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Abstract

We study a generalization of the famous k-center problem where each object is an affine
subspace of dimension ∆, and give either the first or significantly improved algorithms and
hardness results for many combinations of parameters. This generalization from points (∆ = 0)
is motivated by the analysis of incomplete data, a pervasive challenge in statistics: incomplete
data objects in Rd can be modeled as affine subspaces. We give three algorithmic results for
different values of k, under the assumption that all subspaces are axis-parallel, the main case of
interest because of the correspondence to missing entries in data tables.

1) k = 1: Two polynomial time approximation schemes which runs in poly(∆, 1/ε)nd.
2) k = 2: O(d1/4)-approximation algorithm which runs in poly(n, d,∆)

3) General k: Polynomial time approximation scheme which runs in 2O(∆k log k(1+1/ε2))nd
We also prove nearly matching hardness results; in both the general (not necessarily axis-

parallel) case (for k ≥ 2) and in the axis-parallel case (for k ≥ 3), the running time of an
approximation algorithm with any approximation ratio cannot be polynomial in even one of
k and ∆, unless P = NP. Furthermore, assuming that the 3-SAT problem cannot be solved
subexponentially, the dependence on both k and ∆ must be exponential in the general case (in

the axis-parallel case, only the dependence on k drops to 2Ω(
√
k)). The simplicity of the first and

the third algorithm suggests that they might be actually used in statistical applications. The
second algorithm, which demonstrates a theoretical gap between the axis-parallel and general
case for k = 2, displays a strong connection between geometric clustering and classical coloring
problems on graphs and hypergraphs, via a new Helly-type theorem.
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1 Introduction

Clustering is one of the most important problems in computational theory. Due to its wide range
of applications, it has been investigated for decades and continues to be actively studied not only
in theoretical computer science, but in other disciplines such as statistics, data mining and machine
learning. Generally speaking, the goal of clustering is to partition a given set of n data objects
into k groups so that the objects within each group are similar. One way to represent data objects
and measure similarity is to regard each data object with d features as a point in the Euclidean
space Rd, where each coordinate corresponds to each feature; two objects are similar when the
Euclidean distance between them is small. Based on this observation, the famous k-means clustering
(minimizing the sum of the squared distance from each point to the nearest center), k-median
clustering (minimizing the sum of the distances), and k-center clustering (minimizing the maximum
distance) problems have been suggested and studied both theoretically and practically.

However, in reality, data objects often do not come fully equipped with a mapping into Euclidean
space. A simple and ubiquitous example can be found in a questionnaire where a few questions
are left blank. Likewise, in a longitudinal medical study, a patient’s missed appointment creates
missing real-valued entries in their record.

Assume that the answers to these unanswered questions, or unmeasured values, actually exist
(but are not known to us). Then a “true” data point exists, and lies on the axis-parallel affine
subspace fixed by the answers or measurements which we do possess. No more information, however,
can be retrieved from the incomplete data object.

This is a huge and pervasive problem in statistical practice, and there are many methods to deal
with these incomplete data in the statistical literature [1]. Listwise deletion deletes any incomplete
data object, and pairwise deletion only considers available entries in each feature to compute
statistical data such as the average and the variance. The former might throw away too much
information, while the latter cannot be directly applied to clustering, since it only gives a way to
retrieve some statistical information about the whole set but does not specify how to represent each
data object to cluster. More sophisticated methods are those filling in the missing entries using
heuristics. They include substituting with the sample mean and replacing a missing element using
a learning algorithm or criterion (EM, max likelihood). While these methods work better than the
simple deletion methods in practice [1], little is known about their theoretical performance, except
in the very special and almost-never–satisfied case that the data is “missing at random”—with no
correlation with the underlying missing entries. It is unusual that the experimenter even has any
good probabilistic model for the “missingness” of entries, and the absence of such a model precludes
guarantees of the type one is accustomed to for statistical procedures in the theoretical statistics
literature.

As an alternative, Gao et al. [13] first suggested a new approach rooted in the geometry of a
data set. A data object that is lacking information about one or more features corresponds to an
affine subspace, also known as a flat, in Rd, whose dimension is the number of missing features.
Since the distance between a flat and a point (we still model each center as a point) is well-defined,
the classical clustering problems such as k-means, k-median, and k-center can be defined on a set
of flats; we simply need to find k centers to minimize the objective function, based on the distance
between each flat to its nearest center. This approach has the strong theoretical guarantee that if we
find the optimal clustering of a set of flats with respect to some objective, we automatically compute
the set of points, one in each flat, such that it minimizes the objective over all such sets of points. In
terms of clustering incomplete data, this method computes the best guess about incomplete entries
(i.e., guess about a true point in each flat) that gives the most-clusterable complete data among
all guesses. Therefore, if the set of data objects is guaranteed to be well-clustered, this geometric
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approach yields the correct clustering as well as the correct guesses for missing entries.
We choose to extend the k-center problem to this setting, which minimizes the maximum dis-

tance from any flat to its nearest center. Among many clustering problems, the k-center problem
has the most classic and simplest theoretical guarantees; there is a simple 2-approximation algo-
rithm [17], and it is NP-hard to approximate with an approximation ratio smaller than 1.822 [11].
However, the only geometric property that enables a simple 2-approximation algorithm, the trian-
gle inequality, does not hold at all; even though two points are within some fixed distance from one
flat, the two points can be arbitrarily far apart. This fact changes the classical k-center problem
dramatically so that we need new algorithms and hardness results, even when there is only one
cluster (k = 1). This paper starts by giving efficient algorithms for k = 1 and moves on to general
k where we give an approximation scheme and the matching hardness results, closing with the
difference between the case where all flats are axis-parallel and the general case.

1.1 Related Work

Different clustering problems have been studied extensively. The k-median problem has been often
studied in a finite metric space, where the problem can be solved exactly in polynomial time if
k is fixed. For general k, there is a known (1 + 2/e)-hardness of approximation result [21] and
substantial work on approximation algorithms [18, 7, 2, 21, 9], with the best guarantee a 3 + ε
approximation. The k-means problem has been often studied in the Euclidean space, and even
2-means problem was shown to be NP-hard [8]. Instead, many PTAS’s have been suggested for
the Euclidean k-means and k-median problem, with the best running time polynomial in n and d
but exponential in k[25, 26, 6, 9, 19, 23, 10]. Recently, the focus has been on the well-clusterable
or stable instances and approximation schemes with better running times have been suggested for
those instances[27, 4, 3, 22].

The k-center problem has relatively simple history where a simple 2-approximation algorithm
and an almost matching hardness result were provided for general k [17, 11]. As in the Euclidean
k-means and k-median, there is a PTAS which runs in time exponential in k [6]. However, while
the 1-mean problem in the Euclidean space and the 1-median problem in a finite metric space can
be solved trivially, the 1-center problem in the Euclidean space, which tries to find the smallest ball
containing all data points, is nontrivial. There are several approximation schemes for this 1-center
problem, also known as the Minimum Enclosing Ball problem [5, 29, 28], with the best running
time O(ndε ) to find an enclosing ball of radius at most (1 + ε) times the optimal radius.

In [13], Gao et al. first suggested the problem of clustering flats as a means to cope with
incomplete data, and studied the 1-center problem. They proved the existence of a ε−core set of
size O(∆4

ε ); there is a subset of O(∆4

ε ) flats of which the optimal radius is at least 1
1+ε of the optimal

radius of the entire set. Their main result is based on an Intrinsic-dimension Helly theorem, which
says that there is a 1-core set of size ∆ + 2. However, their algorithm to find such a core set
requires time exponential in ∆, so they suggested two alternative algorithms for the problem. The
first algorithm using convex programming requires time Õ(

√
n(d3 +d2n)poly(∆)) to get a constant

additive approximation, and the second algorithm using LP-type programming requires expected
time O(n(poly(∆)d+ 2poly(∆))) to get a constant multiplicative approximation. In the subsequent
paper [14], the same authors studied an actual clustering problem with k = 2, 3 in the restricted
case ∆ = 1, and developed 2-approximation algorithms whose running time is quasi-linear in n and
d. To the best of our knowledge, all cases [∆ = 1 and k ≥ 4] and [∆ ≥ 2 and k ≥ 2] were completely
open (even for axis-parallel flats). For the combinations of small k and ∆ already studied, it was
unclear whether there were faster approximation schemes.
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1.2 Our Results

We present the algorithms and hardness results for clustering flats for many possible combinations
of k and ∆, where each of them either is the first result or significantly improves the previous results
for the given values for k and ∆. Our algorithms and hardness results are summarized in Table 1
and 2 respectively. They can be classified into three categories.

1) Improved algorithms for k = 1 and the first algorithm for general k: In Section 3,
we revisit the case k = 1 where all flats are axis-parallel and suggest two PTAS’s; both are simple
to describe but their running times are linear in n and d, which are even better than the fastest
known algorithm, which uses a convex programming solver. We also partially explain why the
problem gets harder as ∆ increases. The key lemma to many 1-center algorithms, which shows an
upper bound on the distance between any point and the optimal center in terms of the radius of
the minimum intersecting ball centered at that point, gets relaxed as ∆ increases. Extending one
of these algorithms, in Section 5, we present a PTAS for fixed k and ∆ for the axis-parallel case.

The running time to get a (1 + ε)-approximation is 2O(∆k log k(1+ 1
ε2

))nd, which is tight in the sense
that it is exponential in both k and ∆ but linear in both n and d.

2) The first and almost matching lower bounds on approximation ratio and running
time: In Section 4, we show that actual k-center clustering(k ≥ 2) is greatly harder than finding
the minimum intersecting ball. In fact, we show that the running time of any approximation
algorithm has to depend exponentially on both k and ∆; for fixed k ≥ 2 there is no polynomial
(in n, d,∆) time algorithm that guarantees any approximation ratio, and for fixed ∆ ≥ 1 there is
no polynomial (in n, d, k) time approximation algorithm either. In the axis-parallel case, the same
result holds for k ≥ 3 and ∆ ≥ 3, meaning that the axis-parallel case is not much easier than the
general case when k and ∆ become large. Furthermore, assuming that the 3-SAT problem cannot
be solved in subexponential time, our reductions also show that there cannot be any approximation
algorithm for the general case whose running time is subexponential in either k or ∆; our algorithm
is almost tight in each parameter.

