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Abstract—Machine Learning (ML) has shown promising re-
sults in predicting the behavior of analog circuits. However, in
order to completely cover the design space for today’s compli-
cated circuits, supervised ML requires a large number of labeled
samples which is time-consuming to provide. Furthermore, a
separate dataset must be collected for each circuit topology
making all other previously gathered datasets useless. In this
paper, we first present a database including labeled and unlabeled
data. We use neural networks to determine the behavior of
complicated topologies by combining the more simple ones.
By generating such unlabeled data, the time for providing the
training set is significantly reduced compared to the conventional
approaches. Using this database, we propose a fully-automated
analog circuit generator framework, AnGeL. AnGeL performs
all the schematic circuit design steps from deciding the circuit
topology to determining the circuit parameters i.e. sizing. Our
results show that for multiple circuit topologies, in comparison to
the state-of-the-art works while maintaining the same accuracy,
the required labeled data is reduced by 4.7x - 1090x. Also, the
runtime of AnGeL is 2.9x - 75x faster.

Index Terms—Analog circuit design automation, topology se-
lection, circuit sizing, neural network, semi-supervised learning.

I. INTRODUCTION

THE existence of various design parameters and speci-
fications in present-day complex circuits, in addition to

severe process variations, have made the manual circuit design
procedure challenging, time-consuming, and inefficient [1].
All these challenges make the automated analog circuit gener-
ation a necessity. Schematic circuit design includes two main
steps: deciding the topology and determining the value of the
circuit elements (i.e. sizing) to meet the desired specifications.

Model-based approaches are one of the main techniques in
the automated sizing of circuits e.g. non-convex polynomial
optimization, geometric programming, and Neural Network
(NN) [2], [3]. In such approaches, a global model is built
based on the collected training set, which makes the model
reusable for other data. However, to maintain high accuracy
while covering the whole design space, a large labeled training
set is required [4]. SPICE simulation is used for gathering
such a large set which is time-consuming. To make matters
worse, a separate dataset is required for each circuit topology,
even if a single element is added or removed.
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Even though the model-based approaches are reusable, their
accuracies are not usually high due to the large number of
design parameters and nonlinearity of object and constraint
functions [5]. On the other hand, the other approaches in
automated sizing, simulation-based algorithms [5]–[8], opti-
mize circuits directly by the gathered simulated data and
usually have higher accuracy. However, they are more time-
consuming in comparison with model-based methods and are
non-reusable. Here, non-reusable means that even if the target
specifications slightly changes, the whole process needs to
reoccur. The third approach in circuit sizing is a hybrid of
model- and simulation-based methods. In such approaches,
after building the initial model, the model is gradually updated
by running simulations during the optimization procedure
instead of using an offline model.

In order to reduce the size of the labeled dataset, we propose
a co-learning-based NN approach. The term co-learning here
means passing the knowledge from usually less complex mod-
els to more complicated ones to reduce the training cost [9]. In
our case, the previously gathered datasets of simpler circuits
are leveraged to shrink the required labeled training sets
for more complicated circuit topologies. In other words, we
use NNs to determine the circuit behavior of complicated
topologies by combining the simpler ones.

Using the presented database, we propose a fully-automated
analog circuit generator framework, AnGeL. The goals of
AnGeL are threefold: (a) achieve a reusable, accurate, and fast
model to meet the given specifications of the overall circuit,
(b) reduce the number of required labeled training samples,
and (c) perform all schematic circuit design steps such as
deciding the overall circuit topology, selecting the topology of
sub-circuits, and sizing them. Since we are using both labeled
and unlabeled data in the database, our approach is classified
as semi-supervised learning.

In order to achieve a reusable, accurate, and fast model,
AnGeL uses a hybrid (model-simulation-based) approach for
sizing. Between model-based approaches, NNs have shown
promising results in all circuit design levels such as single-
board computer, sizing, layout, post-layout simulation, and
system-on-chip design [10]–[14]. Also, once the model is
trained, it is able to execute a large input set in a very short
time. In our approach, we use an NN to estimate the func-
tionality of circuits such that it determines the performance of
interest (circuit’s specifications) when the circuit parameters
are given. We use such an NN as the global optimization
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engine to determine the circuit parameters to meet the de-
sired specifications. To improve the accuracy, we implement
Particle Swarm Optimization (PSO), which is a simulation-
based algorithm while the trained NN is invoked instead of
the SPICE simulator to provide the necessary data. Indeed,
PSO is a population-based approach that has a better precision
compared to other methods e.g. genetic algorithms [7]. In
this regard, our proposed approach is accurate because of
implementing PSO in the local optimization as well as reusable
and fast due to using an NN as the functional estimator of the
circuit.

In addition to using an efficient database, in order to further
reduce the size of the training data, AnGeL divides the overall
circuit into multiple sub-circuits and analyzes each individ-
ually while meeting the given specifications of the overall
circuit. This approach allows dealing with circuits with less
design parameters. Therefore, a smaller training set is required
to analyze them while maintaining equivalent accuracy in
comparison with analyzing the overall circuit [15]. Moreover,
the global and local optimum points are found faster since
design spaces of sub-circuits are smaller. Furthermore, sub-
circuits are analyzed in parallel which reduces the runtime.
Another advantage of this circuit division is supporting many
topologies while AnGeL is trained on a few of them. As an
example, when AnGeL trains on 12 single-stage operational
amplifier (OPAMP) topologies, it supports 12×12=144 two
stages topologies. To this end, since the given specifications
are for the overall circuit, AnGeL breaks down them to appro-
priate sub-circuits specifications while considering the effect
of other sub-circuits e.g. loading effect. For further division,
even a sub-circuit may be broken into smaller chunks. For
instance, a two-stage OPAMP may consist of two differential
stages where each stage may consist of a gain block, current
source, and DC-biasing chunks. So, AnGeL hierarchically
determines the specifications of each sub-circuit regarding the
specifications of the parent circuit. This hierarchical approach
enables AnGeL to design circuits with many design parameters
(∼40) in a short time and with high accuracy.

AnGeL also selects the most suitable high-level circuit
topology (number of stages, type of sub-circuits e.g. gain
block, DC-biasing) between available candidates as well as
determining the target specifications of each sub-circuit. In
a similar way, the topology of each sub-circuit is selected
among the available candidates. The topology of sub-circuits
as well as their sizing are determined based on the sub-circuit
specifications.

To validate our proposed method, all the design steps of one-
, two-, and three-stage OPAMPs as well as filters have been
demonstrated. The performance of the synthesized circuits by
AnGeL is validated by SPICE simulations. Our results show
that for multiple circuit topologies, in comparison to the state-
of-the-art works while maintaining the same accuracy, the
required labeled data is reduced by 4.7x - 1090x. Also, the
runtime of AnGeL is 2.9x - 75x faster. Moreover, testing on
more than 1,450 different circuits illustrates that the perfor-
mance of circuits that are determined using combining simpler
topologies has an average percentage error of less than 0.043.

The main contributions of this paper can be summarized as

follows:

• Creating a database using a co-learning-based NN model
that significantly reduces the size of the required labeled
training set compared to the state-of-the-art works.

• An efficient and intelligent fully-automated analog circuit
generator framework that uses the created database and
designs circuits from deciding the topology to sizing.

• Achieving a fast and accurate method using a hybrid of
model- and simulation-based approaches.

