
as microprocessors, microcontrollers, etc. that target the main
goal of the SBC, and second, discrete peripheral components
e.g. capacitors, voltage regulators, etc. around the main ones
for different functionalities– power, reset, and interface ports
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to name but a few [3]. It is worth mentioning that discrete
components are single electronic components in a simple
package which can be soldered to a Printed Circuit Board
(PCB) [4].

Finding the desired main components, considering multiple
parameters and specifications, is a tedious task for SBC
designers as the number of available components is growing
at a fast pace. This becomes even more challenging when
taking the peripheral components into account. A designer
needs to determine various peripheral components, their values
and connections. This process is time-consuming, challenging,
and will make automated SBC generation a necessity rather
than a luxury given the numerous components on an SBC.

In this work, we present a tool, FASCINET, for automatic
SBC generation that addresses all the above-mentioned chal-
lenges. FASCINET designs customized peripheral circuits and
generates the SBC schematic in the industry standard format
by giving the main components of the SBC as the input.
This design procedure includes all steps of automatically and
intelligently determining all the required peripheral compo-
nents, how they connect to each other and their values e.g.
resistance of resistors, capacity of capacitors, model of voltage
regulators, etc. FASCINET leverages our novel Hierarchical
Deep Neural Network (HDNN) approach to determine the
required peripheral components starting with components that
could be directly connected to the main components. Then,
it hierarchically determines components further away. Next,
a separate Deep Neural Network (DNN) model determines
the value of each component specified by the HDNN. The
generated schematic is passed to a downstream PCB layout
generator tool which produces the final PCB of the SBC.

Users have two options for inputting the information of the
main components. First, directly inputting the datasheets of the
main components. Second, giving the high-level intents and
specifications of the main components that they are looking
for, and asking FASCINET to find it. For the first case, we pro-
pose a novel, open-source1, fully automated datasheet scrubber
to extract the key specifications in the associated datasheet.
The datasheet scrubber implements a Convolutional Neural
Network (CNN) based approach [5] for category recognition
and table extraction on a single platform.

For the second case, FASCINET efficiently searches through
its large Commercial Off-the-Shelf Database (COTS DB)
in order to find and select an optimal set of components

1Source code for the datasheet scrubber can be downloaded from https:
//github.com/idea-fasoc/datasheet-scrubber

https://github.com/idea-fasoc/datasheet-scrubber
https://github.com/idea-fasoc/datasheet-scrubber
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that meet the user’s input requirements. With specifying the
target optimization method e.g. power and price, the tool
is also able to optimize the SBC in the desired way while
satisfying the other user intents such as the specifications of
the desired main components. For instance, specifications of
a microcontroller include memory capacity, processing power,
type of I/O ports, frequency range, throughput, etc. [6]. A user
may need two microcontrollers with different specifications
as the main components while minimizing their total price.
FASCINET searches through the COTS DB and finds the
microcontrollers with the closest specifications to each of
the desired ones and selects two of them with the minimum
total price. This gives a great advantage to FASCINET over
a manual design by considering a variety of possibilities,
constraints and components which is never possible in a
manual design.

FASCINET COTS DB contains meta-data for more than
770,000 records of existing components in more than 50
different categories e.g. microcontroller, voltage regulator,
Analog-to-Digital Converter (ADC), etc. Populating such a
broad database is tedious and is subjected to errors when
done manually. Typically, functionality descriptions of the
discrete electronic components are reported in datasheets [7].
Annually, thousands of new components are designed and
added to the multitude of existing ones. The datasheet scrubber
automatically processes these documents and summarizes their
performance specifications which enables creating such a large
database. Moreover, for each component, it recognizes the
main functionality of each pin, e.g. power, ground, reset,
etc. which is an essential step for automatically connecting
components.

An exclusive database with more than 2500 open-source
SBCs [8], [9] is gathered for training the HDNN model and
testing the SBC peripheral circuit generation. To validate the
performance, the netlist of more than 400 SBCs designed
by FASCINET are compared with the human-designed ones.
Our evaluations demonstrate that the SBCs generated by
FASCINET are identical to the human-designed ones except
for minor differences. Even these minor differences are mainly
due to different design approaches, rather than functionality
deficiencies.

The contributions of this paper can be summarized as
follows:

• Datasheet scrubber: A novel CNN-based approach to
categorize datasheets and extract information within their
tables.

• Peripheral circuit generator: A novel HDNN-based model
that intelligently designs customized peripheral circuits
by giving the main components of an SBC.

• We propose FASCINET that leverages the datasheet
scrubber, the COTS DB, and the peripheral circuit gen-
erator to design the schematic of an SBC in only two
minutes.

The rest of the paper is organized as follows. Section II
presents the related works. Section III explains the tool in
high-level. Section IV describes the datasheet scrubber and
approaches for category recognition and table extraction. Sec-
tion V explains COTS DB management methods. Section VI

describes the automated procedure of designing peripheral
circuits and generating the SBC schematic. Section VII reports
the final evaluation results of each of the aforementioned
sections. Finally, the paper is concluded in Section VIII.

II. RELATED WORK

A. Table Extraction

Several methods have studied table identification and ex-
traction. However, many of them focus on tables that are not
within PDF format files [10], [11]. On the other hand, Perez-
Arriaga et al. and Liu et al. [12], [13] propose systems for
the identification and extraction of tables within PDF files.
Perez-Arriaga et al. [12] compare the locations of the text-
boxes to find columns and rows. Although the method has a
decent recall, its false-positive rate is high. Liu et al. [13]
find tables using grouping texts with similar positions and
font size. However, it is only optimized for research papers
and its extraction performance is poor especially on general
documents. Also, it cannot deal with locked PDFs even though
a large amount of datasheets are in locked PDFs.