3) Axis-parallel vs General, Connection to Graph Coloring, and New Helly-type
theorem Finally, in Section 6, we study axis-parallel 2-center, where our inapproximability ratio
drops from ∞ in the general case to 2√

3
. The fact that axis-parallel 2-center is greatly easier than

even slightly more general problems shows the relationship between clustering flats in the Euclidean
space and the fundamental coloring problems in graphs and hypergraphs. We give a polynomial
time approximation algorithm for the axis-parallel 2-center problem using an algorithm for the
GRAPH 2-COLORING problem, the only version of the coloring problems that can be solved
efficiently. As a tool, we prove another Helly-type theorem for a set of axis-parallel flats; when all
pairwise distances are at most r, then there is a ball of radius O(d

1
4 r) that intersects every flat.

We also give an example where the optimal radius is Ω(d
1
4 r).

2 Preliminaries

A ∆-flat in Rd(d > ∆) is a ∆-dimensional affine space. Let L = {l1, ..., ln} be the set of flats that
we want to cluster. For simplicity, we consider the situation where all of them are of dimension ∆.
All our algorithms and analyses work even when L contains flats of different dimensions and ∆ is
taken to be the greatest dimension of any flat.

For c ∈ Rd and r ∈ R+, let Bc,r be the closed ball of radius r centered at c. The ball Bc,r
intersects L if it intersects each flat in L. Let R∗(L) be the minimum radius of any intersecting ball
of L. A minimum intersecting ball is Bc,R∗ for some c ∈ Rd that intersects L. Unlike the situation
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HHH
HHHk

∆
1 2...

1
(R∗ + δ,O(

√
n(d3 + d2n)poly(∆) log (n/δ))) [13]

((1 + ε)R∗,O(nd∆
ε2

log∆
ε ))

2 ((1 + ε)R∗, O(nd log 1/ε+ n log n log 1/ε)) [14] (O(d1/4)R∗,O(dn2logn))

3 ((1 + ε)R∗, O(nd log 1/ε+ n log2 n log 1/ε
ε )) [14] ((1 + ε)R∗,2O(∆(1+1/ε2))nd)

4... ((1 + ε)R∗,2O(klogk(1+1/ε2))nd) ((1 + ε)R∗,2O(∆klogk(1+1/ε2))nd)

Table 1: Algorithms for different k and ∆. Each pair (x, y) indicates that it takes time y until the
objective is less than x, when R∗ denotes the optimum. Prior work is indicated by plain text and
a citation, and applies to general flats; results of this paper are indicated by boldface, and apply
to axis-parallel flats. Algorithms in column 2... work for any value of ∆, and algorithms in row 4...
work for any value of k.

H
HHH

HHk
∆

1, 2 3...

2 1 (PTAS)
HH

HHHH
2√
3

∞

3...

XXXXXXXXXXX1.822 [11]
∞ HH

HHHH∞
∞

Table 2: Lower bounds on the multiplicative approximation ratio of polynomial algorithms. Prior
work is indicated by plain text and a citation; results of this paper are indicated by boldface. In
each cell, the top-right corner represents the general case and the bottom-left corner represents the
axis-parallel case. Results in column 3... hold for any value of ∆, and results in row 3... hold for
any value of k.

where L consists of points, there can be more than one minimum intersecting ball. Let C∗(L) be
the set of points such that c ∈ C∗(L) if and only if c is the center of a minimum intersecting ball
of L. When it is clear from the context, we do not use L in these notations.

Let d(p, q) be the Euclidean distance between two points p and q, d(p, l) = minq∈l d(p, q) be the
distance between a point p and a set of points l, and R(c,L) = maxli∈L d(c, li) be the minimum
radius of any intersecting ball centered at c. Note that R∗ ≤ R(c) for all c ∈ Rd. For a flat li and
its translation l′i that contains the origin(i.e., l′i is a subspace of Rd), let dli(p, q) be the length of
the vector p − q projected to l′i, and dl⊥i

(p, q) be the length of the vector p − q projected to the

orthogonal complement of l′i. By the Pythagorean theorem, (d(p, q))2 = (dli(p, q))
2 + (dl⊥i

(p, q))2.
Sometimes we consider the situation where all flats are axis-parallel. In this case, each flat li

is represented as li =
{

(x1, ..., xd)|(xj1 , ..., xj∆) ∈ R∆
}

where each xu(u /∈ {j1, ..., j∆}) is fixed. We
sometimes write li as a d-dimensional vector, writing ∼ in the jth coordinate when it is not fixed.
For example, lj = (∼, 5,∼, 3, 1) =

{
(x1, 5, x3, 3, 1)|(x1, x3) ∈ R2

}
represents a 2-flat that is parallel

to the first and third unit vector. Call jth coordinate trivial when there is no flat that has the fixed
jth coordinate. We can assume that no coordinate is trivial since otherwise simply removing this
coordinate from all flats will decrease ∆ and d by 1 while not affecting the clustering cost for any
k. Let mj and Mj be the minimum and the maximum of the jth coordinate over all flats that have
the fixed jth coordinate, respectively. Since the diameter of the minimum intersecting ball must be
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at least the largest difference in the jth coordinate for any j, R∗(L) ≥ maxj
Mj−mj

2 . Furthermore,
when the jth coordinate of c is outside of [mj ,Mj ] (say cj < mj), changing cj to mj does not
increase d(c, li) for any li, which means that there is an optimal center c∗ ∈ C∗ in the hypercube
[m1,M1]× ...× [md,Md]. Therefore, any point c in this hypercube satisfies R(c,L) ≤ 2

√
dR∗, and

d(c, C∗) ≤ 2
√
dR∗.

3 Two algorithms for 1-center for axis-parallel flats

We give two approximation schemes for the case k = 1, which is finding the smallest ball that
intersects every flat. The first algorithm resembles Lloyd’s method for the k-means problem [24]; in
each iteration we find the closest point to the current center in each flat, and move the current center
to minimize the maximum distance to these points. However, unlike Lloyd’s method for k > 1, the
convergence time of this iterative method to the global optimum can be shown to be fast, as we
shown in Theorem 3.1. First, we take the initial center to be any point in li ∩ ([m1,M1] × ... ×
[md,Md]) for any i. For any optimal center c∗ in the hypercube, dl⊥i

(c, c∗) ≤ dl⊥i (c, li)+dl⊥i
(li, c

∗) ≤
0 +R∗ ≤ R∗ and d2

li
(c, c∗) ≤ ∆ ·maxj(Mj −mj)

2 ≤ ∆ · 4(R∗)2. Therefore, (d(c, c∗))2 ≤ O(∆(R∗)2)

and R(c) ≤ O(∆(R∗)2).

Algorithm 1 Lloyd-Type Algorithm

Given a set of ∆-flats L = {l1, ..., ln} and the initial center c ∈ l1 ∩ ([m1,M1] × ... ×
[md,Md])

1: For i = 1, ..., n, find pi ∈ li which is closer to c than any other point in li (i.e. pi is the projection
of c to li).

2: Find an approximate minimum enclosing ball for p1, ..., pn using an existing algorithm (see
Section 1.1). Update c to be the center of the minimum enclosing ball.

3: Iterate 1 and 2 for the precomputed number of iterations.

The convergence of Algorithm 1 depends on how fast R(c,L) is improved in each iteration.
Given c and its projections p1, ..., pn to l1, ..., ln respectively, we show that there exists c′ such
that R(c′, {p1, ..., pn}) is significantly less than R(c, {p1, ..., pn}) = R(c,L). Since in each step an
(approximate) minimum enclosing ball of {p1, ..., pn} is found, we are guaranteed that our updated
center reduces R(c,L) significantly, leading to the convergence of the algorithm. This c′ is found
from the line segment joining the current center c and one of the optimal centers c∗ ∈ C∗.

Theorem 3.1. If all flats are axis-parallel, Algorithm 1 satisfies R(1−ε0) < R∗ in O(∆ log ∆+ ∆
ε20

)

iterations.

The proof appears in Appendix A. Since Algorithm 1 uses an algorithm for finding the minimum
enclosing ball for points as a subroutine, its overall time complexity depends on the algorithm we
use. Currently, the best algorithm for the Minimum Enclosing Ball problem runs in time O(ndε ) to
get a (1 + ε)-approximation [29, 28]. Since we aim to reduce R2 by Ω( 1

∆) in the first phase to have

R < 4R∗ and Ω(
ε30
∆ ) in the second phase to have R < R∗

1−ε , we need a (1 + Ω( 1
∆))-approximation in

the first phase and (1+Ω(
ε30
∆ ))-approximation in the second phase. Therefore, the total running time

is O(nd(∆2 log ∆ + ∆2

ε50
)). Even though the running time is better than that of the algorithm which

uses a convex programming solver in terms of n, d, and ∆, it has the relatively bad dependence
on ε. The next algorithm, inspired by the work of Panigrahy [28], shows that finding a minimum
intersecting ball for flats can be done nearly as fast as finding the minimum enclosing ball for points
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except the natural penalty depending on ∆. This algorithm starts from guessing the optimal radius,
which can be done easily by using binary search. With the ball of radius (1 + ε)R∗, we find a flat
that is not covered by the ball, move the ball until it hits the flat. Its convergence is guaranteed
by the fact that d(c, c∗) will be decreased in each iteration.