• Designing circuits with many design parameters (∼40)
using a hierarchical approach.

• Supporting many circuit topologies while few topologies
are used in the training by leveraging the circuit division
into sub-circuits.

II. BACKGROUND AND RELATED WORK

A. Problem Formulation

Estimating the functionality of circuits and optimizing them
are two important areas in automating the design of analog
circuits [16]. In estimating the functionality of circuits, the
main goal is to find f as a function of circuit parameters,
x, to approximate the performance of interest, y. DC bias
voltages and size of transistors (W,L) are examples of circuit
parameters, and the voltage gain of an OPAMP is an example
of the performance of interest: y ≈ f(x).

The goal of analog circuit optimization is to determine the
design parameters such that

minimize f1(x), . . . , fM (x)

subject to: c1(x) < 0, . . . , cN (x) < 0, (1)

where f1, . . . , fM are the figure of merit of the circuit [17].
c1, . . . , cN are constraints such as xj ∈ [p−j , p

+
j ] or bandwidth

(BW) > 1GHz.

B. Reducing Database Size

In estimating the functionality of circuits, decreasing the
number of required labeled data is crucial. There are several
works that have used the concept of co-learning for this
purpose [9], [15], [18]. The main idea of them is to find two
representations for modeling a circuit’s specification where
one of them is simpler and less accurate than the other. By
passing the information from the simpler model to the more
complicated one, they achieve an accurate model with fewer
labeled data. Hassanpourghadi et al. [4] and Alawieh et al. [15]
have divided the overall circuit into multiple sub-circuits to
conclude simpler models, and as a result, the size of the
training set is decreased. Even though the aforementioned
approaches have helped reduce the number of labeled data,
a completely new dataset is required, even with a small
modification in the topology. Wang et al. [19] have mentioned
the idea of transferring knowledge between topologies using
graph neural networks. However, this transfer is applied from
a two-stage to a three-stage OPAMP, not among single sub-
circuits.
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C. Circuit Design Framework

There are several automated circuit design frameworks that
both create a topology and size the circuits [20]–[23]. Since
they are mainly simulation-based approaches, they are slow
and have relatively high computation costs due to the need
of running a large number of simulations. Moreover, they are
non-reusable.

Several studies have focused on the topology construc-
tion [24]–[26] as their main idea. They either use an external
tool for sizing [24] or perform an initial sizing [25]. Topology
construction is categorized into two types in general: (a)
topology selection from a predefined library and (b) topology
generation from basic building blocks [24], [26]. Generating
topologies from basic building blocks is more creative as it
may lead to creating circuit topologies that have not been
seen before. Furthermore, traditional topology selectors sup-
port fewer topologies [25]. FEATS [24] represents circuits
with a graph and uses abstract building blocks to generate
circuit topologies. Even though it supports more than 10,000
topologies, it takes hours for it to synthesize. FUBOCO [25]
performs hierarchical design using functional blocks. Although
it is faster than the previous approaches [24], it takes it still
several hours to design as it consequently designs stages and
sizes many topologies before concluding. On the other hand,
in our approach, using the idea of division and hierarchical
parallel design, we are able to support more than 10,000
topologies while spending a few minutes to conclude the
design. Indeed, our work is positioned between the traditional
topology selector approaches and basic-building-blocks-based
approaches since AnGeL still selects the sub-circuit topologies
but works with them as basic blocks in the top-level topology.

Many studies have assumed the circuit topology is given
as an input [16], and they just have focused on sizing. NNs
have a fast runtime and have a high degree of freedom due
to their multiple hidden layers [4]. Several studies use fully-
connected-NNs for sizing of analog circuits [27]–[29]. Their
main disadvantages are requiring a large labeled training set
which is time-consuming to provide, as well as inaccuracy.
Liu et al. [30] use transfer learning to decrease the size
of the post-layout training set by leveraging the schematic
gathered data. Recently, reinforcement learning, graph neural
network, and constraint programming [31]–[33] also have been
used in analog circuit sizing. The most common method to
automate circuit sizing is simulation-based approaches [34].
Bayesian optimization is one of the most popular techniques
in this regard [5], [35]. However, because of the inherent
expensive computation cost of simulation-based approaches,
Zhang et al. [36] try to extract the “good” features and
define the Gaussian Process based on them using NNs. PSO
is another popular technique in circuit sizing [7], [37]–[39]
however, the runtime is long. To alleviate these drawbacks,
a hybrid model-simulation-based approach is implemented by
replacing the slow SPICE simulation with a fast circuit func-
tional model, which usually is an NN [40], [41]. Supporting
only one topology, having a narrow design space, and requiring
a large training set are their main shortcomings.
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Fig. 1. (a) An example of three simpler topologies, T1, T2, T3, that can be
combined to determine the circuit behavior of Tout. To enhance visibility, we
use identical colored boxes/circles to show bodies/loads that are the same in
different topologies. (b) The output topology of Fig. 1(a) is used to make a
more complicated topology.

III. PROPOSED DATABASE GENERATION

A. Overview

Collecting datasets for simpler topologies is less expensive
since they have smaller design spaces. On the other hand, in
order to completely cover the design space for complex circuits
with many design parameters (e.g. size of transistors), an
abundant number of samples are needed. As an example, Tout

in Fig. 1(b) has 21 design parameters i.e. width, length, vbias
for 6 transistors and a current source. Therefore, gathering only
labeled data by running simulations would be computationally
expensive.

Fig. 1(a) demonstrates the proposed co-learning-based
database generation flow. The goal of the topology-combiner
is to determine the circuit behavior (i.e. the effect of design
parameters on output specifications) of complicated topologies
using the simpler ones in order to reduce the size of the
required labeled data. The datasets for more basic, simple
topologies, e.g. T1, T2, T3, are gathered using simulations.
Such datasets contain the value of the specification associated
with different circuit design parameters for each topology.
Then, the circuit behavior of the more complicated topology
(Tout) is determined using combinations of the simpler ones.
For example, in Fig. 1(a), Tout is built by replacing the resis-
tive load of T3 with the PMOS load of T2. Moreover, T1 has
the same body and resistive load as T2 and T3, respectively. So,
intuitively, the behavior of Tout can be modeled by leveraging
the previously gathered T1, T2, T3 datasets information. Then,
a large pseudo sample set that covers the design space of
Tout is generated with almost zero cost using such a model
(unlabeled data). So, our database is a combination of labeled
and unlabeled data. Now that the dataset of Tout is generated,
it can be used to build more complicated topologies. As an
example, the output topology in Fig. 1(a) is used to make a
more complicated topology in Fig. 1(b).

B. Topology Combiner Model

Fig. 2(a) demonstrates the general structure of three simpler
topologies (T1, T2, and T3) that can be combined to determine
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Fig. 2. The topology-combiner model. (a) The general structures of three
simpler topologies, T1, T2, and T3, which are combined to determine the
circuit behavior of Tout along with the example of Fig. 1(a). We use the
same boxes/circles with the same color for showing bodies/loads that are the
same to make them more visible in different topologies.
(b) Our proposed co-learning-based NN models: Training of
accessory-1 and accessory-2 models using T1, and T2 dataset,
respectively. (c) Our proposed co-learning-based NN models:
Training and deployment of the main NN using T3 dataset.

the circuit behavior of Tout. Each topology is composed of two
parts: B (body) and L (load). T1 and T2 have the same body
(B1) and T1, T3 have the same load (L1). Moreover, Tout has
the same body (B2) and load (L2) as T3 and T2, respectively.
We use the notation of xB and xL for showing the design
parameters of body and load, respectively, and f(xB ,xL) for
denoting a circuit specification when the body is B, and load
is L. This f can be any of circuit specifications e.g. gain, BW,
etc. The training process needs to be done individually for
each circuit specification.

