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Privacy leakages in convex optimization

min
x

c>x

s.t. b − Ax ∈ K

I Conic optimization program

I Optimization dataset D = {c, b,A}
I Optimal solution x? is dataset-specific

I Often, x?(D)6=x?(D′) for different datasets D and D′

Resource allocation

Changes in the feasible region are
directly exposed in the optimal
allocation and allocation cost

Regression analysis

Changes in training data are exposed in
the parameters of regression models
(solution uniqueness w.r.t. dataset)

SVM classification

Label of the marginal data point is
exposed in the parameters of the support

vector machines (SVM) hyperplane

Need for rigorous privacy-preserving methods to formally guarantee data privacy

Formalization of privacy

R
DD′D D′′

α

I Optimization as a mapping x? : D 7→ X

I Privacy adversary mapping A : X 7→ D

I Privacy goal is to make α−adjacent dataset
indistinguishable (mislead the adversary)

I Let x̃? be a random counterpart of x?

I For any two datasets D,D′ ∈ D:

deterministic mapping: x?(D) 6= x?(D′)
drandomized mapping: x̃?(D) ≈ x̃?(D′)

I ε−differential privacy (ε−DP):

Pr[x̃?(D′) = x̂ ]

Pr[x̃?(D′) = x̂ ]
6 exp(ε)

I Smaller ε implies stronger privacy

exp(ε) ≈ 1 + ε
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Limits of the standard input and output DP perturbation strategies

Input perturbation

1. Optimization dataset perturbation

D̃ = D + ζ, ζ ∼ Lap(α/ε)

2. Optimization on perturbed data x?(D̃)

Output perturbation

1. Worst-case sensitivity computation

∆α = maxD,D′∈D ‖x̃
?(D)− x̃?(D′)‖1

2. Perturbation of optimization results

x̃?(D) = x?(D) + ζ, ζ ∼ Lap(∆α/ε)

Both strategies can not guarantee feasibility nor optimality

Stochastic programming for private optimization queries

I For any deterministic program, we develop a stochastic counterpart to enable DP guarantees

I We model an optimization vector as the linear decision rule of the form:

x̃(D) = x(D) + X (D)ζ

x – nominal solution vector (function of dataset)

X – solution recourse matrix (function of dataset)

ζ – perturbation calibrated to solution sensitivity ∆α

I Vector x and matrix X are subject to stochastic optimization:

min
x ,X∈X

E [c>(x + Xζ)]

s.t. Pr [b − A(x + Xζ) ∈ K] > 1− η

I Minimize expected cost (to guarantee optimality)

I Chance constraint (to guarantee feasibility)

I X for data-independent query perturbation (to
guarantee privacy)

I For example, for identity query, the recourse is data-independent when X is identity, i.e.,

x̃(D) = x?(D) + X ?(D)ζ = x?(D) + ζ

Main result (differential privacy guarantee)

Let ∆α be the worst-case `1−sensitivity of optimization results to α−adjacent datasets D,D′ ∈ D.
If for ζ ∼ Lap(∆α/ε) the chance-constrained program returns the optimal solution, the optimization
result on any adjacent dataset is ε−differentially private. That is, for any dataset pair, we have

Pr[x?(D′) + X ?(D′)ζ = x̂ ]

Pr[x?(D′) + X ?(D′)ζ = x̂ ]
6 exp(ε),

for some arbitrary optimization outcome x̂ .

Linear programming illustrative example

min
x

c · x
s.t. ` 6 x 6 u

I We make parameters ` and `′ statistically
indistinguishable in optimization result x?

I Input and output perturbations are equivalent

input/output perturbation

Linear programming example

min
x

c · x

s.t. ` 6 x 6 u,

I Datum ` must be indistinguishable from
some adjacent value `0

I Input perturbation of ` and output
perturbation of x?(`) are equivalent

I Two strategies yield infeasible results
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While data (input) or solution (output) perturbations make
randomized results statistically similar, there is a 50% chance

of an infeasible outcome

program perturbation

Linear programming example (continued)

min
x

E [c · (x + ⇣)]

s.t. Pr [` 6 x + ⇣ 6 u] > 1 � ⌘,

I Datum ` must be made indistinguishable
from some adjacent value `0

I Perturb. of x? is feasible with a high prob.

I Sub-optimal due to feasibility requirement
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We term this strategy program perturbation
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Program perturbation finds such a nominal solution x?,
whose perturbations is feasible with a high probability

(up to chance constraint tolerance)

Private optimal power flow (OPF) problem

min
x ,X∈X

E[c>(x + Xζ)]

s.t. 1>(x + Xζ − d) = 0

Pr

[
|F (x + Xζ − d)| 6 f max

xmin 6 x + Xζ 6 xmax

]
> 1− η

I Given load vector d , the OPF problem computes
the cost-optimal generator dispatch

I With chance-constrained OPF, we privately release
dispatch costs (objective) while ensuring feasibility

1–DP system cost query on the IEEE 24–Bus RTS

perturbation

strategy

OPF infeasibility (%) OPF sub-optimality (%)

α = 1 α = 3 α = 10 α = 1 α = 3 α = 10

input 51.5 49.9 50.3 0.0 0.1 0.0

output 52.7 51.5 48.8 0.0 0.0 0.1

program 0.1 0.1 0.1 1.7 5.1 17.1

Unlike input or output perturbation, the program
perturbation is feasible with a high probability.

With ↑ privacy requirements (↓ ε), the distance
between distributions on adjacent datasets reduces.

Private wind power curve fitting

min
β

E

[
n∑

i=1

(
yi − ϕ(xi)

>β︸ ︷︷ ︸
business as usual

−ϕ(xi)
>ζ︸ ︷︷ ︸

perturbation

)2]
s.t. P

[
C (β + ζ) > 0︸ ︷︷ ︸
monotonic con.

]
> 1− η

I Dataset {(y1, x1), . . . , (yn, xn)}
I Minimize regression loss function

I By finding optimal weights β? ...

I ... of basis functions in vector ϕ(x)

I We want to make training datasets indistinguishable in model weights β? ...

I ... while preserving monotonic properties of the curve under perturbation

Alstom.Eco.80 output perturbation program perturbation

Private OPF feasibility classification (SVM)

min
b̃,w̃ ,z

λ‖w‖2 + 1
m1>z

s.t.
yi(w

>xi − b) > 1− zi
zi > 0, ∀i = 1, . . . ,m

I Dataset (x1, y1), . . . , (xm, ym)

I Feature xi ∈ Rn, label yi ∈ {−1, 1}
I Computes a hyperplane w>xi − b

I Classification rule sign[w?>x̂ − b?]

While the deterministic hyperplane is sensitive to perturbations (left),
the stochastic hyperplane is very robust (right)

After tuning violation tolerance (η), the private
classifier is almost as good as non-private one
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