Algorithm 2 Moving Center Algorithm

Given a set of ∆-flats L = {l1, ..., ln}, the initial center c ∈ l1 ∩ [m1,M1] × ... × [md,Md], and the
optimal radius R∗ = R∗(L),

1: Find the farthest flat li from the current center c. Find pi ∈ li such that d(c, li) = d(c, pi) (i.e.
pi is the projection of c to li).

2: If d(c, li) < (1 + ε)R∗, we found a (1 + ε)-approximate minimum intersecting ball. Stop.
3: Move c towards pi until Bc,R∗ contains pi (can compute in closed form).
4: Iterate 1, 2, and 3 for the precomputed number of iterations.

Theorem 3.2. If all flats are axis-parallel and R∗ is given, Algorithm 2 computes an intersecting
ball with radius R < R∗(1 + ε) in time O(nd∆

ε2
).

The proof appears in Appendix B. Note that our initial center also satisfies R(c) ≤ O(
√

∆R∗).
Therefore, to guess the optimal radius with error < ε, we need at most O(log ∆

ε ) times of guessing.

Therefore, the overall running time is O(nd∆
ε2

log ∆
ε ).

Why is the running time still worse than the original Minimum Enclosing Ball problem, and
why does it depend on ∆? Earlier we mentioned that the triangle inequality does not hold when
∆ ≥ 1. Algorithmically, the lack of the triangle inequality prevented us from using a simple
but powerful lemma first proved in [16]; when c and c∗ are the current and the optimal center
respectively, we can find a point p such that d(c∗, p) = R∗ and d(c, p)2 ≥ (R∗)2 + d(c, c∗)2, which
implies d(c, c∗)2 ≤ R2 − (R∗)2. Many algorithms for the Minimum Enclosing Ball problem [6, 28]
used this lemma to improve their running time. Also in our algorithms, this lemma would guarantee
a tighter bound of the distance between the current center and the optimal center, giving a better
running time. However, the next lemma shows that the bound of this key lemma gets gradually
relaxed as ∆ increases. When ∆ is big, d(c, c∗) can be nearly as big as R∗, which does not improve
our convergence analyses. The proof appears in Appendix C.

Lemma 3.3. Let c be the current center, c∗ ∈ C∗ be the closest optimal center to c, and R =
R(c,L) be the radius of the minimum intersecting ball centered at c. There is an instance where

(d(c, c∗))2 ≥ (R2 − (R∗)2)
1

2∆ (R∗)
(2− 2

2∆ )
.

4 Clustering Hardness

A k-clustering C = (L1, ...,Ln, c1, ..., ck) is a partition of L into disjoint subsets (clusters) L1, ...,Lk
with centers c1, ..., ck. Let R(C) = maxiR(ci,Li) be the maximum radius of any cluster of C, which
we also call the radius of the clustering C. Let R∗(k,L) be the optimal radius of any k-clustering.
Again, we do not use L or C in these notations when it is clear from the context.

While we have a FPTAS for the 1-center problem, that is not the case when we have a real
clustering problem with k ≥ 2. The fundamental concept of clustering - partitioning objects into
k groups so that the objects in each group are similar - has been considered in even the earliest
problems in computational theory when each object corresponds to a vertex in a graph and there
is an edge when two objects are similar or related; the VERTEX COVER and DOMINATING
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SET problem ask to find k centers that cover their relationships (incident edges) or directly similar
objects (neighbors), respectively. k-COLORING, which is finding a partition of the vertex set into
k disjoint sets such that the subgraph induced by each set is a coclique (here, the existence of an
edge means that the two vertices are different), looks more like a version of the clustering problem.
Even more boldly, some variants of the 3-SAT problem can be said to look for a partition of a
set of variables into 2 disjoint sets (those assigned true or false) to satisfy the given constraints, if
flipping true and false does not change the satisfiability (i.e., clusters are symmetric).

These many fundamental graph-theoretic or logic problems that are related to the concept of
clustering, and their hardness results have not been reflected very much in the typical clustering
problems studied in the Euclidean space. One of the reasons is that it is hard to find a right
embedding of a given graph to the Euclidean space such that the relationships are preserved. When
objects correspond to ∆-flats, however, such embeddings can be found more easily, enabling us to
prove that clustering flats is much harder than clustering points. Some interesting graph-theoretic
properties are preserved in the reduction to our problem, as the distinction of easy 2-COLORING
and hard 3-COLORING is reflected in the strict better approximability with 2 centers than with 3
centers in the axis-parallel case. We start by reducing the k-COLORING problem to our problem,
which shows that k-clustering is hard even for fixed k ≥ 3 and the axis-parallel restriction.

Theorem 4.1. For fixed k ≥ 3 and any I, there is no algorithm that computes a I-approximate
k-clustering and runs in time polynomial of n, d,∆ unless P = NP .

The proof appears in Appendix D. Note that all the flats used in the above theorem are axis-
parallel, so both axis-parallel and general case are hard when k ≥ 3. Since 2-COLORING is in P,
a harder version of coloring(HYPERGRAPH 2-COLORING) is used to show that 2-clustering in
the general (not necessarily axis-parallel) case is still hard.

Theorem 4.2. There is no algorithm that computes a I-approximate 2-clustering and runs in time
polynomial of n, d,∆ for any I unless P = NP .

The proof appears in Appendix E. This construction is not axis-parallel. By replacing three
edges of a triangle with three vertices with some additional changes similar to the NP-hardness
of 2-means[8], we can make each flat used in the reduction axis-parallel. However, in this case
the inapproximability ratio reduces from infinity to a constant less than 2. In Section 6, we show
a O(d1/4)-approximation algorithm for k = 2, indicating the fundamental difference between the
axis-parallel case and the general case in 2-clustering.

Theorem 4.3. When all flats are restricted to be axis-parallel, there is no algorithm that computes
a 2√

3
-approximate 2-clustering and runs in time polynomial of n, d,∆ unless P = NP .

The proof appears in Appendix F. The three theorems above show that it is impossible to find
a good approximation algorithm that runs in time polynomial in n, d,∆, even for fixed k. We also
study the case where ∆ is fixed. Similarly to what we have proved, it is impossible to find any
approximation algorithm that runs in time polynomial in n, d, k, even for fixed ∆. The reduction
is from the VERTEX-COVER problem.

Theorem 4.4. For fixed ∆ ≥ 1, there is no algorithm that computes a I-approximate k-clustering
and runs in time polynomial of n, d, k for any I unless P = NP .

The proof appears in Appendix G. Again, the flats used in the reduction are not axis-parallel.
By allowing a slightly larger dimension and more involved analysis, we can use the same idea to
extend the proof to the axis-parallel case.
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Figure 1: A simple exam-
ple in which an arbitrary
initial center moves to the
desired position

Theorem 4.5. When all flats are restricted to be axis-parallel, for fixed ∆ ≥ 3, there is no algorithm
that computes a I-approximate k-clustering and runs in time polynomial of n, d, k for any I unless
P = NP .

The proof appears in Appendix H. Note that our reductions do not increase the size of each
instance much. Therefore, if we assume the exponential time hypothesis formalized in [20], which
implies that the 3-SAT problem cannot be solved in 2o(n), our reductions also imply that we cannot
expect an algorithm whose running time is subexponential in k or ∆, with the only exception being
the axis-parallel case for fixed ∆. The proof appears in Appendix I.

Theorem 4.6. Assuming the exponential time hypothesis, for fixed k ≥ 3, there is no algorithm
that computes I-approximate k-clustering and runs in time 2o(∆)poly(n, d), both for the general
and the axis-parallel case for any I. For fixed ∆ ≥ 1, there is no such algorithm for the general
case which runs in time 2o(k)poly(n, d). In the axis-parallel case, for fixed ∆ ≥ 3, there is no such

algorithm which runs in time 2o(
√
k)poly(n, d).

5 Clustering Algorithms

In the previous section, we showed that there cannot be any polynomial time approximation algo-
rithm even when one of k or ∆ is fixed. Therefore, the natural next step is to find an approximation
algorithm which is fast for small k and ∆. Using Algorithm 2 (Moving Center) for computing the
minimum intersecting ball, we can obtain a PTAS whose running time is linear in n and d for
fixed k and ∆. Note that algorithm 2 starts with an initial center whose distance to the closest
optimal center is bounded by O(

√
∆R∗). However, in clustering, it is impossible, because R∗ can

be arbitrarily small compared to maxj (Mj −mj); given two points, the radius of the minimum
enclosing ball is at least half of the distance between these points, but the radius of the optimal
clustering becomes zero when we allow two clusters. Thus, we need to study how Algorithm 2
behaves if it starts with an arbitrary center. Fortunately, with some modification on the algorithm,
this does not affect the running time greatly. Since the difference between the optimal center and
the current center in the jth coordinate is bounded by R∗ once the jth coordinate is considered
(the center has move to a flat with a fixed value for the jth coordinate), and we have only ∆
unconsidered coordinates after the first move, we need only ∆ + 1 additional steps to move to a
reasonable position. Figure 1 shows a simple example in which an arbitrary initial center moves to
the desired position in 2 = ∆ + 1 steps.

Theorem 5.1. If all flats are axis-parallel and R∗ is given, Algorithm 2 with an arbitrary initial
center c computes an intersecting ball with radius R < R∗(1 + ε) in time O(nd∆( 1

ε2
+ 1)).
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The proof appears in Appendix J. Combined with the technique used in [6], where we pick a
far point from the current centers and guess the cluster to which it belongs, the above theorem
enables us to find a (1 + ε)-approximate clustering when we know the optimal radius R∗(k,L).

Theorem 5.2. If all flats are axis-parallel and R∗ is given, a (1 + ε)-approximate k-clustering can

be found in time 2O(∆k log k(1+ 1
ε2

))nd.

The proof appears in Appendix K. As in the 1-center problem, guessing the optimal radius
R∗ can be done by using binary search. Finding a meaningful upper bound on R∗ uses the main
algorithm with the radius 0.

