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Differential privacy
I Strong framework that ensures privacy of individuals when computing queries on datasets
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IQ is a query computed on a dataset

I ξ is a carefully calibrated noise

I θ and θ′ are stat. indistinguishable

I By observing θ or θ′, analyst can’t
tell if your data is included

ε-differential privacy

A randomized query Q̃ : S 7→ R with domain S and range
R preserves ε−differential privacy if for any output Θ ∈ R

and all adjacent datasets D ∈ S and D′ ∈ S, it holds that
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where probability is taken over runs of Q̃.
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Differential privacy for distributed optimal power flow
To provide differential privacy, we treat agent optimization as query

Qi : Di 7→ θi ,

that maps agent data into voltage angle estimates.

α-adjacent databases

We consider two agent databases D and D′,
different in load value by positive α, i.e.,

‖Di −D′i‖1 6 α

`1-sensitivity of queries

The sensitivity of a query Q(D) amounts to

∆Q := max
D,D′
‖Q(D)−Q(D′)‖1

s.t. ‖D−D′‖1 6 α,

Laplace mechanism

Let Q : D 7→ R be a query that maps
dataset D to reals. The randomized query

Q̃(D) = Q(D) + ξ

achieves ε−differential privacy if ξ is sam-
pled from the zero-mean Laplace distribu-
tion parametrized by privacy requirements
and query sensitivity

ξ ∼ Lap(∆Q/ε)

Two deferentially private ADMM algorithms

Primal perturbation ADMM

min L(pi , θi ;µi , θi)→ θi + ξi = θ̃i
min L(θ;µ, θ̃)→ θ

µ← µ + ρ(θ − θ̃)

Dual perturbation ADMM

min L(pi , θi ;µi + ξi , θi)→ θ̃i
min L(θ;µ, θ̃)→ θ

µ← µ + ρ(θ − θ̃)

I Both methods provably achieve differential privacy

I ∆Q is independent from θ and µ

I No privacy loss accumulates across iterations

I OPF feasibility is not affected
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Distributed optimal power flow
I DC-OPF is distributed by duplicating voltage angles and dualizing consensus constraints
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Fig. 1. Illustration of the node-wise decomposition of the 3-node power
network: the original network on the left, and its mirrored decomposed
counterpart on the right. The original network is restored when enforcing
consensus constraints for every node across its neighborhood.

actual charging power from communication signals.
In this work, we explore the use of differential privacy in the

context of distributed OPF problem based on the consensus-
ADMM as in [3] and [4]. In the underlying problem, the agents
(nodes) negotiate voltage angle variables without disclosing
loads. However, we show that there exist privacy-violating
conditions that allow an adversary with side information to
infer the load from agent response to input signals. Motivated
by this scenario, we propose privacy-preserving ADMM algo-
rithms for the distributed OPF:

1) We devise two privacy-preserving ADMM algorithms
using primal and dual variable perturbations (Algorithms
?? and ??, respectively). In the former, the output of
agent subproblems is perturbed with a noise respecting its
sensitivity to load. In the latter, the subproblem of each
agent is perturbed itself by injecting a properly calibrated
noise to dual variables before solving the optimization.

2) We derive theoretical guarantees (Theorems ?? and ??)
that the two algorithms provide differential privacy up to
user-specified privacy parameters. Furthermore, we show
that there is no additional privacy loss (information gain)
induced with additional ADMM iterations (Theorem ??).

3) Using a series of power system testbeds, we explore the
practical use of differential privacy. First, we show that
with a fine tuning of privacy parameters, the inference of
loads from primal-dual communication conforms to ran-
dom guessing. On the other hand, the recorded optimality
loss induced due to noisy responses limits the application
only to nodes with smaller sensitivities.

The remainder is outlined as follows. In Sections II and
??, we streamline ADMM-based OPF problem and associated
privacy risks. Section ?? presents the main contributions
on privacy-preserving OPF algorithms. Section ?? presents
supporting numerical experiments. Section ?? concludes.

