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Abstract
Modern energy systems are undergoing the green transition towards renewable-based operations.
This transition promises an emission-neutral and equal-access energy supply that finds tremendous
public and governmental support. To succeed, the responsible parties must account for a range of
engineering, economic and ethical challenges arising from the uncertain nature of renewables and
utilization of vast amounts of data required to facilitate this transition. This thesis addresses those
challenges using mathematically rigorous methods of optimization and privacy preservation.

There is a growing consensus that the methods from stochastic optimization are critical enablers of
this transition. By leveraging the probabilistic information on uncertainty, they produce control
and market signals that ensure secure operations and competitive energy trading. In this thesis,
we utilize those methods to develop new operational and market policies that enumerate the
contributions of various actors to uncertainty and variability control. While guiding energy systems
towards secure operations, these policies enable a stochastic market settlement to price energy
under uncertainty and variability. To immunize the desired market properties of this settlement
against any uncertainty realizations, this thesis develops stochastic approximations to trade cost
efficiency for the satisfaction of market properties. To complete stochastic market settlements, we
provide market redesign solutions to accommodate private forecasts in energy market clearing
and to satisfy individual stochastic preferences of market participants.

This thesis improves conventional data protection practices in energy systems by providing strong
privacy guarantees to data owners, thus addressing the ethical challenges in utilizing vast amounts
of energy data. These guarantees originate from rendering the standard optimization algorithms
as differentially private mechanisms – the mechanisms that add a calibrated noise to computations to
obfuscate the input optimization datasets when querying optimization results. By calibrating the
noise to the privacy preferences of energy system users, these mechanisms encourage information
sharing across energy systems without exposing sensitive data attributes, such as energy load
patterns. The differentially private optimization mechanisms are designed for distributed and
centralized optimization methods and allow for trade-offs between the level of privacy and the
utility of noisy optimization outcomes.
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Resumé
Moderne energisystemer er midt i en grøn omstilling imod drift baseret på vedvarende energi. I
omstillingen findes løftet om en energiforsyning der er emissionsneutral og med lige adgang for
alle, hvilket nyder gevaldig opbakning i offentligheden og blandt regeringer. For at lykkes, må de
ansvarlige parter tage højde for en række ingeniørfaglige, økonomiske og etiske udfordringer der
stammer fra den vedvarende energis usikre natur og udnyttelsen af de vældige datamængder der
er krævet for at facilitere omstillingen. Denne afhandling adresserer disse udfordringer ved brug
af matematisk stringente metoder til optimering samt beskyttelse af privatlivets fred. Der er en
voksende konsensus om at metoderne fra stokastisk optimering er afgørende for at muliggøre denne
omstilling. Ved at udnytte probabilistisk information om usikkerhed, producerer de kontrol- og
markedssignaler der sikrer sikker drift samt konkurrencedygtig handel med energi.

I denne afhandling udnytter vi disse metoder til at udvikle nye operationelle og markeds politikker
der opregner forskellige aktørers bidrag til usikkerheds- og variabilitetskontrol. Imens de styrer
energisystemer mod sikker drift, muliggør disse politikker en stokastisk markedsafregning der
prissætter energi under hensyntagen til usikkerhed og variabilitet. For at immunisere de ønskede
markedsegenskaber af denne afregningsform imod realiseringer af usikkerhed, udvikler denne
afhandling stokastiske approksimationer der bytter omkostningseffektivitet for opfyldelse af
markedsegenskaber. For at fuldføre stokastisk markedsafregning, foreskriver vi re-design af
markedsløsninger til at imødekomme private prognoser til energimarkedsafregning og for at
tilfredsstille markedsdeltageres individuelle stokastiske præferencer.

Denne afhandling forbedrer konventionelle energisystemsdatabeskyttelsespraktikker ved at sikre
dataejerne stærke privatlivsgarantier, og således adressere de etiske udfordringer der ligger i at
udnytte store mængder energidata. Disse garantier stammer fra at gengive de standard optimer-
ingsalgoritmer som differentielt private mekanismer – de mekanismer der tilføjer en kalibreret støj til
beregninger for at obfuskere inputoptimeringsdatasæt når der laves forespørgsler på optimeringsre-
sultater. Ved at kalibrere støjen til brugerne af energisystemernes privatlivspræferencer, tilskynder
disse mekanismer informationsdeling på tværs af energisystemer uden at eksponere følsomme
dataattributter såsom energibelastningsmønstre. De differentielt private optimeringsmekanismer
er designede til distribuerede og centraliserede optimeringsmetoder og tillader afvejninger mellem
privatlivsniveau og nytteværdi af støjpåvirkede optimeringsresultater.

xi





CHAPTER1
Introduction

1.1 Context and motivation

Widely popularized environmental policies, such as the European Green Deal and the Green
New Deal in the US, facilitate the global transition towards renewable-based and emission-free
energy systems. While this transition brings about large shares of stochastic energy producers,
deterministic operational and market policies in energy systems are now revisited to ensure energy
supply security and fair energy market competition under uncertainty [1]. Since these goals are
well formalized in the field of mathematical programming, there is a growing consensus that its
sub-field stochastic optimization is among the main keys to this green transition.

The advantage of stochastic methods lies in their capacity to securely operate energy systems
with an uncertain and variable renewable energy supply. Stochastic methods have the potential
to extend conventional market practices to include uncertainty and variability into energy price
formation and to design competitive markets for the green transition. However, while stochastic
methods are popularized in the academic literature, there is a significant professional mistrust
as they fundamentally alter the existing operational and market procedures. To address these
professional concerns, there is a considerable effort to make stochastic methods interpretable and
facilitate the transition from deterministic to stochastic optimization of energy infrastructures.

To a great extent, the benefits from stochastic energy system optimization are contingent on the
availability and quality of optimization datasets. With growing digitization, these datasets become
increasingly detailed, and modern hardware contributes to their powerful collection and curation,
thus enabling more precise formulations of optimization tasks. For instance, active data exchange
contributes to the coordination between transmission and distribution grids [2] or between
independent system operators [3]. Energy market competition is facilitated by providing open
access to the core operational and market data [4]. Modern distribution grids enable permanent
data transfers from consumers to utilities to reduce operating cost and improve grid reliability [5].

As system operators continuously benefit from data availability, the risk of malicious misuse of
this data also increases. Combined with side information, such as customer identity and online
footprints, demand profiles are used for private and commercial surveillance in distribution grids
[6]. Recent advances in statistical inference and inverse optimization provide new tools that
expose private information involved in energy market clearing. Together with strategic market
participation, the extraction of confidential market bids has shown to damage social welfare in
electricity markets substantially [7]. This risk further originates from recent advances in machine
learning that recognize repeated dispatch patterns and establish non-parametric dependencies
between network loads and dispatch decisions [8]. This way, the load data can be revealed from
partial operational information. Online learning algorithms are used to identify the preferences
of grid customers, e.g., in demand response programs [9]. As a mathematical construct, these
algorithms do not require an explicit declaration of intent, neither customer consent.

1



2 CHAPTER 1. INTRODUCTION

When the green energy transition is in urgent need of interpretable stochastic optimization methods
to address operational and market challenges, the energy system data required to implement these
methods needs an additional privacy-preserving layer to ensure information integrity. Although the
methods from stochastic programming and privacy preservation have been historically considered
independently in the energy industry, they can be used in combination to meet operational,
economic, and privacy goals in energy systems.

1.2 Research directions

The thesis work is organized following two research directions. The first research direction
investigates operational and economic aspects of stochastic programming applications to energy
system optimization. Starting with control policy design to accommodate uncertainty in energy
networks, this direction develops an optimal market design with robust market properties to price
energy commodities. The second research direction focuses on preserving information integrity in
energy system operations by developing and accommodating robust privacy guarantees in energy
system operations using stochastic optimization methods.

1.2.1 Advancing stochastic energy system optimization

As energy system optimization is traditionally a two-stage problem, including planning and real-
time stages, it has been addressed using the methods from robust optimization [10], scenario-based
and chance-constrained stochastic programming [11]. While stochastic methods promise to guide
energy systems under uncertainty efficiently, there is a range of operational and economic obstacles
that prevent their real-world implementation. First, energy system operations are governed by
non-linear and non-convex physical laws. To produce efficient control policies to guide stochastic
system operations, one needs to establish a convex dependency of controllable variables on system
uncertainty [12], which requires producing a high-fidelity convex counterpart of the original
non-convex problem. Second, as energy markets are closely aligned with system operations, these
control policies should provide remunerations and charges for system agents under uncertainty
that satisfy fundamental competitive market properties. Last, the ideal competitive control policies
are non-discriminatory and satisfy the preferences of all agents in the system. Following this
line of arguments, this thesis addresses the following directions to facilitate the transition from
deterministic to stochastic energy system optimization.

Developing stochastic control policies and pricing for energy systems. While energy system
parameters, such as energy demand and renewable in-feed, are varying and uncertain, energy
system operators must account for the system state’s stochasticity in operational planning. Ideally, a
system operator needs to allocate and optimize control policies to govern active system components
in response to uncertainty realizations. For example, under the affine generator response policy
proposed in [13], nodal voltages and network flows become representable through uncertain
system parameters and generator dispatch decisions. Using a chance-constrained optimization
of those policies, a system operator accommodates system uncertainty in a feasible manner and
with security guarantees. Recent work in [14] also finds that these policies can be optimized to
guarantee minimal variability of the network state. However, to enable performance guarantees,
one needs to establish a convex dependency of the system state on uncertain parameters [12],
which is not always the case for non-convex physics of energy systems. This can be overcome, for



1.2. RESEARCH DIRECTIONS 3

instance, through convex relaxations of energy network equations. Although relaxations can be
very tight, the analysis in [15] shows that even a marginal relaxation gap disables performance
guarantees. Alternatively, one may explore the linearization of non-convex equations to obtain
linear sensitivities of system variables to uncertain parameters [16].

The optimized stochastic control policies have a strong potential to produce financial remunerations,
because they explicitly define the contribution of each system component to uncertainty and
variability control. This property of stochastic policies has been recognized in [17], where the
prices for stochastic power delivery, uncertainty and variability control are obtained through the
dual solution of the chance-constrained policy optimization problem. These prices are shown
to internalize the feasibility and variability requirements imposed by a system operator, while
exploiting the moments of underlying uncertainty distribution and its ambiguity. Following this
line of work, it is relevant to explore an explicit payment scheme to remunerate active system
components, such as flexible gas suppliers or compressors in gas systems, and to charge those
system elements that induce uncertainty, such as wind power producers in power networks. To
ensure the efficiency of this market settlement, the theoretical market properties of cost recovery and
revenue adequacy1 must be investigated. Since the chance-constrained solution is often obtained
through convex approximations, the dependency of these market properties on approximation
errors must also be established.

Preserving fundamental market properties in stochastic energy system optimization. The
fundamental market properties in the stochastic energy system optimization pertain to the
underlying optimization criterion. If the stochastic energy dispatch is optimized under the
minimum expected cost criterion, the associated cost recovery and revenue adequacy properties
hold only in expectation, and their per-scenario satisfaction is not guaranteed [18]. This is because
stochastic programs tend to violate the merit-based energy procurement2 to satisfy some expected
scenario of uncertainty realization. Although a stochastic solution is more efficient than the
deterministic one in terms of operational cost, the violation of the fundamental market properties
prevents its practical implementation. To preserve the market properties’ satisfaction irrespective
of uncertainty realizations, energy operations and pricing are still guided by deterministic dispatch
solutions.

The problem of providing stochastic dispatch efficiency while satisfying market properties for all
uncertainty realizations boils down to approximating stochastic solutions within deterministic
procedures. The work in [19] develops a new planning-stage optimization according to which
stochastic energy suppliers are dispatched to a value different from the mean forecast, which
has shown to reduce the expected system cost significantly. This, however, requires altering
the submitted price-quantity pairs of stochastic producers, thus violating existing market codes.
Alternatively, the stochastic dispatch efficiency has been attained within deterministic settlements
by designing new market products, e.g., flexiramps introduced to develop ramping capabilities
of Californian power system [20]. By procuring ramping capacity up to prescribed needs, this
procedure resembles the stochastic dispatch, which inherently finds the optimal allocation of
flexible resources between energy and ramping services. Similarly, several US system operators

1The cost recovery property ensures that the payment to each system component is greater than or equal to its operating
cost, while the revenue adequacy property ensures that the total charges of energy consumers is greater than or equal to the
total payments to energy providers.

2Energy procurement strategy where cheap energy suppliers are dispatched first followed by more expensive suppliers.
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have introduced an operating reserve demand curve mechanism, which adjusts electricity prices
to reflect the scarcity value of reserves and to incentivize the arbitrage between energy and reserve
markets [21]. A system operator approximates the cost-optimal energy and reserve allocations
provided by the stochastic dispatch procedure through a proper price calibration. In one way or
another, the solutions proposed by [19]-[21] require market interventions or changes in market
codes to attain the desired result. Thus, it is relevant to investigate the approximation of the
stochastic efficiency within existing dispatch procedures.

Addressing information inconsistency in energy systems under uncertainty. Since the work
of Samuelson in [22], it has been established that the optimal solution of a centralized optimization
problem is a solution to a competitive equilibrium problem. That is, the primal and dual solutions
of a centralized optimization problem constitute a solution to a competitive economy, where agents
compete based on their preferences (merits) without any external interventions. Therefore, to
analyze the centralized dispatch efficiency, its solution is often benchmarked against an equilibrium
solution, see, for example, [23, Chapter 2]. If the two solutions match, the market organization
based on a centralized optimization problem is said to be complete. Otherwise, a centralized market
organization is incomplete as it does not satisfy the underlying agent preferences. Consequently,
incomplete markets risk producing incorrect price signals in energy systems.

When solving stochastic energy dispatch and market-clearing problems, it is often assumed in
the technical literature that a centralized organization is complete and the information on the
underlying uncertainty is consistent among system agents. While this assumption is convenient
from the modeling standpoint, there is often no postulate that it holds, and the problem of
information asymmetry has not been fully addressed in the literature. Aside from natural causes of
information asymmetry, e.g., forecasts are sourced from different providers, information asymmetry
occurs even when agents have full access to data, but they utilize it differently. For example, a risk
attitude directly affects the construction of uncertainty and scenario sets in local optimizations of
market participants [24],[25]. Disregarding a risk attitude, the scenario construction is affected by
irrational preferences, captured by prospect theory [26]: agents acting on the same set of plausible
uncertainty scenarios tend to favor some scenarios over others, depending on their subjective
beliefs about scenario likelihood. It is thus relevant to analyze the impacts of such information
asymmetry and to investigate whether it can be internalized in a centralized market organization.

1.2.2 Providing privacy guarantees in power system optimization

To formally guarantee privacy for energy optimization data, it is imperative to rely on a robust
privacy definition. Differential privacy is such a definition [27] originated in the analysis of large
datasets with sensitive data items, e.g., private health, insurance, and bank records. The goal of
differential privacy research is to provide a formal promise that individual records in a dataset
remain private, undisclosed when this dataset is used in computations. Differential privacy
guarantees are attained through randomization of the computation of interest, e.g., by adding a
calibrated random noise to the results of a computation, as shown in Figure 1.1. The virtue of a
differentially private computation is to produce statistically similar results on datasets different in
one item (hence, differential), i.e., irrespective of the presence of any individual record in a dataset,
thus establishing individual privacy guarantees.

As power systems enjoy a drastic increase in available data, differential private optimization
algorithms would provide power system users with a formal promise that their private data
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M(DÕ)M(D)

P[M(D) + ›] P[M(DÕ) + ›]
Output on dataset D

Output on dataset DÕ

Sampled output on dataset D

Figure 1.1: Illustration of the di↵erential privacy principle:M : Rn ‘æ R is a mechanism (mapping)
of interest, D,DÕ œ Rn are two datasets di↵erent in one item, and › is a zero-mean random noise.
By augmenting the output ofMwith the random noise ›, the outputs on two di↵erent datasets
D and DÕ are made statistically similar. By observing a sample from the output distribution, an
observer cannot identify what dataset (thus, the di↵erence in one item) is used in computations.

As power systems enjoy a drastic increase in available data, di↵erential private optimization
algorithms would provide power system users with a formal promise that their private data
will not be exposed, thus facilitating the user engagement. As privacy guarantees arise from the
randomization of the underlying optimization task, the application of di↵erential privacy to power
systems requires addressing many challenges. In this thesis, these challenges are organized into
three categories. The first focuses on providing formal privacy guarantees for optimization data
by internalizing private algorithms within power system computational problems. The second
category concerns resolving the risks of producing infeasible private outcomes and develops robust
feasibility guarantees for private power system optimization algorithms. The third category is
motivated by the utility loss associated with noisy private algorithms and develops the means to
control the optimization utility.

Providing privacy guarantees to power system computations. Any power system optimization
problem can be formalized as a mechanism that maps datasets to the output(s) of interest, e.g., an
optimization solution or some of its statistics. Di↵erentially private guarantees for this mechanism
can be attained by means of randomization using the standard input and output perturbation
strategies. The input perturbation strategy implies the addition of random noise to the input dataset
[28], which has been applied in the power system context for a private release of high-fidelity
network test cases [29] and a private release of aggregated dispatch statistics [30]. The output
perturbation ensures privacy by adding a calibrated noise to optimization results and has been
explored in the context of the private distributed electrical vehicle charging problem [31]. As input
and output perturbation strategies are agnostic to many operational aspects of power systems, e.g.,
operational feasibility, their application to operational tasks is limited. This necessities to develop
an alternative mechanism perturbation strategy that does not alter the input datasets nor perturb
optimization solution, but internalizes the noise within computations.

The central challenge of di↵erentially private optimization is noise calibration. To a great extent, the
noise calibration depends on the chosen noise distribution, e.g., Laplace or Gaussian distribution
commonly used in private statistical analysis, key di↵erential privacy parameters such as privacy

Figure 1.1: Illustration of the differential privacy principle: M : Rn 7→ R is a mechanism (mapping)
of interest, D,D′ ∈ Rn are two datasets different in one item, and ξ is a zero-mean random noise.
By augmenting the output ofMwith the random noise ξ, the outputs on two different datasets
D and D′ are made statistically similar. By observing a sample from the output distribution, an
observer cannot identify which dataset (thus, the difference in one item) is used in computations.

will not be exposed, thus facilitating the user engagement. As privacy guarantees arise from the
randomization of the underlying optimization task, the application of differential privacy to power
systems requires addressing many challenges. In this thesis, these challenges are organized into
three categories. The first category focuses on providing formal privacy guarantees for optimization
data by internalizing private algorithms within power system computational problems. The second
category concerns resolving the risks of producing infeasible private outcomes and develops robust
feasibility guarantees for private power system optimization algorithms. The third category is
motivated by the utility loss associated with noisy private algorithms and develops the means to
control the optimization utility.

Providing privacy guarantees to power system computations. Any power system optimization
problem can be formalized as a mechanism that maps datasets to the output(s) of interest, e.g., an
optimization solution or some of its statistics. Differentially private guarantees for this mechanism
can be attained by means of randomization using the standard input and output perturbation
strategies. The input perturbation strategy implies the addition of random noise to the input dataset
[28], which has been applied in the power system context for a private release of high-fidelity
network test cases [29] and a private release of aggregated dispatch statistics [30]. The output
perturbation ensures privacy by adding a calibrated noise to optimization results and has been
explored in the context of the private distributed electrical vehicle charging problem [31]. As input
and output perturbation strategies are agnostic to many operational aspects of power systems, e.g.,
operational feasibility, their application to operational tasks is limited. This necessities to develop
an alternative mechanism perturbation strategy that does not alter the input datasets nor perturb
optimization solution, but internalizes the noise within computations.

The central challenge of differentially private optimization is noise calibration. To a great extent, the
noise calibration depends on the chosen noise distribution, e.g., Laplace or Gaussian distribution
commonly used in private statistical analysis, key differential privacy parameters such as privacy
loss, and the sensitivity of the optimization solution to the input datasets [32]. If the noise
distribution and privacy loss are exogenous inputs, the mechanism sensitivity is an inherent
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property of an optimization problem of interest. As constrained optimization problems commonly
address power system optimization tasks, obtaining the exact sensitivity is only available for
simple, symmetric feasible regions [33]. To establish privacy guarantees for non-trivial constrained
optimization problems, it is imperative to provide at least an upper bound on mechanism sensitivity.

Some optimization problems in power systems are solved in a distributed manner, when op-
timization datasets are distributed among sub-problems that perform local computations and
only exchange certain coordinating signals [34]. Although distributed algorithms are often re-
garded as privacy-preserving, they do not establish any formal guarantee that the exchange
of coordination signals does not leak local datasets. By calibrating the noise to the sensitivity
of algorithms’ sub-problems to local datasets, the distributed algorithms can be made formally
private by augmenting the noise into local computations. Since not all optimization problems in
energy are decomposable and due to institutional reasons, many operational problems are solved
centrally by system operators. It is thus not less relevant to offer privacy guarantees for centralized
computations. Moreover, the privacy guarantees in centralized computations are known to be
stronger than those offered by locally private computations [27].

