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Distributed optimal power flow

» DC-OPF is distributed by duplicating voltage angles and dualizing consensus constraints

Differential privacy

Privacy concerns in distributed optimal power flow

» Strong framework that ensures privacy of individuals when computing queries on datasets » Although local data is not exchanged across ADMM iterations, under certain conditions it can be

deduced from responses (;) of agents to input signals (0}, /)
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e-differential privacy

A randomized query O : 8 — R with domain $ and range
R preserves e—differential privacy if for any output © € R
and all adjacent datasets D € § and D’ € §, it holds that

P[O(D) € 0] < P[O(D) € 6] exp(e),

where probability is taken over runs of Q.

Differential privacy for distributed optimal power flow

To provide differential privacy, we treat agent optimization as query

Qi:DiHQia

that maps agent data into voltage angle estimates.

a-adjacent databases Laplace mechanism

We consider two agent databases D and D/,
different in load value by positive o, i.e.,

|D; — Dill1 € @

£1-sensitivity of queries

The sensitivity of a query Q(D) amounts to
Ao = max||Q(D) — O(D’
o= maxllo(D) - ()
st. [|D— D1 < a,

Two deferentially private ADMM algorithms

Primal perturbation ADMM Dual perturbation ADMM |
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» Both methods provably achieve differential privacy D

» Ay is independent from 0 and 1

» No privacy loss accumulates across iterations

» OPF feasibility is not affected
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query outcomes » The algorithms solely requires exchanging primal and dual variables across ADMM iterations

» Does ADMM preserve privacy of local data, e.g., loads?

Numerical experiments

» We show the practical use of differential private ADMM algorithms in the face of adversarial load
inference on a series of NESTA testbeds

» Load inference at selected nodes of IEEE 118-Bus Reliability Test System for varing adjacency
coefficient o;. By choosing «;, the nodes decide to hide a certain portion of load. After running
private ADMM 1000 times, we obtained the following distributions of the estimated loads:

—a; ~ 0% —a; =10% «o; = 30% o; = 50%
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» Primal and dual variable perturbation methods achieve the same probability density of the output
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» Average optimality loss when providing privacy for PV-nodes for varying adjacency a. All in %:
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» The system wins more privacy than loses optimality

November 14-15, 2019

» From KKT conditions of agent subproblems, the load estimate c?,- Is obtained as
d; = [j1; + p(0; — 0;) — c1;Bi[c2iB] - B, 0,

provided that generator and transmission limits are not binding

» Hence, an adversary with side information (i.e., cost function, transmission data, and ADMM
parameters) can deduce agent loads by intercepting agent communications

» Load inference on the IEEE 14-Bus Reliability Test System:
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Convergence statistics
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» ADMM fails to preserve privacy unless augmented by privacy-cognizant practices

» We introduce two differentially private ADMM for distributed OPF that keeps data on loads

private in the face of adversarial inference from communication signals
» The key idea is to apply a calibrated noise to agent responses to hide items in agent datasets:

» The noise does not affect the OPF feasibility
» Convergence is achieved on all test cases
» More insights on convergence properties are required

» There exists privacy-optimality trade-offs that raise institutional issues (e.g., price of privacy)
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