MORTEZA FAYAZI

Address: 44598 Bayview Ave, No. 12212, **Phone:** +1 (734) 780-5509

Clinton Township, Michigan 48038, US. Email: fayazi@umich.edu

Webpage: http:\web.eecs.umich.edu/~fayazi/ GitHub: https://github.com/mortezafayazi

SUMMARY

Ph.D. candidate with a solid background in Electrical Engineering and Computer Science. My research aims toward solving fundamental multidisciplinary problems that span over EAD design, Machine Learning, Analog/Digital circuit design, high-level SoC design, computer architecture, Natural Language Processing, and software engineering.

RESEARCH INTERESTS

Circuit Design Automation Machine Learning
Analog Circuit Design Digital Circuit Design
Open-source Circuit Design Tool SoC Design

EDUCATION

Ph.D. in Electrical Engineering and Computer Science 2017 - Present

University of Michigan, Ann Arbor, Michigan, US

M.S.E. in Electrical Engineering and Computer Science 2017 - 2020

University of Michigan, Ann Arbor, Michigan, US

GPA: 3.82/4

B.Sc. in Electrical Engineering; Major: Electronics, Minor: Computer Science 2012 - 2017

Sharif University of Technology, Tehran, Iran

GPA: 17.71/20 (3.88/4)

PUBLICATIONS (GOOGLE SCHOLAR)

FuNToM: Functional Modeling of RF Circuits Using a Neural Network Assisted Two-Port Analysis Method

Morteza Fayazi, Morteza Tavakoli Taba, Amirata Tabatabavakili, Ehsan Afshari, Ronald Dreslinski International Conference on Computer-Aided Design (ICCAD), 2023. [PDF]

AnGeL: Fully Automated Analog Circuit Generator Using a Neural Network Assisted Semi-supervised Learning Approach

Morteza Fayazi, Morteza Tavakoli Taba, Ehsan Afshari, Ronald Dreslinski

 $\it IEEE$ Transactions on Circuits and Systems I: Fundamental Theory and Applications (TCAS-I), 2023. [PDF]

A Compact CMOS 363 GHz Autodyne FMCW Radar with 57 GHz Bandwidth for Dental Imaging

Morteza Tavakoli Taba, S. M. Hossein Naghavi, **Morteza Fayazi**, Ali Sadeghi, A. Cathelin, Ehsan Afshari *IEEE Custom Integrated Circuits Conference (CICC)*, 2023. [PDF]

A 390 GHz CMOS FMCW Radar For Dental Imaging: Theory and Implementation

Morteza Tavakoli Taba, S. M. Hossein Naghavi, **Morteza Fayazi**, Ali Sadeghi, Mohammed Aseeri, Ronald Dreslinski, Andreia Cathelin, Ehsan Afshari

To be submitted to IEEE Journal of Solid-State Circuits (JSSC), 2023.

A 507 GMACs/J 256-Core Domain Adaptive Systolic-Array-Processor for Wireless Communication and Linear-Algebra Kernels in 12nm FINFET

Kuan-Yu Chen, Chi-Sheng Yang, Yu-Hsiu Sun, Chien-Wei Tseng, **Morteza Fayazi**, Xin He, Siying Feng, Yufan Yue, Trevor Mudge, Ronald Dreslinski, Hun-Seok Kim, David Blaauw *IEEE Symposium on VLSI Technology and Circuits*, 2022. [PDF]

FASCINET: A Fully Automated Single-Board Computer Generator Using Neural Networks Morteza Fayazi, Z. Colter, Z. Benameur-El Youbi, J. Bagherzadeh, Tutu Ajayi, Ronald Dreslinski IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2022. [PDF]

Versa: A 36-Core Systolic Multiprocessor With Dynamically Reconfigurable Interconnect and Memory

Sung Kim, **Morteza Fayazi**, Alhad Daftardar, Kuan-Yu Chen, Jielun Tan, Subhankar Pal, Tutu Ajayi, Yan Xiong, Trevor Mudge, Chaitali Chakrabarti, David Blaauw, Ronald Dreslinski, Hun-Seok Kim *IEEE Journal of Solid-State Circuits (JSSC)*, 2022. [PDF]