II. ADMM-BASED DISTRIBUTED OPF
We consider a high-voltage power network modeled by an

undirected graph � (B,⇤), where B is the set of nodes and ⇤
is the set of transmission lines connecting those nodes. Using
the DC power flow model, susceptance � 2 R|⇤|

+ and capacity
f 2 R|⇤|

+ describe transmission lines. We use mapping func-
tions s : ⇤ 7! B and r : ⇤ 7! B to return sending and receiving
ends of transmission lines, respectively. The last network
descriptor is the susceptance matrix B 2 R|B|⇥|B|, whose

non-diagonal elements amount to the negative susceptance of
the corresponding line, and diagonal elements sum up to the
susceptance of all adjacent lines. Vector d 2 R|B|

+ collects
controllable loads that can be adjusted in both directions by
s 2 R|B| within a range [d, d] 2 R|B|. The cost of adjustment
follows quadratic function s>Qs, where Q 2 R|B|⇥|B|

+ is a
diagonal matrix with entries denoted as qi. This adjustment
is assumed to be offset by any mean of flexibility, e.g.,
demand response or distributed energy resources, behind the
transmission-distribution interface. More explicit modeling of
this flexibility is provided in [18], which is compatible with the
proposed algorithms. The generation nodes output p 2 R|B|

+

within a range [p, p] at costs described by second- and first-
order coefficients collected in C2 2 R|B|⇥|B|

+ and c1 2 R|B|
+ ,

where C2 is a diagonal matrix with entries denoted as c2i. The
optimal power flow solution constitutes the generator and load
set-points so as a vector ✓ 2 R|B| of voltage angles provided
by solving

min
p,s,✓

p>C2p + c>1 p + s>Qs (1a)

s.t. � f l 6 �l

�
✓s(l) � ✓r(l)

�
6 f l, 8l 2 ⇤, (1b)

p 6 p 6 p, d 6 s 6 d, (1c)
B✓ = p + s� d, (1d)

where (1a) minimizes the total generation and load adjustment
cost, (1b) limits power flows, (1c) bounds controllable power,
and (1d) balances nodal power injections. Following [3], [4],
the OPF in (1) admits a suitable distributed scheme, where
nodes act as agents. Fig. 1 shows the OPF problem distribution
among nodes by means of duplicating voltage angles, i.e., ✓ 2
R|B| ) ✓ 2 R|B|⇥|B|, whose columns collect agent estimates
of voltage angles across the network. The scheme enforces

✓ = ✓i : µi, 8i 2 B, (2)

where ✓ 2 R|B| is the consensus variable, ✓i 2 R|B| is the ith

column of the matrix of duplicated voltage angles ✓, and µi 2
R|B| is the i�specific vector of dual variables. By dualizing
(2) and adding the corresponding proximal term, we obtain the
OPF problem suitable for agent-wise ADMM decomposition:

max
µ

min
p,s,✓,✓

L
�
p, s, ✓, ✓, µ

�
:= p>C2p + c>1 p + s>Qs

+
P
i2B

µ>
i

�
✓ � ✓i

�
+ 1

2

P
i2B

k✓ � ✓ik2⇢

s.t. p, s, ✓ 2
[

i2B

Oi,

where Oi is a i�specific subspace of (1b)-(1d), norm kxk2⇢
reads as x>diag (⇢) x, and ⇢ 2 R|B|

+ is a penalty factor that is
assumed constant across ADMM iterations. By denoting the
iteration counter by ⌫, the distributed variant of OPF problem
in (1) formulates as follows [19]:

✓⌫i  argmin
pi,si,✓i2Oi

L
�
pi, si, ✓i, ✓

⌫91

, µ⌫91

i

�
, (4a)

✓
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✓

L
�
✓⌫ , ✓, µ⌫91

�
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�
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The convergence is recorded whenever the difference be-
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I Distributed ADMM-based optimal power flow algorithm writes as:

Agent (node) update θi ← argmin
(p,θ)∈Oi

ci(pi)− µ>i θi + 1
2‖θ − θi‖2

ρ

Consensus update θi ← argmin
θi

µ>i θi + 1
2‖θ − θi‖2

ρ

Dual update µi ← µi + ρ
(
θ − θi

)

I The algorithms solely requires exchanging primal and dual variables across ADMM iterations

I Does ADMM preserve privacy of local data, e.g., loads?