Ensuring feasibility of differentially private optimization outcomes. As differential privacy
guarantees originate from randomization, differentially private constrained optimization cannot
be ignorant of infeasibility issues. The input perturbation strategy, for example, does not guarantee
that the perturbed input dataset admits a feasible solution. Even if the solution space is non-empty,
the differentially private solution can still be infeasible for the original optimization dataset. The
output perturbation strategy is also ignorant of optimization constraints, thus involving similar
infeasibility risks. Although these infeasibility issues can be addressed with post-processing [35],
feasibility restoration for operational problems requires using original private data, thus involving
privacy losses. This necessitates a mechanism perturbation strategy that internalizes the feasibility
criteria within private computations of optimization tasks.

Utility-aware private optimization. While providing privacy guarantees for optimization datasets,
it is important to characterize and control the loss of optimization utility due to random per-
turbations. In the context of power systems, the optimization utility is often translated into
solution optimality. The pursuit of optimality brings the benefits of improved operations [36] and
market efficiency [37]. When adding noise to power system computations, however, these benefits
diminish with increasing privacy requirements. Moreover, noise additive private algorithms risk
producing significant variations of private optimization results, which poses additional operational
challenges in the power system domain. It has been recognized in [14] that the random fluctuations
in the network, e.g., random wind power in-feed, lead to highly variable network power flows,
voltage profiles, etc. It is thus not less relevant to develop privacy-preserving strategies that
produce randomized private results with controllable variance.

Although the optimization utility can be improved by relaxing noise parameters, this would involve
weaker privacy guarantees: one of the fundamental results in data privacy argues that it is not
possible to improve task utility without incurring additional privacy loss [38]. While the average
optimization utility cannot be improved for prescribed privacy parameters, it appears relevant to
develop private algorithms that enable a trade-off between the average and the worst-case utility
without altering privacy guarantees. Using stochastic programming methods, this would imply for
power system operational tasks that the worst-case realization of the additional operating cost can
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be reduced at the expense of an increasing expected value. Similarly, the accumulated variance of
private optimization results can be reduced at the expense of increasing operating costs.

1.3 Scientific contributions

The thesis first contributes by advancing stochastic programming applications to energy system
optimization through [Paper A]–[Paper C]. Starting with stochastic natural gas system operations
under uncertainty of gas extractions, [Paper A] develops stochastic control policies for flexible gas
injections, compressors and valves, that ensure real-time feasibility of operations. The non-linear
and non-convex gas system operations are approximated through a convex counterpart, which
paves the foundation for a chance-constrained optimization of those policies. The optimized
policies quantify active system components’ contribution to system state uncertainty and variability,
thus enabling competitive financial remunerations for system components. Their competitive
market properties, i.e., the cost recovery and revenue adequacy, are conditioned to system design
and shown to hold in expectation.

As market properties of cost recovery and revenue adequacy in stochastic systems are commonly
satisfied only in expectation, [Paper B] develops a mechanism that compromises stochastic solution
efficiency in terms of operational cost, but ensures the satisfaction of market properties for any
uncertainty realization. Unlike standard stochastic programs, the mechanism does not alter
conventional deterministic procedures, but identifies the optimal reserve margins that approximate
the stochastic solution efficiency. It was shown in [Paper B] that in the context of sequential reserve-
energy power system dispatch, this mechanism attains the maximum expected cost efficiency of
conventional dispatch procedures given the need to satisfy market properties.

This work line concludes with analyzing stochastic energy systems under asymmetry of information
on the underlying uncertainty source. [Paper C] contributes by analyzing energy prices as a
function of agent private forecasts and shows high sensitivities of market outcomes to private
information. From the information standpoint, the models developed in [Paper C] identify a
significant gap between stochastic solutions in complete and incomplete markets. However,
this gap is shown to reduce through information sharing and market redesign solutions that
accommodate private forecasts in the existing energy system procedures.

This thesis is among the first to recognize the privacy risks involved in the optimization of power
system operational tasks. The next contribution of this thesis is to resolve these privacy risks
by developing a systematic approach to provide the routine power system computations with a
privacy-preserving layer and rigorous privacy guarantees. The main privacy-related contributions
of this thesis are based on publications [Paper D] - [Paper F].

This line of work first identifies privacy breaches in centralized and distributed power system
computations by designing adversarial models that infer optimization datasets from optimization
results. The models are suitable for the omniscient privacy adversaries with almost full knowledge
of the optimization task of interest as in [Paper D] and for weaker adversaries with partial
knowledge of the system as in [Paper D] and [Paper F]. These adversarial models play a seminal
role in formulating achievable privacy goals and dispelling the common belief about the privacy-
preserving power of conventional distributed optimization algorithms in power systems.

This thesis is the first work to provide formal privacy guarantees for operational power system
tasks based on differential privacy. These guarantees are provided for distributed computation
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with several private distributed algorithms in [Paper D] and for centralized computations in
[Paper E] and [Paper F]. Both distributed and centralized private computation algorithms have
been successfully applied to the standard set of power system test cases.

To provide both privacy guarantees for optimization datasets and feasibility guarantees for
private optimization outcomes, the thesis develops centralized private optimization algorithms
at the interface of differential privacy and stochastic optimization methods. To enable privacy
guarantees, an optimization outcome of interest is made dependent on a carefully calibrated random
perturbation, which in turn allows for a chance-constrained problem formulation with feasibility
guarantees. Moreover, to enable a trade-off between the average and worst-case optimization
utility, e.g., optimality loss or solution variance, the variance and conditional value-at-risk measures
are internalized into the chance-constrained formulation to enable optimization utility control.
This theory is mainly established in [Paper E], while the application to distribution grid operations
is provided in [Paper F].

1.4 Thesis outline

The thesis provides a brief summary of the attached six papers.

Chapter 2 presents the contributions towards interpretability of stochastic programming applica-
tions to energy systems. In the 1st part, the chapter introduces stochastic optimization methods
to solve operational problems in energy systems under uncertainty and discusses the properties
of the corresponding stochastic market settlement. The remainder guides the reader through
the main results of [Paper A]–[Paper C]. The 2nd part presents the chance-constrained stochastic
control polices and pricing scheme for energy networks. The 3rd part is devoted to the method of
approximating the stochastic cost efficiency within deterministic market settlements. The 4th and
last part revisits the properties of the stochastic market settlement under asymmetry of information
and provides market redesign solutions to accommodate agents’ private uncertainty forecasts.

Chapter 3 presents thesis contributions to privacy-preserving energy system optimization according
to [Paper D]–[Paper F]. The 1st part of this chapter introduces the OPF optimization problem and
its centralized and distributed computations, while the 2nd part explores the inherent privacy
leakages in these computations. The 3rd part reviews the main differential privacy definitions
and results that are used in the proposed distributed and centralized privacy-preserving OPF
algorithms, presented respectively in the 4th and 5th parts.

Chapter 4 summarizes the main results and outlines perspective directions for future research.

Notation: Operation ◦ is the element-wise product. Operator diag[x] returns an n× n diagonal
matrix with elements of vector x ∈ Rn. When not clear from the context, for a n× n matrix A, [A]i
returns an ith row (1× n) of matrix A, 〈A〉i returns an ith column (n× 1) of matrix A. Operator
Tr[A] returns the trace of matrix A. Symbol > stands for transposition, vector 1 (0) is a vector of
ones (zeros), and ‖·‖p denotes a p−norm. The notation is coherent with the attached papers, but
we recommend to familiarize with the notation of each paper before reading.

1.5 List of publications

The publications at the core of this thesis are listed as follows:
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CHAPTER2
Stochastic Optimization of

Energy Systems
This chapter presents the contributions of this thesis to the interpretability of stochastic program-
ming applications to energy systems. We start by formulating a reference energy optimization
problem in Section 2.1 and we discuss how stochastic methods solve it under uncertainty. We
further provide general results on the fundamental properties of the resulting stochastic market
settlement. The rest of the narrative guides the reader through the main results of [Paper A]–[Paper
C] using this reference problem. In Section 2.2, we introduce stochastic control policies for energy
system optimization whose objective is two-fold: to quantify the contribution of each system
component to the accommodation of uncertainty and variability, and to provide an efficient energy
pricing under uncertainty and variability. Although the optimized policies yield the minimum
expected cost, we find that they ensure fundamental market properties (e.g., cost recovery) only
in expectation, hence limiting their practical applications. To address this issue, in Section 2.3,
we explain how to approximate the efficiency of stochastic solutions within deterministic market
procedures that ensure the desirable market properties for any realizations of uncertainty. Finally,
in Section 2.4, we discuss market completeness from the information standpoint, i.e., the ability of
stochastic market settlements to satisfy the objectives of market participants given their private
information on uncertainty. To complete the market and guarantee desirable market properties
under information asymmetry, we explore market redesign solutions.

2.1 Stochastic energy system optimization

We begin by considering the operations of an energy network guided by the solution of the
following deterministic program:

min
ϑ,ϕ

c(ϑ) (2.1a)

s.t. Aϕ = ϑ− δ, F (ϑ, ϕ) = 0, (2.1b)

ϑ 6 ϑ 6 ϑ, ϕ 6 ϕ 6 ϕ, (2.1c)

in control variables ϑ ∈ Rn and in state variables ϕ ∈ Rm. The objective function (2.1a) computes
the operating costs using a convex function c : Rn 7→ R associated with the deployment of
controllable actions. Equality constraints (2.1b) guide the system operations according to the
underlying physical laws. The first equation in (2.1b) is the energy conservation law that balances
control and state variables with network loads δ ∈ Rn, where A ∈ Rn×m is a weighted incidence
matrix that describes a system topology and encodes specific network parameters. The second
entry in (2.1b) is the non-convex equation that relates control and state variables according to
underlying physical laws. In the power system context, F : Rn+m 7→ Rm relates network flows,

11
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losses and voltages to active and reactive generator set-points according to the AC power flow
equations [39]. In natural gas networks, F is the Weymouth equation that conditions network
flows on non-linear pressure drops [40]. Inequality constraints in (2.1c) require control and state
variables to be within network limits ϑ, ϑ ∈ Rn and ϕ,ϕ ∈ Rm.

2.1.1 Convex counterpart of non-convex optimization

Although problem (2.1) is non-convex, it has been successfully solved using many techniques,
e.g., using convex relaxations in power systems [41] and natural gas networks [42]. However,
as parameters become uncertain, the stochastic counterpart of (2.1) becomes computationally
intractable, while convex relaxations risk to yield unsatisfactory relaxation gaps [15]. To overcome
this difficulty, consider a linearization of the non-convex equation in (2.1b) around a stationary
point (ϑ̊, ϕ̊), retrieved by solving problem (2.1) to stationarity, such thatF (ϑ, ϕ) = 0 at the stationary
point becomes

∇ϑF (ϑ̊, ϕ̊)︸ ︷︷ ︸
Fϑ

ϑ+∇ϕF (ϑ̊, ϕ̊)︸ ︷︷ ︸
Fϕ

ϕ+ F0(ϑ̊, ϕ̊)︸ ︷︷ ︸
F0

= 0, (2.2)

where Fϑ ∈ Rm×n and Fϕ ∈ Rm×m are the gradients of the non-linear equation with respect to
optimization variables and F0 ∈ Rm is a free term. Unless (ϑ̊, ϕ̊) is a bifurcation point, the gradients
are well-defined. Consider the following convex counterpart of problem (2.1):

min
ϑ,ϕ

c(ϑ) (2.3a)

s.t. Aϕ = ϑ− δ, (2.3b)

Fϑϑ+ Fϕϕ+ F0 = 0, (2.3c)

ϑ 6 ϑ 6 ϑ, ϕ 6 ϕ 6 ϕ. (2.3d)

The key property of problem (2.3) is that its Karush-Kuhn-Tucker (KKT) optimality conditions are
equivalent to the KKT conditions of problem (2.1) at the stationary point, and thus (2.3) solves
(2.1) at this point. However, this linearization procedure may produce a rank-deficit system of
equations (2.3c), and for the fixed control variables, there may be infinitely many solutions to state
variables. This issue can be resolved by fixing one of the state variables to a reference value, as
discussed in [Paper A].

2.1.2 From infinite- to finite-dimensional stochastic programming

Operations of energy systems are subject to the uncertainty of system parameters. System design
parameters, such as a cost function, network topology and technical limits, remain constant in
the short run, while energy demand δ is uncertain. Since control decisions must be made before
uncertainty realizes, it makes sense to consider uncertain demand as a random variable δ̃(ξ) = δ+ξ,
where δ ∈ Rn is the nominal (mean) component and ξ ∈ Rn is a vector of random forecast errors.
Throughout the chapter, we assume that probability distribution Pξ and covariance Σ ∈ Rn×n of
the random vector are known, and that Pξ is centered at 0, which is not restrictive when demand
realizations are repetitive, such that the distribution can be estimated from a sufficiently large
amount of historical observations. To optimize system operations in this situation, consider the
following stochastic program:

min
ϑ̃(ξ),ϕ̃(ξ)

EPξ [c(ϑ̃(ξ))] (2.4a)
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s.t. Aϕ̃(ξ) = ϑ̃(ξ)− δ̃(ξ), (2.4b)

Fϑϑ̃(ξ) + Fϕϕ̃(ξ) + F0 = 0, (2.4c)

ϑ 6 ϑ̃(ξ) 6 ϑ, ϕ 6 ϕ̃(ξ) 6 ϕ, ξ ∼ Pξ, (2.4d)

whose objective function is to minimize the expected value of operating costs with respect to
probability distribution Pξ , and whose optimization variables are random. Unfortunately, problem
(2.4) is infinite-dimensional since it optimizes over infinite-dimensional variables, and thus it is
computationally intractable. To cope with this difficulty, each variable can be seen as a two-stage
decision, i.e.,

ϑ̃(ξ) = ϑ1 + ϑ2(ξ), ϕ̃(ξ) = ϕ1 + ϕ2(ξ), (2.5)

where ϑ1 and ϕ1 are the first-stage decisions independent from uncertainty realizations, and ϑ2(ξ)
and ϕ2(ξ) are variable recourse decisions dependent on uncertainty realizations. Computationally
tractable counterparts of problem (2.4) are obtained by limiting recourse decisions to finite-
dimensional functions using different methods from stochastic programming. In the following, we
consider two methods: scenario-based and chance-constrained programming.

Scenario-based stochastic programming. By sampling a finite number of forecast error realiza-
tions from Pξ, i.e., S scenarios ξ̂1, . . . , ξ̂S with probabilities π ∈ RS+, such that π1 + · · · + πS = 1,
the solution to the infinite-dimensional program (2.4) can be approximated through the first-stage
decisions ϑ1, ϕ1 and a finite number of recourse decisions, ϑ21, . . . , ϑ2S and ϕ21, . . . , ϕ2S , optimized
using the following finite-dimensional program:

min
ϑ1,ϑ2,ϕ1,ϕ2

S∑

s=1
πsc(ϑ1 + ϑ2s) (2.6a)

s.t. A(ϕ1 + ϕ2s) = ϑ1 + ϑ2s − δ − ξ̂s, (2.6b)

Fϑ(ϑ1 + ϑ2s) + Fϕ(ϕ1 + ϕ2s) + F0 = 0, (2.6c)

ϑ 6 ϑ1 + ϑ2s 6 ϑ, ϕ 6 ϕ1 + ϕ2s 6 ϕ, ∀s = {1, . . . , S}, (2.6d)

ϑ1 ∈ Rn, ϑ2 ∈ Rn×S , ϕ1 ∈ Rm, ϕ2 ∈ Rm×S , (2.6e)

where (2.6a) is the scenario-based approximation of the expected value and where network
equations and limits are enforced through (2.6b)–(2.6d) for each prescribed uncertainty realization.
In this formulation, recourse variables are modeled explicitly for each uncertainty realization
scenario. With an increasing number of scenarios from Pξ, by the Law of Large Numbers, the
solution of problem (2.6) will converge to the optimal solution to problem (2.4).

Chance-constrained stochastic programming. Another computationally tractable version of
problem (2.4) can be obtained by restricting recourse decisions to affine functions of forecast errors.
Consider an explicit parameterization of control variables on a random forecast error of the form

ϑ̃(ξ) = ϑ1 + ϑ2(ξ) = ϑ1 + αξ, (2.7)

where ϑ1 ∈ Rn is the first-stage decision as prescribed before, and α ∈ Rn×n is a finite-dimensional
variable recourse decision. To be consistent with the original proposal [43], we term (2.7) a control
policy, because it produces control inputs to each network component, such as a generator in power
systems or a gas supplier in natural gas networks, with respect to any realization of the random
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variable ξ ∈ Rn. This explicit dependency for the state variables is not enforced because they are
not controllable from the system operator’s perspective. However, they can be expressed as affine
functions of random forecast errors through control recourse decisions, i.e., from (2.4c) we have

ϕ̃(ξ) = −F−1
ϕ (F0 + Fϑϑ̃(ξ))

from (2.7)⇐⇒ ϕ̃(ξ) = −F−1
ϕ (F0 + Fϑ(ϑ1 + αξ))

from (2.3c)⇐⇒ ϕ̃(ξ) = ϕ1 − F−1
ϕ Fϑαξ, (2.8)

where ϕ1 is the first-stage decision as prescribed before, and the last term is the state variable
recourse defined through recourse variable α and the random forecast errors ξ.

Since recourse decision α is a finite-dimensional optimization variable, random variables ϑ̃(ξ)
and ϕ̃(ξ) become finite-dimensional, thus enabling a computationally efficient reformulation of
problem (2.4). Specifically, a control policy (2.7) enables the satisfaction of stochastic network
equations (2.4b) and (2.4c) for any realization of random forecast errors when properly constraining
the variable recourse. In [Paper A] we show that when requiring recourse decisions to obey
α>1 = 1, the system of stochastic equations (2.4b) and (2.4c) is equivalent to

Aϕ1 = ϑ1 − δ, α>1 = 1, (2.9a)

Fϑϑ1 + Fϕϕ1 + F0 = 0. (2.9b)

Furthermore, under control policy (2.7), the expected cost in (2.4a) is reformulated analytically
using the covariance Σ ∈ Rn×n of forecast errors. Assume a quadratic cost function with the first-
and second-order coefficients c1 ∈ Rn and c2 ∈ Rn, respectively. The expected cost thus admits
the following closed-form solution:

EPξ [c(ϑ̃(ξ))] = EPξ [c>1 (ϑ1 + αξ) + (ϑ1 + αξ)>diag[c2](ϑ1 + αξ)]
EPξ

[ξ]=0
⇐⇒ EPξ [c(ϑ̃(ξ))] = c>1 ϑ1 + EPξ [(ϑ1 + αξ)>diag[c2](ϑ1 + αξ)]

EPξ
[ξξ>]=Σ
⇐⇒ EPξ [c(ϑ̃(ξ))] = c>1 ϑ1 + ϑ>1 diag[c2]ϑ1 + Tr[α>diag[c2]αΣ], (2.10)

which is convex in optimization variables ϑ1 and α. For linear costs, the last two terms in (2.10) are
disregarded and the expected cost amounts to the cost of the first-stage control decisions only.

With these results at hand, the chance-constrained counterpart of stochastic program (2.4) is

min
ϑ1,ϕ1,α

c>1 ϑ1 + ϑ>1 diag[c2]ϑ1 + Tr[α>diag[c2]αΣ] (2.11a)

s.t. Aϕ1 = ϑ1 − δ, α>1 = 1, (2.11b)

Fϑϑ1 + Fϕϕ1 + F0 = 0, (2.11c)

Pξ

[
ϑ 6 ϑ1 + αξ 6 ϑ,
ϕ 6 ϕ1 − F−1

ϕ Fϑαξ 6 ϕ,

]
> 1− ε, (2.11d)

where the last constraint (2.11d) is the joint chance constraint that requires network limit satisfaction
with a prescribed probability 1− ε, and ε is a typically small constraint violation probability. This
constraint can be reformulated into a set of linear constraints by enforcing all its entries on a finite
number of samples from Pξ [44]. This sample-based reformulation provides a joint constraint
satisfaction guarantee by extracting sufficiently many samples up to the prescribed parameter
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ε. An alternative approach to (2.11d) is to represent it through the union of individual chance
constraints [45]. Since entries of (2.11d) are convex with respect to random forecast errors, the
individual chance constraints admit analytical second-order cone reformulations [12], allowing for
a computationally efficient substitute of (2.11d).

Discussion. Both scenario-based and chance-constrained programming can be used to ap-
proximate the solution of stochastic problem (2.4): in [Paper A] we use a chance-constrained
formulation of the natural gas network control problem under uncertainty, while [Paper B] and
[Paper C] consider scenario-based stochastic electricity market problem formulations. However,
the consequences of their applications differ from various modeling perspectives.

First, problem (2.6) ensures solution feasibility for all uncertainty realizations within the prescribed
set of scenarios, but it does not provide any out-of-sample feasibility guarantee. The chance-
constrained formulation (2.11), instead, provides formal a priori guarantees that policy (2.7)
provides feasible real-time control actions in (1− ε)% scenarios of uncertainty realization.

Furthermore, the recourse in chance-constrained formulation (2.11) is an explicit function of
the random and control variables. This has significant operational implications because control
variables can be optimized anticipating their impact on the system state (e.g., on the system state
variability) – a control opportunity which is not explicitly offered by the scenario-based program
(2.6). Moreover, the optimization of the affine recourse enables explicit quantification of control
variable contributions to maintaining secure system operations under uncertainty and minimizing
the variability of network parameters.