Our goal is to determine the mapping from xB2
,xL2

,
i.e. the design parameters of Tout topology, to f(xB2

,xL2
)

without having any direct mapping samples. That is, to
determine the mapping ξTout :

ξTout
: (xB2

,xL2
) 7→ f(xB2

,xL2
) (2)

Fig. 2(b) and (c) show the NN implementation for our
proposed topology-combiner and how the dataset of each of
T1, T2, and T3 is used in the training of such NNs. The first
step is to train the accessory-1 model using the training set
of T1. As it is depicted in Fig. 2(b) on the left side, inputs
are the design parameters of T1, and the output is the desired
specification in T1, i.e. f(xB1

,xL1
). Similarly, the accessory-2

model is trained by leveraging the T2 dataset while inputs and

outputs are the design parameters and the desired specification
of T2, respectively. The accessory-2 NN is shown in Fig. 2(b)
on the right side.

Next, the accessory-1 and the main NNs are concatenated
as shown in Fig. 2(c) on the left side. Note that the accessory-
1 NN is used in the deployment phase now. By giving a
fixed, constant xB1

which we denote with xB1c
, the inputs

variable of this concatenated network would be xB2
and xL1

which are the design parameters of T3. As it is shown, the
output is the desired specification in T3, i.e. f(xB2 ,xL1).
Since the accessory-1 NN is already trained, by training
this concatenated network, the weights of the main NN are
calculated. In other words, we will have:

ξMain : (xB2
, f(xB1c

,xL1
)) 7→ f(xB2

,xL1
). (3)

The inputs of the main NN are xB2 , and f(xB1c ,xL1)
while the output is the desired specification of the topology
with B2 body and L1 load. Therefore, during the deployment
phase of the main NN, by replacing L1 with L2 (giving
f(xB1c

,xL2
) instead of f(xB1c

,xL1
)), we will have the

desired specification of the topology with B2 body and L2

load, which is our goal, Tout. This means we will have:

ξ′Main : (xB2 , f(xB1c ,xL2)) 7→ f(xB2 ,xL2), (4)

which has been derived by replacing xL1
with xL2

in (3). This
is perfectly aligned with our goal in (2) as if we replace xL2

with the corresponding f(xB1c ,xL2) in (2) we will conclude
the same equation as (4). So, the last step is to map xL2

to
the corresponding f(xB1c

,xL2
) which is achieved by using

the trained accessory-2 NN. So, during the deployment phase
of accessory-2 NN, by giving the xB1c as the body, we would
have the mapping of xL2 to f(xB1c ,xL2). This procedure is
illustrated in Fig. 2(c) on the right side. Hence, to determine
the behavior of Tout from its design parameters, we first find
f(xB1c

,xL2
) leveraging the accessory-2 NN. Next, we feed

the result to the main NN along with the design parameters
of B2.

To give more intuition about our models, it should be noted
that the key is to have f(xB1 ,xL1) in the main NN instead
of directly depending on the design parameters of the load.
Indeed, f(xB1

,xL1
) abstracts the “effect” of a load in a

topology with the B1 body as single input for the main NN.
This is the reason that we are able to replace L1 with L2 in
the deployment phase of the main NN. Moreover, the other
inputs of the main NN are the design parameters of B2 which
is the body of Tout too so, it works exactly as we want.

IV. PROPOSED ANGEL FRAMEWORK

Using the presented database, we create a fully-automated
analog circuit generator framework, AnGeL.

A. Overview

As it was mentioned earlier, AnGeL divides the overall
circuit into multiple sub-circuits and analyzes each individ-
ually. This results in dealing with smaller circuits and hence,
requiring a smaller training set size while keeping the same
accuracy in comparison with analyzing the overall circuit. The
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Fig. 3. High-level platform architecture of AnGeL.
So: Desired specifications for the overall circuit given by users.
S1, S2: The specifications for each sub-circuit that are determined by the
overall topology decider module.
SF : Specifications of sub-circuits that are determined by the bigger sub-
circuits that they are part of.

other advantages of dividing the circuit are finding global and
local optimum points faster since design spaces of sub-circuits
are smaller, faster runtime due to analyzing sub-circuits in
parallel, and supporting many topologies while only a few of
them are used in the training set.

Fig. 3 shows a high-level platform architecture of the
proposed circuit design flow of AnGeL. The desired speci-
fications, i.e. So = [So1, . . . , SoM ], are given to the overall
topology decider module. Here, we assume the given specifi-
cations are all in equality format e.g. So1 = C1, So2 = C2, . . ..
The goal of AnGeL is to design a circuit at the transistor level
so that its output specifications are as close as possible to the
given ones. Transforming constraints in inequality format e.g.
So1 > C1, So1 < C2, . . . along with objective functions e.g.
minimize SoM are explained in Section IV-E.

The overall topology decider module determines the high-
level topology of the circuit accordingly. Indeed, this module
determines the number of stages, type of each sub-circuit (e.g.
gain block, DC-biasing), how the sub-circuits are connected
to each other (e.g. having feedback, being in parallel or
series), and having single-ended or differential input/output
ports for sub-circuits. Moreover, the overall topology decider
module determines the specifications for each sub-circuit (i.e.
S1, S2, . . .). The determined specifications for each sub-circuit
is passed to the sub-circuit generator module to build a circuit
at the transistor level.

The feedback loop around the sub-circuit generator module
shows that the specifications of some sub-circuits (i.e. SF ) are
determined by the bigger sub-circuits that they are part of. For
instance, the specifications of the DC-bias sub-circuit cannot
be determined before determining the input DC voltage of
the following gain stage. In this regard, AnGeL hierarchically
determines the specifications of each sub-circuit regarding the
specifications of the parent circuit. This hierarchical approach
and circuit division enables AnGeL to design circuits with
many design parameters (∼40) in a short time and with
high accuracy. For example, a band-pass active filter consists
of low-pass and high-pass filters that each may include a
two-stage OPAMP. All these sub-circuits are designed in a
hierarchical approach and in parallel with each other.

The first step in the proposed sub-circuit generation flow
is to determine the topology. The topology is selected among

TABLE I
COMPARISON COST OF ANGEL AND THE CONVENTIONAL APPROACHES
REGARDING THE CURSE OF DIMENSIONALITY. n1 AND n2 : NUMBER OF

DESIGN PARAMETERS IN TWO DIFFERENT SUB-CIRCUITS. k: NUMBER OF
SAMPLES FOR EACH PARAMETER.

[n1, n2, k] [5, 5, 3] [5, 5, 5] [5, 7, 4] [7, 6, 4] [7, 7, 5]
Conventional cost 1,000 100,000 20,736 28,561 537,824

AnGeL cost 250 6,250 3,026 3,697 33,614

the available topologies in the database. Based on the selected
topology, AnGeL determines the value of design parameters
(sizing the sub-circuit). There is a separate model for sizing
each topology. To apply AnGeL to a new technology node,
the training process needs to be redone. In order to decrease
the number of such new training samples, the idea of transfer
learning [42] can be used which is out of the scope of this
paper.

