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Motivation
I As of 2022, the share of electricity generation from wind energy sources worldwide constitutes 7.3%.

I Most of electricity in power grid is priced and traded using a forecast of variable and uncertain wind
power generation, i.e., before the actual realization of power generation is known.

I As a result, forecast errors translate into locational marginal price (LMP) errors.

I Our preliminary study revealed significant LMP errors and spatial disparities across power networks.
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The figure demonstrates how wind power forecast errors from a single wind power plant at bus 37 translate into LMP

errors across the IEEE 118-Bus reliability test system. Majority of the buses demonstrate near zero errors, but

electricity at certain buses is systematically over- or under-priced due to network congestion.

I In this work, we analyze the propagation of forecast errors into electricity LMP errors and develop a
new deep learning architecture for wind power forecast which balances power forecast and LMP errors.

From power forecast to LMP errors

Given a wind power forecast ŵ , electricity is priced using the dual solution to the DC Optimal Power Flow
(OPF) optimization problem:

min
p6p6p

p>Cp + c>p conventional generator dispatch cost (1a)

s.t. 1>(p + ŵ − d) = 0 : λ̂b, power balance condition (1b)

|F (p + ŵ − d)| 6 f : λ̂f , λ̂f , power flow limits (1c)

and the LMPs are computed using matrix F of power transfer distribution factor as:

π(ŵ ) = λ̂b · 1︸ ︷︷ ︸
uniform price

− F>(λ̂f − λ̂f )︸ ︷︷ ︸
adjustment due to congestion

(2)

which is unique with respect to forecast ŵ !

The price error is then defined as:

δπ = π(ŵ )− π(w) (3)

i.e., the distance between LMPs induced on the forecast (ŵ ) and actual realization (w) of wind power.

Property 1 (spatial disparity): In congested networks, for which 1>(λ̂f + λ̂f ) > 0, the price error at bus i
is proportional to the i th column of matrix F of power transfer distribution factors.

Property 2 (reference bus r): Since the r th column of F is all zeros, the price error at the reference bus
only includes the error of the system-wide term in (2).

Measuring spatial disparity of LMP errors

I The spatial disparities is measured using the notion of α−fairness:

α = max
i∈1,...,n

‖E[‖δπi‖]− E[‖δπr‖]‖. (4)

where the expectation is with respect to the dataset distribution.

I Parameter α is called the fairness bound, with smaller values denoting stronger fairness.

Price-awareness for deep learning

I Dataset {(ϕ1,w1), . . . , (ϕm,wm)} of m wind power records, with features ϕ and measurements w .

I Two deep learning architectures DeepWP and DeepWP+ to map features into wind power:
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Figure 1: The standard DeepWP and proposed DeepWP+ learning architectures.

Table 1: Wind power prediction and LMP errors under conventional (DeepWP) and price-aware
(DeepWP+) deep learning models

case
wind power data DeepWP DeepWP+

bus capacity f -scale RMSE( bw) RMSE(b⇡) CVaR(b⇡) ↵�value RMSE( bw) RMSE(b⇡) CVaR(b⇡) ↵�value

MW [p.u.] MWh $/MWh $/MWh $/MWh MWh gain $/MWh gain $/MWh gain $/MWh gain

14_ieee 14 100 1.00 0.35 0.62 1.52 0 0.35 +0.6% 0.61 �0.6% 1.50 �0.8% 0 —
57_ieee 38 600 0.60 2.31 11.03 34.64 32.08 2.60 +11.2% 10.72 �2.9% 33.59 �3.1% 30.92 �3.8%
24_ieee 15 1,000 0.75 4.08 8.62 37.70 27.48 4.51 +9.6% 8.33 �3.5% 36.35 �3.7% 26.26 �4.6%
39_epri 6 1,500 0.70 5.94 11.15 31.21 17.53 6.43 +7.6% 10.19 �9.4% 28.02 �11.4% 15.84 �10.7%
73_ieee 41 1,000 0.80 4.02 5.12 16.21 32.83 5.51 +26.9% 4.24 �20.8% 13.41 �20.9% 26.63 �23.3%
118_ieee 37 500 0.75 2.29 3.59 11.32 17.91 2.60 +12.1% 2.88 �24.7% 9.06 �25.0% 14.09 �27.2%

