

Price-Aware Deep Learning for Electricity Markets

Vladimir Dvorkin¹ and Ferdinando Fioretto²

¹Massachusetts Institute of Technology, ²University of Virginia,

Motivation

- ► As of 2022, the share of electricity generation from wind energy sources worldwide constitutes 7.3%.
- ▶ Most of electricity in power grid is priced and traded using a *forecast* of variable and uncertain wind power generation, i.e., before the actual realization of power generation is known.
- ► As a result, forecast errors translate into locational marginal price (LMP) errors.
- ► Our preliminary study revealed significant LMP errors and spatial disparities across power networks.

The figure demonstrates how wind power forecast errors from a single wind power plant at bus 37 translate into LMP errors across the IEEE 118-Bus reliability test system. Majority of the buses demonstrate near zero errors, but electricity at certain buses is systematically over- or under-priced due to network congestion.

Price-awareness for deep learning

- ▶ Dataset $\{(\varphi_1, w_1), \ldots, (\varphi_m, w_m)\}$ of *m* wind power records, with features φ and measurements *w*.
- ► Two deep learning architectures DeepWP and DeepWP+ to map features into wind power:

- ▶ DeepWP fully connected feedforward architecture, trained to minimize the forecast error $||w \hat{w}||$
- ▶ DeepWP+ enhanced architecture which incorporates the electricity market-clearing optimization problem as a deep learning layer. The layer evaluates electricity LMPs induced on a particular forecast while the loss function penalizing the deviation of predicted prices from the ground truth.
- ▶ We use the dual of the DC-OPF problem as it is less constrained and easier to differentiate through.

Experiment settings

Standard power system test cases from PowerModels.jl and 1,000 wind power records.

► In this work, we analyze the propagation of forecast errors into electricity LMP errors and develop a new deep learning architecture for wind power forecast which balances power forecast and LMP errors.

From power forecast to LMP errors

Given a wind power forecast \hat{w} , electricity is priced using the dual solution to the DC Optimal Power Flow (OPF) optimization problem:

$$\begin{array}{ll} \min_{\underline{p} \leqslant p \leqslant \overline{p}} & p^{\top} C p + c^{\top} p & conventional generator dispatch cost & (1a) \\ \text{s.t.} & \mathbb{1}^{\top} (p + \widehat{\boldsymbol{w}} - d) = 0 : \widehat{\lambda}_b, & power balance condition & (1b) \\ & |F(p + \widehat{\boldsymbol{w}} - d)| \leqslant \overline{f} : \widehat{\lambda}_{\overline{f}}, \widehat{\lambda}_{\underline{f}}, & power flow limits & (1c) \end{array}$$

and the LMPs are computed using matrix F of power transfer distribution factor as:

$$\pi(\widehat{\mathbf{w}}) = \underbrace{\widehat{\lambda}_b \cdot \mathbb{1}}_{\text{uniform price}} - \underbrace{\mathcal{F}^{\top}(\widehat{\lambda}_{\overline{f}} - \widehat{\lambda}_{\underline{f}})}_{\text{adjustment due to congestion}}$$
(2)

which is unique with respect to forecast \widehat{w} !

The price error is then defined as:

$$\delta \pi = \pi(\widehat{\mathbf{w}}) - \pi(\mathbf{w}) \tag{3}$$

i.e., the distance between LMPs induced on the forecast (\hat{w}) and actual realization (w) of wind power.

Property 1 (spatial disparity): In congested networks, for which $\mathbb{1}^{\top}(\widehat{\lambda}_{\overline{f}} + \widehat{\lambda}_{\underline{f}}) > 0$, the price error at bus *i* is proportional to the i^{th} column of matrix F of power transfer distribution factors.

Property 2 (reference bus r): Since the r^{th} column of F is all zeros, the price error at the reference bus only includes the error of the system-wide term in (2).

Measuring spatial disparity of LMP errors

▶ The spatial disparities is measured using the notion of α -fairness:

$$\alpha = \max_{i \in 1, \dots, n} \|\mathbb{E}[\|\delta \pi_i\|] - \mathbb{E}[\|\delta \pi_r\|]\|.$$

where the expectation is with respect to the dataset distribution.

- ▶ DeepWP has 4 hidden layers with 30 neurons each. DeepWP+ additionally includes an opt. layer.
- ▶ ADAM optimizer with varying learning rate (see all settings by scanning the QR code in the header).

Experiment results and key findings

- ► The statistical summary of forecast and price errors is provided in the bottom table
- ► DeepWP: LMP errors vary between 0.62 and 11.15 \$/MWh
- ► DeepWP+: LMP errors reduced by 0.6 to 24.7% relative to the DeepWP
- ► Larger LMP error reductions are observed across 10% of the worst-case outcomes
- ► LMP error reduction, however, comes at the expense of increasing power forecast errors
- ► None of the price-aware predictions resulted in infeasible OPF solutions
- ▶ In congested systems, α -fairness improvement varies between 3.8% to 27.2%.
- ► Relative to DeepWP, the DeepWP+ architecture significantly reduces the spatial disparity:

- ► LMP error minimization implicitly reduces the spatial disparities
- ► Overall, embedding market clearing as a deep learning layer informs predictions on market outcomes and improves algorithmic fairness in electricity markets

Wind power prediction and LMP errors under conventional (DeepWP) and price-aware (DeepWP+) deep learning architectures

(4)

case	wind power data			DeepWP				DeepWP+							
	bus	capacity	\overline{f} -scale	$RMSE(\widehat{w})$	$RMSE(\widehat{\pi})$	$CVaR(\widehat{\pi})$	$\alpha-value$	$RMSE(\widehat{w})$		$RMSE(\widehat{\pi})$		$CVaR(\widehat{\pi})$		$\alpha-value$	
		MW	[p.u.]	MWh	\$/MWh	\$/MWh	\$/MWh	MWh	gain	\$/MWh	gain	\$/MWh	gain	\$/MWh	gain
14_ieee	14	100	1.00	0.35	0.62	1.52	0	0.35	+0.6%	0.61	−0.6%	1.50	-0.8%	0	
57_ieee	38	600	0.60	2.31	11.03	34.64	32.08	2.60	+11.2%	10.72	−2 . 9 %	33.59	-3.1%	30.92	-3.8%
24_ieee	15	1,000	0.75	4.08	8.62	37.70	27.48	4.51	+9.6%	8.33	-3 . 5 %	36.35	-3.7%	26.26	-4.6%
39_epri	6	1,500	0.70	5.94	11.15	31.21	17.53	6.43	+7.6%	10.19	−9 .4%	28.02	-11.4%	15.84	-10.7%
73_ieee	41	1,000	0.80	4.02	5.12	16.21	32.83	5.51	+26.9%	4.24	-20.8%	13.41	-20.9%	26.63	-23.3%
118_{ieee}	37	500	0.75	2.29	3.59	11.32	17.91	2.60	+12.1%	2.88	-24 .7%	9.06	-25.0%	14.09	-27.2%

The table displays forecast and price errors across the range of the standard power grid test cases. All cases host a single wind farm with identical power records in p.u. RMSE - root mean square error, CVaR - conditional value-at-risk (here, across 10% of the worst-case scenarios).

NeurIPS 2023 Workshop: Tackling Climate Change with Machine Learning