
Fully-Autonomous SoC Synthesis using
Customizable Cell-Based Analog and
Mixed-signal Circuits Generation

Tutu Ajayi1, Sumanth Kamineni2, Morteza Fayazi1, Yaswanth K Cherivirala1,
Kyumin Kwon1, Shourya Gupta2, Wenbo Duan1, Jeongsup Lee1, Chien-Hen

Chen2, Mehdi Saligane1, Dennis Sylvester1, David Blaauw1, Ronald
Dreslinski Jr1, Benton Calhoun2, and David D. Wentzloff1

1 University of Michigan, Ann Arbor, MI
2 University of Virginia, Charlottesville, VA

Abstract. This chapter presents the world’s first autonomous mixed-
signal SoC framework, driven entirely by user constraints, along with a
suite of automated generators for analog blocks. The process-agnostic
framework takes high-level user intent as inputs to generate optimized
and fully verified analog and mixed-signal blocks using a cell-based design
methodology.
The approach is highly scalable and silicon-proven by an SoC prototype
which includes 2 PLLs, 3 LDOs, 1 SRAM, and 2 temperature sensors
fully integrated with a processor in a 65nm CMOS process. The phys-
ical design of all blocks, including analog, is achieved using optimized
synthesis and APR flows in commercially available tools. The framework
is portable across different planar and FinFET CMOS processes and
requires no-human-in-the-loop, dramatically accelerating design time.

Keywords: analog synthesis, analog generator, SoC generator

1 Introduction

There is an ever-growing need for automation in analog circuit design, vali-
dation, and integration to meet modern-day SoC requirements. Time-to-market
constraints have become tighter, design complexity has increased and more func-
tional blocks (in number and variety) are being integrated into SoCs. These chal-
lenges often translate to increased manual engineering efforts and non-recurring
engineering (NRE) costs. FASoC is an open-source3 framework for Fully-Autonomous
SoC design [1, 2]. Coupled with a suite of analog generators, FASoC can gen-
erate complete mixed-signal system-on-chip (SoC) designs from the high-level
user specifications. The framework leverages differentiating techniques to auto-
matically synthesize correct-by-construction RTL descriptions for both analog

3 Source code for the framework and all generators developed as part of this work can
be downloaded from https://github.com/idea-fasoc/fasoc

2 Tutu Ajayi et al.

and digital circuits, enabling a technology-agnostic, no-human-in-the-loop im-
plementation flow.

Analog blocks like PLLs, LDOs, ADCs, DC-DC converters, and sensor in-
terfaces are recasted as structures composed largely of digital components while
maintaining analog performance. They are then expressed as synthesizable Ver-
ilog blocks composed of digital standard cells and auxiliary cells (aux-cells). The
framework employs novel techniques to automatically characterize aux-cells and
develop models required for generating bespoke analog blocks. The framework
is portable across processes and scalable in terms of analog performance, layout,
and other figures of merit.

The SoC generation tool translates user intent to low-level specifications re-
quired by the analog generators. The IP-XACT [3] standard is leveraged to
achieve full SoC integration. Added vendor extensions capture additional meta-
data relating to the generated blocks. This enables the composition of vast num-
bers of digital and analog components into a single correct-by-construction de-
sign. The fully composed SoC design is finally realized by running the Verilog
through synthesis and automatic place-and-route (APR) tools to realize full de-
sign automation.

2 Overview

Aux-cell
Generator

Analog
Generators

SoC
Solver

PDK,
Std Cells Models

User
Intent

Block
specs

SoC

SoC Generation

Process Setup and Modeling

SoC
Integrator

Analog
Generators

Model
Generators

Aux-cell
Generator Embedded EDA tool

flow for simulation,
synthesis, APR, etc
Feedback loop

IP DB

Composite
Design

Aux-cell
library

Fig. 1. FASoC Framework Overview [1]

A high-level representation of the framework is shown in Fig. 1. The Process
setup and modeling phase is performed once for the process design kit (PDK),
and it involves the generation of the aux-cells and models for the generator. The
setup process is largely dominated by simulations using the design templates in
combination with the characterization scripts. The automation of aux-cell and
model generation significantly reduces porting effort across PDKs.

FASoC 3

The SoC generation phase begins by invoking the SoC solver repetitively to
translate the high-level user-intent into analog specifications that satisfy the user
constraints. The SoC solver explores the SoC design space through a combina-
tion of mathematical and heuristic system models, to determine the necessary
system blocks and their specifications. For instance, it can determine the operat-
ing frequency of the PLL to be generated based on the target application, SoC.
If targeting a neural network application, it considers parameters such as the
supported pipelines, instructions per operation, inference per second and oper-
ations per inference. The block generators are invoked as needed and the SoC
integrator stitches the composed design and walks it through a synthesis and
APR flow to create the final SoC layout. The FASoC framework is tightly inte-
grated with analog generators for PLL, LDO, temperature sensor, SAR ADC,
switched-capacitor DC-DC converter and SRAM blocks. Section 4 describes the
circuit architecture adopted by the different generators.