Recently, many studies have explored table extraction by
solely leveraging neural networks [14]–[16]. By utilizing neu-
ral networks, table extractors achieve acceptable results in a
trade-off with higher computational costs. However, some of
the tasks, such as identifying table lines can be performed
using conventional computer vision methods. In our approach,
instead of forcing neural networks to solve all of the tasks,
a combination of both conventional computer vision and
machine learning techniques is used. This leads to a neural
network that is smaller in size. This is crucial because of the
limited amount of labeled training data available for tables.

B. SBC Generation

Several papers and patents have previously described meth-
ods for helping users to find the desired components. Birm-
ingham et al. [17] propose a method that can help the
SBC designer choose various components within a database.
Curran et al. [18] expand on this and estimate the power, per-
formance, and price of a custom board. The user is prompted
for device constraints and the tool recommends components
from a library. Likewise, Birmingham and Siewiorek [19]
propose an approach which suggests components to designers,
then it logically connects those components using templates
that describe the purpose of pins. Tools such as these make
finding viable components quicker for a designer, however
these implementations require a lot of human effort to both
continually update their databases and make the components
metadata readable by the tools.

Recent works implement more intelligence in suggesting
components from their libraries. Anderson et al. [20] propose
a tool that provides a GUI platform for novice designers. The
tool enables users to describe the circuit in a behavioral way.
However, it is only compatible with Arduino microcontrollers.
When a user searches in library of AutoFritz [21] and Cir-
cuito [22] to find a component, the tools also suggest some
other components to complete the functionality of the desired
component. In AutoFritz, after selecting a component by users,
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the tool suggests some other components within its database
that are usually connected to that component based on its
datasheet. It also suggests the possible connections between
these components. However, users are supposed to determine
at each step whether they want to use any of the suggested
components and if so which one. Therefore, there is still a
significant amount of human-in-the-loop interaction required.
Also, AutoFritz does not get any high-level specifications
of the user’s goal and limitations as inputs. For instance,
users cannot determine the input voltage that they have access
to and ask the tool to find the components accordingly or
describe the functionality of the components and ask the tool
to find the best ones. Moreover, AutoFritz does not support
components that do not exist in its database at all. On the
other hand, Circuito has fixed pre-defined peripheral circuits
for some components that always come with them. However,
similar to AutoFritz, it does not get any high-level inputs
from users which makes its designs inflexible. Moreover, it
does not support components out of its database. The other
drawback of Circuito is that there are many limitations in
its designs. For instance, it cannot support more than one
microcontroller at each design. Our proposed tool gets high-
level user specifications as inputs and automatically designs
SBCs with a no-human-in-the-loop approach. FASCINET also
using ML learns how to use different peripheral components.
So, it supports designs that contain components out of its
database.

Several works attempt to ease the process of connecting
components. Some of them discuss HW/SW co-design ap-
proaches to automate generating systems from high-level user
intents [23]–[25]. Bachrach et al. [25], takes PCB hardware
description and application software from the user and gen-
erates PCB layout in addition to uploading the software code
on it. Lin et al. [26] propose a system that supports designers
in different levels: High-level Description Language (HDL),
electronic modeling (to check the connections, power, etc.)
and netlist generation. All the aforementioned works rely on a
complete manual hardware description from the user and there
is no intelligence by their tool in determining any components
or connections. On the other hand, EDASolver [27] after
finding components in their libraries, make some connections
between them using pin matching. However, this pin mapping
is limited to the components in its library and it cannot go
beyond that.

The above-mentioned works either help in choosing com-
ponents or ease connecting them in limited applications while
still users have to determine most of the components and
connections. Recently Machine Learning (ML) is applied for
circuit design as well [28]. By using ML both to keep an up-
to-date database of components and to design SBCs, this paper
aims to address the shortcomings with the previous works.

III. PLATFORM ARCHITECTURE OVERVIEW

A high-level representation of the FASCINET platform is
shown in Fig. 1. Main components are the parts that target
the main and overall goal of the SBC. The boxes in green are
three inputs that users specify using a config file. Users can
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Fig. 1. High-level platform architecture.

choose one of the two ways for inputting the information of
the main components: the specifications of them (path A in
Fig. 1) or directly their datasheets (path B in Fig. 1). Beside
one of these two, users input the directives that contain three
main points:

• The voltage range of the input power supply that the SBC
is connected to.

• If the Battery/ USB port is needed.
• The description of the interconnections of the main

components to each other.
As it will be discussed in Section VI, the power supply
voltage range and the requirement for any Battery/ USB
port are two of the HDNN model inputs to determine the
required peripheral circuits. There are in general two types of
connectivities for a main component. It is either connected
to another main component or a peripheral component. In
the first case scenario, the description of interconnections of
the main components which is provided by the user is used
for automatically connecting them. As an example, a user
may specify the clock pin of a main component is connected
to the clock pin of another main component. As it will be
explained in Section IV-C, the datasheet scrubber is able to
recognize pins functionality and find the exact pin, e.g. clock
in this example. The procedure of automatic connection of
the main components to peripheral ones as well as peripheral
components to each other will be described in Section VI.

If users decide to input the specifications of the main
components (path A in Fig. 1), they also would be able to
determine some constraints. The total SBC main components
power consumption at nominal voltage and their total price
budget are the constraints that the SBC can be optimized for.
The tool outputs the closest components that it could find
within its COTS DB regarding these overall constraints. If
the tool finds more than one component that meet the required
specifications given by the user, it picks the one with the lower
price or power consumption based on the desired optimization
approach. The output of the COTS DB is a complete summary
of the specifications of the found main components and pins
functional information which were parsed previously from the
associated datasheet by the scrubber tool.

In the case of directly inputting the information of the main
components by users (path B in Fig. 1), the datasheet scrubber
parses the datasheets using COTS DB training data and passes
the summarized overall and pin functional meta-information to
the peripheral circuit generator.
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The summarized information of the main components in-
cludes their categories, specifications, and other information
required for proper functionality. For instance, this summa-
rized information may be: an 8-bit ADC with an input voltage
range between 2−5V . Using this meta-information in addition
to the directives, the peripheral circuit generator creates the
SBC schematic in the industry standard format as an output
which contains all the main and peripheral components, and
their connections. This schematic can be passed to a down-
stream PCB layout generator tool.