Despite these benefits of chance-constrained programs over scenario-based programs, a computa-
tionally tractable reformulations of expected costs (2.11a) and chance constraint (2.11d) are enabled
due to affine dependency of recourse decisions on random forecast errors. This affine recourse is
optimal only in a few real-world applications, i.e., proportional generator response to frequency
deviations in power systems. Whenever affine recourse is sub-optimal in an engineering system
of interest, the scenario-based problem formulation in (2.6), which does not enforce this affine
relation, provides a less conservative solution in terms of expected costs.

2.1.3 Stochastic market properties

Using either scenario-based or chance-constrained approximations of stochastic program (2.4), it is
possible to internalize operational uncertainty into energy market clearing and derive meaningful
energy prices [18, 37]. Here, we briefly review the fundamental market properties of such pricing,
including efficiency, cost recovery, and revenue adequacy [46]. The efficiency property implies that
the primal and dual solutions to problem (2.4) result in minimum operational cost and competitive
profits for market agents, e.g., power or gas producers. This property is attained with truthful
market participation, i.e., the so-called incentive compatibility property [47]. The cost recovery
implies that the cost incurred by each control action is compensated for through sufficient demand
charges. Finally, the revenue adequacy property holds when the total demand charges suffice to
compensate energy suppliers’ total revenue. However, in the stochastic market settlement, e.g.,
using a scenario-based method in [18], it is known that these properties hold only in expectation.
Below, we provide these results irrespective of the chosen method to treat uncertainty.
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Consider the following stochastic program:

min
ϑ1,ϕ1

ϑ2(ξ),ϕ2(ξ)

EPξ [c(ϑ1, ϑ2(ξ))] (2.12a)

s.t. A(ϕ1 + ϕ2(ξ)) = ϑ1 + ϑ2(ξ)− δ − ξ, : λ1(ξ) (2.12b)

Fϑ(ϑ1 + ϑ2(ξ)) + Fϕ(ϕ1 + ϕ2(ξ)) + F0 = 0, : λf (ξ) (2.12c)

ϑ 6 ϑ1 + ϑ2(ξ) 6 ϑ, ϕ 6 ϕ1 + ϕ2(ξ) 6 ϕ, : (µϑ(ξ), µϑ(ξ), µϕ(ξ), µϕ(ξ)) (2.12d)

where each primal variable is modeled as a two-stage decision with the finite-dimensional recourse
and where the dual variables are stated after the colon sign. Here, λ1(ξ) is the nodal price of energy
supply, while λf (ξ) is the price associated with maintaining the system operations according to
the underlying physical laws. As we show in [Paper A], the primal and dual solutions to problem
(2.12) solve a competitive stochastic equilibrium, where each control action ϑi(ξ), i = 1, . . . , n is
compensated with the revenue

Rϑi (ξ) = λ1i(ξ) (ϑ1i + ϑ2i(ξ)) + 〈Fϑ〉>i λf (ξ) (ϑ1i + ϑ2i(ξ)) , (2.13a)

system operator collects the congestion revenue

Rϕ(ξ) = λ1(ξ)>A(ϕ1 + ϕ2(ξ)) + λf (ξ)>Fϕ(ϕ1 + ϕ2(ξ)), (2.13b)

and demand charges amount to

Rδ(ξ) = λ1(ξ)> (δ + ξ) + λf (ξ)>F0. (2.13c)

Notice, since the demand is inelastic, the linearization term F0 is attributed to demand charges,
but its allocation among network demands remains an open question. These payments satisfy the
following properties.

Lemma 1 (Cost recovery). Let ϑi = 0,∀i = 1, . . . , n. Then, the profit of agent i providing control action
ϑi(ξ) is non-negative in expectation, i.e., EPξ [Rϑi (ξ)− c(ϑ1i, ϑ2i(ξ))] > 0.

Proof. Consider the following expected profit-maximization problem of agent i:

max
ϑ1i,ϑ2i(ξ)

EPξ [Rϑi (ξ)− c(ϑ1i, ϑ2i(ξ))] (2.14a)

s.t. ϑi 6 ϑ1i + ϑ2i(ξ) 6 ϑi : (µϑi (ξ), µϑi (ξ)). (2.14b)

Since this problem is convex, the Slater condition holds, and its objective function equals to the
dual objective function in the optimum, such that we have

EPξ [Rϑi (ξ)− c(ϑ1i, ϑ2i(ξ))] = µϑi (ξ)ϑi − µϑi (ξ)ϑi. (2.14c)

Under the standard assumption that control actions are fully dispatchable, i.e., from zero (ϑi = 0)
to maximum capacity, the right-hand side of (2.14c) is non-negative due to the dual feasibility
condition µϑi (ξ) > 0, and thus the profit of agent i is non-negative in expectation.

The following result assumes that the lower state variable limit ϕ 6 0, e.g., a network flow can be
negative up to negative flow capacity, we have the following result.
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Lemma 2 (Revenue adequacy). Let ϕ 6 0. Then, stochastic market payments (2.13) are revenue adequate
in expectation, i.e., EPξ [

∑n
i=1Rϑi (ξ)−Rδ(ξ)] > 0.

Proof. By multiplying the stochastic equations of problem (2.12) by their corresponding dual
variables, summing up the resulting expressions, and rearranging the terms, we have

λ1(ξ)> (ϑ1 + ϑ2(ξ)) + λf (ξ)>Fϑ (ϑ1 + ϑ2(ξ))− λ1(ξ)> (δ + ξ)− λf (ξ)>F0

= λ1(ξ)>A(ϕ1 + ϕ2(ξ)) + λf (ξ)>Fϕ(ϕ1 + ϕ2(ξ)), (2.15a)

where the mismatch between the total revenue of control agents and demand charges amounts
to the congestion rent of the system operator. We thus need to show that EPξ [Rϕ(ξ)] > 0. The
rent-maximization problem formulates as

max
ϕ1,ϕ2(ξ)

EPξ [Rϕ(ξ)] (2.15b)

s.t. ϕ 6 ϕ1 + ϕ2(ξ) 6 ϕ, : (µϕ(ξ), µϕ(ξ)), (2.15c)

which is a convex optimization problem. Following the same line of arguments as in Lemma 1,
due to ϕ 6 0, the expected congestion rent is non-negative, and thus the revenue adequacy holds
in expectation.

2.2 Policy-based control and pricing for uncertainty energy systems

Control policy (2.7) allows for expressing the optimization variables in (2.4) as explicit functions of
random forecast errors and control actions. This section shows how to optimize this policy for
secure operations under uncertainty and how to establish the stochastic energy payments. We
are interested in uncertainty- and variability-aware policy optimization. By uncertainty-aware,
we understand the optimized policy that ensures network limit satisfaction for any realization
of energy demand up to a prescribed constraint violation probability. By variability-aware, we
understand the policy that results in the minimal variability of state variables across the period
of interest. In [Paper A], for example, we optimize control policies for natural gas network
components to ensure real-time operational feasibility, while minimizing intraday variability of
gas pressures and flows, as well as to obtain competitive payments that compensate network
components for their contributions to satisfying constraint violation and variability criteria.

2.2.1 Uncertainty- and variability-aware policy optimization

Uncertainty-aware policy optimization is provided with a tractable reformulation of (2.11d) which
splits it into a set of individual chance constraints, i.e.,

Pξ[ϑ1i + [α]iξ > ϑi] > 1− εi, ∀i = {1, . . . , n}, (2.16a)

Pξ[ϑ1i + [α]iξ 6 ϑi] > 1− εi, ∀i = {1, . . . , n}, (2.16b)

Pξ[ϕ1i − [F−1
ϕ Fϑα]iξ > ϕi] > 1− εi, ∀i = {1, . . . ,m}, (2.16c)

Pξ[ϕ1i − [F−1
ϕ Fϑα]iξ 6 ϕi] > 1− εi, ∀i = {1, . . . ,m}, (2.16d)

where ε ∈ R2n+2m
+ is a vector of individual constraint violation probabilities; when 1>ε 6 ε,

individual chance constraints (2.16) provide a guarantee of joint constraint satisfaction with
probability (1 − ε) – the so-called Bonferroni approximation [45]. Since the feasible set of each
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chance constraint in (2.16) is convex, they can be reformulated analytically as second-order cone
constraints [12], i.e.,

ϑ1i > ϑi + zεi

∥∥∥Σ 1
2 [α]>i

∥∥∥
2
, ∀i = {1, . . . , n}, (2.17a)

ϑ1i 6 ϑi − zεi
∥∥∥Σ 1

2 [α]>i
∥∥∥

2
, ∀i = {1, . . . , n}, (2.17b)

ϕ1i > ϕi + zεi

∥∥∥Σ 1
2 [F−1

ϕ Fϑα]>i
∥∥∥

2
, ∀i = {1, . . . ,m}, (2.17c)

ϕ1i 6 ϕi − zεi
∥∥∥Σ 1

2 [F−1
ϕ Fϑα]>i

∥∥∥
2
, ∀i = {1, . . . ,m}, (2.17d)

where zεi is a non-negative safety parameter in the sense of [12], which depends on the knowledge
of the underlying forecast error distribution, and Σ 1

2 is the factorization of forecast error covariance,
i.e., Σ = Σ 1

2 Σ 1
2>. For instance, if ξ obeys a Gaussian distribution, zεi amounts to the inverse

cumulative distribution function of the standard Gaussian distribution at the (1− εi)th quantile,
for εi < 0.5. Since the norm terms are also non-negative, the last terms in the right-hand sides of
(2.17) are safety margins that ensure constraint satisfaction up to a prescribed constraint violation
probability and covariance of forecast errors. By substituting (2.11d) with (2.17), we end up with a
tractable chance-constrained optimization of control policies (2.7) that accommodates real-time
uncertainty realizations in a feasible manner.

Towards variability-aware control policy optimization, consider the variance of state variables

Var[ϕ̃i(ξ)] =Var[ϕ1i − [F−1
ϕ Fϑα]iξ] = [F−1

ϕ Fϑα]iΣ[F−1
ϕ Fϑα]>i , ∀i = {1, . . . ,m}, (2.18)

which is quadratic in recourse decisions. Using a second-order cone formulation, the variability of
state variables can be minimized by modeling the following constraint

∥∥∥Σ 1
2 [F−1

ϕ Fϑα]>i
∥∥∥

2
6 sϕi , ∀i = {1, . . . ,m}, (2.19)

where sϕ ∈ Rm is an optimization variable that upper-bounds the standard deviations of state
variables. Thus, by penalizing variable sϕ in the objective function of the chance-constrained
program, the policies are optimized to provide minimal variability of state variables.

We can thus formulate the following convex reformulation of the chance-constrained optimization
problem to produce uncertainty- and variance-aware control policies (2.7):

min
ϑ1,ϕ1,α,sϕ

c>1 ϑ1 + ϑ>1 diag[c2]ϑ1 + Tr[α>diag[c2]αΣ] + ψϕ>sϕ (2.20a)

s.t. λ1 : Aϕ1 = ϑ1 − δ, λr : α>1 = 1, (2.20b)

λf : Fϑϑ1 + Fϕϕ1 + F0 = 0, (2.20c)

λ
ϕ

i : zεi
∥∥∥Σ 1

2 [F−1
ϕ Fϑα]>i

∥∥∥
2
6 ϕ1i − ϕi, ∀i = {1, . . . ,m}, (2.20d)

λϕi : zεi
∥∥∥Σ 1

2 [F−1
ϕ Fϑα]>i

∥∥∥
2
6 ϕi − ϕ1i, ∀i = {1, . . . ,m}, (2.20e)

λϕi :
∥∥∥Σ 1

2 [F−1
ϕ Fϑα]>i

∥∥∥
2
6 sϕi , ∀i = {1, . . . ,m}, (2.20f)

zεi

∥∥∥Σ 1
2 [α]>i

∥∥∥
2
6 ϑ1i − ϑi, ∀i = {1, . . . , n}, (2.20g)

zεi

∥∥∥Σ 1
2 [α]>i

∥∥∥
2
6 ϑi − ϑ1i, ∀i = {1, . . . , n}, (2.20h)

where sϕ ∈ Rm+ is a penalty factor. The Greek letter λ is reserved to denote the dual variables of
coupling constraints, which couple the nominal and recourse variables ϑ1 and α, respectively,
associated with control decisions.
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Figure 1: 48-node Gas Network
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Figure 2: 48-node Gas Network
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Figure 2.1: Results of uncertainty- and variability-aware control policy optimization in a natural
gas network: the variability-agnostic (left) and the variability-aware (right) chance-constrained
policy optimization solutions. Refer to [Paper A] for the full experiment description.

2.2.2 Uncertainty- and variability-aware energy payments

The optimized control policy (2.7) explicitly defines the contribution of each system component, e.g.,
flexible gas suppliers in natural gas networks, to uncertainty and variability controls. This property
of control policies has been recognized as a foundation for uncertainty- and variability-aware prices
[17]. In [Paper A] we design an explicit payment scheme that remunerates system component
for providing desired network constraint satisfaction and state variability criteria while charging
uncertain demands for their adversarial impacts towards the satisfaction of the two criteria. To
ensure market e�ciency, we further analyze the properties of cost recovery and revenue adequacy
of these payments.

To obtain these payments, we invoke the classic LP duality theory [46] to decompose the revenue
streams associated with linear constraints (2.20b)–(2.20c), and invoke the SOCP duality theory [47]
to decompose the revenue streams associated with the reformulated coupling chance constraints
(2.20d)–(2.20f). Observe, that unlike linear constraints, the conic constraints are not separable per
optimization variables. To overcome this di�culty, in [Paper A], for each conic constraint with
a dual variable ⁄ œ R1 we introduce an auxiliary vector of dual prices u œ Rn, corresponding
component-wise to random vector › œ Rn, such that in optimality it always holds that ÎuÎ 6 ⁄.
With a set of prices ⁄, u1, . . . , un, each conic coupling constraint becomes separable, thus enabling
the revenue decomposition. Specifically, we show that under a uniform assignment of individual
constraint violation probabilities, i.e., Á = 1

2n+2m , the primal and dual solutions to problem (2.20)
solve a competitive equilibrium, where each control action Ëi(›), i = 1, . . . , n, is compensated with
the following revenue

RË
i =

!
⁄1i + ÈFËÍ€

i ⁄f
"

Ë1i +
1

⁄r€ + ÈF≠1
Ï FËÍ€

i (zÁu
Ï + zÁu

Ï + uÏ)� 1
2

2
[–]€i , (2.21)

where uÏ, uÏ, uÏ œ Rm◊n are auxiliary dual prices associated with conic constraints (2.20d)–(2.20f).
Here, the first term is a compensation for a nominal control action, and the second term internalizes
the contribution of this control action to the satisfaction of stochastic network equations (2.4b)
and (2.4c) under uncertainty (through ⁄r œ Rn), to the satisfaction of state variable limits (2.4d)
(through uÏ œ Rn◊n and uÏ œ Rn◊n), and to the satisfaction of the variance criteria (through uÏ).
Observe, that this payment is parameterized through the tolerance to constraint satisfaction zÁ,
covariance factorization of forecast errors � 1

2 , and variability criteria1. Similarly, in [Paper A] we
1Because from the dual feasibility conditions of problem (2.20) we have Î[uÏ]iÎ 6 ⁄Ï

i , ’i = 1, . . . , n and from the
stationarity conditions of problem (2.20) we know that ⁄Ï = ÂÏ. Thus prices uÏ are implicitly dependent on variability
penalty ÂÏ. See [Paper A] for details.

Figure 2.1: Results of uncertainty- and variability-aware control policy optimization in a natural
gas network: the variability-agnostic (left) and the variability-aware (right) chance-constrained
policy optimization solutions. Refer to the source [Paper A] for the full experiment description.

With Figure 2.1, we illustrate the performance of uncertainty- and variability-aware control policies
for flexible injections, compressors, and valves in natural gas networks. Here, the polices are
optimized using problem (2.20) to accommodate the uncertainty of gas extractions and to satisfy
the criterion of minimal variability of nodal gas pressures. Observe that despite many variable gas
extractions, the control policies of network components are jointly optimized to drastically reduce
the overall pressure variance, which is localized at a few network nodes. This variability reduction
comes at the expense of expected operating costs, thus establishing the cost-variability trade-offs
studied in detail in [Paper A].

2.2.2 Uncertainty- and variability-aware energy payments

The optimized control policy (2.7) explicitly defines the contribution of each system component, e.g.,
flexible gas suppliers in natural gas networks, to uncertainty and variability control. This property
of control policies has been recognized as a foundation for uncertainty- and variability-aware prices
[17]. In [Paper A] we design an explicit payment scheme that remunerates system components
for providing desired network constraint satisfaction and state variability criteria while charging
uncertain demands for their adversarial impacts towards the satisfaction of the two criteria. To
ensure market efficiency, we further analyze the properties of cost recovery and revenue adequacy
of these payments.

To obtain these payments, we invoke the classic linear programming duality theory [48] to
decompose the revenue streams associated with linear constraints (2.20b)–(2.20c), and invoke the
second-order cone programming duality theory [49] to decompose the revenue streams associated
with the reformulated coupling chance constraints (2.20d)–(2.20f). Observe, that unlike linear
constraints, the conic constraints are not separable per optimization variables. To overcome this
difficulty, in [Paper A], for each conic constraint with a dual variable λ ∈ R we introduce an
auxiliary vector of dual prices u ∈ Rn, corresponding component-wise to the random vector ξ ∈ Rn,
such that in optimality it always holds that ‖u‖2 6 λ. With a set of prices λ, u1, . . . , un, each conic
coupling constraint becomes separable, thus enabling the revenue decomposition. Specifically,
we show that under a uniform assignment of individual constraint violation probabilities, i.e.,
ε = 1

2n+2m , the primal and dual solutions to problem (2.20) solve a competitive equilibrium, where
each control action ϑi(ξ), i = 1, . . . , n, is compensated with the following revenue

Rϑi =
(
λ1i + 〈Fϑ〉>i λf

)
ϑ1i +

(
λr> + 〈F−1

ϕ Fϑ〉>i (zεuϕ + zεu
ϕ + uϕ)Σ 1

2

)
[α]>i , (2.21)
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where uϕ, uϕ, uϕ ∈ Rm×n are auxiliary dual prices associated with conic constraints (2.20d)–(2.20f).
Here, the first term is a compensation for a nominal control action, and the second term internalizes
the contribution of this control action to the satisfaction of stochastic network equations (2.4b)
and (2.4c) under uncertainty (through λr ∈ Rn), to the satisfaction of state variable limits (2.4d)
(through uϕ ∈ Rn×n and uϕ ∈ Rn×n), and to the satisfaction of the variance criteria (through uϕ).
Observe that this payment is parameterized through the tolerance to constraint satisfaction zε,
covariance factorization of forecast errors Σ 1

2 , and variability criteria1. Similarly, in [Paper A] we
show how demand charges and congestion revenues are conditioned to the same set of uncertainty
and variability parameters. Furthermore, these payments are shown to satisfy the properties of
cost recovery and revenue adequacy in expectation, which is consistent with Lemmas 1 and 2.

2.3 Cost recovery and revenue adequacy beyond expectation

Although stochastic energy system optimization ensures the minimum expected cost, in Section
2.1.3, we established that the stochastic solution guarantees cost recovery and revenue adequacy
in expectation only. This may prevent the transition from deterministic to stochastic operational
practices, because deterministic market settlements ensure the satisfaction of market properties
independently of uncertainty realizations. Through the main contributions of [Paper B], in this
section, we explain how the efficiency of the stochastic solution can be approximated within
deterministic dispatch procedures to guarantee per-scenario satisfaction of market properties.

2.3.1 Deterministic versus stochastic energy system dispatch

To accommodate fluctuations of the network parameters, system operators arranged energy system
optimization in two stages. For instance, power systems are optimized first at the day-ahead
stage to meet nominal values of uncertain parameters, followed by the real-time stage where
the day-head decisions are adjusted with respect to uncertainty realizations. To ensure sufficient
system flexibility in real-time, at the first stage, system operators also impose specific reserve
requirements. Building on top of problem (2.3), this first-stage optimization problem writes as

min
ϑ1,ϕ1,ϑ̃

c1(ϑ1, ϑ̃) (2.22a)

s.t. Aϕ1 = ϑ1 − δ : λ1, 1>ϑ̃ = R : λr, (2.22b)

ϑ+ ϑ̃ 6 ϑ1 6 ϑ− ϑ̃, ϕ 6 ϕ1 6 ϕ, ϑ̃ > 0, (2.22c)

where ϑ1 ∈ Rn and ϕ1 ∈ Rm are the nominal values for control and state variables, respectively,
and ϑ̃ ∈ Rn is a variable modeling a reserve margin which offsets the minimum and maximum
capacity of each control action to ensure enough flexibility in real time. The objective function in
(2.22a) is the first-stage convex cost c1 : R2n 7→ R. Equality constraints (2.22b) ensure the balance
between the nominal decisions and that reserve margins are procured up to reserve requirement R.
Their dual variables λ1 ∈ Rn and λr ∈ R respectively constitute the nominal energy and reserve
prices. The inequality constraints (2.22c) ensure that nominal control and state variables remain
within network limits. Notice, for compactness and without much loss of generality, in formulation
(2.22) we drop the linearized equation (2.3c) and assume a symmetric reserve margin for the lower
and upper control variable limits.