Using the topology combiner and the overall topology de-
cider module, we do not majorly face the curse of dimension-
ality. The reason is that we are able to determine the behavior
of complicated topologies that require more training sets (by
leveraging simpler topologies with almost zero cost) and
efficiently break down multi-stage circuits into multiple single
stages. However, the nonideality of the topology combiner may
slightly increase inaccuracy in the whole design process. It
should be noted that, as mentioned in Section V, the topology
combiner has a very high accuracy, but this slight nonideality
is in the trade-off with the curse of dimensionality. For a
better cost comparison between AnGeL and the conventional
approaches, we denote the number of design parameters in two
different sub-circuits with n1 and n2, respectively. Assuming
we take k samples for each parameter, the cost of AnGeL for
analyzing a two-stage circuit with those two sub-circuits is
n1

k+n2
k, considering only the effect of breaking down multi-

stage circuits into multiple single stages. However, this cost
for the conventional approach is (n1 + n2)

k. As summarized
in Table I, the cost of AnGeL is significantly lower than the
conventional approaches for different typical n1, n2, and k
values.

B. Overall Topology Decider

The main goal of the overall topology decider module is
to determine the high-level topology of the circuit and break
down the overall circuit specifications into usable specifica-
tions for sub-circuits. Determining the sub-circuit specifica-
tions via overall specifications is challenging. The assigned
sub-circuits’ specifications need to meet the overall specifica-
tion when they are assembled together as the associated high-
level topology. This requires a proper training set that teaches
the module how to assign sub-circuits’ specifications such that
the net impact of them in the associated high-level topology
meets the overall specification. Furthermore, there are multiple
ways for breaking down each overall specification, but many
of them are not feasible for sub-circuits considering other
specifications. For instance, assigning a large gain and BW to
a sub-circuit may not be feasible simultaneously. Therefore,
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Fig. 4. Overall topology decider flow. (a) Two examples of high-level
topologies. (b) Net-specification-calculator model. (c) Overall-specification-
breaker model in the training phase. (d) Overall-specification-breaker model
in the deployment phase.
So: The vector of overall circuit specifications.
[S1, . . . , SN ]: The associated specifications sets of N sub-circuits.
XR: A vector of design parameters that are not included in any sub-circuits.
[NSC1, . . . , NSCM ]: The associated net specification calculator models of
M high-level topologies.
[H-T1, . . ., H-TM ]: M high-level topologies.

a large, proper training set is needed for learning all these
relationships.

To overcome the aforementioned challenges we implement
two main models: 1) net-specification-calculator model for
calculating the net impact of different sub-circuits’ specifi-
cations at the module-level on the overall circuit; 2) overall-
specification-breaker model which uses a large dataset gen-
erated by the net-specification-calculator model for properly
breaking down the overall specifications into sub-circuits
specifications as well as determining the high-level topology.
The overall-specification-breaker model consists of two NN
models: A) a classifier for selecting the most suitable high-
level circuit topology; B) a regressor for determining the target
specifications of each sub-circuit.

Fig. 4(a) illustrates two examples of high-level circuit
topologies. According to Fig. 4, the overall specifications
(So) is a function of sub-circuits’ specifications (S1, . . . , SN ),
and other circuit’s design parameters that are not included
in any sub-circuits (XR). For example, the overall DC gain
(Go) is a function of sub-circuits’ DC gain (G1, G2, G3)
and input/output impedance of each sub-circuit (Zin, Zout).
It should be mentioned that each of Si ∀i ∈ {1, . . . , N} is a
vector of specifications. So, to calculate the overall gain, we
have the input/output resistance of each sub-circuit in addition
to their DC gains, as an example. R1, R2, C1, C2 are examples
of design parameters that are not included in any sub-circuits
(i.e. XR) in Fig. 4(a) that are used for calculating phase

margin in amplifiers for instance. By taking the input/output
impedance of sub-circuits as well as XR into account, the
loading effects are properly considered in our model.

Fig. 4(b) depicts the NN implementation of the net-
specification-calculator model. During training, a labeled
dataset is used for learning the net impact of different sub-
circuits specifications at the module-level. A separate regres-
sion NN model is used for learning such net impacts on
each high-level topology. Once the net-specification-calculator
models are trained, in the deployment phase, a large set of
different unlabeled data (S1, . . . , SN , XR) are fed to them
to generate pseudo samples ({S1, . . . , SN , XR}, So). Indeed,
the output is the overall circuit specifications, So, associated
with each unlabeled input in different high-level topologies.
Generating such a large set is with almost zero cost since
the net specification calculator is already trained. This large
unlabeled dataset is used for training another model, overall
specification breaker. This unlabeled dataset addresses both
challenges of being large and being able to teach how to
assign sub-circuits’ specifications that the net impact of them
meet the overall specifications. The reason is that for all
of the large dataset samples ({S1, . . . , SN , XR}, So), the
overall specification equals the net impact of sub-circuits’
specifications by definition.

The overall specification breaker learns how to properly
break down the overall specifications into sub-circuits’ speci-
fications as well as how to determine the high-level topology.
Fig. 4(c) demonstrates the overall-specification breaker-model
in training phase. During training, using a dataset of all high-
level topologies populated by the net-specification-calculator
model, an NN classifier [43] learns how to select the most
suitable high-level circuit topology between available candi-
dates regarding the overall specifications. Moreover, a separate
NN regressor is implemented to break down the overall
specifications into sub-circuits’ specifications for each high-
level topology using the large provided training set. This large
training set works as a lookup table for the regressor model.
As shown in Fig. 4(d), during deployment, first, the classifier
selects the high-level topology. Then, based on such a high-
level topology, the regressor model breaks down the overall
specifications into sub-circuits’ specifications. It should be
mentioned that with increasing the number sub-circuits or ele-
ments that are not included in sub-circuits (XR), both the net-
specification-calculator and overall-specification-breaker mod-
els become more complicated. However, our approach in such
cases still outperforms the conventional methods which do not
have the overall topology decider module as the conventional
models become much more complicated than ours.

To summarize, these are the overall topology decider steps
and models:

• The net-specification-calculator model calculates the net
impact of different sub-circuits’ specifications at the
module-level on the overall circuit.

• In the deployment phase, for each overall circuit topology,
the net-specification-calculator model generates a large
set of overall specs by getting sub-circuit specs as inputs.

• Using the generated datasets by the net-specification-
calculator models as the training set, the overall-
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specification-breaker model breaks down the overall spec-
ifications into sub-circuits specifications and determines
the high-level topology as well.

• The overall-specification-breaker model consists of two
NN models:

1) A classifier for selecting the most suitable high-level
circuit topology between available candidates.

2) A regressor for determining the target specifications
of each sub-circuit.

• With taking input and output impedances of sub-circuits
as well as XR into account, the loading effects are
properly considered in our model.