where the feasible region is parameterized by forecast bw. The dual problem takes the form:

maximize
�>0

q( bw)>�� �>Q�, (5)

where q( bw) = AC�1c + b( bw) and Q = AC�1A>. Since the two problems are strictly convex
and concave, respectively, the strong duality holds, such that the LMPs can be extracted from the
dual problem using expression (2). A virtue of the dual problem (5) is that it only includes the
non-negativity constraints; it is thus simpler to solve and differentiate than its primal counterpart in
(4).

The market clearing as an optimization layer is implemented using DiffOpt.jl – a library for
differentiating through the solution of optimization problems in Julia [5].

3 Numerical Results and Discussion

For numerical experiments, we use power system benchmark systems from [6]. In each system, we
install one wind farm and uniformly scale transmission capacity to provoke congestion, as shown in
Table 1. To ensure fair compassion, we use the same wind power forecasting data1 across all systems.
The data includes wind power output as a function of wind speed, wind direction and blade pitch
angle features. We independently sample 1,000 scenarios for training and testing.

The DeepWP architecture consists of four hidden layers with 30 neurons each, all using ReLU as
activation functions. The training consists of three stages, all using ADAM optimizer: pre-training
with 500 epochs and learning rate 1e–4, then 1000 epochs with learning rate 5e–5, and final 100
epochs with learning rate 5e–6. The training of DeepWP+ starts from the 501th epoch using the
parameters of the pre-trained DeepWP model obtained at the first stage. As neural network parameters
are initialized at random, we report the average results across 100 trained models.

We discuss the results using the root mean square error of wind power prediction, denoted RMSE( bw),
that of prices, denoted RMSE(b⇡), the root mean square error across 10% of the worst-case scenarios,
denoted CVaR(b⇡), and ↵�fairness bound.

1https://www.kaggle.com/datasets/theforcecoder/wind-power-forecasting
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I DeepWP – fully connected feedforward architecture, trained to minimize the forecast error ‖w − ŵ‖

I DeepWP+ – enhanced architecture which incorporates the electricity market-clearing optimization
problem as a deep learning layer. The layer evaluates electricity LMPs induced on a particular forecast
while the loss function penalizing the deviation of predicted prices from the ground truth.

I We use the dual of the DC-OPF problem as it is less constrained and easier to differentiate through.

Experiment settings

I Standard power system test cases from PowerModels.jl and 1,000 wind power records.

I DeepWP has 4 hidden layers with 30 neurons each. DeepWP+ additionally includes an opt. layer.

I ADAM optimizer with varying learning rate (see all settings by scanning the QR code in the header).

Experiment results and key findings

I The statistical summary of forecast and price errors is provided in the bottom table

I DeepWP: LMP errors vary between 0.62 and 11.15 $/MWh

I DeepWP+: LMP errors reduced by 0.6 to 24.7% relative to the DeepWP

I Larger LMP error reductions are observed across 10% of the worst-case outcomes

I LMP error reduction, however, comes at the expense of increasing power forecast errors

I None of the price-aware predictions resulted in infeasible OPF solutions

I In congested systems, α−fairness improvement varies between 3.8% to 27.2%.

I Relative to DeepWP, the DeepWP+ architecture significantly reduces the spatial disparity:

DeepWP DeepWP+

Figure 2: Projection of DeepWP and DeepWP+ wind power predictions errors on locational marginal
price errors in the IEEE 118-bus system.