Tablext: A Combined Neural Network And Heuristic Based Table Extractor

Zachary Colter, **Morteza Fayazi**, Zineb Benameur-El, Serafina Kamp, Shuyan Yu, Ronald Dreslinski Elsevier Array, 2022. [PDF]

Open Information Extraction: A Review of Baseline Techniques, Approaches, and Applications

Serafina Kamp*, **Morteza Fayazi***, Z. Benameur-El, S. Yu, Z. Colter, R. Dreslinski (*Equal contribution) Submitted to Expert Systems With Applications, 2022.

Applications of Artificial Intelligence on the Modeling and Optimization for Analog and Mixed-Signal Circuits: A Review

Morteza Fayazi, Zachary Colter, Ehsan Afshari, Ronald Dreslinski

IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications (TCAS-I), 2021.

[PDF]

Versa: A Dataflow-Centric Multiprocessor with 36 Systolic ARM Cortex-M4F Cores and a Reconfigurable Crossbar-Memory Hierarchy in 28nm

Sung Kim, **Morteza Fayazi**, Alhad Daftardar, Kuan-Yu Chen, Jielun Tan, Subhankar Pal, Tutu Ajayi, Yan Xiong, Trevor Mudge, Chaitali Chakrabarti, David Blaauw, Ronald Dreslinski, Hun-Seok Kim *IEEE Symposium on VLSI Circuits*, 2021. [PDF]

Fully-Autonomous SoC Synthesis using Customizable Cell-Based Analog and Mixed-signal Circuits Generation

T. Ajayi, S. Kamineni, **Morteza Fayazi**, Y. Cherivirala, K. Kwon, S. Gupta, W. Duan, J. Lee, C. Chen, M. Saligane, Dennis Sylvester, David Blaauw, Ronald Dreslinski, Benton Calhoun, David Wentzloff *IFIP/IEEE International Conference on Very Large Scale Integration-System on a Chip*, 2021. [PDF]

An Open-source Framework for Autonomous SoC Design with Analog Block Generation T. Ajayi, S. Kamineni, Y. Cherivirala, Morteza Fayazi, Kyumin Kwon, Mehdi Saligane, Shourya Gupta, Chien-Hen Chen, Dennis Sylvester, David Blaauw, Ronald Dreslinski, Benton Calhoun, David Wentzloff 28th International Conference on Very Large Scale Integration (VLSI-SoC), 2020. [PDF]

Fully-Autonomous SoC Synthesis using Customizable Cell-Based Synthesizable Analog Circuits

Ronald Dreslinski, David Wentzloff, **Morteza Fayazi**, Kyumin Kwon, David Blaauw, Dennis Sylvester, Benton Calhoun, Matteo Coltella, David Urquhart *GOMACTech Conference*, 2019. [PDF]

A Simplified Approach to Two-Port Analysis in Feedback

Morteza Fayazi, Ali Fotowat, Zahra Kavehvash

To be submitted to IEEE Transaction on Education, 2015. [PDF]

FuNToM: Functional Modeling of RF Circuits Using a Neural Network Assisted Two-Port Analysis Method

Morteza Fayazi, Morteza Tavakoli Taba, Amirata Tabatabavakili, Ehsan Afshari, Ronald Dreslinski Work-in-Progress at Design Automation Conference (DAC), 2023.

FASCINET: A Fully Automated Single-Board Computer Generator Using Neural Networks Morteza Fayazi, Z. Colter, Z. Benameur-El Youbi, J. Bagherzadeh, Tutu Ajayi, Ronald Dreslinski Work-in-Progress at Design Automation Conference (DAC), 2021.