C. Sub-circuit Topology-Selector

In order to decide the transistor level topology for each
sub-circuit, we input the target specifications of the sub-
circuit to a classifier model, and it selects the most suitable
topology. There are multiple candidates in the database where
the classifier decides which one is the most appropriate for
the given specifications. To this end, three different classi-
fication models i.e. random forest, Support Vector Machine
(SVM), and NN classifier [43]–[45] are analyzed and the one
which gives the highest accuracy is selected as the sub-circuit
topology-selector model. Moreover, the SVM is analyzed
using four different kernels i.e. linear, polynomial, sigmoid,
and Radial Basis Function (RBF). During the training, the
circuit parameters and the associated topology are given as
input and output, respectively.

More complicated topologies in the database have more
instances since their design spaces are larger, which causes
imbalanced data. To solve this, a subset of the database is
considered for training that has the same number of samples
for all topologies. This method is called down-sampling [46].

D. Sub-circuit Sizing

When the topology of sub-circuits is decided, a proper
sizing is needed to determine the design parameters value e.g.
size of transistors and value of voltages. The goal of sizing is
to determine the design parameters such that:

minimize
∑
i

ωi|
Ssi − S∗

si

Ssi
|,

subject to: |Ssi − S∗
si

Ssi
| < εi, (5)

where Ssi are the desired specifications and S∗
si are the

determined specifications by the sub-circuit sizing module. ωi

are the weights that are used to prioritize specifications that
are more important for users. |Ssi−S∗

si

Ssi
| < εi in Equation (5),

ensures each output specification is as close as possible to the
associated desired specification.

In order to minimize Equation (5), we implement global and
local optimization engines. For this purpose, first, we train
a separate regression NN for each topology to estimate the
functionality of sub-circuits when the circuit parameters are
given. These NNs work as a fast circuit simulator instead of
invoking time-consuming SPICE. We have used the idea of

multiple starting points [47] in our optimization, which means
we apply the local optimization on the multiple designs that
have resulted in the minimum of Equation (5) in the global
phase. The final result is the best one among these local
optimums.

At the global optimization phase, we find the closest designs
to the desired specifications by implementing a grid search
that covers the design space. To this end, we apply the NN
functionality estimator to each set of parameters in the design
space. Then, the estimated result specifications are compared
with the desired ones. Note that the design spaces of sub-
circuits are relatively small since they have only a few design
parameters (4-8). Moreover, once the NN model is trained, it
is able to execute a large input set in a very short time. So,
the global optimization phase takes only a few seconds.

Particle Swarm Optimization (PSO) is implemented as the
local optimization engine. In PSO, if we denote the position
of the ith particle at iteration k as Xk

i , we will have:

Xk+1
i = Xk

i + V k+1
i , (6)

where V k
i is the velocity of particle ith at iteration k. The

velocity is updated as:

V k+1
i = wV k

i + b1r1(pbesti−Xk
i )+ b2r2(gbest−Xk

i ), (7)

where r1, r2 are random numbers and w, b1, b2 are constant
hyperparameters. Furthermore, pbesti denotes the position that
gives the best-explored value for the ith particle while gbest
is the best-explored value by all the particles [38]. In order to
accelerate the local optimization process, we use the trained
NN to estimate the functionality of sub-circuits instead of
invoking SPICE.

As explained in more detail in Section V, we have tested
multiple algorithms as the global and local optimization en-
gines. Using any of the simulation-based algorithms as the
global engine makes the process slow as it requires many
iterations (∼ 300-1500), and such iterations happen sequen-
tially. Moreover, for the local engine, one of the advantages
of PSO over other optimization algorithms (e.g. Bayesian
Optimization (BO), Simulated Annealing (SA), etc.) is that
PSO processes multiple particles at each iteration which causes
much faster design space exploration. Especially since we are
using the NN regression model as the circuit simulator, this
process is very fast. We use only 5-10 iterations in the local
phase using PSO.

E. Constraints Transformation

As it was mentioned earlier, AnGeL is designed to get the
desired overall specifications, So = [So1, . . . , SoM ], as an
input while all constraints are defined in equality format e.g.
So1 = C1, So2 = C2, . . .. The goal of AnGeL is to implement
a circuit that its output specifications are as close as possible to
the given ones. However, it is common to have constraints in
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Fig. 5. Constraints transformation algorithm flow chart based on Equa-
tion (8). The initial target is set as So = [C1, . . . , CM−1, CM ] where
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TABLE II
STATISTICS OF TESTED SPECIFICATIONS FOR DIFFERENT OPAMP

SUB-CIRCUITS.

Sub-circuit Specification Min Max Average SD

BW [GHz] 0.001 15 0.17 0.68

Gain [dB] -0.89 53.2 33.48 9.46

Power [mW] 0.02 28.8 2.55 2.29

Gain block Noise [mV] 0.009 1.31 0.09 0.06

Swing [V] 0 0.95 0.62 0.21

PM [◦]* -121 170 99.8 35.4

GM [dB]** -20 20 3.2 4.5

Vout [V] 0.25 0.8 0.55 0.12

DC-biasing Cin [µF] 5 99.6 40.1 10.5

Rout [kΩ] 35 400 250 50

Current source Current [mA] 0.01 20.4 1.6 1.5
* Phase margin; PM is defined only for two-stage OPAMPs.
** Gain margin; GM is defined only for two-stage OPAMPs.

inequality format along with an objective function, as shown
in Equation (8).

minimize SoM

subject to:


So1 > C1

So2 < C2

...
SoM−1 > CM−1

(8)

We use the algorithm depicted in Fig. 5 to solve Equation (8)
using AnGeL. At each iteration, So = [So1, . . . , SoM ] is
given to AnGeL as the overall specifications where the values
of So1, . . . , SoM are determined by the algorithm. We use
the idea of binary search [48] for optimizing the objective
function, SoM . Initially, So = [C1, . . . , CM−1, CM ] is given
where CM is the average of supporting values for SoM , i.e.
CM =

Shigh
oM +Slow

oM

2 . If AnGeL is able to design a circuit with
the given specifications, it means the design is feasible and we
check if the constraints are met as the next step. Otherwise,
this means the chosen value for the objective function is too
small. Therefore, a bigger value i.e. SoM = SoM + ϵM , will
be targeted for the next iteration where ϵM > 0.

(b) (c)

Vout

(a)

Cc

Vout

Rc

Vout

Fig. 6. The supported high-level topologies for OPAMPs. All stages for one-
and two-stage OPAMPs can have either single-ended or differential inputs
and outputs. There is a DC-biasing sub-circuit before the second stage gain
block that is not shown here. (a) One-stage OPAMP. (b) Two-stage OPAMP.
(c) There-stage OPAMP.
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Fig. 7. The supported sub-circuits for OPAMPs. (a) Gain block sub-circuit
body structures; The range of supported design parameters is written next to
each in the form of [low, high]. (b) Gain block sub-circuit loads; The range
of supported design parameters is written next to each in the form of [low,
high]. (c) An example of a body structure with a load. (d) An example of the
differential mode of a single-ended topology (circuit (c)). (e) The topology
of the current source type sub-circuit. (f) The topology of DC-biasing type
sub-circuit.

To check if the constraints are met, the output of AnGeL is
simulated either by SPICE or by AnGeL’s functional estimator
models. If the constraints are met, the target value of the objec-
tive function will be reduced i.e. SoM = SoM−ϵM . Otherwise,
the constraints that are not met would be adjusted. For this
purpose, target specifications are increased (if Soi > Ci) or
decreased (if Soi < Ci) to give more margin for constraint
satisfaction in the next iteration. For example, in Equation (8),
if So1 and So2 are not met, So1 = So1+ϵ1 and So2 = So2−ϵ2
in the next iteration. The maximum number of iterations for
adjusting the constraints and the objective function, as well as
the values of ϵi > 0 ∀i ∈ {1, . . . ,M} are given by users.