1From the dual feasibility conditions of problem (2.20) we have ‖[uϕ]i‖2 6 λ
ϕ
i , ∀i = 1, . . . , n and from the stationarity

conditions of problem (2.20) we know that λϕ = ψϕ. Thus prices uϕ are implicitly dependent on variability penalty ψϕ.
See [Paper A] for details.
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At the second stage, the system operator adjusts the nominal decisions to meet a particular
realization ξ̂ of demand forecast errors using the following optimization:

min
ϑ2,ϕ2

c2(ϑ2) (2.23a)

s.t. Aϕ2 = ϑ2 − ξ̂ : λ2, (2.23b)

− ϑ̃? 6 ϑ2 6 ϑ̃?, (2.23c)

ϕ 6 ϕ?1 + ϕ2 6 ϕ, (2.23d)

where ϑ2 ∈ Rn and ϕ2 ∈ Rm are the second-stage adjustment decisions and the optimal solution
of the first-stage problem (2.22) is denoted with a subscript ?. Problem (2.23) minimizes the
second-stage cost function c2 : Rn 7→ R while satisfying the real-time balance constraint (2.23b)
and real-time decision limits (2.23c) and (2.23d). The dual variable λ2 ∈ Rn of constraint (2.23b)
constitutes the price of real-time adjustments.

In problem (2.23), the real-time adjustment of control variables ϑ2 is made within the procured
reserve margins ϑ̃?. Therefore, an exogenously set reserve requirement R in problem (2.22) must
be sufficient to ensure real-time feasibility. This motivates the following standing assumption.

Assumption 3. Solutions to problems (2.22) and (2.23) exist.

Alternatively, a two-stage problem (2.22)–(2.23) can be solved at the minimum of expected cost
across a finite set of scenarios using the following scenario-based2 stochastic program:

min
ϑ1,ϕ1,ϑ̃,ϑ2,ϕ2

c1(ϑ1, ϑ̃) +
S∑

s=1
πsc2(ϑ2s) (2.24a)

s.t. Aϕ1 = ϑ1 − δ, Aϕ2 = ϑ2 − ξ̂s, (2.24b)

ϑ+ ϑ̃ 6 ϑ1 6 ϑ− ϑ̃, ϑ̃ > 0, −ϑ̃ 6 ϑ2s 6 ϑ̃, (2.24c)

ϕ 6 ϕ1 6 ϕ, ϕ 6 ϕ1 + ϕ2s 6 ϕ, ∀s = {1, . . . , S}, (2.24d)

which does not require the exogenous assignment of reserve requirement R. Instead, it endoge-
nously computes reserve margins ϑ̃ to minimize the expected system cost over two stages and to
ensure solution feasibility within a prescribed set of S uncertainty scenarios.

Despite providing the maximum efficiency in terms of expected cost, the market properties of
energy payments based on the dual solution of problem (2.24) hold only in expectation, as per
Lemmas 1 and 2. The deterministic market settlement based on problems (2.22) and (2.23), instead,
ensures the market properties for any uncertainty realization due to the following results.

Lemma 4 (Cost recovery in the deterministic settlement). Letϑi = 0,∀i = 1, . . . , n and let Assumption
3 hold. Then, under deterministic settlement (2.22)–(2.23), the profit associated with control action
ϑi(ξ), i = 1, . . . , n, is non-negative for any uncertainty realization, i.e., λ1iϑ1i + λrϑ̃i + λ2iϑ2i −
c1i(ϑ1i, ϑ̃i)− c2i(ϑ2i) > 0.

Proof. The first-stage optimization problem implicitly solves the following profit-maximization
problem associated with control variables of each agent i:

max
ϑ1i,ϑ̃i

λ1iϑ1i + λrϑ̃i − c1i(ϑ1i, ϑ̃i) (2.25a)

2Here we consider a scenario-based treatment of uncertainty to be consistent with [Paper B]. However, one may
consider an affine variable recourse and use a chance-constrained formulation as we explained in Section 2.1.2
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s.t. ϑi + ϑ̃i 6 ϑ1i 6 ϑi − ϑ̃i, : (µ1i, µ1i) (2.25b)

ϑ̃i > 0. (2.25c)

Since this problem is convex, the Slater condition holds, and its objective function equals to the
dual objective function in the optimum, such that we have

λ1iϑ1i + λrϑ̃i − c1i(ϑ1i, ϑ̃i) = µ1iϑi − µ1iϑi, (2.25d)

where the right-hand side is non-negative because µ1i > 0 and ϑi = 0. Thus, the cost recovery holds
for the first-stage problem. Next, consider that the second-stage optimization problem implicitly
solves the following profit-maximization problem associated with the real-time adjustment of
control actions:

max
ϑ2i

λ2iϑ2i − c2i(ϑ2i) (2.25e)

s.t. − ϑ̃?i 6 ϑ2i 6 ϑ̃?i , : (µ2i, µ2i). (2.25f)

Since this problem is convex, the Slater condition holds, and its objective function equals to the
dual objective function in the optimum, such that we have

λ2iϑ2i − c2i(ϑ2i) = µ2iϑ̃
?
i + µ2iϑ̃

?
i , (2.25g)

where the right-hand side is always non-negative because of dual feasibility conditions µ2i, µ2i > 0
and that ϑ̃?i > 0 due to the primal feasibility condition of the first-stage problem (2.25c). Hence,
the cost recovery holds for the second-stage problem, thus completing the proof.

Lemma 5 (Revenue adequacy in the deterministic settlement). Let ϕ 6 0 and let Assumption 3 hold.
Then, the deterministic settlement (2.22)–(2.23) is revenue adequate for any uncertainty realization, i.e.,
λ>1 ϑ1 + λr>ϑ̃+ λ>2 ϑ2 − λ>1 δ − λ>2 ξ̂ > 0.

Proof. The proof follows the same line of arguments as in the proofs of Lemmas 2 and 4.

2.3.2 Approximating stochastic solutions within deterministic settlements

In order to ensure the operational feasibility and the market properties as in Lemmas 4 and 5, a
system operator must set a sufficient large reserve requirement R. In practice, this requirement is
set using deterministic security criteria, such as the N − 1 security rule that requires reserves to
cover the largest contingency in the system, or based on a mean forecast load error, as in the PJM
[50] and European markets [51]. Motivated by security aspects, these deterministic criteria are
agnostic to system operating costs and often lead to overly-conservative solutions. To alleviate
the conservatism of the deterministic reserve criteria, in [Paper B], we introduce a cost-optimal
computation of reserve requirement R anticipating its impact on the expected operational cost
within the deterministic dispatch procedure (2.22)–(2.23).

Towards the goal, we propose the following scenario-based stochastic bilevel problem:

min
ϑ2,ϕ2,R

c1(ϑ1, ϑ̃) +
S∑

s=1
πsc2(ϑ2s) (2.26a)

s.t. Aϕ2s = ϑ2s − ξ̂s, (2.26b)

− ϑ̃ 6 ϑ2s 6 ϑ̃, (2.26c)
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where the upper level (2.26a)–(2.26d) minimizes the expected cost by optimizing the real-time
adjustment decisions and reserve requirement R. Here, the first-stage decisions are considered
parameters that are sourced from the lower level (2.26e)–(2.26h). The solution to the lower-level
problem is parameterized by reserve requirement R. Hence, be solving bilevel problem (2.26), a
system operator internalizes the criterion of the minimum expected cost into reserve requirement
R, thus attaining the maximum cost e�ciency of deterministic dispatch procedure (2.22)–(2.23) on
average. Moreover, in line with the stochastic problem (2.24), R is computed to ensure system
feasibility within the prescribed set of uncertainty scenarios.

Bilevel optimization problem (2.26), however, is computationally intractable. To resolve this
di�culty, in line with [Paper B], convex lower-level problem (2.26e)–(2.26h) is replaced with its
KKT optimality conditions to recast the bilevel problem as a single-level mathematical program
with equilibrium constraints. The resulting program includes a nonlinear complementary slackness
condition, which is replaced with its linear equivalent using special ordered set of type 1 (SOS1)
variables, yielding a mixed-integer program.

In Figure 2.2, we illustrate the approximation of stochastic dispatch e�ciency in a power system
with a varying penetration of wind power generation. The figure compares the cost e�ciency of
reserve requirements obtained with a bilevel problem with that of (i) ideal stochastic solution and (ii)
probabilistic reserve requirements computed according to the state-of-the-art reserve-quantification
approach employed by European system operators using probabilistic forecast information3 [49].
Observe that endogenously computed reserve requirements from the bilevel program significantly
outperform the dispatch solution obtained with exogenous probabilistic reserves. However, these
bilevel requirements only approximate the stochastic e�ciency in the interest of preserving the
two fundamental market properties.

2.4 Stochastic market settlement under information asymmetry

So far, we discussed stochastic market settlement and its properties assuming that the information
on underlying uncertainty distribution P› is consistent among system agents. In this case, the
stochastic market settlement is complete as it satisfies all agents’ stochastic preferences in the

3Given a cumulative distribution function of wind power generation, these requirements are computed as the distance
between the expected wind power generation and specified quantiles in both upward and downward directions. Refer to
Section V.B. of [Paper B] for details.
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ϕ 6 ϕ?1 + ϕ2s 6 ϕ, ∀s = {1, . . . , S}, (2.26d)

ϑ1, ϕ1, ϑ̃ ∈ argmin
ϑ1,ϕ1,ϑ̃

c1(ϑ1, ϑ̃) (2.26e)

s.t. Aϕ1 = ϑ1 − δ, 1>ϑ̃ = R (2.26f)

ϑ+ ϑ̃ 6 ϑ1 6 ϑ− ϑ̃, (2.26g)

ϕ 6 ϕ1 6 ϕ, ϑ̃ > 0, (2.26h)

where the upper-level problem (2.26a)–(2.26d) minimizes the expected cost by optimizing the
real-time adjustment decisions and reserve requirement R. Here, the first-stage decisions are
considered parameters that are sourced from the lower-level problem (2.26e)–(2.26h). The solution
to the lower-level problem is parameterized by reserve requirement R. Hence, by solving the
bilevel problem (2.26), a system operator internalizes the criterion of the minimum expected
cost into reserve requirement R, thus attaining the maximum cost efficiency of the deterministic
dispatch procedure (2.22)–(2.23) on average. Moreover, in line with the stochastic problem (2.24),
R is computed to ensure system feasibility within the prescribed set of uncertainty scenarios.

Bilevel optimization problem (2.26), however, is computationally intractable. To resolve this
difficulty, in line with [Paper B], convex lower-level problem (2.26e)–(2.26h) is replaced with its
KKT optimality conditions to recast the bilevel problem as a single-level mathematical program
with equilibrium constraints. The resulting program includes a nonlinear complementary slackness
condition, which is replaced with its linear equivalent using special ordered set of type 1 (SOS1)
variables, yielding a mixed-integer program.

In Figure 2.2, we illustrate the approximation of stochastic dispatch efficiency in a power system
with a varying penetration of wind power generation. The figure compares the cost efficiency of
reserve requirements obtained from the bilevel problem with that of (i) ideal stochastic solution
and (ii) probabilistic reserve requirements computed according to the state-of-the-art reserve-
quantification approach employed by European system operators using probabilistic forecast
information3 [51]. Observe that endogenously computed reserve requirements from the bilevel
program significantly outperform the dispatch solution obtained with exogenous probabilistic
reserves. However, these bilevel requirements only approximate the stochastic efficiency in the
interest of preserving the market properties of cost recovery and revenue adequacy.

3Given a cumulative distribution function of wind power generation, these requirements are computed as the distance
between the expected wind power generation and specified quantiles in both upward and downward directions. Refer to
Section V.B. of [Paper B] for details.
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2.4 Stochastic market settlement under information asymmetry

So far, we have discussed the stochastic market settlement and its properties assuming that the
information on underlying uncertainty distribution Pξ is consistent among all system agents. In
this case, the stochastic market settlement is complete as it satisfies all agents’ stochastic preferences,
i.e., the profits of market participants are maximized in expectation with respect to Pξ. This is no
longer the case when information on Pξ is asymmetric, which leads to incomplete markets from
the information standpoint. This section discusses how stochastic settlement can be completed to
satisfy stochastic agent preferences under information asymmetry.

Following the assumptions of [Paper C], we simplify the base problem (2.3) by modeling a
single producer and a single consumer, optimizing dispatch decisions respecting their stochastic
preferences, and disregarding state variables. Specifically, we consider that the renewable power
generation is the only source of uncertainty described through a finite set of S scenarios ξ1, . . . , ξS .
The producer’s decision making is organized in two stages through the first-stage energy supply
decision ϑ1 and a set of second-stage decisions ϑ21, . . . , ϑ2S that model the real-time adjustments
with respect to uncertainty realizations. Energy supply costs are modeled respectively for the first
and second stages by convex functions c1 and c2 of one variable. Similarly, consumer’s energy
demand is modeled as a first-stage variable δ1 followed by real-time adjustments δ21, . . . , δ2S that
are governed by the first- and second-stage concave utility functions u1 and u2 of one variable.
Finally, we assume that producer and consumer decisions belong to compact and convex sets P
and C, respectively. This setting motivates the following centralized scenario-based stochastic
optimization:

min
ϑ1,δ1

ϑ21,...,ϑ2S,δ21,...,δ2S

c1(ϑ1)− u1(δ1) +
S∑

s=1
πmo
s (c2(ϑ2s)− u2(δ2s)) (2.27a)

s.t. ϑ1 + ϑ2s + ξs − δ1 − δ2s = 0, : λs, ∀s = {1, . . . , S} (2.27b)

(ϑ1, ϑ21, . . . , ϑ2S) ∈ P, (δ1, δ21, . . . , δ2S) ∈ C, (2.27c)

which optimizes the expected social cost with respect to a set of probabilities πmo
1 , . . . , πmo

S , assigned
by a central entity, e.g., market operator in this case. The dual variables λ1, . . . , λS thus reflect the
expectation of market operator over stochastic renewable in-feed. These dual variables are also
called probability-adjusted electricity prices: in scenario s, the real-time electricity price anticipated
by the market operator at the first-stage is retrieved as λs/πmo

s .

This stochastic problem can also be solved through the following equilibrium formulation:

max
λ̃s

− λ̃s[ϑ1 + ϑ2s + ξs − δ1 − δ2s], ∀s = {1, . . . , S}, (2.28a)

max
ϑ1,ϑ21,...,ϑ2S

S∑

s=1
πp
s

[
λ̃s

π
p
s

(ϑ1 + ϑ2s)− c2(ϑ2s)
]
− c1(ϑ1), (ϑ1, ϑ21, . . . , ϑ2S) ∈ P, (2.28b)

max
δ1,δ21,...,δ2S

S∑

s=1
πc
s

[
u2(δ2s)−

λ̃s
πc
s

(δ1 + δ2s)
]

+ u1(ϑ1), (δ1, δ21, . . . , δ2S) ∈ C, (2.28c)

which is given by a set of optimization problems of three agents. A price-setting agent in (2.28a)
seeks equilibrium prices λ̃1, . . . , λ̃S in response to system imbalance for each outcome of renewable
production. Power producer and consumer, respectively in (2.28b) and (2.28c), optimize the
expected profit in response to equilibrium prices by choosing optimal first- and second-stage
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Figure 1: Prices as a function of probabilities that agents assign to the two uncertainty outcomes

2

Figure 2.3: Equilibrium prices as a function of agent information. Sourced from [Paper C].

decisions. Problems (2.28b) and (2.28c) optimize the welfare of the two agents with respect to
their private probability assignments πp

1 , . . . , π
p
S and πc

1, . . . , π
c
S . Therefore, equilibrium prices are

implicitly functions of the information that agents internalize into their optimization problems.

When information is consistent among market operator in (2.27) and agents in (2.28), i.e., πmo
s =

π
p
s = πc

s,∀s = {1, . . . , S}, the solutions to the centralized and equilibrium problems are the same,
by equivalence of KKT optimality conditions we have λ = λ̃. In this case, the centralized stochastic
settlement is complete as it satisfies the stochastic preferences of all agents in the equilibrium
problem, and thus the result of Lemma 1 holds. This is no longer the case when the information on
the underlying distribution is asymmetric among the agents, making the centralized stochastic
settlement in (2.27) incomplete.

This necessitates two market redesign solutions proposed in [Paper C]. The first relies on a
decentralized computation of equilibrium solution to problem (2.28) that naturally embodies
the dynamic price adjustment process (so-called Walrasian auction [52]): the prices are updated
followed by producer and consumer updates. The second relies on a centralized computation that
requires agents to submit their private probability assignments to the market operator. Through
analyzing the technical properties of existence and uniqueness of equilibrium solution, we find in
[Paper C] that there exists a centralized optimization problem that solves equilibrium (2.28), i.e.,

min
ϑ1,δ1

ϑ21,...,ϑ2S,δ21,...,δ2S

c1(ϑ1)− u1(δ1) +
S∑

s=1
(πp
sc2(ϑ2s)− πc

su2(δ2s)) (2.29a)

s.t. Constraints (2.27b)− (2.27c), (2.29b)

which makes Lemma 1 hold with respect to the private information of the agents. It is worth
noting that this result is possible owing to the linearity of expectation, which is separable in agent
optimization variables. This is not always the case if agents are guided by non-separable stochastic
measures, such as CVaR risk measure, see for example [25].

We conclude by analyzing electricity prices as functions of private information. In [Paper C]
we show that by rearranging the KKT optimality conditions of problem (2.29), the prices admit
analytical dependency on probability assignments. For a simple setup with two wind power
production scenarios (low ` and high h), this dependency is illustrated in Figure 2.3. In case (N),
when producer assigns the whole probability mass to outcome `, it leads to a nearly zero price
associated with outcome h. A similar situation holds in the opposite case (F). In a quite critical
case (�) with a highly asymmetric assignment of probabilities, the equilibrium yields almost zero
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prices for both outcomes. This, in turn, has drastic implications on system operations, social
welfare, and decentralized computations that are studied in detail in [Paper C].



CHAPTER3
Privacy-Preserving Optimization

in Energy Systems
Solving energy optimization problems requires utilizing large optimization datasets that tend to
leak through releases of optimization results. This calls for ethical energy system optimization
without involving the risk of disclosing private attributes of these datasets. In this chapter, we
introduce privacy-preserving algorithms to solve energy optimization problems while systemati-
cally controlling the risks of leaking private optimization datasets, according to the main results of
[Paper D]–[Paper F]. We start with Section 3.1, where we introduce the most representative power
system optimization task – the optimal power flow (OPF) problem – and discuss its distributed and
centralized computations. In Section 3.2, we design adversarial privacy attack models to identify
privacy breaches in OPF computations and to substantiate privacy goals. These models are formu-
lated anticipating various types of privacy adversaries, including model-aware and model-agnostic
adversaries and those with full or limited access to OPF results. To enable privacy guarantees, we
use the notion of differential privacy, whose main definitions and results are presented in Section
3.3. Moving towards private computations, Section 3.4 introduces distributed OPF algorithms
that ensure a privacy-preserving information exchange among algorithm sub-problems. Finally,
Section 3.5 presents centralized OPF computations with both privacy and feasibility guarantees.

3.1 Optimal power flow problem

The OPF problem is the most representative power system optimization task, which is solved on a
daily basis to identify the optimal energy allocations that ensure economically efficient and secure
operations [39]. As this problem requires input datasets with many sensitive parameters, e.g.,
market bids and network parameters, it is of special interest to privacy-preserving computations.
Throughout the chapter, we mainly build on top of the DC approximation of this problem, which
ignores modeling reactive power, losses, and assumes fixed voltage magnitudes, but often used for
market clearing, cross-border coordination and operational planning. This formulation is used in
[Paper D] and [Paper E], and we refer to [Paper F] for an AC-OPF formulation.

3.1.1 Power network equations

A power network is modeled as a graph Γ (N ,Λ), where N = {1, . . . , N} is the set of nodes and
Λ = {1, . . . , L} is the set of edges connecting those nodes. Each edge represents a transmission
line with the assigned direction from sending node n to receiving node n′, i.e., if (n, n′) ∈ Λ, then
(n′, n) /∈ Λ, yet the energy flows are undirected and can take either positive or negative values.
Each line is described through its susceptance β ∈ RL+ and maximum transmission capacity f ∈ RL+.

27
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Let θ ∈ RN be a vector of nodal voltage angles. The power flows across the network can be thus
computed as

f` , β` (θn − θn′) , ∀` = (n, n′) ∈ Λ.

Next, consider the network topology through a weighted Laplacian matrix B ∈ RN×N , such that

Bnm =





−β`, if m = n′∑
`=(n,:) β`, if k = n

0, otherwise

∀` = (n, n′) ∈ Λ.

Let vector d ∈ RN+ collect all network loads, and let variable vector p ∈ RN collect real power
generation within the minimum and maximum generation capacity of network nodes p ∈ RN+ and
p ∈ RN+ , respectively. Then, power flows, generation quantities and loads are balanced for each
node through the following power conservation law in a vector form

Bθ = p− d,

where the left-hand side computes the net power flow injection for all network nodes.