IV. DATASHEET SCRUBBER

A. Category Recognizer
The first step to automatically scrub datasheets is to rec-

ognize the category of components, e.g. ADC, Phase Locked
Loop (PLL), etc. Although the category of some datasheets
found in some websites may have been labeled, there are
many datasheets without labeling that need manual category
recognition and separation which wastes much time and energy
and is subjected to errors. Moreover, these labels may not be
precise enough. For instance, a category such as PLL might
need to be broken into two subcategories e.g. analog PLL and
Delay Locked Loop (DLL). Using the datasheet scrubber, this
procedure can be done automatically with no-human-in-the-
loop which saves a lot of time and energy.

Category recognition is a crucial task since the scrubber
should look for different specifications based on the category
of the components. In order to effectively and efficiently
identify the the correct category, a customized CNN-based
model is used which identifies between 51 common categories.
It is worth mentioning that some existing approaches such
as searching the categories name within the datasheet and
selecting the most frequent one might be simpler, but are
subjected to a lot of errors. For instance, the datasheet of a
microcontroller may talk more about the memory and contains
more “memory” keywords rather than “microcontroller”. An-
other not accurate enough approach is searching the categories
name within the title. The problem is that mentioning the
category in the title is not a mandate and there are many
datasheets without having the category mentioned in their
titles. Moreover, automating the procedure of realizing the title
for the tool would be complicated enough despite it being
trivial for humans. Also, the title may contain more than
one category. Furthermore, Support Vector Machines (SVMs)
have long been used for the text classification and they have
achieved reasonable success depending on the database. The
general procedure, when using an SVM, is to identify the
quantity of each word in a document, then train the SVM
using those quantities as inputs [29]. This approach would not
produce accurate results for our database due to the similarity
between different categories. For instance, when differentiating
between an ADC and a Digital to Analog Converter (DAC),
the order of the words is very important. This issue can be
somewhat resolved by searching for phrases instead of words,
but choosing the proper phrases to use is a non-trivial and
labor-intensive process. As a result, our customized CNN-
based approach is designed to be as simple as possible while
having an acceptable accuracy.

The customized CNN-based model, instead of examining
the entire document, analyzes the first 256 words. There are
several factors that determine the ideal amount of words to
examine per document. Looking at more words allows more
information to be evaluated by the network. However, this
leads to a wider network, more memory, and a higher compu-
tational power. Analyzing hundreds of datasheets shows that
a vast majority of them front-load their important information
with a short description. This description most often varies
between 200 to 250 words in length. With this information,
the size of the network has been optimized to take in all of
this concentrated data in a vast majority of cases.

The first 256 words are converted to vectors of 300 numbers
with the GloVe word embeddings [30]. This step allows the
network to understand how words relate to one another and
crucially which words are synonyms. A conventional CNN
approach would then stack many convolutional layers that are
followed by several dense layers. The stacked convolutional
layers allow relationships to be discovered between distant
words. However, this method has several downsides. Making
a robust model with this approach requires a massive amount
of weights, increasing the training time and making the model
less portable. Another issue is the vanishing gradient problem
that arises from stacking many layers [31].

Our customized network has an innovative design that
identifies relations between distinct words without the need
for a significant number of stacked layers. In this model, there
are several branches that compute unique relations between
the words. The simplest branches start with filters that are
single word in length, so each filter has a size of 1 × 300.
This is in practice a 1D convolution because the size of the
filter is equivalent to feature map size in one dimension. The
output of this operation is a two-dimensional array where one
dimension still represents the location of the words, but the
other represents each filter. This array shows how closely the
word represented by a particular filter matches the meaning
of the input word. The next step is unconventional where the
two axes are permuted before the data is passed into another
convolutional layer.

The size of the filter in the next layer, like the previous one,
is equivalent to the length of the feature map in one dimension,
making its functionality similar to a 1D convolution. However,
because the data is permuted, this filter travels across the
dimension created by the number of filters in the previous step.
This means that it has access to data created by every input
word simultaneously. Therefore, it can identify the relations
between different words that are an arbitrary distance away.
The length of the filter determines the amount of word-
meanings that can be compared at each stride. It should be
noted that the objective function for this CNN is cross entropy.

This approach does have some downsides compared to a
conventional Deep Convolutional Neural Network (DCNN).
Because the second convolutional layer looks for words in
specific places, it might not be general enough. To rectify this
issue, many different branches are used to cover any potential
weaknesses. These branches have different filter lengths for the
first convolutional layer. This causes phrases to be identified
instead of words, allowing the second layer to identify different
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Fig. 2. The CNN model of the category recognizer. The input is the first 256 words of datasheets and output is one of the 51 categories.

phrases that are an arbitrary distance away. Additionally, some
of these branches have maxpooling layers between the two
convolutional layers, helping regain generality.

The CNN model has been depicted in Fig. 2. There are in
total 5 different branches. Each branch has a specific length
of the first filter that are chosen based on the testing results
as it will be more discussed in Section VII-A1. In the final
step, all of the branches are flattened and then concatenated.
The combined network ends with nodes that represent all the
different possible categories. To train this network, we use the
770,000 presorted datasheets in the COTS DB.

B. Table Extractor

A majority of relevant specifications and pin information
of a datasheet are found within its various tables. However,
an agreed upon format for the layout of tables in datasheets
does not exist. Although there have been some studies on
automation of table extraction as it will be discussed in
Section II, most of them are either not able to extract all
PDF files, or they do not have enough accuracy, or they are
computationally expensive. However, our method combines
computer vision techniques and CNN models that allows
CNNs to just focus on complex problems while computer
vision methods take care of the rest. This approach leads to a
high accuracy with a low computational cost.