Fully Autonomous Mixed Signal SoC Design & Layout Generation Platform

T. Ajayi, Y. Cherivirala, K. Kwon, Sumanth Kamineni, Mehdi Saligane, **Morteza Fayazi**, Shourya Gupta, Chien-Hen Chen, Dennis Sylvester, David Blaauw, Ronald Dreslinski, Benton Calhoun, David Wentzloff *IEEE Hot Chips 32 Symposium (HCS)*, 2020. [PDF]

RESEARCH EXPERIENCE

Functional Estimator of RF Circuits Tool

2022

- Research under the supervision of Prof. Dreslinski and Prof. Afshari, University of Michigan
- Using NNs and two-port analysis method for modeling multiple topologies using a single main dataset and multiple small datasets
- Working closely with an analog design team to add analog circuit design intuition into ML applications

Fully Automated Analog Circuit Generator Tool

2022

- Research under the supervision of Prof. Dreslinski and Prof. Afshari, University of Michigan
- Using NNs to determine the behavior of complicated topologies by combining the more simple ones and presenting a database including labeled and unlabeled data
- Using this database, we propose a tool that performs all the schematic circuit design steps from deciding the circuit topology to determining the circuit parameters

Automated Infection Control for Indoor Spaces

2021

- Internship under the supervision of Dr. Mohammad Noshad, Shyld AI
- Using image processing to detect humans and track their motions

Autonomous Single-Board Computer Generator

2020

- Research under the supervision of Prof. Ronald Dreslinski, University of Michigan
- Using NNs to design customized peripheral circuits for single-board computers given their main components
- Creating a large COTS DB of existing discrete IPs, efficiently searching through them, and selecting optimal IP options based on the user requirements

A Comprehensive Study of Applications of AI on Designing Analog Circuits

2020

- Research under the supervision of Prof. Ronald Dreslinski, University of Michigan
- Explaining the basic concepts of AI and surveying some recent studies of various AI techniques for analog circuit design
- Discussing the main approaches as well as the pros and cons of each method
- Giving meaningful insights about the current challenges and open issues, as well as recommending approaches for specific applications

Fully-Autonomous SoC Synthesis using Cell-Based Synthesizable Analog Circuits 2018

- Joint project under the supervision of Prof. Ronald Dreslinski, Prof. Blaauw, Prof. Sylvester, and Prof. Wentzloff (University of Michigan), Prof. Calhoun (University of Virginia), and ARM plc [GitHub]
- Funded by Air Force Research Laboratory (AFRL) and Defense Advanced Research Projects Agency (DARPA)

- Leveraging a differentiating technology to automatically synthesize "correct-by-construction" Verilog descriptions for both analog and digital circuits
- Presenting the world's first autonomous mixed-signal SoC framework, driven entirely by user constraints, along with a suite of automated generators for analog blocks
- Creating a large COTS DB of existing discrete IPs, efficiently searching through them, and selecting optimal IP options based on the user requirements
- Working closely with seven graduate students and integrating all works into one software platform

Automated Datasheet Scrubber

2018

2014-2017

- Research under the supervision of Prof. Ronald Dreslinski, University of Michigan [GitHub]
- Using ML, image processing, and text processing for realizing datasheets category and extracting relevant data within either text or table
- Discussing the main approaches as well as the pros and cons of each method
- Supervising two graduate and four undergraduate students

TEACHING EXPERIENCE

Certificate of Completion in Preparing Future Faculty University of Michigan	2023
Graduate Student Instructor of "Introduction to Electronic Circuits" University of Mich 2023, Instructor: Prof. Terry	igan EECS 215
Graduate Student Instructor of "Analog Circuits" University of Michigan EECS 311 Instructor: Prof. Flynn	2021
Graduate Student Instructor of "Analog Circuits" University of Michigan EECS 311 Instructor: Prof. Peterson	2018
Teaching Assistant of "Principles of Electrical Engineering" Sharif University of Technol Instructor: Prof. Fardmanesh	logy 2016, 2015
Teaching Assistant of "Principles of Electronics" Sharif University of Technology Instructor: Prof. Kavehvash	2016, 2015
Teaching Assistant of "Analog Circuits" Sharif University of Technology Instructor: Prof. Khorasani	2014

ACTIVITIES

• Machine Learning Engineering Inter	n at Shyld AI	2021
--------------------------------------	---------------	------