3.1.2 Centralized optimization of the optimal power flow problem

The OPF problem seeks the minimum aggregated generation cost while meeting the technical
limits on power flows and generation. Let c : RN 7→ R be a convex function which computes the
aggregated generation cost. Then, the centralized OPF optimization problem formulates as

min
p,θ

c (p) (3.1a)

s.t. Bθ = p− d, (3.1b)

− f ` 6 β` (θn − θn′) 6 f `, ∀` = (n, n′) ∈ Λ, (3.1c)

p 6 p 6 p, (3.1d)

where the aggregated cost function (3.1a) is minimized subject to power network equations (3.1b),
power flow limits (3.1c), and power generation limits (3.1d).

3.1.3 Distributed optimization of the optimal power flow problem

The OPF problem (3.1) is solved by a central entity, typically by a system operator, who collects
optimization data and performs a centralized computation. To enable such a computation, the
information about network topology, cost functions, generation limits and loads must be disclosed
and made available to a central entity, thus giving rise to privacy risks. Motivated by privacy
concerns, it has been proposed to distribute optimization datasets among sub-problems that
perform local OPF computations and coordinate over iterations towards the solution of the original
OPF problem [53]. Since the optimization dataset is distributed and localized within local OPF
computations, this approach is promising to preserve data integrity.

Distributed OPF computations are often performed using a consensus version of an alternating
direction method of multipliers (consensus ADMM) algorithm [55] that decomposes a network per
individual nodes (or per zones comprising several nodes). Such a nodal network decomposition is
illustrated in Figure 3.1. The ADMM algorithm requires duplicating voltage angle variables (3.1),
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Figure 1.1: Illustration of the node-wise decomposition of the 3-node power network: the original
network on the left, and its mirrored decomposed counterpart on the right. The original network
is “simulated” by enforcing consensus constraints for every node across its neighborhood.

perform local OPF computations and coordinate over iterations towards the solution of the original
OPF problem [1]. Since the optimization dataset is distributed and localized within local OPF
computations, this approach is promising to preserve data integrity.

Typically, distributed OPF computations involve the consensus version of an alternating direction
method of multipliers (consensus ADMM) algorithm [2] that decomposes a network per individual
nodes (or per zones comprising several nodes). Such a nodal network decomposition is illustrated
in Figure 1.1. The ADMM algorithm requires duplicating voltage angle variables (1.1), such that
each ith network node (zone) stores local copies ◊i œ RN of voltage angles and updates them across
iterations to reach the satisfaction of the following consensus constraint:

◊i ≠ ◊ = 0 : µi, ’i œ N , (1.2)

where ◊ œ RN is the vector of consensus variables and µi œ RN is the vector of dual variables
associated with consensus constrains of each node i. Constraint (1.2) requires that all nodes store
identical copies of voltage angles. Let Oi denote a set of constraints (1.1b)–(1.1d) associated with
node i. By dualizing (1.2), we have the optimization of the following partial Lagrangian function:

max
µ

min
p,◊,◊

L
!
p, ◊, ◊, µ

"
:= c(p) +

Nÿ

i=1
µ€
i

!
◊ ≠ ◊i

"
(1.3a)

s.t. p, ◊ œ
N‹

i=1
Oi, (1.3b)

which is separable per each node i. Problem (1.3) can be thus optimized in a distributed manner
over iterations using Algorithm 1. This algorithm updates the consensus variable ◊ using the
average value over local updates as explained in [2]. The value of dual variables at Step 7 evolves
along the decent direction with a suitable step size fl. The algorithm terminates when the primal
residual is below convergence tolerance r or when the iteration counter reaches iteration limit K.
The general convergence analysis of this algorithm is provided in [2] and implementation details
are available in ??.

1.2 Privacy breaches in optimal power flow computations

Although optimization dataset are not explicitly disclosed in the release of optimization results, the
centralized OPF computation in (1.1) and its distributed counterpart in Algorithm 1 tend to leak

Figure 3.1: Node-wise decomposition of a power network: the original network on the left, and
its mirrored decomposed counterpart on the right. The original network is restored by enforcing
consensus constraints for every node across its neighborhood. Sourced from [54, arXiv v.1].

such that each nth node stores local copies θn ∈ RN of voltage angles and updates them across
iterations to reach the satisfaction of the following consensus constraint:

θn − θ = 0 : µn, ∀n ∈ N , (3.2)

where θ ∈ RN is the vector of consensus variables and µn ∈ RN is the vector of dual variables
associated with consensus constraints of each node n. Constraint (3.2) requires that all nodes store
identical copies of voltage angles. Let On denote a subset of constraints (3.1b)–(3.1d) specific to
node n. By dualizing (3.2), we have the optimization of the following partial Lagrangian function:

max
µ

min
p,θ,θ

L
(
p, θ, θ, µ

)
:= c(p) +

N∑

n=1
µ>n
(
θ − θn

)
(3.3a)

s.t. p, θ ∈
N⋂

n=1
On, (3.3b)

which is separable per each node n. Problem (3.3) can be thus solved in a distributed manner over
iterations using Algorithm 1. This algorithm updates the consensus variable θ using the average
value over local updates as explained in [55]. The value of dual variables in Step 7 evolves along
the decent direction with a suitable step size ρ. The algorithm terminates when the primal and dual
residuals are below convergence tolerance r or when the iteration counter reaches iteration limit
K. The general convergence analysis of this algorithm is provided in [55] and implementation
details are available in [Paper D].

3.2 Privacy breaches in optimal power flow computations

Although optimization datasets are not explicitly disclosed in the release of optimization results,
the centralized OPF computation in (3.1) and its distributed counterpart in Algorithm 1 tend to leak
certain dataset attributes. Here, we overview the privacy attack models that identify the privacy
breaches in the centralized and distributed OPF computations. In Section 3.2.1, we first formalize
OPF computations through a mathematical mechanism with certain properties, and then introduce
two types of attack models: reconstruction models in Section 3.2.2 that are solved by adversaries
with almost full knowledge of the underlying computation, and tracing models in Section 3.2.3
that identify the private dataset items through repeated observations of OPF outcomes.
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Algorithm 1 Distributed ADMM-based OPF computation

Input: K, ρ, θ
0
, µ0 and r

1: k ← 0
2: while rk 6 r or k 6 K do
3: k ← k + 1
4: Local update ∀n = 1, . . . , N :

θkn ← argmin
pn,θn

Ln
(
pn, θn, θ

k−1
, µk−1
n

)
+ ρ

2

∥∥∥θn − θ
k−1
∥∥∥

2

2
, s.t. pn, θn ∈ On

5: Consensus variable update: θ
k

n =
∑N
i=1 θ

k
in/N, ∀n = 1, . . . , N

6: Dual variable update: µkn = µk−1
n + ρ(θk − θkn), ∀n = 1, . . . , N

7: Primal residual update: rk =
∑N
n=1

∥∥∥θk − θkn
∥∥∥

2
8: end while

3.2.1 OPF computation problem as a mechanism

From the privacy standpoint, it is convenient to consider an OPF computation as a mechanism
M : Rn 7→ Rm, which maps n private dataset items into m computational results released once
mechanismM is executed. For example, centralized OPF optimization problem (3.1) can be seen
as a mapping from load, generation, and network topology data into aggregated OPF statistics,
such as aggregated generation cost or generation mix. Similarly, consider that the load value dn of
the nth ADMM sub-problem in Algorithm 1 is a private data. The sub-problems are thus seen as
mechanisms from their private load values to the local voltage updates released at iteration k. The
goal of a privacy adversary is to infer the attributes of any individual item in the private dataset by
observing m computational results. Towards the formulation of privacy attack models, we limit
our attention to the mechanisms that satisfy the following standing assumption.

Assumption 6. MechanismM is the unique mapping from a dataset to the OPF solution.

This assumption is introduced to avoid attack models with ambiguous outcomes and allows us
to model more powerful privacy adversaries. Assumption 6 is not limiting for OPF problems
that admit a unique solution. For instance, the solution of OPF problem (3.1) is unique when cost
function c(p) is strictly monotone in variable p and the voltage angle at the reference node r ∈ N is
set to zero, i.e., θr = 0, thus admitting a unique optimal power flow solution [56].

3.2.2 Reconstruction models of privacy attacks

Reconstruction models of privacy attacks are executed by adversaries that are aware of the
underlying optimization problem but lack certain input optimization data. Thus, they exploit
the knowledge about optimization structure to reconstruct the missing data from the observed
optimization results. We consider the following examples of reconstruction models.

Load reconstruction in the centralized OPF computation. Consider a centralized OPF problem
as a mapping from private load datasets to generator dispatch decisions. Considering the loads
as the only private information, the rest of the parameters are assumed publicly known. Let p̂
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denote the optimal dispatch solution released upon solving problem (3.1). Then, the reconstruction
privacy attack can be executed by solving the following optimization:

min
p,θ,d>0

c(p) + Υ ‖p− p̂‖22 (3.4a)

s.t. Bθ = p− d, p, θ ∈ constraints (3.1c)− (3.1d). (3.4b)

In contrast to problem (3.1), here the load vector d ∈ RN is modeled as a decision variable. The
objective function (3.4a) is composed of the objective function of the original problem (3.1a) and
a regularization term which penalizes the distance between the optimal generator dispatch of
problem (3.4) and that of problem (3.1) for some non-negative factor Υ ∈ R+. With increasing Υ,
the value of objective function (3.4a) convergences to that of (3.1a) because of the uniqueness of
the global optimal solution to problem (3.1). Therefore, by choosing a sufficiently large factor Υ,
problem (3.4) reconstructs the unique dataset d that produces the optimal solution p̂.

Load reconstruction in the distributed OPF computation. Such reconstruction attacks also
apply for distributed OPF computations in Algorithm 1, where repeated computations are made
on the same input dataset. Indeed, across ADMM iterations, each sub-problem n releases the
sequence θ1

n, . . . , θ
k
n, . . . , θ

K
n of up to K voltage angles computed on the same load value dn. An

adversary can thus solve the following reconstruction problem:

min
pn,θ̂n,dn>0

K∑

k=1

(
Ln
(
pkn, θ̂

k
n, θ

k−1
, µk−1
n

)
+ ρ

2

∥∥∥θ̂kn − θ
k
∥∥∥

2

2
+ Υ

∥∥∥θ̂kn − θkn
∥∥∥

2

2

)
(3.5a)

s.t. B>n θ̂
k
n = pkn − dn, ∀k = 1, . . . ,K, (3.5b)

pkn, θ̂
k
n ∈ constraints (3.1c)− (3.1d), ∀k = 1, . . . ,K, (3.5c)

which identifies the private value dn by minimizing the distance between the voltage variables
and the voltage updates released by sub-problem n across K iterations.

3.2.3 Tracing models of privacy attacks

Unlike reconstruction models that identify missing data items using a single computation,
tracing models of privacy attack rely on repeated observations of optimization outcomes to draw
conclusions about private data attributes.

Tracing loads in the centralized OPF computation. Consider a centralized OPF computation
which is solved repeatedly over time. It can be seen as a mappingM : Rn×t 7→ Rm×t from n loads
across t time periods to m OPF outcomes in the same time periods. A tracing model of privacy
attack identifies the changes of loads by observing the changes in the released OPF outcomes.
[Paper F] provides an example of this attack in the context of the centralized OPF problem, where
a load variation at a single node (n = 1) is directly exposed by the changes of the voltage and
power flow (m = 2) associated with that node across t = 250 observations, as shown in Figure 3.2.
Here, three periodic load components are exposed by voltage and power flow measurements. A
privacy adversary thus identifies the load activity without reconstructing the exact load values.
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Algorithm 2 Market bid reconstruction

1: Attack inputs: aggregated cost C =
qN

i=1 cipi, aggregated load D =
qN

i=1 di
2: Get cost and generation data (cj , pj)jœN\i from all but one generator i
3: Generation volume reconstruction: pi = D ≠ q

jœN\i pj
4: Cost reconstruction: ci = (C ≠ q

jœN\i cjpj)/pi

linear cost functions for generators that represent their price bids. Then, a release of the aggregated
cost and load statistics involves the risk of disclosing private market bids as shown in Algorithm
2. The Algorithm performs a side privacy attack to reconstruct the generation volume and the
cost coe�cient of an individual generator. Here, the aggregated cost (C) and load (D) information
together with the side information from all but one agent disclose the private data of a single agent.

1.2.3 Tracing models of privacy attacks

Unlike reconstruction models, that are capable of identifying the missing data items using a single
computation, tracing models of privacy attack relies on repeated observations of OPF outcomes to
draw conclusions about private data attributes.

Tracing loads in the centralized OPF computation Consider a centralized OPF computation which
is solved repeatedly over time. It can be seen as a mappingM : Rn◊t ‘æ Rm◊t from n loads across
t time periods to m OPF outcomes in the same time periods. A tracing model of privacy attack
aims at identify the changes of loads by observing the changes in the released m OPF outcomes. ??
provides an example of such attack in the context of the centralized OPF problem, where a load
variation at a single node (n = 1) is directly exposed by the changes of the voltage and power
flow (m = 2) associated with that node across t = 250 observations, as shown in Figure 1.2. Here,
the load at the node of interest consists of three periodic components that are exposed by voltage
and power flow measurements. A privacy adversary thus identifies the load activity without
reconstructing the exact load values.

Tracing loads in the distributed OPF computation The tracing attack models also apply to
distributed OPF computations in Algorithm 1, where each sub-problem is repeatedly solved across
iterations. This enables a privacy adversary to trace the load contained in each sub-problem across
iterations. In the preprint version [4, arXiv v.1] of ??, we express the unknown load value as a
function of (i) ADMM coordination signals, (ii) algorithmic parameters, and (iii) side network data.
Assume quadratic cost functions for each sub-problem with the first- and second-order coe�cients

0 100 200
1.5

2

2.5

time step t

load profile [MW]

0 100 200

0.99

0.99

0.99

1

time step t

voltage profile [p.u.]

0 100 200
1.5

2

2.5

time step t

power flow [MW]

Figure 1.2: Example of a tracing privacy attack on the centralized OPF computation: the voltage
and power flow optimal solution reveals the load profile used in computations.
Figure 3.2: Example of a tracing privacy attack on the centralized OPF computation: the voltage at
and power flow into the node of interest reveal the load profile used in the computation. Sourced
from [Paper F].

Tracing loads in the distributed OPF computation. Tracing privacy attacks also apply to dis-
tributed OPF computations in Algorithm 1, where each sub-problem is repeatedly solved across
iterations. This enables a privacy adversary to trace the load contained in each sub-problem across
iterations. In the preprint version [54, arXiv v.1] of [Paper D], we express the unknown load value
as a function of (i) ADMM coordination signals, (ii) algorithmic parameters, and (iii) network data.
For quadratic cost functions with the first- and second-order coefficients c1 ∈ RN and c2 ∈ RN ,
respectively, the load value of sub-problem n at iteration k can be estimated as:

d̂kn = µk−1
nn + ρ(θk−1

n − θknn)− c1iBnn
2c2nBnn

−
N∑

n′=1
Bnn′θknn′ + f(λn), (3.6)

where λn ∈ R` is the vector of ` dual variables associated with inequality constraints (3.3b) of
each sub-problem n, and function f : R` 7→ R is such that f(0) = 0. Using tracing attack model
(3.6), a privacy adversary estimates the load value across iterations. Whenever sub-problem’s
inequalities are non-binding, i.e., λn = 0, a privacy adversary computes the exact load value.
An example of such an attack on the second node of the IEEE 14-node Reliability Test System is
depicted in Figure 3.3. The figure shows the estimated load observed by an adversary across more
than 1,000 ADMM iterations; whenever generator constraints are not binding at the second node,
an adversary observes the actual load magnitude at that node. This value also appears to be the
most frequent as shown by the empirical density plot in Figure 3.3.
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Figure 1.3: Example of a tracing privacy attack on the distributed OPF computation using the IEEE
14-node Reliability Test System: (left) load value in (1.6) across ADMM iterations, (right) empirical
density of observed load values.

c1 œ RN and c2 œ RN , respectively. Then, at iteration k the load value of sub-problem i can be
estimated as:

d̂ki = µk≠1
ii + fl(◊k≠1

i ≠ ◊kii) ≠ c1iBii

2c2iBii
≠

Nÿ

j=1
Bij◊

k
ij + f(⁄i), (1.6)

where ⁄i œ R¸ is the vector of ¸ dual variables associated with inequality constraints of each
sub-problem i, and function f : R¸ ‘æ R1 is such that f(0) = 0. Using tracing attack model (1.6), a
privacy adversary estimates the load value across iterations. Importantly, whenever sub-problem’s
inequalities are non-binding, i.e., ⁄i = 0, a privacy adversary computes the exact load value. An
example of such an attack on the second node of the IEEE 14-node Reliability Test System is
depicted in Figure 1.3. The figure shows the estimated load observed by an adversary across more
than 1,000 ADMM iterations; whenever generator constraints are not binding at the second node,
an adversary observes the actual load magnitude at that node. This value also appears to be the
most frequent as shown by the empirical density plot in Figure 1.3.

1.3 Di↵erential privacy: main definitions and results

The attack models introduced in the previous section identify various privacy breaches in OPF
computations. To minimize the risks of OPF dataset exposures, we internalize the notation of
di↵erential privacy into OPF computations. The notation requires introducing carefully calibrated
perturbations within OPF computations that enables formal di↵erential privacy guarantees. This
section reviews the main definitions and results from di↵erential privacy that serve as building
blocks for the upcoming private OPF algorithms.

Recall that we consider an OPF computation, either centralized or distributed, as a mechanism
M : Rn ‘æ Rm which maps n dataset items into m optimization results, as illustrated in Figure 1.4.
For example, Step 5 of Algorithm 1 runs N mechanisms that output identity queries over solutions
of ADMM sub-problems. The goal of di↵erential privacy OPF mechanism is to make any two
adjacent, i.e., di↵erent in one item, datasets indistinguishable from the mechanism output. That
is, the mechanism output does not disclose the underlying di↵erences between the two datasets.
These di↵erences must be measurable and are formalized using the following definition.

Definition 2 (–≠adjacency of two datasets [5]). Two datasetsD = {e1, . . . , en} andDÕ = {eÕ
1, . . . , e

Õ
n}

are said to be –-adjacent for some parameter – œ R+, denoted by D ≥– DÕ, if there exists k œ {1, . . . , n}
such that Îek ≠ eÕ

kÎ1 6 – and ej = eÕ
j ,’j œ {1, . . . , n}\k.

Figure 3.3: Example of a tracing privacy attack on the distributed OPF computation using the IEEE
14-node Reliability Test System: (left) load value in (3.6) across ADMM iterations, (right) empirical
density of observed load values. Sourced from [54, arXiv v.1].
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Optimization dataset
D œ {d1, . . . , dn}

OPF optimization
min
xœRk

c(x) s.t. x œ X (D)
Query function
Q : Rk ‘æ Rm

(statistics, identity)
Q(x(D))

mechanism

D x(D) output

›
input perturbation

›
mechanism perturbation

›
output perturbation

Figure 1.4: OPF optimization as a mechanism that maps datasets into queries over optimization
results. A dataset D parametrizes the solution x of an optimization problem. For instance, the
solution space X can be a function of D. The dataset is leaked through the queries made over
solution x, that may include any linear transformation of x. The blue arrows define three random
perturbation strategies that can be used to provide privacy for optimization datasets.

In the OPF context, a dataset D contains, for example, electrical loads of a given power network.
Let electrical loads be normalized such that each load belongs to the interval from 0 to 1. Then,
by choosing – = 1, one analyzes two datasets D and DÕ di↵erent at position k by a exactly one
electrical load. This 1≠adjacency of two datasets admits the Hamming distance between the two
datasets and the mechanism thus obfuscates the presence of a single electrical load. In power
systems, however, the presence of loads is often common knowledge. By choosing – < 1, a
mechanism of interest rather obfuscates a magnitude of individual dataset items.

The adjacent datasets are obfuscated in the mechanism output by means of randomization.
Consider a randomized counterpart M̃ of a deterministic OPF mechanismM. The randomized
mechanism is said to be di↵erentially private if it satisfies the following definition.

Definition 3 (Di↵erential Privacy [6]). A randomized mechanism M̃ : D ‘æ R with domain D and
rangeR is (Á, ”)-di↵erential private if, for any output O ™ R and any two adjacent datasets D ≥– DÕ œ D

P[M̃(D) œ O] 6 exp(Á)P[M̃(DÕ) œ O] + ”, (1.7)

where P denotes the probability over runs of M̃.

In this definition, Á is the privacy loss and ” œ (0, 1) is the probability of failure; both are di↵erential
privacy parameters that respectively bound the multiplicative and additive di↵erences between
output distributions obtained on di↵erent datasets. Thus, the smaller assignments of Á and ”

result in stronger privacy protection. When ” æ 0, mechanism M̃ satisfies the pure definition
of Á≠di↵erential privacy. This privacy property can be relaxed by allowing a typically small
probability of failure ”. Finally, observe that Definition 3 requires the mechanism to be deferentially
private for any adjacent dataset pair D and DÕ in the mechanism domain. Therefore, di↵erential
privacy is provided for any element k œ {1, . . . , n} of n≠dimensional input dataset, thus addressing
individual privacy risks.