Our customized table extractor starts by converting the
datasheets into a series of images. A CNN then goes through
these images and finds the locations of the tables [32]. The
CNN model for the table position identification is shown
in Fig. 3. Afterwards, computer vision methods are used to
identify the high-level layout of the tables that helps identify
and separate cells: First, the locations of high contrast lines
within the tables are identified. Additionally, the locations
of text within the tables are found by locating high contrast
sections that do not belong to the previously found lines.

The identified high-contrast lines are useful for separating
cells. However, many tables do not have lines separating every
individual cell. An example of this case is shown in Fig. 4 (a).
In this case, the positions of the data can be used instead. With
the locations of the data known, the tool finds these invisible
cell separator lines. For this purpose, the tool draws straight
lines that do not intersect the data all over the table. Fig. 4 (b)
shows such vertical lines in green. For being more clear, the

horizontal lines are not shown. Assuming lvm and lhm denote
the maximum length of vertical and horizontal drawn lines
respectively, the tool only keeps vertical and horizontal lines
with lvm and lhm lengths respectively, and removes the rest.
Finally, the adjacent remained lines are merged as it is depicted
in Fig. 4 (c).

This process alone is sufficient to properly split a table with
consistent rows and columns across the entire table. However,
more complex tables which contain cells that do not conform
to the general table’s layout will have incorrectly split and
merged cells. For instance, a single cell may be larger than
its adjacent cells and may span two columns. To fix these
issues, the cells are sent into a CNN [32] with the purpose
of finding which cells should be merged together and which
cells should be split. The fixed cells are then individually sent
into the open-source Optical Character Recognition (OCR)
software Tesseract [33] to obtain the cell’s data. The data
and the previously identified locations of the cells are used
to recreate the table in a machine readable form.

When the table extractor is used for extracting the specifi-
cations of main components in both path A and B in Fig. 1,
there are some common specifications that FASCINET always
searches for e.g. power, input voltage range, etc. However, the
rest are more dependent on users that which specifications
are more important for them and the category of the desired
component.

C. Pin Functionality Extractor
After finding the location of the pin description table within

a datasheet using the table extractor, the data needs to be
interpreted. It is important to know the purpose of each pin for
automatically connecting components. The pin functionality
extractor identifies if a pin is a ground, power, clock, reset,
General-Purpose Input Output (GPIO), etc. For this purpose,
a CNN looks at both the pin name and the description.

To learn from the pin name, the CNN takes in each of the
individual characters as one-hot vectors. This is done so that
patterns within similar pin names can be learned. For instance,
“VDD” almost always indicates a pin that should be connected
to the power supply. This is true regardless of any additional
characters that are in the pin name, so “DVDD” and “VDD0”
can both be classified as a power pin.

Additionally, a glove matrix which has 4 layers of 1D
convolution followed by a CNN, with cross entropy as the
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objective function, is used to learn from the description of
the pins at a word level. The CNN models for both learning
from pins name and descriptions have two hidden layers of 1D
convolution. These two networks are concatenated together in
order to achieve accurate results.

V. COTS DATABASE

In order to find the desired main components based on the
user specifications, a database has been configured to allow
for immediate access to the collected data. The COTS DB
contains more than 770,000 component records from different
sources [8], [9], [34]. Because the category of each component
has unique specifications, a MongoDB platform is adopted
for its flexible data-scheme. MongoDB is a document-oriented
NoSQL database that offers high performance, scalable, flex-
ible data-schema [35]. From the performance perspective,
MongoDB has been proven to be effective for storing a huge
amount of data [36] and it outperforms MySQL in read and
write tests [37].

Optimizing the search performance within the COTS DB
is crucial to reduce the latency. When a query operation is
performed, MongoDB performs a collection scan, meaning it
scans every record in the collection to select the ones that
match the query statement. Multiple methods such as indexing,
projections, and aggregation pipelines [38] are implemented to
optimize the COTS DB.
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Fig. 5. Peripheral circuit generator flow using the HDNN model.

Indexes are special data structures that store a small portion
of the collection’s dataset in an easy-to-traverse form. This op-
timizes the execution of queries [39]. The indexing is applied
to the price and power of the components. The projections
method decreases the query time by limiting the number of
either searched or returned fields. Before the projection, the
initial number of searched fields was 28 while they have been
shrunk to 5 fields based on the most commonly performed
queries.

Using the COTS DB, FASCINET is also able to min-
imize both the total power consumption and price of the
main components with regarding to the specifications of the
main components. Moreover, FASCINET has the feature of
prioritizing the specs which enables users to specify the more
important specs for them. In this regard, even if the queried
component do not exist within the COTS DB, FASCINET
finds the most close one to it.

VI. PERIPHERAL CIRCUIT GENERATOR

The main components specify the main intention of SBCs
and target their main goals. Using the summarized information
of the main components e.g. categories, specifications, etc.
(that is either extracted by the datasheet scrubber or found
within the COTS DB based on the user input), in addition to
the directives (that are inputted by users directly), the periph-
eral circuit generator designs the peripheral circuits around
the main components. It then outputs the SBC schematic in
the industry standard format. For this purpose, the peripheral
circuit generator uses our novel Hierarchical Deep Neural
Network (HDNN) model.

Fig. 5 depicts the peripheral circuit generation flow. Given
the main components and directives by the user, the HDNN
model determines the required peripheral components that
could be directly connected to the main components (“first-
major”), then it hierarchically and successively determines the
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TABLE I
SUMMARIZED HDNN’S INPUTS, THEIR SOURCES AND THE NUMBER OF COMPONENTS THAT CAN BE DETERMINED AT EACH PERIPHERAL SECTION.