V. EVALUATION

In this section, the implementation of one-, two-, and three-
stage OPAMPs as well as filters using AnGeL is evaluated
as examples. The performance of the synthesized circuits
by AnGeL is validated by SPICE simulations. The design
parameters include all transistor sizes (W , L, vbias) as well as
capacitor and resistor values. All the SPICE simulations are
in the 55nm technology node and based on the pre-layout
parasitic analysis. Going from pre-layout parasitic to post-
layout can be done using transfer learning [30], which is out
of the scope of this work. It should be noted that in the post-
layout, the value of our work would be even shown more as
more time would be saved using our method in comparison to
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TABLE III
NUMBER OF SIMULATIONS AND GENERATED DATA USING THE
TOPOLOGY-COMBINER MODEL FOR SINGLE-STAGE OPAMPS.

Sub-circuit Simulations #* Unlabeled generated data #
Single-ended gain block 7,350 16,400
Differential gain block 450 23,300

Current source 450 0
DC-biasing 250 0

* #: Number.

TABLE IV
MAPE OF THE DETERMINED SPECIFICATIONS BY THE TOPOLOGY

COMBINER. MORE THAN 650 INSTANCES FROM 17 DIFFERENT
SINGLE-STAGE OPAMP TOPOLOGIES ARE TESTED FOR EACH

SPECIFICATION.

Specification BW Gain Power Noise Swing
MAPE 0.070 0.029 0.049 0.051 0.038

the conventional approaches. Also, all the NN models are built
using the TensorFlow platform with the Adam optimizer. The
learning rate is set to 0.001 and RELU is used as the activation
function for all hidden layers. In order to avoid overfitting, the
idea of early stopping [43] with the patience parameter of 150
is implemented. For this purpose, 10% of the data are used
for validation during the training phase. In order to validate
the results properly, a random separate test set with the size
of 10% of the training set is used. Moreover, Scikit-learn is
used for the training and testing of all random forest and SVM
models. We use [49] for implementing PSO. All the training
and testing of our models are run on a server with an NVIDIA
GA102 GPU.

A. OPAMPs

1) Database Generation & Overview: Fig. 6 demonstrates
the supported high-level topologies. The supported sub-circuits
(i.e. gain block, current source, and DC-biasing) are shown in
Fig. 7. For the gain block sub-circuits, all combinations of 3
body structures with 4 loads that are shown in Fig. 7(a), and
(b) are supported in the single-ended and differential modes.
So, in total, 3× 4× 2 = 24 different topologies are supported
for the gain block sub-circuits. The range of supported design
parameters is written next to each in the form of [low, high] in
Fig. 7(a), and (b). The specifications for such DC-biasing and
current source sub-circuits are determined by the associated
gain stage through the feedback loop that is explained in Fig. 3.
The supporting specifications statistics for each circuit type are
summarized in Table II.

From twelve supporting single-ended gain block sub-circuits
in Fig. 7(a)-(b), the topology-combiner model is used for
generating the dataset of six of them i.e. the degeneration
and Cascode body structures with all loads except the resistor.
Moreover, the topology-combiner model generates the datasets
of all twelve differential gain stages except the one with the ba-
sic body and resistive load. The main and accessory NNs in our
topology combiner model have 3 hidden layers with 64 nodes.
As indicated in Table III, for single-ended and differential gain

TABLE V
REQUIRED NUMBER OF LABELED DATA PER TOPOLOGY COMPARISON
BETWEEN THE STATE-OF-THE-ART WORKS TO ACHIEVE AN AVERAGE
MAPE OF 0.045 IN ESTIMATING THE FUNCTIONALITY OF OPAMPS.

Work CCI-NN [4] CCI-NN + TC* AnGeL
Number
of stages 1 2 3 1 2 3 1 2 3

Data per
topology 2,000 4,200 6,200 355 750 1,200 355 20 6

* TC: Topology Combiner.

blocks, the generated data are 2.23x and 51.74x more than
the labeled data (simulations), respectively. Assuming each
SPICE run takes 4s, that results in a time savings of more
than 44h. The reason that the required number of labeled data
for complicated differential sub-circuits is less than single-
ended, is that they are generated by combining single-ended
topologies. This shows the beauty of our topology combiner
model that when topologies get more complicated, we need
less labeled data to process them.

Testing on more than 650 instances from 17 different
topologies for 5 specifications shows the topology combiner
has an average Mean Absolute Percentage Error (MAPE) of
0.047. MAPE is calculated as

∑n
i=1

1
n |

yti−ypi

yti
|, where yti and

ypi are the ith true and predicted instance, respectively and n
is the total number of instances. Table IV lists MAPE of each
specification.

The training data for all of the following evaluations are
gathered from both labeled and unlabeled generated data. In
order to validate the results properly, a random separate test
set is built by SPICE runs.

2) Overall Topology Decider: In total, 14,000 labeled sam-
ples are used for the training of the net specification calculator
models in two high-level topologies i.e. Fig. 6(b) and (c).
250,000 pseudo samples of two-, and three-stage OPAMP
specifications are generated and fed to the specification breaker
model.

The net specification calculator and specification breaker
models enable us to support 24 × 24 = 576 two-stage
OPAMP topologies as we support 24 topologies for each
stage. Moreover, we support 12 × 12 × 12 = 1, 728 three-
stage OPAMP topologies (we only support differential gain for
three-stage OPAMPs). This means with only having datasets
of 7 topologies from labeled data, we support 2,328 different
one-, two, and three-stage OPAMP topologies. The number of
design parameters in such OPAMPs varies between 4-31.

The required number of labeled training data of An-
GeL is compared with the state-of-the-art work [4]. Hassan-
pourghadi et al. [4] divide the circuit into sub-circuits and
implement a Circuit-Connectivity-Inspired ANN (CCI-NN)
model. However, they use neither the idea of the topology
combiner nor the net specification calculator model. In order
to measure the usefulness of the net specification calculator
model in multistage circuits, we also analyze when CCI-NN
is integrated with the topology combiner. For this purpose,
we test all works on 3,500 instances while all have the same
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Fig. 8. The confusion matrix of OPAMPs topology selection. The NN model
with [128, 128, 128, 128] nodes is used for this purpose which gives the
highest accuracy among the evaluated methods.

TABLE VI
AVERAGE RUNTIME AND MAPE COMPARISON OF DIFFERENT

SUB-CIRCUIT SIZING MODELS.

Optimization engine Parameters Estimator Runtime[s] MAPE
Global Local

NN PSO Iterations:10 NN 34.15 0.059

PSO PSO
Iterations:50,

Particles:
3,000

NN 100.4 0.09

SPICE 7,800,000 0.018

SA SA Iterations:
5,000 NN 2,562 0.17

SPICE 237,465 0.04
BO BO Iterations:500 NN 510 0.179

SPICE 26,912 0.08

average MAPE of 0.045 in estimating the functionality of
circuits. AnGeL that integrates both the topology combiner
and net specification calculator model requires 22,500 labeled
data in total which means it needs around 5.5 labeled data per
topology for covering 1728 three-stage OPAMP topologies.
Using the net specification calculator model, we estimate the
functionality of multistage OPAMPs with different topologies
without requiring a separate dataset for each topology. As
summarized in Table V, for three-stage OPAMPs, CCI-NN [4]
and CCI-NN integrated with the topology combiner need
1,090x and 200x more labeled data than AnGeL, respectively.