Numerical experiments
I We show the practical use of differential private ADMM algorithms in the face of adversarial load

inference on a series of NESTA testbeds

I Load inference at selected nodes of IEEE 118-Bus Reliability Test System for varing adjacency
coefficient αi . By choosing αi , the nodes decide to hide a certain portion of load. After running
private ADMM 1000 times, we obtained the following distributions of the estimated loads:
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I Primal and dual variable perturbation methods achieve the same probability density of the output
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I Average optimality loss when providing privacy for PV-nodes for varying adjacency α. All in %:

case/α 5 10 15 case/α 5 10 15
3 lmbd 0.0 0.1 0.3 30 fsr 0.0 0.1 0.2
5 pjm 0.8 3.2 5.1 30 ieee 0.1 0.3 0.5
14 ieee 0.2 0.6 1.1 39 epri 0.1 0.4 1.1
24 ieee 2.0 5.3 9.0 57 ieee 0.2 2.2 3.5
30 as 1.5 5.1 5.4 118 ieee 3.4 8.1 11.4

I The system wins more privacy than loses optimality

Privacy concerns in distributed optimal power flow
I Although local data is not exchanged across ADMM iterations, under certain conditions it can be

deduced from responses (θi) of agents to input signals (θi , µi)

I From KKT conditions of agent subproblems, the load estimate d̂i is obtained as

d̂i = [µi + ρ(θj − θi)− c1iBi ][c2iBi ]
−1 − B>i θi ,

provided that generator and transmission limits are not binding

I Hence, an adversary with side information (i.e., cost function, transmission data, and ADMM
parameters) can deduce agent loads by intercepting agent communications

I Load inference on the IEEE 14-Bus Reliability Test System:
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Convergence statistics

case -ADMM αi ∼ 0%
αi = 10%

min avr max

3 lmbd
PP

42
42 42 42

DP 42 42 42

5 pjm
PP

85
75 95 175

DP 75 84 116

14 ieee
PP

492
457 491 518

DP 460 491 520

24 ieee
PP

771
316 735 1040

DP 314 726 1430

30 as
PP

440
320 401 460

DP 321 410 478

30 fsr
PP

247
247 247 247

DP 247 247 247

30 ieee
PP

855
834 855 874

DP 750 854 989

39 epri
PP

2320
1973 2307 2387

DP 2237 2316 2370

57 ieee
PP

1679
1671 2050 2525

DP 1545 2084 2658

118 ieee
PP

1836
1673 2007 2515

DP 1596 3219 12526

I The two algorithms demonstrate similar
convergence statistics

I Non-congested networks, e.g. 3 lmbd and 30 fsr,
are immune to privacy preservation

I In the congested networks, the computational
complexity remains the same only in expectation

I Both algorithms require extra amount of iterations
compared to the privacy-agnostic ADMM.

Key messages
I ADMM fails to preserve privacy unless augmented by privacy-cognizant practices

I We introduce two differentially private ADMM for distributed OPF that keeps data on loads
private in the face of adversarial inference from communication signals

I The key idea is to apply a calibrated noise to agent responses to hide items in agent datasets:
I The noise does not affect the OPF feasibility
I Convergence is achieved on all test cases
I More insights on convergence properties are required

I There exists privacy-optimality trade-offs that raise institutional issues (e.g., price of privacy)
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