Peripheral
section Inputs

Determinable
peripheral

components #

Power pins #+ Input voltage
range

Battery/ USB
port is needed LED pins # Components

category Reset pins # Clock/ oscillator
pins #

Power
supply M, P** M, P, D D - - - - 57

LED - - - M, P M, P - - 8
Reset - - - - M, P M, P - 7

External
interfaces - - D - M, P - - 10

Clock - - - - - - M, P 3
* #: Number.
** Inputs sources: Main components (M), Directives (D), Peripheral components (P).

other required components that are further away (“second-
major”, . . . , “minor”). Then, a DNN model determines the
values e.g. resistance of resistors, etc. of these peripheral
components that are determined by the HDNN model. As
an example, the HDNN model determines if a decoupling
capacitor is required to be connected to the main component,
and the DNN model after that determines its value i.e. the
capacity. At the end, unconnected pins would be connected
to the correct signal based on the extracted pin functional
information by the datasheet scrubber and inputted directives.
Finally, the SBC schematic is generated.

The HDNN’s inputs come from three different sources.
Main components and directives that are fixed at runtime
and specified by the user. The third input source is the
previously generated peripheral components which is updated
during runtime. As the feedback loop is shown in Fig. 5, the
HDNN model runs multiple iterations to design all peripheral
components. It is necessary to update the inputs based on the
previously generated components because of the dependencies
between them. For example, adding an LED increases the
total required power. To account for this, the updated circuit
is sent back into the model so that it can determine the
peripheral power supply section accurately. Table I summarises
the HDNN’s inputs and their sources as well as the number of
peripheral components that can be determined by the HDNN
for each peripheral section e.g. power supply, LED, reset,
etc. In total, there are 7 different inputs to the HDNN model
and the HDNN is able to determine 85 different peripheral
components. It should be noted that “components category”
is considered as one input set which contains the category
of all peripheral and main components. Also, “battery/ USB
port is needed” is divided into two inputs. Each of the
peripheral sections contains the components that together have
a specific functionality. For instance, power supply section
provides constant, stable voltage for whole the SBC and may
include some capacitors, voltage regulators, diodes, etc. that
are determined by the HDNN model.

As it is shown in Fig. 6, the HDNN model uses a custom
made binary classifier in Keras [40] with 2 Fully Connected
(FC) hidden layers. The hidden layers have 32 nodes each
with a nonlinear RELU activation function, while the output
layer has a nonlinear sigmoid activation function and cross
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Fig. 6. HDNN model: A custom made binary classifier in Keras [40] with
2 Fully Connected (FC) hidden layers. The hidden layers have 32 nodes
each with a nonlinear RELU activation function, while the output layer has
a nonlinear sigmoid activation function. The inputs with more details are
described in Table I.

entropy as the objective function to determine the required
peripheral components. As it is shown in Fig. 5, it begins by
determining the required components at the first level of the
hierarchy, first-major, that could be directly connected to the
main components in each peripheral section e.g. power supply,
LED, reset, etc. First-major components may be surrounded by
other components, second-major, and so on. The components
at the last level of hierarchy, minor, are the ones that already
all of the components that they are connected to have been
determined by the model and usually one of their pins are
connected to ground e.g. decoupling capacitors.

In the HDNN model, the binary classifier at each step
determines whether a peripheral component that is observed
in the training set is required for the SBC. Those 85 different
peripheral components that are determinable by the HDNN
model (see Table I), regardless of their values, are different
components with different functionalities that are connected
to unique nets and have been observed at least in one of the
training sample designs [8], [9]. For example, the LED that is
connected to a specific pin of a main component and the one
that is connected to the power signal are considered as two
different components. As another example, voltage regulators
are part of the power supply peripheral section that usually are
connected directly to the main components. In our training set,
there are four different voltage regulator components which
means some SBCs have been observed that each has one or
more of these voltage regulators. For instance, one voltage
regulator may have 3 pins such as “LM117” [41] that is used
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usually when the input voltage is less than 40V , and the other
may have 5 pins such as “AP2112” [42] which is leveraged if
the input voltage is between 2−6V . So, the HDNN determines
whether the SBC requires any of these voltage regulators.

Automatically connecting the peripheral components to
each other and the main ones through the corresponding pins
are implied by determining the required peripheral components
by the HDNN model. The pin information extracted by the
datasheet scrubber is used for this purpose. In other words,
during training, the HDNN model not only learns which
peripheral component are required to be connected to the
main ones, but it also learns through which pins they should
be connected to. For example, determining requirement of a
voltage regulator around the main component by the HDNN
model means that the output pin of the voltage regulator is
connected to the power pin of the main component. So, deter-
mining which pin of the main component works as power is
the last piece of puzzle for automatically connecting them that
pin functionality extractor part of the datasheet scrubber does
that. Finally, FASCINET automatically connects all ground
pins to ground, all power pins to the appropriate power supply
value using their datasheets extracted information, and main
components to each other based on the input directives of
users. FASCINET also connects all the main components pins
to headers. This allows users always have access to inputs and
outputs of the main components directly.

The step by step hierarchically design procedure of a sample
SBC has been depicted in Fig. 7. After passing the information
of the main components, the peripheral components that are
directly connected to the main components, i.e. first-major are
determined. A similar design procedure that was described for
determining the voltage regulators are happening for this and
the next steps. As an example, in Fig. 7 (c), for determining
which power signals should be connected to the voltage
regulator (“AP2112”), there are a lot of options that among
them “V USB” and “V BAT” are selected.

After determining the required peripheral components, a
multi-label DNN classifier determines the values of these
peripheral components e.g. resistance of resistors, capacity
of capacitors, etc. Similar to the HDNN procedure, for each
peripheral component, the value is determined among all
values that have been observed for that component within
the training set. For instance, for a decoupling cap, the DNN
model determines which one of the values of 47uF , 10uF ,
1uF , 100nF , etc. that are observed in the training should be
chosen. Using a multi-label classifier is better than a normal
regression for this purpose as the values that may be obtained
by the regression model may not even exist e.g. there is no
5.34µF capacitor. Occasionally, multiple components of the
same category are connected in parallel [43], e.g. capacitors
that are connected between supply voltage and ground as it
is depicted in Fig. 7 (c). In these cases, the DNN will also
determine the number of each component. It should be noted
that sometimes the HDNN model determines the value of
components as well in the cases when their values affect the
rest of the design. Voltage regulator is an example of this since
specific components are connected to each of them based on
their models.
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Fig. 7. Steps of determining the required peripheral components by the
HDNN model: (a) The main components are inputted. (b) The peripheral
components that are directly connected to the main components, i.e. first-
major, are determined. (c) The peripheral components around the first-major
components, i.e. second-major, are determined. The next step which is the
complete SBC after determining all the required peripheral components has
been shown in Fig. 15. An example of parallel capacitors that their number
is determined by the DNN model is shown with a red box.