The randomization M̃ of a mechanism M can be achieved by adding a calibrated noise to its
input, output or the mechanism itself, see Figure 1.4. Regardless of the chosen strategy, to enable
di↵erential privacy guarantees for optimization datasets, the noise parameters must be calibrated
to the mechanism sensitivity to optimization datasets.

Figure 3.4: OPF optimization as a mechanism that maps datasets into queries over optimization
results. Here, the solution space X of an optimization problem is conditioned to dataset D. This
dataset leaks through the queries made over solution x, that may include any linear transformation
of x. The blue arrows define three random perturbation strategies that can be used to provide
differential privacy for optimization datasets.

3.3 Differential privacy: main definitions and results

The attack models introduced in the previous section identify various privacy breaches in OPF
computations. To minimize the risks of OPF dataset exposures, we internalize the notion
of differential privacy into OPF computations. This section reviews the main definitions and
theoretical results of differential privacy that are at the core of the upcoming private OPF algorithms.

Recall that we consider an OPF computation, either centralized or distributed, as a mechanism
M : Rn 7→ Rm which maps n dataset items into m optimization results, as illustrated in Figure 3.4.
For example, Step 5 of Algorithm 1 runs N mechanisms that output identity queries over solutions
of ADMM sub-problems. The goal of the differentially private OPF mechanism is to make any two
adjacent (different in one item) datasets indistinguishable from the mechanism output. That is, the
mechanism output does not disclose the underlying differences between the two datasets. These
differences must be measurable and are formalized using the following definition.

Definition 7 (α−adjacency of two datasets [57]). Two datasets D = {e1, . . . , en} and D′ =
{e′1, . . . , e′n} are said to be α-adjacent for some parameter α ∈ R+, denoted by D ∼α D′, if there
exists k ∈ {1, . . . , n} such that ‖ek − e′k‖1 6 α and ej = e′j ,∀j ∈ {1, . . . , n}\k.

In the OPF context, a dataset D contains, for example, electrical loads of a given power network.
Let electrical loads be normalized such that each load belongs to the interval from 0 to 1. Then, by
choosing α = 1, one analyzes two datasets D and D′ different at position k by exactly one electrical
load. This 1−adjacency of two datasets admits the Hamming distance between the two datasets
and the mechanism thus obfuscates the presence of a single electrical load. In power systems,
however, the presence of loads is often common knowledge. By choosing α < 1, the mechanism of
interest rather obfuscates the magnitudes of individual dataset items.

The adjacent datasets are obfuscated in the mechanism output by means of randomization using
one of the three strategies depicted in Figure 3.4. Regardless of the chosen strategy, consider a
randomized counterpart M̃ of a deterministic OPF mechanismM. The randomized mechanism is
said to be differentially private if it satisfies the following definition.

Definition 8 (Differential Privacy [27]). A randomized mechanism M̃ : D 7→ R with domain D and
rangeR is (ε, δ)-differential private if, for any output O ⊆ R and any two adjacent datasets D ∼α D′ ∈ D

P[M̃(D) ∈ O] 6 exp(ε)P[M̃(D′) ∈ O] + δ, (3.7)
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where P denotes the probability over runs (executions) of M̃.

In this definition, ε is the privacy loss and δ ∈ (0, 1) is the probability of failure; both are differential
privacy parameters that respectively bound the multiplicative and additive differences between
output distributions obtained on different datasets. Thus, the smaller assignments of ε and δ

result in stronger privacy protection. When δ → 0, mechanism M̃ satisfies the pure definition
of ε−differential privacy. This privacy property can be relaxed by allowing a typically small
probability of failure δ. Finally, observe that Definition 8 requires the mechanism to be differentially
private for any adjacent pairs D and D′ in the mechanism domain. Therefore, differential privacy
is provided for any element k ∈ {1, . . . , n} of n−dimensional input dataset, thus addressing
individual privacy risks.

To enable formal differential privacy guarantees for optimization datasets, the noise parameters
must be calibrated using the sensitivity of a mechanism to optimization datasets. The sensitivity
reflects the change of mechanism output with respect to any single change in mechanism input.

Definition 9 (Global sensitivity [32]). The global sensitivity ∆n of a mechanismM is defined by

∆n := max
D∼αD′

‖M(D)−M(D′)‖n , (3.8)

where D and D′ are α−adjacent datasets in mechanism domain D.

The sensitivity is global in the sense that it is defined over any α−adjacent load dataset within the
mechanism domain. If a dataset D contains private loads, the sensitivity ∆n shows the maximum
change of the OPF solution with respect to any load changes for the given adjacency coefficient α.
Unless the adjacency coefficient is marginal, computing ∆n is difficult and its estimation reduces to
finding upper bounds. For instance, if the private data is contained in constraint set, the maximum
diameter of the Lowner-John ellipsoid enveloping the constraint set [58, Section 3.7.2.2] admits an
upper bound on ∆n [33]. Alternatively, the upper bound on the global sensitivity can be estimated
from the structural properties of the problem of interest, as we establish in [Paper D]–[Paper F].

As the upper bounds on the global sensitivity are known to be conservative, the local mechanism
sensitivity is often used to alleviate the conservatism. Unlike the global sensitivity, the local one is
computed for any adjacent dataset in the neighbourhood of the original dataset.

Definition 10 (Local sensitivity [27]). The local sensitivity sn of a mechanismM(D) is defined by

sn := max
D′
‖M(D)−M(D′)‖n , (3.9)

where D′ is any α−adjacent to D dataset in mechanism domain D.

The privacy properties are thus dependent on the choice of local or global mechanism sensitivity.
Moreover, various noise distributions allow a data holder to choose between the pure differential
privacy and its relaxations. For example, global `1−sensitivity ∆1 underpins the so-called Laplace
mechanism, which provides global ε−differential privacy, as per the following result.

Theorem 11 (Laplace mechanism [27]). LetM : Rn 7→ Rm be a mechanism that maps n−dimensional
datasets to m real numbers, and let ∆1 be its global `1−sensitivity on α-adjacent datasets. The randomized
mechanism M̃(D) ,M(D)+ ξ, where ξ ∈ Rm is a zero-mean random vector from the Laplace distribution
with scale ∆1/ε, is ε-differentially private on α-adjacent datasets.
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By choosing `2−sensitivity ∆2 and the Gaussian noise distribution, the global ε−differential
privacy is relaxed to allow violations of privacy guarantees with typically small probability δ.

Theorem 12 (Gaussian mechanism [27]). LetM : Rn 7→ Rm be a mechanism that maps n−dimensional
datasets to m real numbers, and let ∆2 be its global `2−sensitivity on α-adjacent datasets. The randomized
mechanism M̃(D) ,M(D)+ ξ, where ξ ∈ Rm is a random vector from a zero-mean Gaussian distribution
N (0, diag[σ1, . . . , σm]) with σi >

√
2ln(1.25/δ)∆2/ε,∀i ∈ {1, . . . ,m}, is (ε, δ)-differentially private on

α-adjacent datasets.

Repeated OPF computations on the same dataset accumulate privacy losses. A single run of
the randomized mechanism M̃(D) induces the privacy loss for dataset D up to quantity ε with
probability of failure δ. The same privacy loss is induced with every additional run of the
mechanism. Over a course of several runs, the upper bound on the privacy loss induced for the
dataset is given by the following result.

Theorem 13 (Sequential composition). Consider K runs of mechanism M̃, e.g., M̃1(D), . . . ,M̃K(D),
such that every run depends on the result of the previous runs, i.e.,

M̃k (D) = M̃k
(
D,M̃1(D),M̃2(D), . . . ,M̃k−1(D)

)
.

Suppose that M̃k(D) preserves (ε, δ)−differential privacy for all k. Then, the K-tuple mechanism
M̃(D) =

(
M̃1(D), . . . ,M̃k(D), . . . ,M̃K(D)

)
preserves (εK, δK)−differential privacy.

The rest of the narrative is devoted to applications of these results to distributed and centralized
OPF computations.

3.4 Differentially private distributed optimal power flow optimization

Distributed ADMM-based optimization algorithms are often assumed to preserve dataset privacy
by avoiding the need of sharing sensitive optimization data. However, as we showed in Section
3.2, adversaries can still infer this information from ADMM coordination signals exchanged across
iterations. In this section, we introduce provable privacy guarantees for distributed ADMM-based
OPF computations. These guarantees are provided through several algorithms from [Paper D].
Here, we explain those algorithms through the generalized Algorithm 2. We first provide a
technical description of the algorithm components. We then explain the privacy guarantees for
a single iteration, the trade-offs between algorithm convergence and optimality loss, and how
composition of differential privacy is used to extend the guarantee beyond one iteration.

3.4.1 Differentially private ADMM-based OPF algorithm

Relative to the base Algorithm 1, its differentially private counterpart Algorithm 2 includes random
perturbations of local updates in Step 7 using function Private_local_update, detailed in Appendix
A. The function maps datasets and input coordination signals to voltage updates as before, but
uses the output perturbation strategy to obfuscate local datasets in voltage releases.

The distribution and calibration of random perturbations depend on privacy preferences expressed
through differential privacy parameters (ε, δ) and input parameters mech, pert, sens. The first
parameter mech = {Laplace,Gaussian} allows to alternate between ε− and (ε, δ)−differential pri-
vacy guarantees according to Theorems 11 and 12, respectively. Parameter pert = {Static,Dynamic}
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Algorithm 2 Differentially private ADMM for OPF problem

Input: K, ρ, θ
0
, µ0, r, mech, pert, sens, ε, δ

1: if pert = static and mech = Laplace then ξn = Lap(ε, sens),∀n = 1, . . . , N
2: else if pert = static and mech = Gaussian then ξn = Gauss(ε, δ, sens),∀n = 1, . . . , N
3: end if

4: k ← 0
5: while rk 6 r or k 6 K do
6: k ← k + 1
7: Local voltage update ∀n = 1, . . . , N :

θ̃kn ← Private_local_update(mech, pert, sens, θk−1
, µk−1
n , ρ, ξn)

8: Consensus variable update: θ
k

n =
∑N
i=1 θ̃

k
in/N, ∀n = 1, . . . , N

9: Dual variable update: µkn = µk−1
n + ρ(θk − θ̃kn), ∀n = 1, . . . , N

10: Primal residual update: rk =
∑N
n=1

∥∥∥θk − θ̃kn
∥∥∥

2
11: end while

specifies if the perturbations are fixed and drawn prior to iterations in Steps 1-3, or they dynami-
cally updated across iterations in Step 7. Finally, parameter sens = {Global,Local} specifies the
sensitivity and alternates between global and local privacy guarantees.

The rest of the algorithm steps, including consensus and dual variable updates and the primal
residual computation, remain the same as in Algorithm 1 but involve the perturbed local updates.

3.4.2 Privacy guarantee for a single iteration

Without further modifications, Algorithm 2 provides differential privacy guarantees for a single
ADMM iteration. These guarantees originate due to the noise augmented to the output voltage
angles in Step 7. Regardless of pert assignment, consider the algorithm settings mech = Laplace
and sens = Global, which require global ε−differential privacy. To show it analytically, let
M̃k

n : Dn 7→ RN denote the randomized mechanism in Step 7 from a private dataset Dn to N
voltage angles at iteration k, and let θ̃kn be some arbitrary result of this computation. Then, the
ratio of probabilities that this randomized mechanism returns θ̃kn on two α−adjacent datasets Dn

and D′n is

P[M̃k
n(Dn) ∈ θ̃kn]

P[M̃k
n(D′n) ∈ θ̃kn]

= P[Mk
n(Dn) + ξn ∈ θ̃kn]

P[Mk
n(D′n) + ξn ∈ θ̃kn]

=
N∏

n′=1

exp
(
− ε‖ξnn′−Mk

nn′ (Dn)‖1
∆n

1

)

exp
(
− ε‖ξnn′−Mk

nn′ (D′
n)‖1

∆n
1

)

=
N∏

n′=1
exp

(
−
ε
∥∥ξnn′ −Mk

nn′(D′n)
∥∥

1 − ε
∥∥ξnn′ −Mk

nn′(Dn)
∥∥

1
∆n

1

)

6
N∏

n′=1
exp

(
ε
∥∥Mk

nn′(Dn)−Mk
nn′(D′n)

∥∥
1

∆n
1

)

= exp

(
ε
∥∥Mk

n(Dn)−Mk
n(D′n)

∥∥
1

∆n
1

)
, (3.10)

where the second equality follows from the definition of the probability density function of the
zero-mean Laplace distribution with scale ∆n

1/ε, and the inequality follows from the inequality
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Figure 1.5: Results of the privacy attack on the Á≠di↵erentially private ADMM OPF algorithm
with static perturbations using load reconstruction model in (1.5). The plots depict the distribution
of inferred loads at node 20 of the IEEE 118-node system for 1000 simulation runs. The left plot is
for Á = 1 and – = 1%, while the right plot is for Á = 1 and – = 10%. The red and blue distributions
are given for the global and local sensitivities �i and si, respectively. The dashed red line depicts
the true load value of 9 MW. For more results, refer to ??.

Table 1.1: Optimality loss induced by Á≠di↵erentially private ADMM algorithms with static and
dynamic perturbations (%)

Adjacency coe�cient –,% 1 2.5 5 7 10
Static perturbations 0.48 0.92 1.23 1.51 3.83
Dynamic perturbations 0.28 4.33 11.0 11.35 20.41

and pert = static. With no perturbation, the attack model (1.5) successfully reconstructs the load
value shown with the red dashed line. With the introduction of the noise, however, at each run
of the algorithm a privacy adversary observes only a sample from the distributions in Figure 1.5.
Thus, the privacy properties are stronger when the resulting distribution has larger variance. The
variance increases as the private algorithm accommodates larger adjacency criterion – and when
using global �i instead of local si sensitivity.

1.4.3 Convergence and optimality loss trade-o↵s

The perturbation of local updates a↵ect the convergence and optimality loss of Algorithm 3. In ??
we find that these two algorithmic properties can be trade-o↵ by choosing either static noise or
dynamically updated perturbations across iterations. Figure 1.6 displays the convergence statistics
of Algorithm 3 with static and dynamically updated random perturbations for various assignment
of adjacency coe�cient –. As dynamic perturbations are updated at every ADMM iteration, the
algorithm features an increasing primal residual variance as adjacency coe�cient increases, thus
involving more iterations towards convergence. In contrast, the static perturbations do not require
updating the noise across iterations and thus feature more robust convergence. On the other
hand, Table 1.1 collects the optimality loss reported for the two algorithms, showing that the static
perturbations involve large optimality loss. Thus, when providing the same privacy guarantee for
a single iteration, Algorithm 3 features inherent trade-o↵s between the algorithm convergence and
OPF optimality loss.

1.4.4 Controlling privacy loss beyond one iteration

Due to composition, every additional ADMM iteration results in an additional privacy loss. The
composition Theorem 8 states that the Á≠di↵erential privacy guarantee of (any) Algorithm 3 for

Figure 3.5: Results of the privacy attack on the ε−differentially private ADMM OPF algorithm
with static perturbations using load reconstruction model in (3.5). The plots depict the distribution
of inferred loads at node 20 of the IEEE 118-node system for 1,000 simulation runs. The left plot is
for ε = 1 and α = 1%, while the right plot is for ε = 1 and α = 10%. The red and blue distributions
are given for the global and local sensitivities ∆i and si, respectively. The dashed red line depicts
the true load value of 9 MW. For more results, refer to the source [Paper D].

of norms. Recall Definition 9 of the `1 global mechanism sensitivity on α−adjacent datasets. By
substituting (3.8) in (3.10), we obtain

P[M̃k
n(Dn) ∈ θ̃kn] 6 exp(ε)P[M̃k

n(D′n) ∈ θ̃kn],

i.e., ε−differential privacy of mechanism M̃k
n. By setting mech = Gaussian, similarly to numerical

queries [27, Appendix], it can be shown that Algorithm 2 provides each local dataset with the
global (ε, δ)−differential privacy. Regardless of the chosen distribution, the privacy guarantee can
be further relaxed by choosing the local mechanism sensitivity instead of the global one.

This privacy property is visualized in Figure 3.5, which shows the distributions of the inferred
load across 1,000 runs of Algorithm 2 with settings mech = Laplace and pert = static. With
no perturbation, the attack model (3.5) successfully reconstructs the load value shown with the
red dashed line. With the introduction of the noise, however, at each run of the algorithm a
privacy adversary observes only a sample from these distributions. Thus, the privacy properties
are stronger when the resulting distribution has a larger variance, which increases in adjacency
coefficient α and when using the global mechanism sensitivity.

3.4.3 Convergence and optimality loss trade-offs

The perturbations of local updates affect the convergence and optimality loss of Algorithm 2. In
[Paper D] we find that these two algorithmic properties can be traded off by choosing either static
noise or dynamically updated perturbations across iterations. Figure 3.6 displays the convergence
statistics of Algorithm 2 with static and dynamically updated random perturbations for various
assignment of adjacency coefficient α. As dynamic perturbations are updated at every ADMM
iteration, the variance of primal residuals increases in adjacency coefficient, thus requiring more
iterations towards convergence. In contrast, the static perturbations are fixed across iterations and
demonstrate more robust convergence. On the other hand, Table 3.1 collects the optimality loss
reported for the two algorithms, showing that the static perturbations result in larger optimality
losses. Thus, when providing the same privacy guarantee for a single iteration, Algorithm 2
features inherent trade-offs between the algorithm convergence and OPF optimality loss.
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Figure 1.6: Evolution of the primal residual over iterations of the ADMM algorithm with dynamic
(top) and static (bottom) random perturbations of local updates. The results are plotted for the
3-zone IEEE 118-node system for di↵erent adjacency coe�cient – in %. The dashed lines indicate
the average residual across 100 runs, whereas the colored areas indicate the spread between the
minimum and maximum values of the residual at iteration k.
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Figure 1.7: Mean absolute inference error, i.e., mismatch between the actual and inferred loads in
MWh, across last T iterations with (right) and without (left) scaling the noise (Theorem 8) for 100
simulation runs.

an input dataset D diminishes linearly with the number of runs on D. For the OPF problem of
interest, this is illustrated with the right plot in Figure 1.7. The figure shows the inference error
of an attack model 1.5 when an adversary observes last K ≠ T, . . . ,K iterations of Algorithm 3
with parameters mech = Laplace, pert = dynamic and sens = local. This error reduces with
every additional iteration made available to an adversary, which is consistent with the diminishing
privacy guarantees. However, by scaling the random perturbation with respect to the number of
compromised iterations, Algorithm 3 preserves Á≠di↵erential privacy guarantee. This is shown
with the right plot in Figure 1.7, where the inference error is never reduced with more information
become available to an adversary.

Figure 3.6: Evolution of the primal residual over ADMM iterations with dynamic (top) and static
(bottom) random perturbations of local updates. The results are plotted for the 3-zone IEEE
118-node system for different adjacency coefficient α in %. The dashed lines indicate the average
residual across 100 runs, whereas the colored areas indicate the spread between the minimum and
maximum values of the residual at iteration k. Sourced from [Paper D].

Table 3.1: Optimality loss induced by ε−differentially private ADMM algorithms with static and
dynamic perturbations (%). Sourced from [Paper D].

Adjacency coefficient α,% 1 2.5 5 7 10
Dynamic perturbations 0.48 0.92 1.23 1.51 3.83
Static perturbations 0.28 4.33 11.0 11.35 20.41

3.4.4 Controlling privacy loss beyond one iteration

Every new ADMM iteration brings additional privacy losses: Theorem 13 states that the
ε−differential privacy guarantee of (any) Algorithm 2 for dataset D diminishes linearly with the
number of runs on D. For the OPF problem of interest, this is illustrated with the right plot in
Figure 3.7. The figure shows the inference error of the attack model (3.5) when an adversary
observes last K − T, . . . ,K compromised iterations (attack budget is T iterations) of Algorithm
2 with parameters mech = Laplace, pert = dynamic and sens = local. This error reduces with
every additional iteration made available to an adversary, which is consistent with a diminishing
privacy guarantee. By scaling the random perturbation with respect to T number of compromised
iterations, Algorithm 2 preserves ε−differential privacy guarantee. This is shown with the right
plot in Figure 3.7, where the inference error does not reduce with more information revealed.

3.5 Differentially private centralized optimal power flow optimization

In many practical scenarios, the OPF problem is solved centrally by system operators, such that the
privacy preservation using Algorithm 2 cannot be achieved. In centralized OPF computations, a
system operator acts as a trust-worthy party that collects optimization datasets and performs OPF
computations on behalf of all agents in the system. In this section, we introduce privacy-preserving
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Figure 1.6: Evolution of the primal residual over iterations of the ADMM algorithm with dynamic
(top) and static (bottom) random perturbations of local updates. The results are plotted for the
3-zone IEEE 118-node system for di↵erent adjacency coe�cient – in %. The dashed lines indicate
the average residual across 100 runs, whereas the colored areas indicate the spread between the
minimum and maximum values of the residual at iteration k.

