

Differentially Private Distributed Optimal Power Flow Vladimir Dvorkin^{1,2}, Pascal Van Hentenryck², Jalal Kazempour¹, Pierre Pinson¹

¹Department of Electrical Engineering, Technical University of Denmark ² H. Milton Stewart School of Industrial and Systems Engineering (ISyE), Georgia Institute of Technology

$$egin{split} c_i(p_i) &- \mu_i^ op heta_i + rac{1}{2} \|\overline{ heta} - heta_i\|_
ho^2 \ \mu_i^ op \overline{ heta}_i + rac{1}{2} \|\overline{ heta} - heta_i\|_
ho^2 \ &- heta_i) \end{split}$$

	10	15
)	0.1	0.2
L	0.3	0.5
Ĺ	0.4	1.1
2	2.2	3.5
1	Q 1	11 /

Privacy concerns in distributed optimal power flow

- deduced from responses (θ_i) of agents to input signals $(\overline{\theta}_i, \mu_i)$

provided that generator and transmission limits are not binding

- parameters) can deduce agent loads by intercepting agent communications
- ► Load inference on the IEEE 14-Bus Reliability Test System:

					(Con
-	case	-ADMM	$\alpha_i \sim 0\%$	$lpha_i=10\%$		
				min	avr	max
	3_lmbd	PP	42	42	42	42
		DP		42	42	42
	5_pjm	PP	85	75	95	175
		DP		75	84	116
	14_ieee	PP	492	457	491	518
		DP		460	491	520
	24_ieee	PP	771	316	735	1040
		DP		314	726	1430
	30_as	PP	440	320	401	460
		DP		321	410	478
	30_fsr	PP	247	247	247	247
		DP		247	247	247
	30_ieee	PP	855	834	855	874
		DP		750	854	989
	39_epri	PP	2320	1973	2307	2387
-		DP		2237	2316	2370
	57_ieee	PP	1679	1671	2050	2525
		DP		1545	2084	2658
	118_ieee	PP	1836	1673	2007	2515
		DP		1596	3219	12526

Dvorkin, V., Van Hentenryck, P., Kazempour, J., & Pinson, P. (2019). Differentially Private Distributed Optimal Power Flow. arXiv preprint arXiv:1910.10136.

► Although local data is not exchanged across ADMM iterations, under certain conditions it can be

From KKT conditions of agent subproblems, the load estimate \hat{d}_i is obtained as $\hat{d}_i = [\mu_i + \rho(\overline{\theta}_i - \theta_i) - c_{1i}B_i][c_{2i}B_i]^{-1} - B_i^{\top}\theta_i,$

► Hence, an adversary with side information (i.e., cost function, transmission data, and ADMM

vergence statistics

- ► The two algorithms demonstrate similar convergence statistics
- ► Non-congested networks, e.g. 3_Imbd and 30_fsr, are immune to privacy preservation
- In the congested networks, the computational complexity remains the same only in expectation
- ► Both algorithms require extra amount of iterations compared to the privacy-agnostic ADMM.

Key messages

► ADMM *fails* to preserve privacy unless augmented by privacy-cognizant practices ► We introduce two differentially private ADMM for distributed OPF that keeps data on loads ► The key idea is to apply a calibrated noise to agent responses to hide items in agent datasets:

► There exists privacy-optimality trade-offs that raise institutional issues (e.g., price of privacy)

References