3 Process Setup and Modeling

Simulation Artifact
Generation

PDK,
Cells

Design
Templates

Characterization
Scripts

Aux-cell
library

Model
Generation

Model
File

Fig. 2. Aux-cell and model file generation flow [1]

FASoC employs a synthesizable cell-based approach for generating analog
blocks, significantly cutting back on manual layout and verification efforts. Aux-
cells are small analog circuits that buttress the standard cell library and provide
specific analog functionality required by the generators. Each cell is no larger
than a D flip-flop and can be placed on the standard cell rows. The creation of
aux-cells is simplified by using a suite of design templates in tandem with PDK
characterization scripts. The templates capture the aux-cell’s precise circuit be-
havior without including any PDK-specific information. The characterization
scripts operate on the PDK to derive technology-specific parameters required to
set knobs within the templates. Example parameters extracted from the PDK
include threshold voltage, metal parasitics, MOSFET behavior, and Fan-out of
4. The knobs set within the template include device type, transistor sizing, and
other circuit design options. The results from aux-cell generation include the
netlist, layout, timing library, and other files required to proceed with conven-
tional synthesis and APR. Presently, the layouts for the aux-cells are manually

4 Tutu Ajayi et al.

created, however, there is an expanding array of tools [4–6] for layout automation
that show promising results. The template-based methodology for creating aux-
cells enhances process-portability and significantly cuts down on design time.
All of the generators presented in this work leverage a suite of aux-cells that
are depicted in Fig. 3.The template-based methodology enables users to extend
the aux-cell library by creating a design template that captures the respective
aux-cell precise behavior without including the PDK information.

VVDD

IN O
U

T

VVDD

A

A

B

B

A AB

OUT

VVDD

VDDVDD

VVDD

A

IN

Inverter
(Temp)

NAND2
(Temp)

Level Converter (Temp)
Vcm Switch

(ADC)

OUT

Differential switched capacitor (PLL) Differential Tri-State Buffer (PLL)

Header cell
(Temp) Clocked Comparator (LDO)

Unit Power
Switch (LDO)

AB

Fig. 3. Schematic for aux-cells used across PLL, LDO and temperature sensor gener-
ators [1]

The analog generators use models to predict performance and select design
parameters to create optimized block designs that satisfy the input specifications.
The models are derived from the parameterized templates that incorporate the
aux-cells. The models for each generator vary and are developed from a combina-
tion of mathematical equations, machine learning, and design space exploration.
The modeling exercise is also performed once per PDK and the results are saved
into a model file. Sections 4 briefly describes the modeling approach adopted by
each generator integrated into the framework.

4 Analog Generator Architecture

Synthesizable analog blocks [7] were introduced a few decades ago and have con-
tinued to evolve, closely matching the performance obtainable by full custom
designs. Prior works have described techniques for synthesizing analog blocks
for UWB transmitters [8], PLLs [9], DACs [10], and other types of analog
blocks [11–13]. This approach lowers engineering design costs, increases robust-
ness, eases portability across PDKs, and continues to show promise even at
advanced process nodes [14–16]. The analog generators developed as part of this

FASoC 5

Verilog
Generation

Macro
Generation

Macro
Validation

PDK,
Cells

Block
specs

Models
Analog
Block

Design

Macro
Validation

Macro
Generation

Verilog
Generation

PDK,
Cells

Block
Specs

Models
Analog
Block

Design

Fig. 4. Analog generator flow [1]

work can be likened to ASIC memory compilers that take in a specification file
and produce results in industry-standard file formats, which can then be used in
standard synthesis and APR tools. Unlike typical memory compilers, the genera-
tors are open-source, process agnostic, and share a scalable framework amenable
to different types of blocks. The framework is modular and share a similar pro-
cess as depicted in Fig. 4. The full generation process is broken down into three
steps:
Verilog Generation: This step leverages models to produce a synthesizable
Verilog description of the block that conforms to the input specifications. It also
generates guidance information in a vendor-agnostic format. The guidance in-
cludes synthesis constraints, placement instructions, and other information that
may be required by the synthesis and/or APR tool to generate blocks that
achieve the desired performance. In addition, this step also reports early esti-
mates on performance and the characteristics of the block to be created.
Macro Generation: The Verilog and guidance information is passed to a digital
flow to create macros that can be embedded into larger SoC designs. The digi-
tal flow in this step performs synthesis, APR, DRC, and LVS verification. The
digital flow includes an adapter to translate the guidance into vendor-specific
commands used in synthesis and APR. The adapter abstraction allows us to
(1) express additional design intent without exposing protected vendor-specific
commands and (2) easily support multiple EDA tools including open-source al-
ternatives [17–19]
Macro Validation: The last step is a comprehensive verification and reporting
of the generated block. The full circuit goes through parasitic extraction, SPICE
simulations, requirement checks, and other verification to culminate in a detailed
datasheet report.

The generators can be invoked standalone, outside of the full SoC generator
flow. To simplify the system integration, the AMBA™ APB protocol was adopted
as the register interface to all blocks.

The following subsections briefly describe the analog generators currently
integrated into the FASoC framework.