Table 1 provides a statistical summary for different systems. Under prediction errors of the price-
agnostic DeepWP model, LMP errors vary between 0.62 and 11.15 $/MWh This range, obtained using
the same wind power dataset, is explained by at least two factors. First, all systems have unique cost
structures: the average LMP spans the rage from 42.8 (14_ieee) to 149.3 (39_epri) $/MWh, for the
median wind power output. Second, congested networks prone to larger errors. This is particularly
evident from the 14_ieee system, where no wind power output scenario causes congestion. The zero
fairness bound ↵ for this system also supports this observation.

The application of the price-aware DeepWP+ model, on the other hand, demonstrates the reduction
of LMP errors, varying from 0.6 to 24.7% relative to the DeepWP model. Even larger reductions
are observed across 10% of the worst-case wind scenarios, measured by CVaR(b⇡). For example,
in the 39_epri case, while the average LMP error is reduced by 0.96 $/MWh, the worst-case error
decreases by 3.19 $/MWh. Although the focus of DeepWP+ is on price errors, it implicitly minimized
the disparity of LMP errors, as shown by the reduced fairness bound ↵ across all congested systems.
Figure 2 depicts this effect for the most geographically distributed 118_ieee system, where the fairness
bound ↵ is reduced by 27.2% thanks to price-aware predictions. Observe, while the majority of
buses demonstrate near zero price errors, it is a small set of buses contributing to ↵�fairness statistic
the most. Importantly, the benefits of DeepWP+ predictions do come at the expense of increasing
prediction errors. However, all DeepWP+ predictions are feasible and yield competitive and fairer – in
the ↵�fairness sense – electricity prices.

The price error reduction and fairness improvements are due to the bias which DeepWP+ introduces
during the training procedure. Figure 3 in Appendix A visualizes how the bias is introduced starting
from the 501th epoch, which diverts the training towards the desired result, i.e., to minimal prediction
or minimal price error. Finally, we remark that incorporating the electricity market as an optimization
layer in deep learning increases the computational burden of the training procedure. Table 2 in
Appendix A reports CPU times per training epoch, which tends to increase in the size of the system.

Overall, our results show that embedding market clearing as a deep learning layer informs predictions
on market outcomes and improves algorithmic fairness in electricity markets.
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I LMP error minimization implicitly reduces the spatial disparities

I Overall, embedding market clearing as a deep learning layer informs
predictions on market outcomes and improves algorithmic fairness in electricity markets

Wind power prediction and LMP errors under conventional (DeepWP) and price-aware (DeepWP+) deep learning architectures

case
wind power data DeepWP DeepWP+

bus
capacity f -scale RMSE(ŵ) RMSE(π̂) CVaR(π̂) α−value RMSE(ŵ) RMSE(π̂) CVaR(π̂) α−value

MW [p.u.] MWh $/MWh $/MWh $/MWh MWh gain $/MWh gain $/MWh gain $/MWh gain

14 ieee 14 100 1.00 0.35 0.62 1.52 0 0.35 +0.6% 0.61 −0.6% 1.50 −0.8% 0 —
57 ieee 38 600 0.60 2.31 11.03 34.64 32.08 2.60 +11.2% 10.72 −2.9% 33.59 −3.1% 30.92 −3.8%
24 ieee 15 1,000 0.75 4.08 8.62 37.70 27.48 4.51 +9.6% 8.33 −3.5% 36.35 −3.7% 26.26 −4.6%
39 epri 6 1,500 0.70 5.94 11.15 31.21 17.53 6.43 +7.6% 10.19 −9.4% 28.02 −11.4% 15.84 −10.7%
73 ieee 41 1,000 0.80 4.02 5.12 16.21 32.83 5.51 +26.9% 4.24 −20.8% 13.41 −20.9% 26.63 −23.3%
118 ieee 37 500 0.75 2.29 3.59 11.32 17.91 2.60 +12.1% 2.88 −24.7% 9.06 −25.0% 14.09 −27.2%

The table displays forecast and price errors across the range of the standard power grid test cases. All cases host a single wind farm with identical power records in p.u. RMSE - root
mean square error, CVaR - conditional value-at-risk (here, across 10% of the worst-case scenarios).
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