3) Sub-circuit Topology-Selector: Random forest, SVM
(linear, polynomial, sigmoid, and RBF kernels), as well as NN
classifier models, are analyzed for the topology-selector. For
the gain block sub-circuits, there are 40,000 and 4,000 samples
for the training and test sets, respectively. Our evaluation
shows the NN with four layers and 128 nodes at each layer
gives an accuracy of 92.9% which is the highest among the
compared methods. This NN is used as the topology-selector
model. Fig. 8 shows the confusion matrix of the predicted
topologies using this model. It should be noted that even if
a topology is not classified correctly, it does not mean that
AnGeL cannot meet the specifications with that topology. This
is because there may be more than one topology that can
achieve the same specifications.
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Fig. 9. Desired vs determined values by running the entire AnGeL platform
for different specifications. More than 1,200 instances including one-, two-,
and there-stage OPAMPs are tested. (a) BW. (b) Gain. (c) Power. (d) Noise.

TABLE VII
AN EXAMPLE OF THE OPAMP SPECIFICATIONS GIVEN TO ANGEL AND

THE SIMULATED SPECIFICATIONS OF THE ASSOCIATED GENERATED
CIRCUIT BY ANGEL.

Spec BW Gain GM PM Noise Swing Power
1st stage
desired 1.35 GHz 16.5 dB -* -* 0.15 mV 0.4V 1.5 mW

1st stage
AnGeL 1.4 GHz 17.1 dB - - 0.14 mV 0.43V 1.6 mW

2nd stage
desired 0.9 GHz 17.5 dB - - 0.15 mV 0.50V 2.4 mW

2nd stage
AnGeL 0.94 GHz 17.3 dB - - 0.15 mV 0.53V 2.2 mW

3rd stage
desired 1.8 GHz 15 dB - - 0.15 mV 0.75V 2.4 mW

3rd stage
AnGeL 1.7 GHz 15 dB - - 0.15 mV 0.73V 2.3 mW

Overall
desired 15 MHz 49 dB 5 dB 60◦ 0.23 mV 0.75V 6.3 mW

Overall
AnGeL 15.5 MHz 49.4 dB 5.3 dB 62.1◦ 0.22 mV 0.73V 6.1 mW

* GM & PM is defined only for the overall circuit not for the sub-circuits.

4) Sub-circuit Sizing: As it was mentioned earlier, we use
NN and PSO as the global and local optimization engines,
respectively. Table VI summarizes the runtime and MAPE as
well as the parameters of different methods when tested on
more than 30 samples. Our approach results in the minimum
runtime while it has a reasonable MAPE of 0.059. In fact,
the runtime of our approach is 2.93x - 228,400x faster than
other methods while it has better or comparable MAPE. The
NN for the sub-circuit sizing model has 3 hidden layers with
64 nodes. For a better comparison, training time is taken into
account too, which is 34,000s assuming each SPICE run takes
4s on average for generating each of the 8,500 labeled data.
When the estimator is the NN, it means the same training set
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Fig. 10. The generated OPAMP circuit by AnGeL with its sizing to meet
Table VII specifications. Size of transistors are shown as W (µ)
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.

Iteration

P
ow

er
 [

m
W

]

7.5

7

6.5

6

5.5

5

4.5

1 2 3 4 5 6 7 8 9

Fig. 11. Power at each iteration step while constraints in Equation (9) are
satisfied.

as ours is used for other approaches (i.e. when both global
and local engines are PSO, SA, and BO). So, our approach
still outperforms them. However, considering both training and
deployment time on a single run when SPICE is used as the
estimator, BO as both global and local engines is faster than
our method. In such conditions based on Table VI, even though
our MAPE is better, BO (which has the lowest SPICE runtime)
takes 26,912s while our method takes 34,034s. In fact, the
NN estimator shows its actual advantage when the tool is
used multiple times for generating circuits in the inference
mode. For instance, if we run the tool 10 times, our approach
takes 34,341.5s while BO takes 269,120s which means we
save 65.21 hours during these runs using our method.

5) AnGeL Entire Platform: The entire AnGeL platform,
from selecting the topology to sizing, is tested on more than
1,200 samples including one-, two-, and there-stage OPAMPs.
The samples cover Table II specifications. The circuits that are
generated by AnGeL for the given specifications are simulated
to evaluate the performance. Fig. 9 shows the desired vs
determined values for different specifications. An average
MAPE of 0.027 is achieved in total.

An example of these 1,200 desired specifications is as

(a)

(b)

(c)

Vo

Vin

Vo

Vin

VoVin

Vo
Vin Vo

Vin Vo Vin

Vo

Vin

Vo

Vin

Vo

(d)

RC TIA Sallen-Key MFB

RC TIA Sallen-Key MFB

Vin

Fig. 12. The supported sub-circuits for filters. (a) Low-pass filters. (b) High-
pass filters. (c) Cascading LP and HP filters results in band-pass or band-stop
filters based on the relative position of the corner frequency of HP/LP filters.
(d) An example of a band-pass/band-stop filter which is created by cascading
a Sallen-Key LP with a TIA HP.

TABLE VIII
STATISTICS OF TESTED SPECIFICATIONS FOR FILTERS.

Specification Min Max Average SD
Pass-band BW (ω3dB) [MHz] 10−4 46.5 0.3 0.4
Stop-band frequency [MHz]* 1.5×10−6 2.5×103 0.12 0.19

Gain [dB] -13.4 18.6 2.3 5.2
Power [mW] 0.02 24.5 1.9 1.8
Noise [mV] 10−10 8 2.2 4.9

Overshoot [dB] 6× 10−13 12.1 0.32 1.26
Group delay [µs] 1.5×10−4 20.7 0.28 1.3

* The frequency that the gain has 40dB attenuation compared to the ω3dB

pass-band frequency.

follows:

minimize power

subject to:

 BW > 15 MHz,Gain > 48 dB,
GM > 0 dB,Noise < 0.25 mV,

PM > 60◦,Swing > 70 mV.
(9)

Fig. 10 demonstrates the generated circuit by AnGeL in
one of the iterations for minimizing the power while the
constraints are satisfied. There are 27 design parameters in
this design. Table VII summarizes the desired and determined
specifications of each stage as well as the overall circuit perfor-
mance. Each stage desired specifications are generated by the
overall topology decider module. The overall circuit desired
specifications are determined by the constraint transformer
module (Fig. 5). Fig. 11 shows how the power gets smaller at
each iteration. 4.2mW is the minimum achieved power while
all constraints are met.

B. Filters

1) Database Generation & Overview: In general, there are
two types of filters: passive and active. Passive filters use
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TABLE IX
REQUIRED NUMBER OF LABELED DATA PER TOPOLOGY COMPARISON
BETWEEN THE STATE-OF-THE-ART WORKS TO ACHIEVE AN AVERAGE

MAPE OF 0.06 IN ESTIMATING THE FUNCTIONALITY OF FILTERS.