Theorem 5.3. If all flats are axis-parallel, running the above clustering algorithm with the guessed
optimal radius zero will find the clustering with the radius at most O(

√
∆R∗) in time 2O(∆k log k)nd.

The proof appears in Appendix L. Therefore, we need O(∆
ε ) trials of binary search to guess

the optimal radius with error < ε. Guessing the optimal radius and trying for different values
of the optimal radius does not increase the asymptotic complexity of the main algorithm, so the

total running time is 2O(∆k log k(1+ 1
ε2

))nd. Conversely, we have shown that it is impossible to have
any approximation algorithm whose running time is polynomial in even one of k or ∆. The linear
dependence on n and d suggests that this algorithm can be practical for small values of k and ∆,
which usually are much less than n and d.

6 2-Clustering of axis-parallel flats

Section 4 shows that for fixed k ≥ 2 it is impossible to have any approximation algorithm in the
general case. When all flats are restricted to be axis-parallel, this threshold is increased by 1. If
k = 2, the lower bound of the approximation ratio for the axis-parallel case shown in Theorem 4.3
is 2√

3
, which is quite different from the other cases. This leads to the natural conjecture that there

is a polynomial time(in n, d,∆) approximation algorithm for the axis-parallel 2-center problem.
One reason that makes this conjecture more plausible is the relationship between the problems we
reduced to prove the hardness results of our problem. The hardness of 2-clustering in the gen-
eral case is shown by the reduction from the HYPERGRAPH 2-COLORING problem, and the
hardness of 3-clustering in the axis-parallel case is shown by the reduction from the GRAPH 3-
COLORING problem. In these reductions, there is a natural correspondence between the number of
colors/the number of centers, hypergraphs/non-axis parallel flats, and regular graphs/axis-parallel
flats. Therefore, that GRAPH 2-COLORING is in P motivates us to find an approximation algo-
rithm for this special axis-parallel 2-clustering problem, whose existence will show the fundamental
difference between the axis-parallel case and the general case in terms of approximability.

In fact, we can find a polynomial time approximation algorithm for the axis-parallel 2-clustering
problem by solving a problem similar to GRAPH-2-COLORING as a subroutine. To do this, we
need another Helly-type theorem which holds specifically for axis-parallel flats. It extends the
relatively trivial fact that pairwise nonempty intersection of some set of axis-parallel flats implies
all of them intersect. Similarly, if any pairwise distance of some set of flats is small, there is a small
intersecting ball.

Theorem 6.1. Let L = {l1, ..., ln} be the set of axis-parallel flats, where each li is of dimension

∆i < d. If d(li, lj) ≤ r for every 1 ≤ i, j ≤ n, R∗(L) < 2d
1
4 r. In other words, if any pair of slabs{

li +BO, r
2

}
intersect, then all slabs

{
li +B

O,d
1
4 r

}
intersect where + denotes the Minkowski sum.

9



The proof appears in Appendix M. The next theorem shows that this Helly-type theorem for
axis-parallel flats is tight in terms of the radius of an intersecting ball.

Theorem 6.2. There is a set of axis-parallel flats L = {l1, ..., ln} in Rd such that d(li, lj) ≤ r for

every 1 ≤ i, j ≤ n, and R∗(L) = Ω(d
1
4 )r.

The proof appears in Appendix N. Equipped with this new Helly-type Theorem 6.1, we give
a polynomial time approximation algorithm for the axis-parallel 2-clustering problem. It uses the
idea of Gao et al. [13, 14] that d(li, lj) ≤ 2R∗ when li and lj belong to the same cluster in the
optimal clustering. Therefore, we can construct a graph based on the pairwise distances, use a
2-COLORING algorithm to get two clusters; Theorem 6.1 ensures that the resulting clustering is
O(d

1
4 )-approximate. The proof appears in Appendix O.

Theorem 6.3. If all flats are axis-parallel, an O(d
1
4 )-approximate 2-clustering can be found in

time O(dn2 log n).

7 Conclusions and Future Work

We have presented the algorithms and hardness results for clustering affine subspaces. Our main
algorithm for general k and ∆ and hardness results almost match in the sense that we proved that
the exponential dependence on k and ∆ is inevitable and suggested an algorithm which runs in
time exponential in k and ∆ but linear in n and d. Furthermore, assuming the exponential time
hypothesis, the exponent linear in ∆ (for fixed k) and quasi-linear in k (for fixed ∆) is almost tight
because we cannot expect a subexponential(for any of k and ∆) algorithm in the general case; the

axis-parallel case only relaxes the dependence on k from 2o(k) to 2o(
√
k). Therefore, other than trying

to find a subexponential (in k) algorithm for the axis-parallel case, one immediate improvement of
the running time will be to reduce the current quasi-multilinear exponent 2O(∆k log k) to a quasi-
linear one like 2O(∆+k log k). If this improvement is achieved, it will be nearly the theoretically
fastest algorithm. Conversely, there might be another reduction that, by considering general k and
∆ simultaneously, proves it is impossible to have an algorithm which runs in time 2o(∆k); in this
case, our algorithm will nearly match the lower bound. Since our algorithms are all deterministic
and do not assume instances are easily clusterable, it is also tempting to try to exploit the power of
randomness or to assume well-clusterability or stability introduced in[27, 4, 3, 22] on the instances
to improve the running time.

All of our algorithms can be applied in the general case and proved to converge to an optimal
clustering; it is the theoretical upper bound on the number of iterations that can be proved only
in the axis-parallel case. The key downside of not having axis-parallel flats is that it is hard to find
an initial center close to the optimal center; given initial centers within distance

√
∆R∗ from the

corresponding optimal centers, our iterative algorithms in Section 3 and 5 will converge with the
same upper bound on the number of iterations proved in this paper. Such initial centers were found
in the big axis-parallel hypercube containing any intersection of flats, or by using a few steps of
the main iterative algorithms where the distance is bounded in each coordinate, but these methods
cannot be used when flats are not axis-parallel. It would be meaningful to devise new techniques
(e.g. scaling the space) so that our methods work for the general case.
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Appendices

A Proof of Theorem 3.1

Theorem 3.1: If all flats are axis-parallel, Algorithm 1 satisfies R(1−ε0) < R∗ in O(∆ log ∆+ ∆
ε20

)

iterations.

Proof. We find c′ on the line segment joining the current center c and one of the optimal centers
such that R(c′, {p1, ..., pn}) is significantly less than R(c, {p1, ..., pn}) = R(c,L). Let c∗ ∈ C∗ be
the optimal center which is the closest to c. Let c′ = c + s

‖c∗−c‖(c
∗ − c) for some s that will be

determined later. In other words, we consider the point obtained by moving c by s towards c∗. If
c′ is significantly better than c for {p1, ..., pn}, so will the new center computed by the minimum
enclosing ball algorithm, and it implies that R(c) is significantly improved.

Fix one iteration between Line 1 and Line 2 of Algorithm 1 and let R = R(c) be the current
radius. Suppose R∗ = βR for some β ∈ (0, 1). We classify each flat into one of three different
categories. The first category consists of li’s such that d(c, pi) ≤ R∗. Since we moved the center
by s, d(c′, pi) ≤ R∗ + s by using the simple triangle inequality. The second category consists of
li’s such that R∗ < d(c, pi) ≤ αR for some constant α ∈ (β, 1) that will be determined later.
Since d(c∗, li) ≤ R∗ < d(c, pi), the angle ∠picc∗ = ∠picc′ cannot be greater than π/2. Therefore,
d(c′, pi) ≤

√
(αR)2 + s2. The third category, which consists of li’s such that αR < d(c, pi) ≤ R,

is the only category where each member’s distance is guaranteed to be decreased by choosing the
new center, and therefore needs the most involved analysis. Figure 2 shows the three different
categories.

c′

pi

c

c

c
R′

αR′

R∗

c∗
c′

c′

li

Figure 2: 3 possible categories depending on d(c, pi) in d = 2,∆ = 1

Fix one li in the third category. Assume without loss of generality that it is parallel to the first
∆ coordinates. In other words, li = (∼, ...,∼, x∆+1, ..., xd) =

{
(x1, ..., xd)|(x1, ..., x∆) ∈ R∆

}
where

x∆+1, ..., xd are fixed. To show that d(c′, pi) is significantly less than d(c, pi), we show an upper
bound of dli(c, c

∗) and a lower bound of dl⊥i
(c, c∗). This means that the vector (c∗ − c) has the

significant component orthogonal to li. As shown in Figure 3, by choosing s appropriately, we can
make d(c′, pi) significantly less than d(c, pi).

Lemma A.1. dli(c, c
∗) ≤ R

√
∆

Proof. Let c = (c1, ..., cd), c
∗ = (c∗1, ..., c

∗
d), and assume without loss of generality that cj > c∗j

for all j. For each jth coordinate(j = 1, ...,∆), there exists a flat in L that has the fixed jth
coordinate smaller than c∗j , since otherwise we can slightly increase c∗j to reduce d(c, c∗) while
not increasing R(c∗), contradicting the fact that c∗ is the optimal center closest to c. Therefore,
R ≥ max1≤j≤∆(cj − c∗j ) ≥ 1√

∆

√
(c1 − c∗1)2 + ...+ (c∆ − c∗∆)2 = 1√

∆
dli(c, c

∗).
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pi

c

c∗

li

c′

dli(c, c
∗)

dl⊥i
(c, c∗)

Figure 3: Larger dl⊥i
(c, c∗) guarantees smaller d(c′, pi).

Lemma A.2. dl⊥i
(c, c∗) ≥ d(c, li)−R∗ ≥ αR−R∗ = (α− β)R.

Proof. Since d(p, li) = dl⊥i
(p, li) = dl⊥i

(p, q) for any p ∈ Rd and its projection q on li, d(c, li) =

dl⊥i
(c, pi) and R∗ ≥ d(c∗, li) = dl⊥i

(c∗, pi). Therefore, the triangle inequality dl⊥i
(c, c∗) ≥ dl⊥i (c, pi)−

dl⊥i
(pi, c

∗) implies the first inequality. The last inequality just follows from the assumption made
on the third category.