4.1 PLL

The generated PLLs (Fig. 5) share the same base architecture as ADPLL [20].
The phase difference of the reference and output clocks are captured by the

6 Tutu Ajayi et al.

Aux-cell 2:
Fine Ctrl. (FC)

Aux-cell 1:
Coarse Ctrl.

(CC)

...

Embedded TDC

. . .
Digital Ctrl.

including Loop
Filter

CLK_REF

Latched
Phase

DCO
CTRL.

WORD

DCO

NCC

NDRV

NSTG

NFC

Fig. 5. DCO architecture indicating the aux-cells and designs parameters [1]

embedded time-to-digital converter (TDC), while the digital filter calculates
the frequency control word for the digitally controlled oscillator (DCO). The
input specification to the generator defines the nominal frequency range and
in-band phase noise (PN). The PLL generator uses a physics-based mathemat-
ical model [21] for characterization. The first step is building a mathematical
relationship between DCO design parameters (number of aux-cells and stages)
and the required DCO specifications. Using simulation results from a paramet-
ric sweep, the effective ratio of drive strength and capacitance can be derived
for each aux-cell. This ratio enables us to predict frequency and power results
(frequency range, frequency resolution, frequency gain factor, and power con-
sumption) given a set of input design parameters.

4.2 LDO

The generated LDOs (Fig. 6) share the same base architecture as DLDO [22].
The LDO leverages an array of small power transistors that operate as switches
for power management. Based on design requirements, the generator can swap
the clocked comparator with a synthesizable stochastic flash ADC [23] to improve
transient response. The input specifications to the LDO generator are the VIN

range, Iload,max range, and the dropout voltage. The generator uses a poly-fit
model of the load current (Iload,max) performance for various combinations of
aux-cell connections (connected in parallel and for different VDD inputs) in both
ON and OFF states. The model is created by simulating various test circuits after
parasitic extraction.

FASoC 7

VIN

CTRL[2]

CTRL[N]

CTRL[1]

DIGITAL
CTRL.

Rload

VREG

Iload

#2

#N

ERROR
DETECTION
(CMP./ADC)

VREF

Error (e) #1

Cload

Aux-Cell 1:
Current Switch

Aux-Cell 2: 1-bit Analog
Voltage Comparator

Fig. 6. LDO architecture indicating the aux-cells and design parameters derived from
input specifications of VIN , Iload and desired transients [1]

4.3 Temperature Sensor

VVDD

enable

HEADERX1RVT

Level
Converter

LCX1RVT
NAND2X1RVT_ISOVDD INVX1RVT_ISOVDD

VDD

VDD

...

...
Reference Counter

Result Counter

LSBMSB

019

Result Code
Stop

ref clock

...

Temperature
Sensitive Ring Oscillator

Native Device

Fig. 7. Temperature sensor architecture indicating the aux-cells [1]

The generated sensors (Fig. 7) share the same base architecture as [24].
The sensor relies on a temperature-sensitive ring oscillator and stacked zero-VT
devices for better line sensitivity. The input specifications include the temper-
ature range and optimization strategy, for either error or power. For a given
temperature range, the generator first checks a modeling file to select an opti-
mized design model. If the modeling file is not already present, the generator
will sweep the design parameters and start the internal simulations. The results
are then utilized to train a predictive Bayesian neural network model. Doing this
can considerably reduce the total simulation time and predict the best design
parameters that can match the input specifications.

8 Tutu Ajayi et al.

4.4 SAR ADC

1x1x2x32x64x128x

1x1x2x32x64x128x

+

-

SAR
LOGICCOMP

OUT

COMP CLK

UNIT_CAP

SW_INPUT

VREFL
VREFH
VIN_P

VIN_N
VREFH
VREFL

VCM

VCM
SW_VCM Capacitor DAC

CLK

SW_CTRL

SAMPLE

Comparator

COMP OUTIN_P

IN_N

COMP
CLK

NAND-based
Comparator

RESULT[7:0]

Fig. 8. SAR ADC architecture indicating the aux-cells

The generated SAR ADC (Fig. 8) utilizes the same base architecture as
[25], which consists of capacitors, switches, a comparator, and a SAR controller.
The Capacitor DAC includes the capacitor arrays and switches, it samples the
differential signals at the input. The comparator uses a NAND-based struc-
ture, which is more suitable for design synthesis. The SAR controller generates
the control signals for switches in the Capacitor DAC and the comparing clock
for the NAND-based comparator. The input specification includes the sampling
frequency, the target effective number of bits (ENOB), and the optimization
method (for either power or area). For a given ENOB value, the generator selects
the optimal number of switches that can satisfy the target sampling frequency.