The training set for both the HDNN and DNN models con-
tains more than 2500 open-source SBCs [8], [9]. A hierarchical
approach is also used for training the HDNN model [44].
A unique training set is provided for determining peripheral
components around each component. There is one training
set for determining first-major components. Each of these
first-major components has its own specific training set for
determining second-major components around them and so on.
For instance, two different training sets are provided for deter-
mining components around “AP2112” [42] and “LM117” [41]
voltage regulators that are trained separately on each. This idea
of hierarchical training leads to an optimized result for each
as well as reducing the complexity of the network [44].

There are other SBCs which contain peripheral components
that are not included in any designs in the training set (e.g.
transformers). However, FASCINET would be able to support
such components easily if a proper number of SBC designs
that include this new component is added to its training set.
Also, it is probable that more directives from the user are
needed while the rest of the HDNN procedure is the same. The
HDNN model is optimized to support current 85 components
with the minimum number of training data and directives
while maintaining a high accuracy. While the whole HDNN
procedure would be the same, adding new components is with
cost of having more training data and directives from the user.
This leads to have a more complicated model which not only
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Fig. 8. The confusion matrix of the category recognizer when the first 256
words are given as inputs. Red rectangles show that, generally, common
categories (e.g. Comparator) with a larger training set have a higher accuracy
in comparison to the niche ones (e.g. SoC).

TABLE II
AVERAGE ACCURACY OF THE CATEGORY RECOGNIZER AND THE
TRAINING TIME FOR DIFFERENT NUMBER OF INPUT WORDS. THE

TRAINING TIMES ARE NORMALIZED TO THE TRAINING TIME OF 512.

Input words #∗ 128 256 360 480 512
Average prediction

accuracy 91.73% 95.3% 95.2% 94% 95.7%

Normalized training
time 0.28 0.53 0.72 0.94 1

* #: Number.

needs more data to be trained, but also needs more runtime.

VII. EVALUATION

A. Datasheet Scrubber

1) Category Recognizer: To identify the accuracy of the
model, a stratified k-fold with 5 splits is used with the labeled
categories [8], [9], [34] as the ground-truth. The first 256
words are given as inputs. Using this method, the model has
an average accuracy of 95.3% on the test set. Fig. 8 shows
a confusion matrix of the predicted categories. In order to
compare the results, the Bidirectional Encoder Representations
from Transformers (BERT) text classification [45] is also
analyzed on the same training and test sets. For this purpose,
“Bert For Sequence Classification” model is used and tested
with two test cases. For one test case scenario, the first 128
words are given as inputs with 256 tokens while the other case
uses the first 256 words with 360 tokens. They give 92.7% and
92.9% average prediction accuracy respectively, which are less
than the proposed CNN method.

Table II summarizes the model prediction average accuracy
and the training time for different number of input words. As
you can see, even though the accuracy of 512 words is 0.4%
better than the 256 one’s, its training time is 1.88× more than
the 256 one’s. This shows almost no improvement is gained
while the cost of computation time has gotten roughly double
if the first 512 words are given as inputs instead of the first

Fig. 9. Average prediction accuracy comparison of the category recognizer
with different hyperparameters used for training. As it was mentioned in
Section IV-A, there are 5 branches with different neuron numbers that at
the end are flattened and concatenated. The base neurons numbers in the
convolutional layer of these branches are {1, 2, 2, 2, 4} that the coefficient
in the X-axis is multiplied to them. For instance, neuron number coefficient of
32 leads to a network which its branches have {32, 64, 64, 64, 128} neurons
in their convolutional layer. The figure shows different activation functions
applied to the convolutional layer. The coefficient of 256, i.e. {256, 512,
512, 512, 1024} neurons, with the RELU activation function is the simplest
architecture that gives a high prediction accuracy of 95.3%. The first 256
words are given as the input.

TABLE III
TABLE EXTRACTION PRECISION AND RECALL COMPARISON.

Method Precision Recall F1-Score
CNN-based approach 96.3% 93.5% 94.88%

Tabula-based approach 82.8% 83.0% 82.9%

256 words. Except for the 512 model, the accuracy of the 256
model is better than others. Fig. 9 shows the average prediction
accuracy with different hyperparameters.

2) Table Extractor: Over 1000 tables within various
datasheets are used to train the model. The line identifi-
cation from Tablext [32] is used to pre-process the tables
by splitting them into cells. Adjacent cells are merged and
used to train the CNN model. Merged cells that should be
merged according to the ground truth are labeled as such.
For validation of the table extractor, a test set that contains
200 random PDF datasheets, not used in any training, is
procured. The correct specifications are manually searched
for in each table within the datasheets. These manually found
specifications are compared to the extracted results from the
table extractor in order to determine the precision and recall.
In the formulas below, TP denotes true-positives (correctly
extracted cells) and FP denotes false-positives (non-existent
cells that are misidentified by the extraction approach). Also,
FN represents false-negatives (existing cells in the tables that
are not accounted for or misidentified by the extraction tool).
Precision, recall, and F1-Score can be calculated by TP

TP+FP ,
TP

TP+FN , and 2∗Precision∗Recall
Precision+Recall respectively.