Lemma A.3. Let sl⊥i
= dl⊥i

(c, c′). (dl⊥i
(c′, pi))

2 ≤ R2 − 2Rsl⊥i

√
1− (βα)2 + (sl⊥i

)2.

Proof. Since this lemma deals only with dl⊥i
, we restrict ourselves to the orthogonal complement

of l′i, where l′i is the translation of li that is a subspace. Figure 4 shows the situation projected
to (l′i)

⊥. In this space, li = pi is a single point. Let θ be the angle ∠c′cli = ∠c∗cli. By the law
of cosines, (dl⊥i

(c′, pi))
2 ≤ R2 − 2Rsl⊥i

cos θ + (sl⊥i
)2. Since dl⊥i

(c∗, pi) < dl⊥i
(c, pi), we know that

θ < π/2. By the law of sines, sin θ
d
l⊥
i

(c∗,pi)
= sin∠cc∗pi

d
l⊥
i

(c,pi)
≤ 1

αR , so θ ≤ arcsin R∗

αR = arcsin β
α . Therefore,

cos θ ≥
√

1− (βα)2.

θ

pi = li

c

c∗
c′

dl⊥i
(c, c∗) ≤ R∗

αR ≤ dl⊥i (c, c∗) ≤ R

sl⊥i
(c, c′)

Figure 4: The whole space projected to (l′i)
⊥

Finally, we are ready to combine the results on dli and dl⊥i
to compute how we can get close to

pi by moving along c∗ − c. By Lemma A.1 we have dli(c, c
∗) ≤ R

√
∆, and by Lemma A.2 we have

dl⊥i
(c, c∗) ≥ (α− β)R. Therefore, if we make c′ = c+ s

‖c∗−c‖(c
∗ − c), (dli(c, c

′))2 ≤ s2 ∆
∆+(α−β)2 and

dl⊥i
(c, c′)2 ≥ s2 (α−β)2

∆+(α−β)2 . Take s to be R
√

(α−β)2

∆+(α−β)2

√
1− (βα)2.
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(d(c′, pi))
2 = (dli(c

′, pi))
2 + (dl⊥i

(c′, pi))
2

≤ s2 ∆

∆ + (α− β)2
+R2 − 2Rsl⊥i

√
1− (

β

α
)2 + (sl⊥i

)2

= s2 ∆

∆ + (α− β)2
+R2 − 2Rs

√
(α− β)2

∆ + (α− β)2

√
1− (

β

α
)2 + s2 (α− β)2

∆ + (α− β)2

= R2 − 2Rs

√
(α− β)2

∆ + (α− β)2

√
1− (

β

α
)2 + s2

= R2 − s2

Combining all three categories, (d(c′, pi))
2 ≤ max((R∗ + s)2, (αR)2 + s2, R2 − s2). R2 − s2 ≥

(αR)2 + s2 if and only if s2 ≤ (1−α2)
2 R2, and R2 − s2 ≥ (R∗ + s)2 if and only if s ≤ −β+

√
2−β2

2 R.

α = 1/2 and β ≤ 1/4 makes
√

1
16∆+1(3

4)R ≤ s ≤
√

1
4∆+1R and satisfies these two inequalities,

meaning that the maximum distance to each flat is still attained in a flat in the third category.
We can apply the above analysis for the third category to argue that R2(c) is decreased by at
least (1 − Ω( 1

∆))R2 in each iteration until R < 4R∗. From the inequality (1 − c
∆)∆ ≤ e−c for any

0 < c < ∆, R2 decreases exponentially in every O(∆) iteration. Since we can take the initial c such
that R(c) = O(

√
∆R∗), we need only O(∆ log ∆) iterations until R < 4R∗.

This analysis also shows that R(c) converges to R∗, and to get 1
1−ε0 -approximation we need

O( ∆
ε20

) iterations. For each iteration after R < 4R∗, choose ε be such that R∗

R = β = 1− 2ε and let

α = 1 − ε, making s2 = ε3(2−3ε)
(∆+ε2)(1−ε)2R

2. R < 4R∗ implies that ε < 3
8 . As above, we need to check

that the maximum distance to each flat is attained in a flat in the third category. (1−α2)
2 becomes

ε(2−ε)
2 , and

(
ε3(2− 3ε)

(∆ + ε2)(1− ε)2
)/(

ε(2− ε)
2

) =
2ε3(2− 3ε)

(∆ + ε2)(1− ε)2ε(2− ε)

=
2ε2(2− 3ε)

(∆ + ε2)(1− ε)2(2− ε)

≤ 2ε2

(∆ + ε2)(1− ε)2

≤ 2(
ε

(1− ε)
)2

≤ 2(
3

5
)2

≤ 1

shows that the maximum distance in the second category cannot exceed the maximum distance

in the third category. For the first category, we have
−β+
√

2−β2

2 = 2ε−1+
√

1+4ε−4ε2

2 R ≥ εR.
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(
ε3(2− 3ε)

(∆ + ε2)(1− ε)2
)/(ε2) =

ε(2− 3ε)

(∆ + ε2)(1− ε)2

≤ ε(2− 3ε)

(1− ε)2

≤ 1

since 2ε−3ε2

(1−ε)2 < 1 for all 0 < ε < 3/8. Therefore, the maximum distance in the third category

again dominates, and we can apply the same argument to show that R2(c) is decreased by s2 ≥
ε3(2−3ε)

(∆+ε2)(1−ε)2R
2 = Ω( ε

3

∆ )R2.

Therefore, as long as R > 1
1−ε0R

∗, R2 is decreased by Ω(
ε30
∆ ). If we start from R < 4R∗, we need

O( ∆
ε30

) iterations until R > 1
1−ε0R

∗. Since R and ε decrease together and ε in the early iterations is

much bigger than ε0, using the idea of Gao et al. [13], we can prove a better upper bound on the
number of iterations. Assume ε0 = 1/2m. For each i = 1, ...,m, β can be reduced from (1− 1/2i−1)

to (1− 1/2i) in just O( 1/2i

(1/2i)3 ∆) = O(22i∆) iterations. Summing over i = 1, ...,m, the last term is

greater than the sum of the other terms, so the total running time is O(22m∆) = O( ∆
ε20

). Combining

the first part of iterations that make R < 4R∗, the number of iterations until R(1 − ε0) < R∗ is
O(∆ log ∆ + ∆

ε20
).

B Proof of Theorem 3.2

Theorem 3.2: If all flats are axis-parallel and R∗ is given, Algorithm 2 computes an intersecting
ball with radius R < R∗(1 + ε) in time O(nd∆

ε2
).

Proof. Let li be the flat chosen in the ith iteration. Let c be the center before we move it towards li,
and c′ be the center after the move. Since c′ is on the line segment joining c and its projection pi to
li and every distance from a point li is defined in l⊥i , we can restrict our attention to the orthogonal
complement of l′i. In this space, li = pi becomes a single point. d(c∗, li) = dl⊥i

(c∗, li) ≤ R∗,

d(c, li) = dl⊥i
(c, li) > (1 + ε)R∗, d(c′, li) = dl⊥i

(c′, li) = R∗

Since dl⊥i
(c∗, li) ≤ dl⊥i

(c, li), ∠lic′c∗ is acute and ∠cc′c∗ is obtuse as shown in Figure 5. There-

fore, (dl⊥i
(c∗, c′))2 ≤ (dl⊥i

(c∗, c))2 − (dl⊥i
(c, c′))2 ≤ (dl⊥i

(c∗, c))2 − ε2. Therefore, in each iteration,

(dl⊥i
(c∗, c))2 is decreased by ε2, and so is (d(c∗, c))2. Since we take the initial center c such that

d(c, c∗) ≤ O(
√

∆)R∗, so we need only O( ∆
ε2

) iterations. Each iteration only consists of computing
the distance and the projection to each flat from the current center, which takes time O(nd). The
total running time is O(nd∆

ε2
).

C Proof of Lemma 3.3

Lemma 3.3: Let c be the current center, c∗ ∈ C∗ be the closest optimal center to c, and R =
R(c,L) be the radius of the minimum intersecting ball centered at c. There is an instance where

(d(c, c∗))2 ≥ (R2 − (R∗)2)
1

2∆ (R∗)
(2− 2

2∆ )
.

Proof. Our counterexample has n = d = ∆ + 2, and consists of n flats of different dimensions.
Note that this can be easily extended to the case where all flats have the same dimension ∆, by
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c

pi

c∗c′

≤ R∗
R∗

≥ εR∗

Figure 5: The center of the ball gets closer to the optimal position in each iteration

adding at most ∆ coordinates and giving either the same fixed value or a free variable to each
added coordinate.
L = {l1, l2, p1, ..., p∆}. l1 and l2 are of dimension ∆ and each pi is of dimension less than ∆.

Let l1 = (−I, 0,∼, ...,∼), l2 = (+I, 0,∼, ...,∼) and pi = (0, ..., 0, I, 0,∼, ...,∼) where I > 0 appears
in the i + 1th coordinate. In other words, pi has the first i coordinates 0, i + 1th coordinate I,
i+ 2th coordinate 0, and the remaining coordinates ∼.

Claim C.1. The origin is the center of unique the minimum intersecting ball, i.e. C∗ = {O}.

Proof. Since the first coordinate of l1 and l2 differ by 2I, R∗ ≥ I. It is obvious that BO,I intersects
all flats, since each flat has only one nonzero and nonfree coordinate of which the value is I. We
argue that there is no other center c that achieves I.