4.5 Switched-capacitor DC-DC converter

VIN

VIN/2

VIN/4

5VIN/8

VIN

2:1
Conv

PMOS switches

NMOS switches

PMOS switches

NMOS switches

2:1 Conv

clk0,
clk0b,
clk1,
clk1b

Non-
overlapping

clock
generator

2:1
Conv

2:1
Conv

clk
4

4

DCDC_NOV_CLKGEN

DCDC_CAP_UNIT

DCDC_XSW_PMOS

DCDC_XSW_NMOS

Fig. 9. Switched-Capacitor DC-DC converter architecture indicating the aux-cells

FASoC 9

The generated switched-capacitor DC-DC converter (Fig. 9) utilizes the same
base architecture as [26], which consists of multiple stages of 2:1 converters.
The conversion ratio of the DC-DC converter is determined by the number
of 2:1 converter stages and their configuration. The 2:1 converters are com-
posed of 3 different aux-cells: DCDC CAP UNIT, DCDC XSW PMOS, and
DCDC XSW NMOS. One additional aux-cell, i.e. DCDC NOV CLKGEN, is
also required to generate two non-overlapping clock signals and their inverted
signals for the 2:1 converters. Based on the input specifications (VIN, Vout, Iload,
and fclk), the generator finds the optimal number of aux-cells in the 2:1 convert-
ers as well as determining the number of stages and their configuration.

4.6 SRAM

Bit Cell Array

Bit Cell Array

De
co

de
r

Timer
Circuit

Pre-Charge, Col-Mux
Sense-Amp, Write Driver

C: Columns

R
: R

ow
s

Dr
iv

er
s

De
co

de
r

Dr
iv

er
s

Memory Controller
Bank Control Logic
and SoC Interface

System
Bus

Fig. 10. SRAM architecture showing macros and bank strategy

A third party Commercial memory compilers (CMCs) [27–29] can generate
an SRAM for a given PDK. However, they are the outcome of a human-driven
design effort for each PDK and cover a fixed design space that usually emphasizes
high performance. Such limitations restrict compilers’ usage for applications such
as ultra-low-power systems, which often operate in the nW to µW space. More
importantly, the CMCs are not open source and may not be readily available due
to cost or licensing issues, especially for newer technologies. Hence, a memory
macro generation framework [30] is developed to address these issues and allow
easy and autonomous generation of optimized memory macros in the design
space where CMCs can not be used.

The memory generator creates fully-functional tapeout-ready integrated mem-
ories across a broad range of user specifications. The compiled SRAMs (Fig. 10)
follow a standard multi-bank memory architecture. The memory generator uses
a 6T bitcell, a row decoder, column mux, wordline driver, sense amplifier, write
driver, and a pre-charge circuit as the aux-cells. The aux-cells are stitched to-
gether, bottom-up, to form a bank, and then a multi-bank memory. The user

10 Tutu Ajayi et al.

input specifications are capacity, word size, operating voltage, and operating
frequency. The generator adopts a hierarchical memory model to determine the
optimal row and column periphery. The model helps to select the SRAM archi-
tecture and the leaf-level components that best satisfy the user specifications
while minimizing energy consumption and delay.

5 SoC Generation

The top-level SoC generation begins with an iterative SoC solver to determine
the optimal composite design which is a combination of blocks, analog specifica-
tions, and module connectivity. The strategy is guided by high-level user intent
(i.e. target application and power/area budgets), available analog block gener-
ators, and a database of IPs. Analog generators are then invoked as necessary
to generate bespoke blocks required to satisfy the specifications within the com-
posite design. The generator outputs include all artifacts required to push the
block through standard synthesis and APR tools. The outputs are also cached
in an IP database, allowing for faster SoC generation if a matching entry already
exists. Entries in the database can also be populated with 3rd party IPs such as
processors and other peripherals.

The IP-XACT format is adopted to describe the composite design as well as
the block designs stored in the database. Added Vendor extensions [31] capture
additional analog data, simulation, and verification information. The SoC inte-
grator begins by stitching the composite design together and translating it to its
structural Verilog equivalent that can be run through digital simulation tools.
The structural Verilog, along with all required artifacts from the database, is
then passed through the embedded EDA tool flow to generate the final verified
GDS. This same flow is pervasive across the framework and is also used by all
generators (aux-cell, model, and analog). Tools within the flow cover all aspects
of chip design including SPICE simulations, digital simulations, synthesis, APR,
DRC, LVS, and extraction.

The rest of this section describes key components that make up the SoC
generation stage.

5.1 SoC Solver

The primary task of the SoC solver is to derive a feasible solution to the supplied
user intent and further derive an optimal solution that satisfies the intent. The
user intent provides a basic sketch of the target application and includes mini-
mal information relating to the performance, power, and area requirements. The
solver takes an iterative approach to perform targeted design space exploration
based on predictions learned from prior executions of the analog generators. It
essentially builds a correlation between the user intent, analog block specifica-
tions (of all supported generators), and the generated block results.

Although the solver relies on a database of existing IP for faster iteration, it
can quickly start from a cold cache to narrow down to an optimal solution. The

FASoC 11

run-time of the solver is based on the number of blocks in the design, supplied
budget, and how warm the cache is. The solver employs a heuristic algorithm to
optimize the overall SoC metrics including power, performance, area, and other
figures of merit.

The primary result of this process is a composite design in the form of a
structural netlist. The netlist includes all specific module instances and infor-
mation describing the ports and connectivity of all modules that constitute the
design. The stitching process employs standard Arm AMBA protocols (e.g. APB
and AHB) and includes all necessary interconnects and multiplexers.