1 2 5 10 15

1.0

2.5

5.0

7.0

10.0

0.2

0.7

1.1

2.1

3.3

0.2

0.5

1

1.9

2.3

0.1

0.4

1

1.3

1.8

0.1

0.4

0.8

1.2

1.7

0.1

0.4

0.8

1.1

1.5

Attack budget T

A
dj

ac
en

cy
–

,%

› ≥ Lap( si
Á )

1 2 5 10 15

1.0

2.5

5.0

7.0

10.0

0.2

0.7

1.1

2.1

3.3

0.6

1.7

2.6

4.3

5.3

1.2

2.3

3.8

6

8.5

1.2

2.4

4.8

7.6

11.4

1.1

2.9

6.5

9.9

16.6

Attack budget T

A
dj

ac
en

cy
–

,%

› ≥ Lap(T si
Á )

Figure 1.7: Mean absolute inference error, i.e., mismatch between the actual and inferred loads in
MWh, across last T iterations with (right) and without (left) scaling the noise (Theorem 8) for 100
simulation runs.

an input dataset D diminishes linearly with the number of runs on D. For the OPF problem of
interest, this is illustrated with the right plot in Figure 1.7. The figure shows the inference error
of an attack model 1.5 when an adversary observes last K ≠ T, . . . ,K iterations of Algorithm 3
with parameters mech = Laplace, pert = dynamic and sens = local. This error reduces with
every additional iteration made available to an adversary, which is consistent with the diminishing
privacy guarantees. However, by scaling the random perturbation with respect to the number of
compromised iterations, Algorithm 3 preserves Á≠di↵erential privacy guarantee. This is shown
with the right plot in Figure 1.7, where the inference error is never reduced with more information
become available to an adversary.

Figure 3.7: Composition for privacy loss control beyond one iteration: mean absolute inference
error, i.e., mismatch between the actual and inferred loads in MWh, across last T iterations with
(right) and without (left) scaling the noise for 100 simulation runs. Sourced from [Paper D].

centralized OPF computations to ensure that the sensitive information of system agents remains
undisclosed when querying OPF solutions.

In the interest of presentation, let us rewrite the centralized OPF problem (3.1) more compactly as

min
x∈Rk

c(x) (3.11a)

s.t. x ∈ X (D), (3.11b)

where x is a vector of decision variables, including generator set-points and voltage angles,
c : Rk 7→ R is a convex function, andX represents a convex OPF feasible set, which is parameterized
by private dataset D. Hence, the optimal solution x? is a function of D and the queries on
optimization results disclose private attributes of dataset D. These queries include the releases of
dispatch decisions and power flows (identity queries), aggregated generation statistics (sum or
average queries). To make these queries differentially private, the output perturbation strategy
requires adding a calibrated noise to the optimal solution of problem (3.11), as illustrated in Figure
3.8 with a dashed density plot. This approach, however, is agnostic to the feasible set X (D) and
may lead to infeasibility of privacy-preserving optimization results. To ensure solution feasibility,
consider solution x, whose perturbation with a random noise yields a feasible solution with a high
probability, as shown with a solid density function in Figure 3.8. We therefore seek a systematic
way of identifying solution x that enables privacy guarantees for optimization datasets on the one
hand, and feasibility guarantees for private optimization results on the other hand. Recognizing
that trandom perturbations affect the utility of the optimization results in terms of optimality loss
and solution variance, we aim at finding loss- and variance-aware solution x, whose perturbation
results in the minimal impact on operational cost and variability of system operations. To ensure
these desirable properties, i.e., privacy, feasibility, controllable optimality loss and OPF variance,
we propose internalizing the Laplace and Gaussian mechanisms into constrained optimization
problems using chance-constrained programming.

3.5.1 Internalizing Laplace and Gaussian mechanisms

To enable differentially private queries on the solutions of constrained optimization problems, we
recast optimization problem (3.11) as the following stochastic program

min
x̃(ξ)∈Rk

Eξ[c(x̃(ξ))] (3.12a)
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Figure 1.8: Stylized projections of randomized optimization solutions onto feasible space. When
perturbing the optimal solution xı with a random Laplace noise ›, the probability of violating
problem constraints is higher than perturbing solution x.

1.5.2 Internalizing Laplace and Gaussian mechanisms into constrained optimization

To enable di↵erentially private queries on optimization results, we internalize Laplace and Gaussian
mechanisms by recasting optimization problem (1.11) as the following stochastic program

min
x̃(›)œRk

E›[c(x̃(›))] (1.12a)

s.t. P›[x̃(›) œ X (D)] > 1 ≠ ÷, (1.12b)

x̃(›) œ Q, (1.12c)

which optimizes variable vector x̃(›), which is made depended on some random perturbation
› œ Rp, p 6 k, to meet the minimum of expected cost subject to a chance constraint, which is
enforced to guarantee solution feasibility with the prescribed joint constraint satisfaction probability
1 ≠ ÷, for some typically small design parameter ÷. By conditioning the optimization result on
random perturbation, the solution of problem resembles a probability density depicted with the
solid line in Figure 1.8. The last constraint (1.12c) is enforced to ensure the random optimization
result is distributed according to the query of interest. We focus on linear queries that assume any
a�ne transformation of random vector x̃(›), such as identity, sum and average queries or their
certain combinations. For example, the release of p active power flows in ?? or p power dispatch
quantities in ?? are made using identity queries, while p zonal dispatch statistics in ?? are made
using the combination of identity and sum queries.

At these stage, chance-constrained problem (1.12) is computationally intractable as it optimizes
over infinite-dimensional random variable x̃(›). To overcome computational complexity, we model
random variable as the following a�ne function

x̃(›) , x+X›, (1.13)

which consists in nominal (mean) component x and a random recourse component X›, where
X œ Rk◊p is a finite-dimensional optimization variable. As the variable recourse is an a�ne
function with respect to random perturbation ›, we can obtain a tractable reformulation of

Figure 3.8: Stylized projections of randomized optimization solutions onto feasible space. When
perturbing the optimal solution x? with a random Laplace noise ξ, the probability of violating
problem constraints is higher than perturbing solution x. Sourced from [Paper E].

s.t. Pξ[x̃(ξ) ∈ X (D)] > 1− η, (3.12b)

x̃(ξ) ∈ Q, (3.12c)

which minimizes the expected cost by optimizing variable vector x̃(ξ) that depends on some
random perturbation ξ ∈ Rp, p 6 k. The problem includes chance constraint (3.12b) that guarantees
solution feasibility with the prescribed joint constraint satisfaction probability 1 − η, for some
small parameter η. As optimization variables are conditioned on random perturbation, the queries
made on x̃(ξ) are also random. The last constraint (3.12c) is thus enforced to ensure that x̃(ξ) is
distributed according to the query of interest. We focus on linear queries that assume any affine
transformation of random vector x̃(ξ), such as identity, sum and average queries. For example,
the release of p active power flows in [Paper F] or p power dispatch quantities in [Paper E] are
made using identity queries, while p zonal dispatch statistics in [Paper F] are made using the
combination of identity and sum queries.

At this stage, chance-constrained problem (3.12) is computationally intractable as it optimizes over
infinite-dimensional random variable x̃(ξ). To overcome computational complexity, we model the
random variable as the following affine function

x̃(ξ) , x+Xξ, (3.13)

which consists of a nominal (mean) component x and a recourse component Xξ, where X ∈ Rk×p

is a finite-dimensional optimization variable. As the variable recourse is an affine function with
respect to random perturbation ξ, we can obtain a tractable reformulation of chance-constrained
problem (3.12) [10]. Observe, however, that the variable recourse X is a function of optimization
dataset D, and thus the random components of any query made on x̃(ξ) carries the information
about dataset D as well. To make the random component data independent and thus enable
differential privacy guarantees, we define query-specific constraint set Q(L), where the input
matrix L ∈ Rp×k is used to specify linear queries on x̃(ξ), as we show with the following examples.

Example 1 (Identity query). This query returns elements of vector x̃(ξ) as Lx̃(ξ). Without loss of
generality, consider the release of first p elements of vector x̃(ξ), then matrix L becomes

L ,
[
diag[1p] 0p×(k−p)

]
,
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such that under affine dependency (3.13), the linear query returns

Lx̃(ξ) =




x1
...
xp


+




X11 . . . X1p
...

. . .
...

Xp1 . . . Xpp







ξ1
...
ξp


 ,

which consists in the nominal (mean) and random components. To make the random component independent
from the optimization data, the query-specific constraint set Q(L) is set as

Q(L) , {X|[L ◦X]p×p = diag[1p], }

such that Lx̃(ξ) =




x1
...
xp


+




ξ1
...
ξp


 in optimality. Notice, when p = k, the identity query releases the entire

optimization vector.

Example 2 (Release of p sum statistics). This query returns p number of sum statistics on vector x̃(ξ) as
Lx̃(ξ), such that Lij = 1 if j element of x̃(ξ) participates in statistic i, and Lij = 0 otherwise. Consider,
for example, p = 2 and k = 4, and the sum query as

Lx̃(ξ) =
[

1 1 0 0
0 0 1 1

]



x̃1(ξ)
...

x̃4(ξ)


 =

[
x1 + x2

x3 + x4

]
+
[
X11 +X21 X12 +X22

X31 +X41 X32 +X42

][
ξ1

ξ2

]
,

where the random component can be made independent from the optimization dataset, when the query-specific
constraint set Q(L) is

Q(L) , {X|LX = diag[1p]},

such that in optimality we have Lx̃(ξ) =
[
x1 + x2

x3 + x4

]
+
[
ξ1

ξ2

]
.

The main result of [Paper E] is to show that these linear queries on solution x̃(ξ) can be made
differentially private by calibrating the noise parameters and optimizing affine relation (3.13) under
query-specific constraints. This result is arranged in two theorems in [Paper E] for identity and
sum queries, respectively. As any linear query is representable through matrix L, we provide the
following result to encompass the two theorems.

Theorem 14. Let L define the linear query on the solution of problem (3.11), let ∆1 be the `1 query
sensitivity to α−adjacent optimization datasets, and let x?(D) and X?(D) be the optimal solution to the
chance-constrained program (3.12) obtained on some dataset D with ξ ∼ Lap(∆1/ε)p. Then, for some
arbitrary query outcome Ô ∈ Rp it holds that

Pξ[L(x?(D) +X?(D)ξ) ∈ Ô] 6 Pξ[L(x?(D′) +X?(D′)ξ) ∈ Ô]exp(ε),

for any α−adjacent optimization datasets D and D′.

The proof is identical to the proofs of differentially private identity and sum queries provided in
[Paper E]. It first shows data independence of the query’s random component, and then repeats
the proof of the Laplace mechanism from Theorem 11 outlined in Section 3.4.
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Figure 1.9: Obfuscation of customer load profile from Figure 1.2 in power flow measurements.
The two left plots show the overlay of power flow probability densities obtained on the three
0.3MW≠adjacent load datasets for di↵erent privacy requirements at time step 1 (D = 2.35, DÕ =
2.05, DÕÕ = 2.65MW). Observe, with smaller privacy parameters, the similarity of the three
distributions improve, thus improving privacy. The right plot shows the mean (blue) and sampled
(red) power flow trajectories obtained from the (1, 0.07)≠di↵erentially private flow identity queries
achieved with the Gaussian perturbation. The detailed model and experiment description is
available in ??.

Theorem 9. Let L define the linear query on the solution of problem (1.11), let �1 be the ¸1 query
sensitivity to –≠adjacent optimization datasets, and let xı(D) and Xı(D) be the optimal solution to the
chance-constrained program (1.12) obtained on some dataset D with › ≥ Lap(�1/Á)p. Then, for some
arbitrary query outcome Ô œ Rp it holds that

P›[L(xı(D) +Xı(D)›) œ Ô] 6 P›[L(xı(DÕ) +Xı(DÕ)›) œ Ô]exp(Á),

for any –≠adjacent optimization datasets D and DÕ.

The proof is identical to the proofs of di↵erentially private identity and sum queries provided in ??.
It first shows the independence of query’s random component from the underlying optimization
dataset, and then repeats the proof of Laplace mechanism from Theorem 6 outlined in Section 1.4.

As a consequence of Theorem 9, the privacy-preserving solution to the centralized optimization
(1.11) can be obtained by sampling the result from optimized function (1.13). This way, the
Laplace mechanism is internalized into constrained optimization problem, and we refer to it as the
mechanism perturbation in Figure 1.4. While this approach provides identical privacy guarantees
as input and output perturbation methods, at the same time it ensures the solution feasibility using
chance-constrained programming. Finally, observe that by choosing the Gaussian distribution
of random perturbation › and calibrating it to the ¸2-sensitivity �2, we enable (Á, ”)≠di↵erential
privacy guarantees for optimization datasets.

Figure 1.9 illustrates how the chance-constrained problem enables di↵erentially private queries of
power flows in the face of tracing privacy attack as in Figure 1.2. A careful calibration of the noise
parameters makes –≠adjacent load datasets statistically indistinguishable, such that by observing
a sample from the resulting output distribution, an adversary can not infer the load from the power
flow profile, up to prescribed privacy parameters.

1.5.3 Feasibility guarantees

To guarantee the satisfaction of equality constraints, we separate them into nominal and random
components with respect to perturbation ›. The former one requires balancing the nominal

Figure 3.9: Obfuscation of customer load profile from Figure 3.2 in power flow measurements.
The two left plots show the overlay of power flow probability densities obtained on the three
0.3MW−adjacent load datasets for different privacy requirements at time step 1 (D = 2.35, D′ =
2.05, D′′ = 2.65MW). Observe, with smaller privacy parameters, the similarity of the three
distributions improve, thus improving privacy. The right plot shows the mean (blue) and sampled
(red) power flow trajectories obtained from the (1, 0.07)−differentially private flow identity queries.
The detailed model and experimental description are available in the source [Paper F].

As a consequence of Theorem 14, the privacy-preserving solution to centralized optimization
(3.11) is obtained by sampling the result from optimized function (3.13). This way, the Laplace
mechanism is internalized into the constrained optimization problem, and we refer to it as the
mechanism perturbation in Figure 3.4. While this approach provides identical privacy guarantees
as those of input and output perturbation methods, it also ensures solution feasibility. Finally, by
choosing the Gaussian distribution of random perturbation ξ and calibrating it to the `2-sensitivity
∆2, we enable (ε, δ)−differential privacy guarantees for optimization datasets.

Figure 3.9 illustrates how the chance-constrained problem enables differentially private queries
of power flows in the face of tracing load privacy attacks discussed in Section 3.2.3. A careful
calibration of the noise parameters makes α−adjacent load datasets statistically indistinguishable,
such that by observing a sample from the resulting output distribution, an adversary cannot infer
the load from the power flow profile, up to the prescribed privacy parameters.

3.5.2 Feasibility guarantees

To guarantee the satisfaction of equality constraints, we separate them into nominal and random
components with respect to perturbation ξ. The former requires balancing the nominal optimization
variables as dictated by the original deterministic problem, while the random component is
constrained to add up to zero for any realization of ξ. Following the discussion in [59, Section 3.2],
this provides the equality constraint satisfaction with probability 1.

To enable feasibility guarantees for inequality constraints, we refer to sample-based and analytical
convex reformulations of chance constraint (3.12b). The sample-based reformulation due to [44]
provides the joint constraint satisfaction guarantee up to the prescribed probability and requires
enforcing all inequalities in (3.12b) on a finite number of samples drawn from the distribution of ξ.
The number of samples, however, increases in a number of decision variables k, which is shown
to affect computational complexity. To alleviate the complexity, the method from [60] enforces
the entries of (3.12b) only on the vertices of a rectangular set built upon extracted samples. The
number of samples in this case depends on a number of random perturbations p, which results
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Table 3.2: The feasibility and optimality summary of private identity queries of OPF dispatch
solutions obtained on 100 optimization dataset samples using a series of standard network
typologies. The identity query privately releases 30% of nodal power supplies across the network.
OP stands for output perturbation method as in Figure 3.4, CCS stands for chance-constrained
solution, while appendixes -a and -s indicate analytical and sample-based reformulation of chance
constraints, respectively. The detailed experimental description is available in the source [Paper E].

Case ID n× |X |
Empirical constraint violation P[x /∈ X ] [%] Optimality loss ∆C [%]

OP CCS-a CCS-s CCS-a CCS-s

mean std mean std mean std mean std mean std

3_lmbd 6×17 29.7 23.07 0.64 0.34 0.27 0.31 3.42 3.55 5.72 7.64
5_pjm 10×29 18.32 22.94 0.39 0.41 0.12 0.3 1.22 2.07 2.04 3.03
14_ieee 28×84 52.24 26.85 1.48 0.78 0.27 0.25 1.55 1.33 3.45 2.88
39_epri 78×211 95.56 4.69 4.86 1.32 0.49 0.35 2.17 0.81 4.7 1.68
57_ieee 114×333 98.59 1.91 7.17 1.50 1.28 1.06 2.4 0.78 5.51 5.06
118_ieee 236×728 99.99 0.02 14.35 2.06 1.51 0.47 2.46 0.56 4.89 1.20

in a smaller computational burden as we consider p 6 k. This approach is used in [Paper E] to
provide joint constraint satisfaction guarantees at scale.

The feasibility guarantees can also be provided with the analytical reformulations of individual
chance constraints. The joint chance constraint (3.12b) enforced on N6 number of inequalities
can be recast as the union of individual chance constraints with individual violation probabilities
η ∈ RN6 . When the individual probabilities are such that 1>η 6 η, this approach admits the
approximation of the joint chance constraint [45]. Using analytical reformulations of individual
chance constraints for the Laplace noise distribution from [61] (result for symmetric and unimodal
distributions) and for the Gaussian noise distribution from [11], optimization problem (3.12)
transforms into a computationally efficient second-order cone program, as shown in [Paper E] and
[Paper F].

Using either sample-based or analytical reformulation of the joint chance constraints, one ensures
problem feasibility in (1 − η)% samples from optimized function (3.13). Table 3.2 reports the
out-of-sample statistics for the sampled private OPF solutions from the optimized function (3.13).
Using the sample-based reformulation, we set the prescribed joint chance-constrained probability
as η = 2.5%. We set the same prescribed probability for individual chance constraints reformulated
in an analytical manner to compare the conservatism of the solution in terms of optimality loss
with respect to the non-private, noiseless OPF solution. Observe from the table, that the standard
output perturbation mechanism systematically fails to ensure private solution feasibility even
for small problem instances, while the chance-constrained solution holds the promise of either
joint (sample-based reformulation) or individual (analytical reformulation) constraint satisfaction
guarantee. Observe further, that holding the promise of joint constraint satisfaction induces a
significantly larger optimality loss than that under individual constraint satisfaction guarantees.

It is important to note that if the sampling of the private optimization result from (3.13) returns an
infeasible instance (with probability η), the re-sampling from (3.13) will induce additional privacy
loss as per differential privacy composition (Theorem 13). With Theorem 5 in [Paper E] we show
that this privacy loss can be avoided with a proper scaling of the noise parameters.
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which can be optimized similarly to problem (1.16). These variance-aware strategies have been
adopted in ?? and ??, while the CVaR risk measure is also internalized into the chance-constrained
program in ??.

Figure 1.10 illustrates the trade-o↵s between the expected optimality loss and its variance or solution
variance. Importantly, these trade-o↵s are available without a↵ecting the privacy guarantees
of Theorem 9 due to equation (1.12c) on the optimal recourse. As a consequence, the privacy-
preserving mechanism perturbation based on the chance-constrained program provides more
degree of freedom to produce di↵erentially private queries over optimization results, which is not
available with the standard output or input perturbation methods in Figure 1.4.
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Figure 1.10: Trade-o↵s obtain for the sum statistics for the 118_ieee for various supply cost sparsity:
expected value versus variance of optimality loss (left) and expected optimality loss versus solution
variance (right). The results are given for c≥U [1, c] and averaged over 100 runs. The detailed
experiment description is available in ??.

Figure 3.10: Trade-o↵s obtained for the sum statistics for the IEEE 118-node test system for
various supply cost sparsity: expected value versus variance of optimality loss (left) and expected
optimality loss versus solution variance (right). The results are given for c≥U [1, c] and averaged
over 100 runs. The detailed experiment description is available in [Paper C].
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Figure 3.11: Trade-o↵s obtain for the sum statistics for the 118_ieee for various supply cost sparsity:
expected value versus variance of optimality loss (left) and expected optimality loss versus solution
variance (right). The results are given for c≥U [1, c] and averaged over 100 runs. The detailed
experiment description is available in [Paper C].

Figure 3.10: Trade-offs obtained for the private sum statistics of OPF dispatch variables for the
IEEE 118-node test system for various supply cost sparsity: expected value versus variance of
optimality loss (left) and expected optimality loss versus solution variance (right). The results are
given for c∼U [1, c] and averaged over 100 runs. The detailed experiment description is available
in the source [Paper E].

3.5.3 Controlling optimally loss and solution variance

When producing differentially private queries using the criterion of the minimum expected cost,
chance-constrained program (3.12) yields the probability density of candidate private solutions to
problem (3.11) irrespective of the worst-case realization of optimally loss. Moreover, under the
same criterion, the chance-constrained program optimizes function (3.13) disregarding the variance
of the optimization solution, thus leading to a possible large variability of the OPF solutions. These
two issues have been addressed in [Paper E] and [Paper F] by internalizing the variance and the
conditional value-at-risk (CVaR) measures into chance-constrained program (3.12).