• Member of Ultra high-speed Nonlinear Integrated Circuit lab, University of Michigan 2020 - Present

• Member of Circuit and Architecture Design Research group, University of Michigan 2018 - Present

HONORS & AWARDS

• Awarded University of Michigan Rackham Graduate Student Research Grant	2023
• Outstanding undergraduate thesis award from Electrical Engineering department at Sharif	University
of Technology	2017
• Ranked 2^{nd} in Electronics Major among all 2012 EE entrants	2017
• Awarded University of San Diego graduate fellowship, for Ph.D. studies	2017
• Awarded University of Waterloo graduate fellowship, for M.A.Sc program	2017

• Ranked 33th in the National University Entrance Examination among 60,000+ participants, Iran 2012

• Membership of Exceptional Talents Community of Sharif University of Technology

SELECTED COURSE PROJECTS

Designing and implementation of two ways superscalar MIPS R10K microarchitecturout of order processor for Alpha 64 ISA	
"Computer Architecture" University of Michigan EECS 470, Instructor: Prof. Dreslinski	2019
Designing and implementation of binary content addressable memory capable of incompute and low power mode	v
"VLSI Design I" University of Michigan EECS 427, Instructor: Prof. Sylvester	2018
Designing and implementation of a CMOS wide-bandwidth transimpedance amplified for an optical fiber cable of operating at 5 Gbps	` ,
"Monolithic Amplifier Circuits" University of Michigan EECS 413, Instructor: Prof. Afshari	2018
Design and implementation of third order continuous time $\Delta\Sigma$ ADC with chopping seedback	and FIR
"Analog to Digital Interfaces" University of Michigan EECS 511, Instructor: Prof. Flynn	2018
SELECTED COURSES FOR ELECTRICAL ENGINEERING	
• VLSI Design I (University of Michigan EECS 427), Prof. Sylvester	2018
• Monolith Amplifier Circuits (University of Michigan EECS 427), Prof. Afshari	2018
• Analog to Digital Interfaces (University of Michigan EECS 511), Prof. Flynn	2018
• Analog Integrated Circuits (University of Michigan EECS 522), Prof. Wentzloff	2018
• Power Electronics (University of Michigan EECS 418), Prof. Avestruz	2017
• Filter Design & Network Synthesis (Sharif University of Technology), Prof. Sadughi	2016
• Pulse Technique & Digital Circuits (Sharif University of Technology), Prof. Bagheri	2015
SELECTED COURSES FOR COMPUTER SCIENCE & ENGINEERING	
• Computer Architecture (University of Michigan EECS 470), Prof. Dreslinski	2019
• Convex Optimization (University of Michigan IOE 611), Prof. Epelman	2017
• Compiler I (Sharif University of Technology), Prof. Foroughmand-Araabi	2016
• Automata and Language Theory (Sharif University of Technology), Prof. Khazaei	2015
• Linear Algebra (Sharif University of Technology), Prof. Bahraini	2015
• Mathematical Analysis I (Sharif University of Technology), Prof. Bahraini	2014
• Graph Theory and Applications (Sharif University of Technology), Prof. Qajar	2014
MENTORSHIP & LEADERSHIP	
• Mentoring two Masters and four undergraduate students, for the [FASoC project] 20	18 - 2021
• Founding and leading a new student organization, Islamic Society of Ahlulbayt (ISA), on t	
·	018 - 2020
• Mentoring multiple undergraduate students as part of the Michigan's Lunch and Lab M	entorship

SKILLS & TOOLS

Program

- Programming Language: Python, C, MATLAB, Ruby
- Hardware Description Language: Verilog
- Scripts: Makefile, BASH
- HW/SW Debug tools: Oscilloscope, Synopsys Verilog Compiler Simulator (VCS)
- Analog Design Tool: Virtuoso Cadence, Orcad PSpice and Schematic, HSpice, Advanced Design System (ADS)

2017 - 2020

- Digital Design Tool: Proteus, Quartus, Synopsys Design Compiler
- PCB Design: Altium Designer
- SoC Design: ARM Socrates