5.2 IP-XACT and Database

The database entries are implemented using IP-XACT++, an extended version
of IP-XACT. The added vendor extension catalogs supplemental meta-data re-
lating to the IP. This non-tabular format allows for the storage of the PPA
metrics as well as other figures of merits specific to each generator. This is in ad-
dition to the traditional IP information like ports, interfaces, memory maps, and
validation data. The information associated with each generated instance of the
IP allows the SoC Solver to quickly search the database for specific parameters
and eases the stitching process to create the final netlist.

5.3 Embedded EDA Flow

The framework relies on an embedded EDA tool flow to accelerate the RTL-to-
GDS process. It is a set of scripts and methodologies that leverage commercial
EDA tools to accomplish the task of walking arbitrary designs through the syn-
thesis and implementation process as quickly as possible. It builds on several
modular abstractions to provide a PDK agnostic flow. Figure Fig. 11 shows the
main abstractions inherent within the tool flow.

Fig. 11. Embedded EDA tool flow abstractions

12 Tutu Ajayi et al.

Flow scripts: These are robust reference scripts for all the steps in the flow.
It is collection of scripts span several EDA vendors used throughout the steps.
It contains the best practices and recommendations from the tool providers and
has been stitched together to form a generic end-to-end flow that can easily be
customized based on several factors.

Platform Configuration: These constitute the PDK specific information, con-
figurations, rules, and requirements for a specific technology node. There is a
one-time effort to create this customization for newly supported technologies,
however, subsequent designs can re-use that effort transparently

Site Configuration: These are configuration parameters that establish point-
ers to the required site-specific information. These are file paths to the PDK,
standard cells, tool binaries, and license information for the EDA tools.

Design Files: This is the design-specific information that contains significantly
less information about the EDA tools, PDK, and Site location since those have
mostly been abstracted away and are expressed as customization to the generic
flow in the EDA scripts. It is intended to express the actual design intent with
little reference to the other abstractions.

Combined, these modular abstractions can be customized and combined to-
gether to form a block or chip specific flow. The various steps supported in the
flow are simulation, synthesis, APR, LVS, DRC and extraction. It has support
for 13 PDKs and has been validated with 6 different tape-outs across different
PDKs. The flow is used at various levels and steps within the FASoC framework
and has also been leveraged for other projects.

6 Evaluation

The framework has been fully verified in a planar 65nm and FinFET 12nm pro-
cesses. The evaluation begins with a focus on the individual generators. The re-
sults presented explore the design-space possible with each generator and demon-
strate full adherence to the user input specification in a 65nm process. Results
are then presented from a prototype SoC created in 65nm process using this
framework.

6.1 Analog Generation Results

Fig. 12 presents the results of several PLLs generated using different input spec-
ifications. It compares the input requirements against the simulated results after
parasitic extraction. The results show that the generated frequency ranges cover
that of the input requirements and with better phase noise levels. The highlighted
PLL 8, corresponds to one of the PLLs integrated into the SoC prototype and
also shows measured results that satisfy the given specifications

Fig. 13 shows the spice simulation results of multiple LDO designs after par-
asitic extraction. The graph shows the maximum load current at different input
voltages corresponding to the input parameter array size for a dropout voltage of

FASoC 13

PLL 1

Fig. 12. Generated PLL designs for eight different input specifications. PLL1 is taped-
out in the SoC prototype [1]

50mV. The highlighted measurements correspond to the input specification for
blocks integrated into the SoC prototype with VIN = 1.3V and VREG = 1.2V .

Fig. 14 presents the simulation results of various memory capacities across a
broad range of architectural options and operating voltages (VDD). Each point
on the curve corresponds to an energy-delay pair specific to an architecture
(rows, columns, and banks) and VDD combination. The generator selects the
Pareto-optimal design that satisfies the user requirements. The highlighted point
on the 16KB curve corresponds to the memory block integrated into the SoC
prototype.

Fig. 15 shows the spice simulation results of multiple temperature sensor
designs after parasitic extraction.

Fig. 16 presents the simulation results of various numbers of Vcm switches.
The generator selects the optimized value to satisfy the input specifications. By
using a common-centroid placement strategy on the capacitors, the generator can
also reduce the systematic mismatch which affects the accuracy of capacitance
ratios. Table 1 shows the spice simulation results of cdl and pex netlists that
closely match the input specifications with an area optimization.

14 Tutu Ajayi et al.

101 102

Array Size

0

5

10

15

20

25

30

M
ax

 L
oa

d
 C

ur
re

nt
 (m

A)
Vin = 0.6V

Vin = 0.7V

Vin = 0.8V

Vin = 0.9V

Vin = 1.0V

Vin = 1.1V

Vin = 1.2V

Vin = 1.3V

150 200 250 300
Array Size

10

15

20

25

30

LDO 1

LDO 2/3

ZOOM

Fig. 13. Iload,max vs. array size, for multiple LDO designs generated [1]

0 2 4 6 8 10 12
0

2

4

6

8

← prototype design

Delay (Normalized)

E
n
er

g
y

p
er

A
cc

es
s

(N
o
rm

a
li
ze

d
) 8KB

16KB

32KB

64KB

Fig. 14. Normalized energy and delay plots for various memory sizes while sweeping
VDD.The results are normalized with respect to the 8KB memory. [1]