Work CCI-NN [4] Hierarchical CCI-NN AnGeL
Non-ideal OPAMP

models 1,012 1,012 212

Transistor-level
OPAMPs models 4,800 0.0253 0.0032

TABLE X
MODEL ACCURACY COMPARISON FOR THE FILTER TOPOLOGY-SELECTOR.

THERE ARE 8 TOPOLOGIES FOR HP & LP AND 32 TOPOLOGIES FOR
BAND-PASS & BAND-STOP FILTERS IN TOTAL.

Model Hyperparameters Accuracy

HP & LP Band-pass &
band-stop

n estimators = 10 99.68% 99.41%
Random
Forest n estimators = 100 99.71% 99.70%

n estimators = 400 99.69% 99.63%
Linear, C = 1 92.16% 86.54%

SVM Polynomial, C = 1, γ = 1, degree = 3 95.44% 93.12%
Sigmoid, C = 1, γ = 1 40.17% 27.95%

RBF, C = 1, γ = 1 95.45% 90.98%
NN layers: [64, 64, 64] 99.49% 94.40%

DNN NN layers: [128, 128, 128] 99.42% 95.22%
NN layers: [128, 128, 128, 128] 99.74% 94.83%

only passive elements e.g. resistors, inductors, and capacitors,
while active filters use active components such as OPAMPs
in addition to passive elements. Fig. 12 shows the supported
filter sub-circuits. There are 4 topologies for each of Low-
Pass (LP) and High-Pass (HP) filters. Moreover, band-pass
and band-stop filters are achievable by cascading LP and HP
filters as illustrated in Fig. 12(c). So, there are 4 × 4 = 16
different topologies for each of band-pass and band-stop filters
which leads to support 40 filters in total. The specifications for
the OPAMP in active filters are determined by the associated
filter stage through the feedback loop that is explained in
Fig. 3. Taking one- and two-stage OPAMP topologies into
account results in supporting more than 6,400,000 topologies.
The number of design parameters varies between 2-42. The
supporting specifications statistics for filters are listed in
Table VIII.

In total, 8,500 simulations are performed as the labeled
dataset for all filters assuming a non-ideal OPAMP model
is used in active filters. By a non-ideal OPAMP model we
mean an OPAMP with limited gain and bandwidth whose
characteristic is modeled however, it is not made by circuit
elements e.g. transistors. Moreover, 32,000 unlabeled data are
generated using the topology-combiner model. The labeled
data is used for generating the database of LP and HP filters.
The datasets of band-pass and band-stop filters are generated
by the topology-combiner model (except when RC is used
in both stages of the band-pass or band-stop filters). Testing
on more than 800 instances from 32 different topologies for
5 specifications shows the topology combiner has an average

TABLE XI
MAPE OF DETERMINED SPECIFICATIONS BY RUNNING THE ENTIRE

ANGEL PLATFORM. MORE THAN 1,200 FILTER INSTANCES ARE TESTED.

Spec Pass-band
BW

Stop-band
frequency Gain Overshoot Group

delay
MAPE 0.044 0.065 0.056 0.068 0.067
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Fig. 13. The generated band-pass filter by AnGeL with its sizing to meet
Table XII specifications. Size of transistors are shown as W (µ)

L(µ)
.

MAPE of 0.04.
Similar to OPAMPs, the required number of labeled training

data of AnGeL is compared with the state-of-the-art works
while all approaches achieve an average MAPE of 0.06 in
estimating the functionality of filters testing on more than
1,200 samples. We also, analyze when the idea of the hier-
archical design is used in CCI-NN meaning the specifications
of OPAMPs in active filters are determined based on the
specifications of the filter. This hierarchical approach allows
for smaller training set as it breaks down the circuit. As it is
summarized in Table IX, when actual transistor-level OPAMPs
are used, hierarchical CCI-NN requires significantly less data
than the normal CCI-NN [4]. Moreover, AnGeL requires 7.9x
less labeled data in comparison with the hierarchical CCI-NN.

2) Sub-circuit Topology-Selector: There are 35,000 and
3,500 samples for the training and test sets, respectively. Some
specifications of band-pass/band-stop filters are different from
LP/HP filters so, they are analyzed separately. The accuracy
of different models for topology classification is summarized
in Table X.

3) AnGeL Entire Platform: Similar to OPAMPs, the entire
AnGeL platform is tested on 1,200 samples which cover
Table VIII. Actual transistor-level OPAMPs that are created
by AnGeL in Section V-A are used in all active filter samples.
It should be noted that more than 35,000 are used for the
training of the sub-circuit sizing module. The NN model of
the sub-circuit sizing module has 3 hidden layers with 64
nodes. Table XI summarizes the average MAPE for different
specifications when the entire AnGeL is tested. An average
MAPE of 0.06 is achieved in total.

Fig. 13 demonstrates an example of a band-pass filter
designed by AnGeL, which is among such 1,200 testing
samples and it is generated to meet specifications that are
shown in Table XII. AnGeL has selected a Sallen-key topology
for the LP filter and a TIA topology for the HP filter. There
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TABLE XII
AN EXAMPLE OF THE FILTER SPECIFICATIONS GIVEN TO ANGEL AND THE SIMULATED SPECIFICATIONS OF THE ASSOCIATED GENERATED CIRCUIT BY

ANGEL.

Specification ω*
3dB LP
[MHz]

ω3dB HP
[KHz]

ω+
s LP

[MHz] ωs HP [Hz] Gain [dB] Power
[mW] Noise [mV] Overshoot

LP [µdB]
Overshoot
HP [mdB]

Group
delay [µs]

Band-pass desired 15 2 200 20 13 15 6 35 1 3
LP desired 15 - 170 - 7 8 3.5 35 - 6× 10−3

LP AnGeL output 15.9 - 172.7 - 7.7 7.56 3.3 32 - 6.4× 10−3

HP desired - 2 - 20 6 7 3 - 1 3
HP AnGeL output - 1.9 - 18.9 6.03 6.8 2.9 - 1.09 3.2
Band-pass AnGeL 15.9 1.9 205.1 18.9 13.73 14.36 5.9 32 1.09 3.2
* The 3dB bandwidth of pass-band frequencies.
+ The frequency that the gain has 40dB attenuation compared to the ω3dB pass-band frequency.
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Fig. 14. The frequency responses of Fig. 13 filters to meet Table XII
specifications. (a) LP filter. (b) HP filter. (c) Overall band-pass filter.

are 31 design parameters in this design. The LP and HP
stage desired rows in Table XII, are generated by the overall
topology decider module. The average MAPE is 0.054. Fig. 14
also illustrates the frequency responses of each LP and HP
filter as well as the overall band-pass filter of Fig. 13.

VI. CONCLUSION

In this work, we first use neural networks to determine
the behavior of complicated circuit topologies by combining
the more simple ones and presenting a database. The number
of labeled data in this dataset is 4.7x - 1090x less than the
state-of-the-art works while maintaining the same accuracy.
Using this database, we propose a fully-automated analog
circuit generator framework, AnGeL. AnGeL performs all
the necessary schematic circuit design steps, from deciding
the circuit topology to sizing using NN models. To validate
our work, multiple designs are generated by AnGeL which
includes one-, two-, and three-stage OPAMPs as well as
different filters. The results show that the runtime of AnGeL
is 2.9x - 75x faster than the state-of-the-art works while
maintaining the same accuracy.
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