Our customized CNN-based approach is compared with
an open-source table extractor tool, Tabula [46], and the
results are summarized in Table III. Our CNN-based approach
achieves higher precision and recall, despite not having access
to any text data, unlike Tabula. Fig. 10 shows an example of
the CNN-based table extractor and Tabula’s final output in



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

Fig. 10. (a) A text-based PDF page in the testbench with potentially
problematic columns highlighted with boxes (red). The final output of (b)
CNN-based approach, (c) Tabula-based approach in CSV format given (a) as
the input PDF file. Vertical boxes (red) are showing the correct handling of
problematic cells. Tabula has merged “Typ” & “max” columns and shows “-”
character as “?” while the CNN-based approach correctly has handled both
problems. On the other hand, the CNN-based approach cannot show “±”
since Tesseract appears not to be recognizing this character. The horizontal
box (blue) shows when ± is written for just one of Max and Min columns
and the other is blank.

Fig. 11. The output table after applying the post-processing on Fig. 10 (b) to
be used in the SBC generation flow. Vertical boxes (red) show the three new
sub columns that are replaced with “Typ” column to rectify the not-showing
the ± character. “Typ min” and “Typ max” contain negative and positive
value of the specs with ±. “Typ typ” is the third sub column that is used for
the typical value of the other specs that do not use ±. The horizontal box
(blue) shows after the post processing both “Max” and “Min” columns are
filled for the specs that ± is written for just one of them and the other is
blank.

Comma-Separated Values (CSV) format.
As it is depicted in Fig. 10, even though our CNN-based

approach recognizes + and − signs, it is not able to show “±”
since Tesseract appears not to be recognizing this character.
The tool performs a post-processing for making the table
appropriate to be used in the SBC generation flow. Our
analysis shows that ± appears only for certain specifications
and it has two meanings in general: 1) showing a range (e.g.

TABLE IV
COMPARISON OF THE SEARCH OPTIMIZATION METHODS ON THE

COTS DB.

Method Time
Without indexing 0.037s

With indexing 0.006s
With indexing and projection 0.005s

With indexing and aggregation pipelines 0.002s
Without indexing and aggregation pipelines 0.001s

Integral Linearity Error [47]); 2) when both + and − values
are applicable (e.g. leakage current [48] may be reported with
± which means it is either from ground to the component
or vice versa). After recognizing such certain specs that use
±, in the post-processing, the “Typ” column is divided into
three sub columns: “Typ min”, “Typ typ”, and “Typ max”.
The table extractor reports the absolute value, so + and −
signs are added for Typ max and Typ min respectively. For
“Max” and “Min” columns of such specs, if just one of them
has a value (e.g. the horizontal blue box in Fig. 10), in the
post processing, + and − signs are added to the absolute value
for the “Max” and “Min” columns respectively. The result of
applying post-processing on Fig. 10 (b) is shown in Fig. 11.

3) Pin Functional Extractor: To test the pin extraction
network, the pins from 2000 datasheets are collected and
split 80, 20 into training and testing datasets. The network
achieves 96.5% accuracy on the testing dataset, proving its
effectiveness.

B. COTS DB

Table IV compares the search time for different methods.
A search is performed on 28 fields of a collection of more
than 770,000 datasheets. Implementing indexing optimizes the
query search time by approximately 6×, while the aggregation
pipeline method achieves a 37× speedup in comparison to a
normal search.

C. Peripheral Circuit Generator

To test the SBC generator tool, 400 SBCs are used that
are independent from the training set. For this purpose, the
main components of 400 human-designed schematics are given
to the FASCINET as input. This allows to fairly compare
the generated SBCs by FASCINET with the human-designed
ones as ground truth. All experiments are performed on a
server with an NVIDIA TITAN V GPU. For giving the
main components information, both directly inputting their
datasheets, and describing their specifications and searching
within the COTS DB have been tested. In the case of search-
ing the specifications of main components, the ability of
FASCINET to optimize the total price, power, or meeting the
total price/power budget constraints are also tested in addition
to satisfying the desired specifications. In such a scenario,
FASCINET is limited to components that are within its
COTS DB. This means if the COTS DB does not contain any
component with the exact desired specs, the search would not
be successful. However, in this regard, FASCINET finds the
most close components within its COTS DB to the requested
ones using the feature of prioritizing the specs.
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TABLE V
MAIN COMPONENTS SEARCH RESULTS WITHIN THE COTS DB. MAIN COMPONENTS THAT ARE USED IN 400 HUMAN-DESIGNED SBCS

ARE SET AS THE TARGET OF THESE SEARCHES.

Meet specs Meet specs &
equal power

Meet specs &
equal price

Meet specs &
better power

Meet specs &
better price

Meet specs & meet
power/price budget

Total search #∗ 400 150 150 150 150 100
Successful search # 398 141 135 7 15 100

* #: Number.

TABLE VI
DRC RESULTS FOR THE PROPOSED PERIPHERAL CIRCUIT GENERATOR; THE TEST SET INCLUDES 400 SBCS.

Total
components #∗

Total main
components # Total pins # Total

connections #
Floating (open)

ports # Short-circuit # Free DRC
error design #

Design number
with DRC error

16,600 850 50,000 41,500 750 15 278 122

* #: Number.

Fig. 12. The distribution of improvement rate of (a) price and (b) power
of found components by the search engine over the human-designed ones.
Improvement here means less for both power and price.

For each minimum total price and minimum total power
consumption of main components, 150 searches are performed
to find the main components that are used in human-designed
SBCs. For the 100 rest, the total power and price of the
main components in each of the human-designed SBCs are
set as the budget constraints. The found components within
the COTS DB are compared manually, both in terms of
meeting the specifications and price/power constraints, with
the target main components that are used in human designs.
The results are summarize in Table V. For instance, if the
found main components meet the performance requirement,
i.e. having the same specifications as the ground-truth main
components in the human-designed ones, while having equal
and less total power/price, it is counted as successfully “meet
performance & equal power/price” and “meet performance &
better power/price” respectively. As it is shown in Table V,
there are only two unsuccessful searches because, for these
two, the COTS DB does not contain any components with the
same specifications with the requested ones. However, using
prioritizing feature of FASCINET, the most close components
within the database is outputted. In order to fairly compare the
schematic generation of FASCINET with the human-designed
ones, the exact main components that are used in the human-
designed schematic are given to FASCINET regardless of the
COTS DB output. The distribution of improvement rate of
price and power of found components by the search engine
over the human-designed ones are depicted in Fig. 12.