Table 1. ADC Simulation Results

Output Specifications CDL PEX

Sampling Freq (MHz) 1
Unit Cap Value (fF) 2.6

Area (mm2) - 0.04
Power dissipation (µW) 6.72 11.2
Effective Number of Bits 7.86 7.75

FASoC 15

−20 0 20 40 60 80 100

0

10

20

30

40

Temperature (℃)

P
ow

er
(n

W
)

−20 0 20 40 60 80 100

−0.75

−0.5

−0.25

0

0.25

0.5

Temperature (℃)

E
rr

o
r

(℃
)

Fig. 15. Power and Error results against temperature for various temperature sensor
designs (each fitted plot represents a unique design) [1]

Fig. 16. Effective Number of Bits vs. Number of switches for Vcm

16 Tutu Ajayi et al.

6.2 Prototype Chip Results

The 65nm prototype SoC design (Fig. 17) features 2 PLLs, 3 LDOs, a 16KB
SRAM, and 2 temperature sensors fully integrated with an Arm® Cortex™-M0
in a 65nm CMOS process. Using off-chip connections, the entire SoC can be
powered using one of the LDOs and clocked using the PLLs while monitoring
the temperature of the chip.

LDO1/2/3

Cortex-M0
Processor

16KB
SRAMUART

PLL1/2

Temp
Sensor1/2APB Crossbar

(a)

2.6mm

2.6m
mLDO1

LDO2

LDO3

16KB SRAM

PLL1 PLL2

M0
T1

T2

(b)

Fig. 17. Simplified block diagram (a) and annotated die photo (b) for the 65nm pro-
totype SoC [1]

A similar 12nm prototype SoC (Fig. 18) features a PLL, 2 LDOs, a 64KB
SRAM, 3 temperature sensors, a bluetooth transmitter, 2 SAR ADCs, a switched-
capacitor DC-DC converter fully integrated with an Arm Cortex-M0 processor.

Fig. 12 presents results for 8 PLL designs generated from different input
specifications, including one from the prototype, and the results show output
performances in-line with the input specifications. The measured frequency is
10% slower while the phase noise matches the simulation and specification re-
quirement. Table 2 summarizes the results for all PLLs in the prototype.

Table 3 shows the LDO Iload,max measurements closely matching the in-
put specification requirements. Compared to the comparator-based architecture
(LDO1/2), the ADC based controller architecture (LDO3) achieves better tran-
sient performance with a 10x and 7x improvement in settling time and under-
shoot voltage respectively. The line and load regulation values are measured at

FASoC 17

M0 Core

64 KB
Generated
SRAM

ARM
memory

ARM
memory

DC-DCTe
m

p
 S

en
so

rs

ADCs

LDOs

PLL

BLE Tx

LDO

ARM Cortex-M0
Processor

BLE
Radio

ΔΣ
ADC

PLL

Temp
Sensor

APB Crossbar

DC/DCUART

IRAM DRAM

Mem

2 mm

2
m

m

(a) (b)

Fig. 18. Simplified block diagram (a) and annotated die photo (b) for the 12nm pro-
totype SoC

Table 2. PLL Simulation vs Measurement Results [1]

Output Specifications
PLL1 PLL2

Sim Meas Sim Meas

Min Freq (MHz) 200 190 170 150
Max Freq (MHz) 1,060 920 1,080 930
Fnom (Mhz) 643 558 627 548
Power@Fnom (mW) 7.20 6.90 8.06 7.70

Area (µm2) 167,639.04 167,639.04

Table 3. LDO Simulation vs Measurement Results @ 200MHz control clock [1]

Output Specifications
LDO1 LDO2 LDO3

Sim Meas Sim Meas Sim Meas

Dropout Voltage (mV) 50 70 50 80 50 80
Iload,max (mA) 15.00 15.38 25.00 24.84 25.00 23.72
Settling Time - Ts (µs) 1.1 1.8 2.1 2.9 0.12 0.19
Max Undershoot (V) 0.35 0.98 0.57 0.98 0.38 0.14
Max Current Eff. (%) 94.2 96.4 95.7 94.5 81.9 74.0
Load Regulation (mV/mA) - -1.00 - -0.35 - -3.6
Line Regulation (V/V) - 0.180 - 0.004 - 0.950

Area (µm2) 17,318.56 31,187.56 127,163.56

VIN=1.3V, VREF=1.2V, and Iload=10mA. LDO3 load regulation is compara-
tively worse due to the high gain of the ADC based controller. While operating

18 Tutu Ajayi et al.

at lower VREF and Iload conditions, the line/load regulation degrades for all the
LDOs because of the increase in relative switch strength.

The temperature sensor has an area of 2,620µm2. A 2-pt calibration is per-
formed at 0℃ and 80℃. Measured results show a sensing range between -20℃
and 100℃ with an accuracy of ±4℃.