By l1 and l2, it is obvious that to achieve the radius I, the first coordinate of c must be zero.
We consider p1, ..., p∆ in this order. Inductively, when we look at pi and the first i coordinates are
fixed to 0, it means that the distance from c to each of l1, l2, p1, ..., pi−1 in the first i coordinates is
I. Since the value of (i+ 1)th coordinate of each of these flats is 0 or ∼, c must have the the i+ 1
coordinate 0. Again, the distance from c to pi in the first i + 1 coordinates is I, so the induction
is complete until all coordinates of c must be zero.

Let c′ = (0, x2∆
, x2∆−1

, ..., x2, x)I.

(d(c′, l1))2 = (1 + x2∆+1
)I2

(d(c′, p1))2 = ((1− x2∆
)2 + x2∆

)I2 = (1 + x2∆+1 − x2∆
)I2

(d(c′, p2))2 = (x2∆+1
+ (1− x2∆−1

)2 + x2∆−1
)I2 = (1 + x2∆+1

+ x2∆ − x2∆−1
)I2

...

(d(c′, pi))
2 = (x2∆+1

+ ...+ x2∆−i+3
+ (1− x2∆−i+1

)2 + x2∆−i+1
)I2 = (1 + x2∆+1

+ ...+ x2∆−i+2 − x2∆−i+1
)I2

1 + x2∆+1
+ ... + x2∆−i+2 − x2∆−i+1 ≤ 1 for small x, so (R(c′))2 = (d(c′, l1))2 = (1 + x2∆+1

)I2.

(R(c′))2 − (R∗)2 = x2∆+1
I2, but

17



(d(c∗, c′))2 ≥ x2I2

≥ (x2∆+1
)

1

2∆ I
2

2∆ I
2− 2

2∆

= ((R(c′))2 − (R∗)2)
1

2∆ (R∗)
2− 2

2∆

D Proof of Theorem 4.1

Theorem 4.1: For fixed k ≥ 3 and any I, there is no algorithm that computes a I-approximate
k-clustering and runs in time polynomial of n, d,∆ unless P = NP .

Proof. We reduce the GRAPH k-COLORING problem(k ≥ 3) to our problem. Given G = (V,E)
with V =

{
v1, ..., v|V |

}
and E =

{
(v1,1, v1,2), ..., (v|E|,1, v|E|,2)

}
, we construct the set of n = |V | flats

L = {l1, ..., ln} in d = |E|-dimensional coordinates. Each flat li corresponds to each vertex vi and
each jth coordinate corresponds to each edge (vj,1, vj,2). For each 1 ≤ i ≤ n and 1 ≤ j ≤ m, (li)j
is decided as the following:

• vi /∈ (vj,1, vj,2): (li)j =∼, i.e. si does not have a fixed value in the jth coordinate.

• vi = vj,1: (li)j = −1

• vi = vj,2: (li)j = +1

G is k-colorable if and only if there is a k-clustering where each cluster does not have two
flats that have the fixed values −1 and +1 in the same coordinate, which ensures R∗(k,L) = 0.
Therefore, G is k-colorable if and only if there is a k-clustering with R∗(k,L) = 0. If there is an
algorithm that computes a I-approximate k-clustering and runs in time polynomial of n, d,∆, we
can solve the GRAPH k-COLORING problem, implying P = NP .

E Proof of Theorem 4.2

Theorem 4.2: There is no algorithm that computes a I-approximate 2-clustering and runs in time
polynomial of n, d,∆ for any I unless P = NP .

Proof. We reduce the SET SPLITTING problem, also known as the HYPERGRAPH 2-COLORING
problem, to our problem. The SET SPLITTING problem, given a collection S of subsets of a finite
set U , decides whether there is a partition of U into two subsets U1 and U2 such that no subset
in S is entirely contained in either U1 or U2. This problem remains NP-complete even if all s ∈ S
have |s| ≤ 3. Therefore, we assume that |s| = 3 for all s ∈ S without losing NP-completeness.

Let U = {u1, ..., un} be the given finite set, and S = {s1, ..., sm} be the collection of subsets.
For each j, sj = {uj,1, uj,2, uj,3} ⊆ S. Given such an instance, we construct the set of n flats
L = {l1, ..., ln} in d = 2m-dimensional coordinates. Think (2j − 1)th and (2j)th coordinates
are associated with sj . For each 1 ≤ i ≤ n and 1 ≤ j ≤ m, (li)2j−1 and (li)2j are decided as

the following. Let A = (0, 1), B = (−
√

3
2 ,−

1
2), C = (

√
3

2 ,−
1
2) be the vertices of the triangle that

contains 0 in the middle.

18



• ui /∈ sj : (li)2j−1 = (li)2j =∼, i.e. si does not have a fixed value in these coordinates.

• ui = uj,1: {(li)2j−1, (li)2j} ⊆ R2 is the line passing A and B.

• ui = uj,2: {(li)2j−1, (li)2j} ⊆ R2 is the line passing A and C.

• ui = uj,3: {(li)2j−1, (li)2j} ⊆ R2 is the line passing B and C.

... (2i− 1, 2i) ... (2j − 1, 2j) ...

l1 ... / ... ∼ ...

l2 ... \ ... / ...

l3 ... ... \ ...

l4 ... ∼ ... ...

Table 3: An example where Si = {u1, u2, u3} and Sj = {u2, u3, u4}. Three lines in the same two
columns form a regular triangle around the origin.

Let (C1, C2) be a 2-clustering of L. If lj,1, lj,2, lj,3 are in the same cluster for any j, the minimum
intersecting ball for that cluster must cover the triangle formed in (2j−1)th and (2j)th coordinates,
forcing R∗(k,L) ≥ 1/2. If lj,1, lj,2, lj,3 are split for every j, each cluster has at most 2 of them and
we can place the center on the intersection of those two lines, so R∗ = 0. Therefore, R∗(k,L) = 0 if
and only if the given instance of the SET SPLITTING problem has a satisfactory partitioning. If
there is an algorithm that computes a I-approximate 2-clustering and runs in time polynomial of
n, d,∆, we can solve the SET SPLITTING problem with |s| = 3 for all s ∈ S, implying P = NP .

F Proof of Theorem 4.3

Theorem 4.3: When all flats are restricted to be axis-parallel, there is no algorithm that computes
a 2√

3
-approximate 2-clustering and runs in time polynomial of n, d,∆ unless P = NP .

Proof. We reduce the NOT ALL EQUAL 3-SAT problem, which is quite similar to the SET SPLIT-
TING PROBLEM introduced above, to our problem. Given a set of variables x1, ..., xn and a set
of clauses C = {C1, ..., Cm} where each Cj consists of three literals xj,1, xj,2, xj,3, negated or un-
negated, the problem asks to find the truth assignment to each xi such that no clause has three
true literals or three false literals. It is also NP-hard to find an exact solution for the NOT ALL
EQUAL 3-SAT problem.

Given an instance of the NOT ALL EQUAL 3-SAT problem, we construct the set of 6m flats

L =
{
li,j , l

′
i,j |xi ∈ Cj

}
in d = (n + 2m)-dimensional coordinates. The number of flats is 6m since

we generate two flats, li,j for the literal and l′i,j for its negation, per each appearance of a literal.
The purpose of the first n coordinates is to make sure that all li,j ’s for fixed i are in the same cluster
and all l′i,j ’s in the other, and the purpose of remaining 2m coordinates is to penalize the clause
with the three literals with the same value. For the first n coordinates, (li,j)i = 0, (l′i,j)i = M for a
large M , and (li,j)i′ = (l′i,j)i′ =∼ when i 6= i′. Therefore, li,j and l′i,j′ cannot be in the same cluster
even if j 6= j′. Since we have only two clusters, for fixed i, all li,j ’s have to gather in the one cluster
and all l′i,j ’s have to gather in the other.
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The (n+ 2j − 1)th and (n+ 2j)th coordinates are associated with Cj . For each 1 ≤ i ≤ n and
1 ≤ j, j′ ≤ m such that xi ∈ Cj (i.e. li,j ∈ L), (li,j)2j′−1, (li,j)2j′ , (l′i,j)2j′−1 and (l′i,j)2j′ are decided
as the following:

• j 6= j′: (li,j)2j−1 = (li,j)2j = (l′i,j)2j = (l′i,j)2j =∼, i.e. li,j and l′i,j does not have a fixed value
in these coordinates.

• xi = xj,1: (li,j)2j−1 = 0, (li,j)2j = 1. (l′i,j)2j−1 = −
√

3
2 , (l

′
i,j)2j = −1

2 . Swap the role of li,j and
l′i,j if xj,1 is negated.

• xi = xj,2: (li,j)2j−1 = −
√

3
2 , (li,j)2j = −1

2 . (l′i,j)2j−1 =
√

3
2 , (l

′
i,j)2j = −1

2 . Swap the role of li,j
and l′i,j if xj,2 is negated.

• xi = xj,3: (li,j)2j−1 =
√

3
2 , (li,j)2j = −1

2 . (l′i,j)2j−1 = 0, (l′i,j)2j = 1. Swap the role of li,j and
l′i,j if xj,3 is negated.

1 2 3 ... (2j − 1, 2j) ...

l1,j 0 ∼ ∼ ... ↑ ...

l′1,j M ∼ ∼ ... → ...

l2,j ∼ 0 ∼ ... ← ...

l′2,j ∼ M ∼ ... → ...

l3,j ∼ ∼ 0 ... ← ...

l′3,j ∼ ∼ M ... ↑ ...

Table 4: An example where Cj = (x1,¬x2, x3). (0, 1), (−
√

3
2 ,−

1
2), (

√
3

2 ,−
1
2) are represented as up,

left, right arrow vectors, respectively.

The above table shows the example of a clause Cj which consists of xj,1 = x1,¬xj,2 = ¬x2, xj,3 =
x3. Since li,j and li,j′ must be separated, there are at most 23 = 8 clusterings (if we do consider the
order of the clusters), and we cannot have the three same points in one cluster. Furthermore, there
are exactly two cases where we can have three different points in one cluster, namely l1,j , l

′
2,j , l3,j in

one cluster and l′1,j , l2,j , l
′
3,j in the other (again, when we do not consider the order of the clusters,

it becomes one case). They are exactly the two assignments that make all the literals true or false
at the same time. By symmetry, this argument holds for any clause with arbitrary negated or
unnegated literals.