TABLE VII
PERIPHERAL CIRCUIT GENERATOR ACCURACY IN COMPARISON WITH
THE HUMAN-DESIGNED SBCS; THE TEST SET INCLUDES 400 SBCS.

Identical connections Precision Recall F1-Score
87% 97.9% 96% 96.9%

Fig. 13. The distribution of identical connections over the compared designs.

In addition to testing the satisfaction of main components
constrains, all of the generated schematics are evaluated to
check whether they are valid. For this purpose, a Design Rule
Check (DRC) is run to check any floating (open) port or
any short-circuit connections. As the results are summarized
in Table VI, we can see that less than 1.5% of ports of
the components are float. Also, the percent of short-circuit
connections are negligible. Even this small error is due to
misunderstanding the functionality of the pins, not the SBC
peripheral generator itself. Because, as it is discussed in
Section VI, the HDNN model selects the components around
each component among the ones that are connected to that
component in the training set. Therefore, it is probable that
the HDNN model does not realize where should it connect the
pins to and leaves them float. But, it is impossible to connect
them to wrong pins (short-circuit) as there is no sample like
that in the training set.
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Fig. 14. Identical connections comparison with different hyperparameters
used for training. The activation function for all hidden layers are RELU and
only the activation function of the output is changed. As you can see, in
general, sigmoid at the output layer gives better results. Two hidden layers
with 32 neurons at each layer is the simplest architecture that gives a high
identical connections of 87% as it is also shown in Fig. 6.

In addition to the DRC check, each individual connec-
tion in the schematics designed by FASCINET is compared
with those in the human-designed ones, manually as well as
by using a netlist comparison tool [49]. Table VII summa-
rizes similarities between the generated peripheral circuits by
FASCINET and the human-designed ones. Identical connec-
tions are defined as the portion of connections that are com-
pletely identical, meaning they are connected to the identical
pins of the components which both the components and their
values are correctly determined. For calculating the precision,
recall and F1-Score, true-positive is defined as the number
of connections that are connected to the same component
in both tool and human designs without considering the
component value. False-positive and false-negative are defined
as the number of connections that exist in the tool or human
designs, respectively but they do not exist in the other. It is
noteworthy that the deviations of FASCINET designs from the
human-designed references are mainly due to different design
approaches, rather than functionality deficiencies.

Fig. 13 demonstrates the distribution of identical connec-
tions over the compared designs. The generated SBCs with a
lower identical connections usually either contain new main
components that have not been observed in the training set,
or they have more than 4 main components, or they contain
more than 70 components in total which makes them more
complicated. It should be noted that in our test set with 400
SBCs, there are 40 designs that contain new main components
that have not been observed in the training set. Between such
designs, 25 of them contain main components that have the
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Fig. 15. An example of a generated SBC schematic by FASCINET. Dif-
ferent colors show a comparison of the similarities between this FASCINET
generated SBC and the human-designed one.

Fig. 16. The manufactured PCB of the SBC in Fig. 15. A simple blinking
program is uploaded and run successfully on the SBC.

same category, e.g. microcontroller, with the main components
of some designs in the training set. The average identical
connections for these designs is 77.5% while it is 71.1%
for the other 15 designs with totally new main components.
Fig. 14 shows the identical connections while different hyper-
parameters are applied for training.

The output of FASCINET is an schematic in the indus-
try standard format. Fig. 15 depicts an example of such a
generated SBC schematic by FASCINET with 40 determined
peripheral components and more than 120 connections. The
blue hatched (main) components and connections are indicated
by the user as the input. To obtain their information, both
methods of describing specifications and directly inputting
their datasheets have been tested. The final generated schemat-
ics are completely the same in these two approaches. However,
it takes around 2 minutes on average to generate an SBC
schematic when the specifications of the main components
are inputted by the user, while it is around 5 minutes when
a datasheet is inputted directly. It goes without saying that
both methods are drastically faster than a human designer. The
reason that the second method takes more time is because
the datasheet scrubber is used rather than the COTS DB’s
search engine. In Fig. 15, the green color depicts components
and connections that both the components and their values
are determined correctly by FASCINET, meaning they are the
same with the human-designed one. Orange is used to show
determined components with differing values. Finally, red is
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used to show the components and connections that differ from
the human design. Red and orange components do not mean
that the tool has made an incorrect design. Rather, they just
show a difference from how a human designer would make
the circuit.

Fig. 16 shows a snapshot of the manufactured PCB of
Fig. 15. A simple blinking program is uploaded and run
successfully on the SBC. The SBC layout is generated by
passing the Fig. 15 schematic file to an automatic PCB layout
generator software [50], [51]. For this purpose, the automatic
routing feature by specifying more width for power traces than
normal signals using the directives of the layout generator
software is used while the placement has been done manually.

VIII. CONCLUSION

This work presents a novel automatic SBC generator tool,
FASCINET, which uses the HDNN-based approach for de-
ciding the required peripheral components, determining their
values and connections. As a part of this work, to build an
efficient database of reusable components, a fully automated
approach to extract the functionality and specifications of com-
ponents from datasheets is proposed. The automatic category
recognizer is trained and tested with more than 770,000 PDF
documents within the COTS DB. It achieves an accuracy
greater than 95%. The table extractor achieves a precision
greater than 96% on a randomly selected testing set. The auto-
mated SBC generator tool is validated by comparing the netlist
of the generated SBCs with more than 400 arbitrary human-
designed ones. The required time for an SBC generation is
reduced to 2 − 5 minutes on average using FASCINET. The
PCB layout of a sample SBC designed by FASCINET is also
successfully generated.
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