0.8 0.9 1 1.1 1.2
10

20

30

40

50

60

70

VDD (V)

M
a
x

F
re

q
u

en
cy

(M
H

z)

0

0.5

1

1.5

2

2.5

3

P
ow

er
@

F
m
a
x

(m
W

)

Measured Max Freq (MHz)

Measured Power@Fmax

Simulated Power@Fmax

Fig. 19. Measured and simulated performance and power results of SRAM across VDD
[1]

Fig. 19 summarizes the SRAM measured and simulated performance across
the input operating voltage range of 0.8V to 1.2V. The SRAM peak performance
is at 65MHz with the power consumption of 2.09mW at 1.2V, which exceeds
the targeted frequency of 50MHz. The measured power for the SRAM also in-
clude the leakage power of the processor and peripheral interface. The generated
SRAM has an area of 0.68mm2 with the custom bitcell area occupying 0.4mm2.

7 Conclusion

This chapter presented an autonomous framework that generates a completely
integrated SoC design based on user input specifications. The framework is PDK
agnostic and allows for faster turn-around times when building custom analog
blocks and integrating them into larger SoC designs. The framework includes
generators for PLL, LDO, temperature sensor, SAR ADC, switched-capacitor

FASoC 19

DC-DC, and SRAM blocks. The framework can easily be extended to support
more generators and different PDKs. The framework’s validation was performed
by creating and fabricating SoC prototypes in 12nm and 65nm processes. Sili-
con measurements for the analog blocks were inline with user requirements and
simulation results. This work establishes a new milestone in creating a silicon
compiler [32] that further reduces the complexity of realizing modern SoCs and
cuts down on design time.

Acknowledgment

This material is based on research sponsored by Air Force Research Labora-
tory (AFRL) and Defense Advanced Research Projects Agency (DARPA) under
agreement number FA8650-18-2-7844. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon.

References

1. T. Ajayi, S. Kamineni, Y. K. Cherivirala, M. Fayazi, K. Kwon, M. Saligane,
S. Gupta, C.-H. Chen, D. Sylvester, D. Blaauw, et al., “An open-source framework
for autonomous soc design with analog block generation,” in 2020 IFIP/IEEE 28th
International Conference on Very Large Scale Integration (VLSI-SOC), pp. 141–
146, IEEE, 2020.

2. T. Ajayi, Y. Cherivirala, K. Kwon, S. Kamineni, M. Saligane, M. Fayazi, S. Gupta,
C.-H. Chen, D. Sylvester, D. Blaauw, et al., “Fully autonomous mixed signal soc
design & layout generation platform,” 2020.

3. Accellera, “IP-XACT - Accellera.” https://www.accellera.org/downloads/
standards/ip-xact. Last accessed 2020-05-03.

4. C.-Y. Wu, H. Graeb, and J. Hu, “A pre-search assisted ilp approach to analog inte-
grated circuit routing,” in 2015 33rd IEEE International Conference on Computer
Design (ICCD), pp. 244–250, IEEE, 2015.

5. K. Kunal, M. Madhusudan, A. K. Sharma, W. Xu, S. M. Burns, R. Harjani, J. Hu,
D. A. Kirkpatrick, and S. S. Sapatnekar, “ALIGN: Open-source analog layout
automation from the ground up,” in Proceedings of the 56th Annual Design Au-
tomation Conference 2019, pp. 1–4, 2019.

6. B. Xu, K. Zhu, M. Liu, Y. Lin, S. Li, X. Tang, N. Sun, and D. Z. Pan, “MAG-
ICAL: Toward fully automated analog ic layout leveraging human and machine
intelligence,” in 2019 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 1–8, IEEE, 2019.

7. A. Vladimirescu, R. Zlatanovici, and P. Jespers, “Analog circuit synthesis using
standard eda tools,” in 2006 IEEE International Symposium on Circuits and Sys-
tems, pp. 4 pp.–, 2006.

8. Y. Park and D. D. Wentzloff, “An all-digital 12pj/pulse 3.1–6.0 ghz ir-uwb trans-
mitter in 65nm cmos,” in 2010 IEEE International Conference on Ultra-Wideband,
vol. 1, pp. 1–4, IEEE, 2010.

9. Y. Park and D. D. Wentzloff, “An all-digital pll synthesized from a digital standard
cell library in 65nm cmos,” in 2011 IEEE Custom Integrated Circuits Conference
(CICC), pp. 1–4, IEEE, 2011.

20 Tutu Ajayi et al.

10. E. Ansari and D. D. Wentzloff, “A 5mw 250ms/s 12-bit synthesized digital to
analog converter,” in Proceedings of the IEEE 2014 Custom Integrated Circuits
Conference, pp. 1–4, IEEE, 2014.

11. S. Bang, A. Wang, B. Giridhar, D. Blaauw, and D. Sylvester, “A fully integrated
successive-approximation switched-capacitor dc-dc converter with 31mv output
voltage resolution,” in 2013 IEEE International Solid-State Circuits Conference
Digest of Technical Papers, pp. 370–371, IEEE, 2013.

12. W. Jung, S. Jeong, S. Oh, D. Sylvester, and D. Blaauw, “A 0.7 pf-to-10nf fully dig-
ital capacitance-to-digital converter using iterative delay-chain discharge,” in 2015
IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical
Papers, pp. 1–3, IEEE, 2015.