When all li,j ’s gather in the one cluster and all l′i,j ’s gather in the other for fixed i, the first n
coordinates do not affect the radius of the clustering at all. For each two coordinates corresponding
to Cj , there are only 6 flats with fixed values, 3 for each cluster. And these flats do not have
fixed values for any other coordinate corresponding to Cj′ 6= Cj . Therefore, the (n+ 2j − 1)th and
(n + 2j)th coordinates of the center are decided by these coordinates of the 3 flats (either three
points or two points) only, and the distances of these flats to the center are also decided by only
those two coordinates. It implies that the radius of a clustering is 1 if and only if there is a clause
for which each cluster corresponds to the assignment resulting in three literals with the same value.

Otherwise, the radius of clustering is
√

3
2 .

Therefore, there exists a satisfying assignment to an instance of the NOT ALL EQUAL 3-

SAT problem if and only if the optimal radius is
√

3
2 . If there is an algorithm that computes a
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2√
3
-approximate 2-clustering and runs in time polynomial of n, d,∆, we can solve the NOT ALL

EQUAL 3-SAT problem, implying P = NP .

G Proof of Theorem 4.4

Theorem 4.4: For fixed ∆ ≥ 1, there is no algorithm that computes a I-approximate k-clustering
and runs in time polynomial of n, d, k for any I unless P = NP .

Proof. We reduce the famous VERTEX COVER problem to our problem with ∆ = 1. Given
G = (V,E) with V =

{
v1, ..., v|V |

}
and E =

{
(v1,1, v1,2), ..., (v|E|,1, v|E|,2)

}
, we construct the regular

d = (|V | − 1)-simplex whose |V | vertices corresponds to each vertex in V . L consists of n = |E|
lines where each line corresponds to each edge; li is the line passing vi,1 and vi,2.

If there is a vertex cover of size k, using the vertices in the vertex cover as centers ensures
R∗(k,L) = 0, since each line contains at least one center. Conversely, if there is a k-clustering with
R∗(k,L) = 0, we can move each center to some vertex while maintaining R∗ = 0 since there is no
intersection of any two lines except the vertices of the simplex. Therefore, there is a vertex cover
of size k if and only if there is a k-clustering with R∗(k,L) = 0.

If there is an algorithm that computes a I-approximate k-clustering and runs in time polynomial
of n, d, k for any I, we can solve the VERTEX COVER problem, implying P = NP .

H Proof of Theorem 4.5

Theorem 4.5: When all flats are restricted to be axis-parallel, for fixed ∆ ≥ 3, there is no algorithm
that computes a I-approximate k-clustering and runs in time polynomial of n, d, k for any I unless
P = NP .

Proof. We reduce the 3-REGULAR VERTEX COVER problem to our problem. First, we prove
that the problem remains NP-hard even though all graphs are restricted to have no cycle of length
≤ 4. For any given graph G = (V,E), construct the graph G′ with |V | + 2|E| vertices and 3|E|
edges by splitting each edge of G into three edges and adding two vertices of degree two in each
junction. If G has a vertex cover of size k, G′ has a vertex cover of size k + |E| since if an edge of
G is covered, at least one edge of G′ corresponding to the original edge is covered, so we need only
one vertex to cover the remaining two edges of G′ corresponding to the original edge.

For the other direction, suppose G′ has a vertex cover of size k + |E| and this vertex cover
contains k′ vertices of G. Since this vertex cover has to cover each middle edge (the middle of
three pieces of the original edge) that does not contain any vertex of G (there are |E| of them),
k′ ≤ k. Also, if the two endpoints of any middle edge are in the vertex cover, moving one of them
to the nearest vertex of G still ensures that all edges of G′ are covered (it is okay even if the nearest
vertex was already in the cover). This may increase k′, but still k′ ≤ k. Now we claim that these
k′ vertices of G form a vertex cover of G. If there is an uncovered edge of G by these vertices, the
only way to cover the three edges of G′ is to include two new vertices into the vertex cover of G′,
but we already removed these cases. Therefore, G has a vertex cover of size k if and only if G′ has
a vertex cover of size k + |E|, completing the first reduction.

Given G = (V,E) with V =
{
v1, ..., v|V |

}
and E =

{
e1, ..., e|E|

}
, we construct the set of n = |E|

flats L = {l1, ..., ln} in d = |V |-dimensional coordinates. Think jth coordinate is associated with
vj . For each 1 ≤ i ≤ n and 1 ≤ j ≤ m, (li)j is decided as the following:
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• vj is an endpoint of ei: (li)j = 1.

• vj is a neighbor of an endpoint of ei: (li)j =∼.

• Otherwise: (li)j = 0.

Note that in a graph of which the maximum degree is ≤ 3, one edge can have at most 4 vertices
(excluding its endpoints) that are adjacent to its vertices. However, using the reduction above to
split each edge into three, we are sure that no adjacent vertices are both of degree 3, so each edge
can have at most 3 such vertices.

For fixed j, if c ∈ Rd is such that cj = 1 and cj′ = 0 for j′ 6= j, c intersects all flats corresponding
to the edges incident on vj . Therefore, if there is a vertex cover of size k, there is a k-clustering
C with R(C) = 0. If there is no vertex cover of size k, for any partition of the flats(edges) into k
clusters, there must be a cluster whose edges are not covered by a single vertex. There are two
cases.

• There exists ei = (vx, vy), ei′ = (vz, vw) such that x, y, z, w are different:
Note that (li)x = (li)y = 1. However, it is impossible that (li′)x =∼, (li′)y =∼, because this
implies both vx and vy are adjacent to at least one of vz and vw, which results in a cycle of
length 3 or 4. There must be at least one coordinate in which li is 1 and li′ is 0, implying
that R∗(k,L) > 0.

• Each pair of edges shares an endpoint:
Take any edge (vx, vz) from this cluster. Since this cluster is not covered by either vx or vz,
there must be an edge ei = (vx, vy) and ei′ = (vz, vw) for some y 6= z and w 6= x. y = w
means a cycle of length 3, so y 6= w, implying that x, y, z, w are all different again.

Therefore, G admits a vertex cover of size k if and only if R∗(k,L) = 0. If there is an algorithm
that computes a I-approximate k-clustering and runs in time polynomial of n, d, k for any I, we
can solve the 3-REGULAR VERTEX COVER problem, implying P = NP .

I Proof of Theorem 4.6

Theorem 4.6: Assuming the exponential time hypothesis, for fixed k ≥ 3, there is no algorithm
that computes I-approximate k-clustering and runs in time 2o(∆)poly(n, d), both for the general
and the axis-parallel case for any I. For fixed ∆ ≥ 1, there is no such algorithm for the general
case which runs in time 2o(k)poly(n, d). In the axis-parallel case, for fixed ∆ ≥ 3, there is no such

algorithm which runs in time 2o(
√
k)poly(n, d).

Proof. Note that if there is an approximation algorithm with any factor I, the problems that
have been used in our reductions will be solved because all of our reductions mapped the accepting
instances to the clustering instances with R∗ = 0, and the rejecting instances to those with R∗ > 0.

Assuming the exponential time hypothesis, the 3-SAT problem, the GRAPH 3-COLORING
problem, and the VERTEX COVER problem (with k as a part of input, not a parameter) cannot
be solved in time 2o(n+m), where n is the number of vertices (variables) and m is the number of
edges (clauses) [12]. Our reduction from the GRAPH 3-COLORING in Theorem 4.1, where we
used d = |E| dimensions, shows that, for fixed k, we cannot obtain an algorithm whose running
time is subexponential in ∆. This result holds both in the general case and in the axis-parallel case
since the range of the reduction consists of axis-parallel instances.
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For fixed ∆, our reduction in Theorem 4.4 preserves k in the original VERTEX-COVER prob-
lem, so we cannot have a subexponential (in k) algorithm in the general case. In the axis-parallel
case, the reduction from the 3-SAT problem to the 3-REGULAR VERTEX COVER problem
increases the size (n + m) of the problem at most quadratically [15], and the reduction to the 3-
REGULAR VERTEX COVER without any cycle of length ≤ 4 in Theorem 4.5 increases the size of
the graph linearly(n′ = n+ 2m,m′ = 3m). Therefore, an algorithm for the axis-parallel case which

runs in time 2o(
√
k)poly(n, d) solves the 3-REGULAR VERTEX COVER problem in time 2o(

√
n+m)

and the 3-SAT problem in time 2o(n+m), contradicting the exponential time hypothesis.

J Proof of Theorem 5.1

Theorem 5.1: If all flats are axis-parallel and R∗ is given, Algorithm 2 with an arbitrary initial
center c computes an intersecting ball with radius R < R∗(1 + ε) in time O(nd∆( 1

ε2
+ 1)).