13. M. Shim, S. Jeong, P. Myers, S. Bang, C. Kim, D. Sylvester, D. Blaauw, and
W. Jung, “An oscillator collapse-based comparator with application in a 74.1 db
sndr, 20ks/s 15b sar adc,” in 2016 IEEE Symposium on VLSI Circuits (VLSI-
Circuits), pp. 1–2, IEEE, 2016.

14. S. Bang, W. Lim, C. Augustine, A. Malavasi, M. Khellah, J. Tschanz, and V. De,
“A fully synthesizable distributed and scalable all-digital ldo in 10nm cmos,” in
2020 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 380–382,
IEEE, 2020.

15. S. Kundu, L. Chai, K. Chandrashekar, S. Pellerano, and B. Carlton, “A self-
calibrated 1.2-to-3.8 ghz 0.0052mm2 synthesized fractional-n mdll using a 2b time-
period comparator in 22nm finfet cmos,” in 2020 IEEE International Solid-State
Circuits Conference-(ISSCC), pp. 276–278, IEEE, 2020.

16. A. Rovinski, C. Zhao, K. Al-Hawaj, P. Gao, S. Xie, C. Torng, S. Davidson, A. Amar-
nath, L. Vega, B. Veluri, et al., “A 1.4 ghz 695 giga risc-v inst/s 496-core manycore
processor with mesh on-chip network and an all-digital synthesized pll in 16nm
cmos,” in 2019 Symposium on VLSI Circuits, pp. C30–C31, IEEE, 2019.

17. C. Wolf, “Yosys open synthesis suite.” http://www.clifford.at/yosys/. Last ac-
cessed 2020-05-08.

18. “Ngspice, the open source spice circuit simulator.” http://ngspice.sourceforge.net/.
Last accessed 2020-05-08.

19. S. N. Laboratories, “Xyce parallel electronic simulator (xyce).” https://xyce.
sandia.gov/. Last accessed 2020-05-08.

20. D. M. Moore, T. Xanthopoulos, S. Meninger, and D. D. Wentzloff, “A 0.009 mm
2 wide-tuning range automatically placed-and-routed adpll in 14-nm finfet cmos,”
IEEE Solid-State Circuits Letters, vol. 1, no. 3, pp. 74–77, 2018.

21. M. H. Perrott, M. D. Trott, and C. G. Sodini, “A modeling approach for Σ-∆
fractional-N frequency synthesizers allowing straightforward noise analysis,” IEEE
Journal of Solid-State Circuits, vol. 37, no. 8, pp. 1028–1038, 2002.

22. Y. Okuma, K. Ishida, Y. Ryu, X. Zhang, P.-H. Chen, K. Watanabe, M. Takamiya,
and T. Sakurai, “0.5-v input digital ldo with 98.7% current efficiency and 2.7-µa
quiescent current in 65nm cmos,” in IEEE Custom Integrated Circuits Conference
2010, pp. 1–4, IEEE, 2010.

23. S. Weaver, B. Hershberg, P. Kurahashi, D. Knierim, and U.-K. Moon, “Stochastic
flash analog-to-digital conversion,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 57, no. 11, pp. 2825–2833, 2010.

24. M. Saligane, M. Khayatzadeh, Y. Zhang, S. Jeong, D. Blaauw, and D. Sylvester,
“All-digital soc thermal sensor using on-chip high order temperature curvature
correction,” in 2015 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–
4, IEEE, 2015.

FASoC 21

25. S. Jeong, W. Jung, D. Jeon, O. Berenfeld, H. Oral, G. Kruger, D. Blaauw, and
D. Sylvester, “A 120nw 8b sub-ranging sar adc with signal-dependent charge re-
cycling for biomedical applications,” in 2015 Symposium on VLSI Circuits (VLSI
Circuits), pp. C60–C61, 2015.

26. L. G. Salem and P. P. Mercier, “A recursive switched-capacitor dc-dc converter
achieving 2N − 1 ratios with high efficiency over a wide output voltage range,”
IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 2773–2787, 2014.

27. ARM, “Artisan memory compilers.” https://developer.arm.com/ip-products/
physical-ip/embedded-memory. Last accessed 2021-01-18.

28. Synopsys, “Designware memory compilers.” https://www.synopsys.com/dw/ipdir.
php?ds=dwc sram memory compilers. Last accessed 2021-01-18.

29. D. Technology, “Memory products.” http://dolphin-ic.com/memory-products.
html. Last accessed 2021-01-18.

30. S. Kamineni, S. Gupta, and B. H. Calhoun, “Memgen: An open-source framework
for autonomous generation of memory macros,” in 2021 IEEE Custom Integrated
Circuits Conference (CICC), pp. 3–2, IEEE, 2021.

31. R. Dreslinski, D. Wentzloff, M. Fayazi, K. Kwon, D. Blaauw, D. Sylvester, B. Cal-
houn, M. Coltella, and D. Urquhart, “Fully-autonomous soc synthesis using cus-
tomizable cell-based synthesizable analog circuits,” tech. rep., University of Michi-
gan Ann Arbor United States, 2019.

32. D. Johannsen, “Bristle blocks: A silicon compiler,” in 16th Design Automation
Conference, pp. 310–313, IEEE, 1979.