Proof. Let ai ⊆ [d] be the set of the indices of the coordinates in which li has fixed values. |ai| =
d −∆ for each i. Since we assumed that there is no coordinate in which every flat does not have
a fixed value, the union of ai over all 1 ≤ i ≤ n is [d]. Let c∗ ∈ C∗ be an arbitrary optimal center.
Without loss of generality, let li be the flat chosen in the ith iteration, ci be the current center
after the ith iteration, and bi = ∪ij=1ai. In other words, bi is the set of coordinates in which the

current center has moved at least once. Let dai(p, q) = dl⊥i
(p, q) =

√∑
j∈ai(pj − qj)

2. dbi is also

defined similarly. We classify each ith iteration into one of two categories depending on whether
ai ⊆ bi−1 or not. If ith iteration belongs to the former, the analysis of Algorithm 2, applied to the
case where we only consider the coordinates in bi−1 = bi, shows that (dbi(ci, c

∗))2 is decreased by at
least Ω(R

∗

ε2
) from (dbi−1

(ci−1, c
∗))2. Otherwise, the same analysis cannot be applied since bi−1 6= bi,

but the fact that (dai(ci, c
∗)) ≤ 2R∗ shows that

(dbi(ci, c
∗))2 =

∑
j∈ai

((ci)j − (c∗)j)
2 +

∑
j∈bi−1−ai

((ci)j − (c∗)j)
2

≤
∑
j∈ai

((ci)j − (c∗)j)
2 +

∑
j∈bi−1−ai

((ci−1)j − (c∗)j)
2

≤ 4(R∗)2 + (dbi−1
(ci−1, c

∗))2

Therefore, (dbi(ci, c
∗))2 is increased by at most O((R∗)2) from (dbi−1

(ci−1, c
∗))2. The first iteration

makes |b1| = |a1| = d − ∆, so there are at most ∆ + 1 iterations of the second category and
(dbi(ci, c

∗))2 is increased at most by O(∆(R∗)2) totally during the algorithm. Since each iteration
of the first category decreases (dbi(ci, c

∗))2 by Ω(R
∗

ε2
), and there are at most O( ∆

ε2
) iterations of the

first category. Therefore the total number of iterations is O(∆( 1
ε2

+ 1)).

K Proof of Theorem 5.2

Theorem 5.2: If all flats are axis-parallel and R∗ is given, a (1 + ε)-approximate k-clustering can

be found in time 2O(∆k log k(1+ 1
ε2

))nd.

Proof. Let C∗ = (L∗1, ...,L∗k, c∗1, ..., c∗k) be an optimal clustering. We start from the centers c1, ..., ck
at arbitrary positions.
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The algorithm picks li that maximizes the minimum distance to each c1, ..., ck. If d(li, cj) ≤
(1+ε)R∗ for every j then ∪j∈[k]B(cj , (1+ε)R∗) intersects every flat in L and we are done. Otherwise,
exhaustively guess the jth cluster such that d(cj , li) > (1+ε)R∗ and move cj to li as in Algorithm 2.
If we guess correctly, d(li, cj) ≤ (1 + ε)R∗ for each li ∈ L∗j in O(∆(1 + 1

ε2
)) iterations where jth

cluster is chosen. Therefore, we need at most O(k∆(1+ 1
ε2

)) iterations total. Each iteration involves
guessing between at most k clusters and can be implemented in time O(nd). Therefore, the total

running time is 2O(∆k log k(1+ 1
ε2

))nd.

L Proof of Theorem 5.3

Theorem 5.3: If all flats are axis-parallel, running the above clustering algorithm with the guessed
optimal radius zero will find the clustering with the radius at most O(

√
∆R∗) in time 2O(∆k log k)nd.

Proof. As above, let li be the flat chosen in the ith iteration, ai ⊆ [d] be the set of the indices of the
coordinates in which li has the fixed value. We also define ci,j to be the center of the jth cluster
after the ith iteration, and bi,j to be the union of ak’s (1 ≤ k ≤ i) that belong to the jth cluster.
For any pair of (i, j) such that bi,j 6= ∅ (i.e. at least one flat is classified to the jth cluster), let
lk(k ≤ i) be the last flat to which the center of the jth cluster has moved. As the above proofs,
dak(ci,j , c

∗
j ) ≤ R∗ and for each coordinate q in bi − ak (at most ∆ of them), |(ci,j)q − (c∗j )q| ≤ R∗.

Therefore, (dbi,j (ci,j , c
∗
j ))

2 ≤ ∆(R∗)2.
In the ith iteration, let j be the cluster that li belongs to in the optimal clustering. If ai ⊆ bi−1,j ,

d(li, ci−1,j) = dbi−1,j
(li, ci−1,j) ≤ dbi−1,j

(li, c
∗
j ) + dbi−1,j

(c∗j , ci−1,j) ≤ O(
√

∆R∗). Since li is chosen as

the flat that maximizes the minimum distance to any current center, d(li, ci−1,j) ≤ O(
√

∆R∗)
means that the distance from any flat to its nearest center is O(

√
∆R∗). Otherwise, the size of

bi,j = bi−1,j∪ai grows strictly. Since the first classification makes |bi,j | = d−∆, there are only ∆+1
iterations for one cluster to grow bi,j strictly. Therefore, in O(k∆) iterations, we are guaranteed
to have a situation where the radius of the current clustering is O(

√
∆R∗). Each iteration involves

guessing the correct cluster that li belongs to, so the total running time is 2O(∆k log k)nd.

M Proof of Theorem 6.1

Theorem 6.1: Let L = {l1, ..., ln} be the set of axis-parallel flats, where each li is of dimension

∆i < d. If d(li, lj) ≤ r for every 1 ≤ i, j ≤ n, R∗(L) < 2d
1
4 r. In other words, if any pair of slabs{

li +BO, r
2

}
intersect, then all slabs

{
li +B

O,d
1
4 r

}
intersect where + denotes the Minkowski sum.

Proof. As usual, without loss of generality assume that every jth coordinate is nontrivial, since we
can discard trivial coordinates without affecting any distance. mj and Mj , the smallest and the
largest fixed value for the jth coordinate, are defined for each j. Let r′ = maxj (Mj −mj) be the
longest edge of the hypercube [m1,M1]× ...× [md,Md]. It is clear that r ≥ r′.

Let ∆ = mini ∆i. Assume without loss of generality dim(l1) = ∆ and l1 has the fixed value
in 1, ..., (d − ∆)th coordinate. If ∆ ≥ d − p for some p, c = (m1+M1

2 , ..., md+Md
2 ) makes d(c, li) ≤√

d−dim (li)r
′

2 ≤
√
pr
2 for each i, so R∗(L) ≤

√
pr
2 .

If ∆ < d − p, fix (c)j = (l1)j for j = 1, ..., d − ∆. (d[d−∆](c, li))
2 ≤ (d(l1, li))

2 ≤ r2 for all i.
Since we have fixed the first d − ∆ coordinates and d[d]−[d−∆](li, lj) ≤ d(li, lj) ≤ r, we can apply
the same argument recursively where the dimension of the entire space is ∆ < d − p. Therefore,
(R∗(L))2 ≤ r2 +(R∗(L′))2 where L′ = {l′2, ..., l′n} and l′i ∈ R∆ is the projection of li to l1(1 < i ≤ n).
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Let p =
⌈√

d
⌉

and prove the theorem by the induction on the underlying dimension d. When

d = 1 it holds trivially. When the theorem is true for every 1, ..., d − 1, R∗(L) ≤
√
pr
2 ≤ 2d

1
4 r

or (R∗(L))2 ≤ r2 + (R∗(L′))2 where L′ is the set of flats in the Euclidean space of dimension
d− p ≤ d−

√
d with the smaller pairwise distance. By the induction hypothesis,

(R∗(L))2 ≤ r2 + 4r2

√
d−
√
d

= (1 + 4

√
d−
√
d)r2

≤ 4r2
√
d

since (1 + 4
√
d−
√
d)2 = (1 + 8

√
d−
√
d + 16(d −

√
d)) ≤ 16d. Therefore, the induction is

complete and R∗(L) < 2d
1
4 r.

N Proof of Theorem 6.2

Theorem 6.2: There is a set of axis-parallel flats L = {l1, ..., ln} in Rd such that d(li, lj) ≤ r for

every 1 ≤ i, j ≤ n, and R∗(L) = Ω(d
1
4 )r.

Proof. Let d = (n−1)n and partition the coordinates into n blocks each of which consists of (n−1)
coordinates. For 1 ≤ i 6= j ≤ n, define

p(i, j) =

{
j, if j < i

j − 1, if j > i

For 1 ≤ i ≤ n and 1 ≤ j ≤ n(n− 1), let q =
⌊
j−1
n−1

⌋
+ 1 indicate the block of the coordinates to

which j belongs. Then (li)j is decided by

(li)j =


0, if i = q

1, i 6= q and j − (q − 1)(n− 1) = p(q, i)

∼, otherwise

In other words, (li) has all 0’s in the ith block and exactly one 1 in each of the other blocks,
but the position of 1 in each block is different for each flat. Obviously, each pairwise distance is
r =
√

2, since the only two coordinates where li and lj are fixed and differ are the position in the
ith block where lj has 1 and the position in the jth block where li has 1.

Let c = (c1, ..., cd) ∈ Rd be an arbitrary center. For each coordinate j, there is exactly one
flat that has 1 in this coordinate and exactly one flat that has 0 in this coordinate. Therefore,∑

1≤i≤n((li)j − (cj))
2 ≥ 1

2 with equality if and only if cj = 1
2 . Summing over all coordinates,∑

1≤i≤n(d(c, li))
2 ≥ d/2 = n(n−1)

2 with equality if c = (1
2 , ...,

1
2). Therefore, max1≤i≤n(d(c, li))

2 ≥
n−1

2 so R∗(L) ≥
√

n−1
2 =

√
n−1
2 r = Ω(d

1
4 )r.
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O Proof of Theorem 6.3

Theorem 6.3: If all flats are axis-parallel, an O(d
1
4 )-approximate 2-clustering can be found in

time O(dn2 log n).

Proof. Note that d(li, lj) ≤ 2R∗ when li and lj belong to the same cluster in the optimal clustering.
Let r be the maximum d(li, lj) that is not larger than 2R∗. Construct a graph G = (L, E) where
(li, lj) ∈ E if and only if d(li, lj) > r. Then G is 2-colorable since there is one corresponding to the
optimal clustering. Find a 2-coloring; each color represents a cluster. Theorem 6.1 ensures that
the resulting clustering is O(d

1
4 )-approximate.

Finding r can be done by binary search in the set of all pairwise distances; it can be done in
O(log n). For each r, the most expensive step is to construct G, which takes O(n2d). Therefore,
the total running time is O(dn2 log n).
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