The expected optimality loss ∆C of the privacy-preserving solution with respect to the optimal
solution x? of problem (3.11) expresses as

∆C = ‖c(x?)− Eξ[c(x̃(ξ))]‖2 . (3.14)

Since c(x?) is a constant value, the optimization of the expected optimality loss boils down to solving
chance-constrained program (3.12). Similarly, the variance of the optimality loss is minimized when
minimizing the variance of the random cost CostVar[c(x̃(ξ))] with respect to random perturbation.
Let Σ ∈ Rp×p be the covariance matrix of p−dimensional random perturbation ξ, and assume the
linear cost function c(x) = c>x. Then, under the affine dependency on random perturbation (3.13),
the variance of the cost function (and thus the variance of optimality loss) expresses as

CostVar[c(x̃(ξ))] = Var[c>(x+Xξ)] = Var[c>x] + Var[c>Xξ] = Tr[X>diag[c]XΣ], (3.15)

which is convex with respect to the decision variable x and X and hence can be optimized by
modifying problem (3.12) as

min
x,X

Eξ[c>(x+Xξ)] + ψCostVar[c>(x+Xξ)] (3.16a)

s.t. Equations (3.12b)− (3.12c), (3.16b)

where ψ is a non-negative parameter to trade off between the excepted value and the variance of
the random cost. By increasing ψ, the variance of the optimality loss is penalized to reduce its
worst-case outcomes. Similarly, the total variance of the random optimization vector x̃(ξ) under
affine dependency on random perturbation expresses as

SolVar[x̃(ξ)] = Var[x+Xξ] = Var[x] + Var[Xξ] = Tr[X>diag[1]XΣ], (3.17)
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which can be optimized similarly to problem (3.16). These variance-aware strategies have been
adopted in [Paper E] and [Paper F], while the CVaR measure is also internalized into the chance-
constrained program in [Paper F].

Figure 3.10 illustrates the trade-offs between (i) the expected optimality loss and its variance
and (ii) the expected optimality loss and the overall solution variance. These trade-offs are
available without affecting the privacy guarantees of Theorem 14 due to equation (3.12c) on the
optimal recourse. As a consequence, the privacy-preserving mechanism perturbation based on the
chance-constrained program provides more degrees of freedom to produce differentially private
queries over the optimization results, which is not available with the standard variance-agnostic
output or input perturbation methods.





CHAPTER4
Conclusions and Perspectives

This thesis contributes by advancing stochastic optimization applications to and providing privacy
guarantees for modern energy system operations. In this chapter, we summarize the main results
and outline directions for future research.

4.1 Overview of contributions

This thesis first addressed the interpretability of stochastic method applications to energy system
optimization. Starting with [Paper A], we introduced control policies for energy network com-
ponents to accommodate network parameters’ stochasticity. These policies are optimized using
chance-constrained programming to guide system operations towards feasible and minimal vari-
ance solutions and interpret each system component’s contribution to uncertainty and variability
control. Furthermore, the dual solution to this chance-constrained optimization established a
stochastic market settlement, which yields efficient payments in a stochastic sense: they ensure the
fundamental market properties of cost recovery and revenue adequacy in expectation.

The stochastic market settlement properties may prevent the transition from deterministic to stochas-
tic operational practices: negative profits in certain uncertain realizations are noninterpretable
to market participants whose cost recovery is always ensured within conventional, deterministic
settlements. To facilitate this transition, in [Paper B] we proposed to approximate the stochastic
solution within deterministic market settlements through the optimal reserve quantification in
power systems. Similar to stochastic methods, the reserves are quantified to provide cost-optimality
in expectation and real-time feasibility, while sacrificing the cost efficiency of the stochastic solution
to ensure the market properties’ satisfaction for all prescribed uncertainty realizations.

We further studied the completeness of stochastic market settlements under asymmetry of
agent information on the underlying uncertainty. In [Paper C] we found that the stochastic
preferences of market participants are only supported if the underlying market-clearing mechanism
is completed and accommodates private uncertainty forecasts. Towards completeness, we
proposed market redesign solutions based on centralized and distributed computations of market
equilibrium. Although completed, we also find that those markets tend to reduce social welfare if
the information is inconsistent among agents. We further found a significant economic, operational,
and computational value steaming from information sharing.

Concerning the private optimization of energy systems, [Paper D]–[Paper F] first identified
significant privacy risks that originate in optimizing the standard operational tasks. By developing
adversarial models of privacy attacks, we showed that sensitive dataset items, such as electrical
loads in power systems, are exposed when querying optimization results, thus discouraging
privacy-cognizant agents from engaging with energy systems. To minimize privacy violation risks
and facilitate ethical data utilization, we developed a systematic approach to augment the routine
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optimization tasks with a privacy-preserving layer that provides rigorous privacy guarantees for
optimization datasets. These guarantees originate from differential privacy theory, which has been
applied to solve operational OPF problems privately in power systems for the first time.

The proposed privacy-preserving algorithms first contribute by dispelling a common belief about
the privacy-preserving power of the standard distributed OPF algorithms that distribute and
store optimization datasets in algorithm sub-problems but tend to leak those datasets through the
exchange of coordination signals. We thus developed in [Paper D] differentially private distributed
algorithms that decouple local optimization datasets from coordination signals through their
carefully calibrated perturbations. These perturbations offset any adversarial inference of local
datasets, provide theoretical privacy guarantees for single and multiple iterations, and tend to
converge to near optimality depending on the chosen privacy preferences.

Towards the centralized privacy-preserving power system operations in high-voltage and distribu-
tion grids, we developed differentially private stochastic OPF models in [Paper E] and [Paper F],
respectively. Unlike the standard input or output perturbation methods that disregard the feasible
space of OPF problems, the proposed models provide both privacy and feasibility guarantees a
priori, up to prescribed privacy and constraint violation parameters. This way, the OPF datasets
can be gradually decoupled from the optimization outcomes without exposing power grids to
unsafe operations. Moreover, these differentially private models internalize the variance and CVaR
risk measures to control the utility of private optimization results in terms of optimality losses and
the variance of OPF state variables.

4.2 Future research

The main results of this thesis motivate several future research directions concerning stochastic
and private energy system optimization.

We have discussed the optimization of stochastic control policies from [Paper A] without an
explicit account for uncertainty and variability in the coupled energy networks. While natural gas,
heat and electricity systems seek efficient stochastic coordination, the proposed policies enable
operational and market coordination by offering new cross-system contracts for uncertainty and
variability control. For example, natural gas compressors and injections can be rewarded for
variability control of voltages in the electricity network. Moreover, the developed control policies
manage uncertainty and variability in relation to the primal solution feasibility and its variance,
disregarding the impacts of random system parameters on dual prices used for energy market
clearing. Hence, duality-aware policy optimization constitutes a relevant research direction to
exploit system flexibility to control the distributional properties of uncertain and variable natural
gas, heat and electricity prices.

As we show through [Paper B], the approximation of the stochastic solution within conventional
market procedures requires sophisticated decomposition techniques to enable scalability as well
as large market datasets that are not always available. A promising research direction is to
develop a data-free training of the parameter of interest, e.g. reserve requirements as in [Paper
B], to achieve the stochastic approximation. Online machine learning could provide scalable and
data-free solution techniques: the parameter of interest can be made a function of uncertainty
in the spirit of control policies in [Paper A], which is trained throughout daily-based, repeated
dispatch procedures towards cost-optimal and feasible solutions.
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Towards completing the market from the information standpoint, in [Paper C] we found that
the inconsistency of agent private information on the true distribution leads to significant social
welfare losses. This motivates future research towards designing information marketplaces that
incentivize information exchange to align private priors and improve private and social welfare.

While developing differentially private ADMM-based OPF algorithms in [Paper D], we found that
dynamically updated perturbations of ADMM coordination signals accumulate a large variance of
primal residuals, which complicates the algorithm convergence to OPF-feasible operating points.
This motivates the research towards feasibility-aware private ADMM designs that accommodate
non-zero primal residuals. Since the resulting primal residuals are random at algorithm termination,
the algorithm sub-problems can be granted with control policies (as in [Paper E] and [Paper F]),
which define post-termination adjustments of the OPF solution with respect to primal residual
realizations. To adequately optimize such policies, one needs to study the parameters of the primal
residual distribution as a function of privacy preferences.

In line with [Paper A], the differentially private stochastic OPF models in [Paper E] and [Paper F]
establish a stochastic market settlement to (i) compensate power producers for accommodating
privacy-preserving perturbations and (ii) charge network loads for their privacy preferences
encoded in those perturbations. Following marginal pricing schemes, however, the market
properties of cost recovery and revenue adequacy are guaranteed only in expectation, as we
established with the analysis of stochastic market settlements in Chapter 2. Moreover, network
discrimination effects of marginal pricing risk to charge grid customers differently for the same
privacy preferences, i.e., privacy cost depends on load position in the network. This motivates
research on optimal privacy pricing. As a potential solution, marginal electricity pricing can be
complemented with privacy subscriptions that are non-discriminatory towards grid customers but
also ensure cost recovery and revenue adequacy of electricity payments beyond expectation.
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A. Functions used in Algorithm 2
Algorithm 2 makes use of several functions. Function Lap(ε, sens) generates a vector of random
variables ξ ∈ RN from the multivariate zero-mean Laplace distribution. The scale of the distribution
depends on the differential privacy parameter ε as well as on the global or local sensitivity,
depending on the specification of algorithm parameter sens. Simialrly, function Gauss(ε, δ, sens)
takes differential privacy parameters and sens to produce random samples from the multivariate
zero-mean Gaussian distribution. The last function Private_local_update computes the local
voltage angle updates. If parameter pert set to static, the local updates are augmented with a
random variables sampled at steps 1-3 of Algorithm 2. Otherwise, with pert = dynamic, the
function samples the random variables at every ADMM iteration.

1: function Lap(ε, sens)
2: sample random perturbation ξ using either global ∆n

1 (sens = Global) or local sn1 (sens =
Local) sensitivity and ε as in Theorem 11.

3: return ξ
4: end function

5: function Gaus(ε, δ, sens)
6: sample random perturbation ξ using either global ∆n

2 (sens = Global) or local sn2 (sens =
Local) sensitivity, δ and ε as in Theorem 12.

7: return ξ
8: end function

9: function Private_local_update(mech, pert, sens, θ, µn, ρ, ξ)
10: Update θn as in Step 7 of Algorithm 1
11: if pert = dynamic and mech = Laplace then
12: return θn+ Lap(ε, sens)
13: else if pert = dynamic and mech = Gaussian then
14: return θn+ Gauss(ε, δ, sens)
15: else if pert = static then
16: return θn + ξ

17: end if
18: end function
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Stochastic Control and Pricing for Natural Gas Networks
Vladimir Dvorkin, Anubhav Ratha, Pierre Pinson and Jalal Kazempour

Abstract—We propose stochastic control policies to cope with
uncertain and variable gas extractions in natural gas networks.
Given historical gas extraction data, these policies are optimized
to produce the real-time control inputs for nodal gas injections
and for pressure regulation rates by compressors and valves. We
describe the random network state as a function of control inputs,
which enables a chance-constrained optimization of these policies
for arbitrary network topologies. This optimization ensures the
real-time gas flow feasibility and a minimal variation in the
network state up to specified feasibility and variance criteria.
Furthermore, the chance-constrained optimization provides the
foundation of a stochastic pricing scheme for natural gas net-
works, which improves on a deterministic market settlement
by offering the compensations to network assets for their con-
tribution to uncertainty and variance control. We analyze the
economic properties, including efficiency, revenue adequacy and
cost recovery, of the proposed pricing scheme and make them
conditioned on the network design.

Index Terms—Chance-constrained programming, conic dual-
ity, gas pricing, natural gas network, uncertainty, variance.

I. INTRODUCTION

Deterministic operational and market-clearing practices of
the natural gas network operators struggle with the growing
uncertainty and variability of natural gas extractions [1].
Ignorance of the uncertain and variable extractions results
in technical and economical failures, as demonstrated by the
congested network during the 2014 polar vortex event in the
United States [2]. The recent study [3] shows that expanding
the network to avoid the congestion is financially prohibitive,
which encourages us to develop stochastic control policies to
gain gas network reliability and efficiency in a short run.

Since the prediction of gas extractions involves errors, a
gas network optimization problem has been addressed using
the methods from robust optimization [4], scenario-based
and chance-constrained stochastic programming [5]. Besides
forecasts, they require a network response model to uncer-
tainty, i.e., the mapping from random forecast errors to the
network state. The robust solutions [6] optimize the network
response to ensure the feasibility within robust uncertainty
sets, but result in overly conservative operational costs. To
alleviate the conservatism, scenario-based stochastic programs
[7] optimize the network response to provide the minimum
expected cost and ensure feasibility within a finite number of
discrete scenarios. The major drawback of robust and scenario-
based programs is their ignorance of the network state within
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the prescribed uncertainty set or outside the chosen scenarios.
The chance-constrained programs [8], [9], in turn, yield an
optimized network response across the entire forecast error
distribution (or a family of those [10]), thus resulting in more
advanced prediction and control of uncertain network state.

This work advocates the application of chance-constrained
programming to the optimal natural gas network control under
uncertainty. By optimal control, we imply the optimization of
gas injection and pressure regulation policies that ensure gas
flow feasibility and market efficiency for a given forecast error
distribution. Towards this goal, we require a network response
model with a strong analytic dependency between the network
state and random forecast errors. Since natural gas flows are
governed by non-convex equations, the design of network
response models reduces to finding convex approximations.
The work in [8, Chapter 6] enjoys the so-called controllable
flow model [11], which balances gas injection and uncertain
extractions but disregards pressure variables. It thus does
not permit policies for pressure control and corresponding
financial remunerations. The work in [9] preserves the integrity
of system state variables and relies on the relaxation of non-
convex equations. Although the relaxations are known to be
tight [12], [13], the results of [9] show that even a marginal
relaxation gap yields a poor out-of-sample performance of
the chance-constrained solution. Furthermore, the relaxations
involve the integrality constraints to model bidirectional gas
flows, which prevents extracting the dual solution and thus de-
signing an optimal pricing scheme. One needs to introduce the
unidirectional flow assumption to avoid integrality constraints,
which is restrictive for gas networks under uncertainty [9].

This work bypasses the simplifying assumptions on network
operations through the linearization of the non-convex natural
gas equations, and provides a convex network optimization
that enables the real-time gas flow feasibility, controls the vari-
ability of the network state, and provides an efficient pricing
scheme. Specifically, we make the following contributions:

1) We propose stochastic control policies for gas injections
and pressure regulation rates that provide real-time con-
trol inputs for network operators. Through linearization,
we describe the uncertain state variables, such as nodal
pressures and flow rates as affine functions of control
inputs; thus capturing the dependency of the uncertain
network response on operator’s decisions.

2) We introduce a chance-constrained program to optimize
the control policies and provide its computationally effi-
cient second-order cone programming (SOCP) reformu-
lation. The policy optimization ensures that the network
state remains within network limits with a high prob-
ability and utilizes the statistical moments of the state
variables to trade-off between the expected cost and the
variance of the state variables.

3) We propose a conic pricing scheme that remunerates net-
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work assets, i.e., gas suppliers, compressors and valves,
for their contribution to uncertainty and variance control.
Unlike the standard linear programming duality, the conic
duality enables the decomposition of revenue streams
associated with the coupling chance-constraints. We ana-
lyze the economic properties of the conic pricing scheme,
e.g. revenue adequacy and cost recovery, and make them
conditioned on the network design.

At the operational planning stage, the optimized policies
provide the best approximation (up to forecast quality) of
the real-time control actions. They can be augmented into
preoperational routines of network operators within the deter-
ministic steady-state [13] or transient [14], [15] gas models
in the form of gas injection and pressure regulation set-
points, while providing the strong foundation for necessary
financial remunerations. We corroborate the effectiveness of
the proposed policies using a 48-node natural gas network.

Outline: Section II explains the gas network modeling,
while Section III describes the stochastic network optimiza-
tion, control policies and tractable reformulations. Section IV
introduces the pricing scheme and its theoretical properties.
Section V provides numerical experiments, and Section VI
concludes. All proofs are relegated to Appendix.

Notation: Operation ◦ is the element-wise product. Operator
diag[x] returns an n × n diagonal matrix with elements of
vector x ∈ Rn. For a n× n matrix A, [A]i returns an ith row
(1 × n) of matrix A, 〈A〉i returns an ith column (n × 1) of
matrix A, and Tr[A] returns the trace of matrix A. Symbol
> stands for transposition, vector 1 (0) is a vector of ones
(zeros), and ‖·‖ denotes the Euclidean norm.

II. PRELIMINARIES

A. Gas Network Equations

A natural gas network is modeled as a directed graph
comprising a set of nodes N = {1, . . . , N} and a set of
edges E = {1, . . . , E}. Nodes represent the points of gas
injection, extraction or network junction, while edges represent
pipelines. Each edge is assigned a direction from sending node
n to receiving node n′, i.e., if (n, n′) ∈ E , then (n′, n) /∈ E .
The graph may contain cycles, while parallel edges and self-
loops should not exist. The graph topology is described by a
node-edge incidence matrix A ∈ RN×E , such that

Ak` =





+1, if k = n
−1, if k = n′

0, otherwise
∀` = (n, n′) ∈ E .

Let ϕ ∈ RE be a vector of gas flow rates and let δ ∈ RN+ be
a vector of gas extractions, which must be satisfied by the gas
injections ϑ ∈ RN across the network given their injection
limits ϑ, ϑ ∈ RN+ . The gas conservation law is thus

Aϕ = ϑ− δ.
The gas flow rates in network edges relate to the nodal pres-
sures through non-linear, partial differential equations [16].
Under steady-state assumptions [13], however, the flows are
related to pressures through the Weymouth equation:

ϕ`|ϕ`| = w`
(
%2
n − %2

n′
)
, ∀` = (n, n′) ∈ E ,

where % ∈ RN is a vector of pressures contained within
technical limits %, % ∈ RN+ , and w ∈ RE+ are constants that
encode the friction coefficient and geometry of pipelines. To
avoid non-linear pressure drops, let πn = %2

n be the squared
pressure at node n with limits πn = %2

n
and πn = %2

n.
To support the desired nodal pressures, the gas network

operator regulates the pressure using active pipelines Ea ⊂ E ,
which host either compressors Ec ⊂ Ea or valves Ev ⊂ Ea, as-
suming Ec∩Ev = ∅. These network assets respectively increase
and decrease the gas pressure along their corresponding edges.
To rewrite the gas conservation law and Weymouth equation
accounting for these components, let κ ∈ RE be a vector
of pressure regulation variables. Pressure regulation is non-
negative κ` > 0 for every compressor edge ` ∈ Ec and it is
non-positive κ` 6 0 for every valve edge ` ∈ Ev . This informa-
tion is encoded in the pressure regulation limits κ, κ ∈ RE .
Pressure regulation involves an additional extraction of the
gas mass to fuel active pipelines. Let matrix B ∈ RN×E

relate the active pipelines to their sending nodes accounting
for conversion factors, i.e.,

Bk` =





b`, if k = n, k ∈ Ec
−b`, if k = n, k ∈ Ev

0, otherwise
∀` = (n, n′) ∈ E ,

where b` is a conversion factor from the gas mass to the
pressure regulation rate. The network equations become

Aϕ = ϑ−Bκ− δ, (1a)

ϕ ◦ |ϕ| = diag[w](A>π + κ), (1b)
ϕ` > 0, ∀` ∈ Ea. (1c)

Here, the gas extraction Bκ by compressor and valve edges in
(1a) is always non-negative. Equation (1b) is the Weymouth
equation in a vector form that accounts for both pressure loss
and pressure regulation. The absolute value operator in (1b)
is understood element-wise. Finally, equality (1c) enforces the
unidirectional condition for the gas flow in active pipelines,
because they permit the gas flow only in one direction.

B. Deterministic Gas Network Optimization

The gas network optimization seeks the minimum of gas
injection costs while satisfying gas flow equations and network
limits. Let c1 ∈ RN+ and c2 ∈ RN+ be the coefficients of a
quadratic gas injection cost function. With a perfect extraction
forecast, the deterministic gas network optimization is

min
ϑ,κ,ϕ,π

c>1 ϑ+ ϑ>diag[c2]ϑ (2a)

s.t. Aϕ = ϑ−Bκ− δ, (2b)

ϕ ◦ |ϕ| = diag[w](A>π + κ), (2c)

π 6 π 6 π, ϑ 6 ϑ 6 ϑ, (2d)
κ 6 κ 6 κ, ϕ` > 0, ∀` ∈ Ea. (2e)

Despite the non-convexity of (2), it has been solved suc-
cessfully using algorithmic solvers [13], [17] or general-
purpose solvers [18] when all optimization parameters are
known. These solvers no longer apply when the parameters are
uncertain, because one needs to establish a convex dependency
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of optimization variables on uncertain parameters [19]. This
convex dependency is established in this work by means of
the linearization of the Weymouth equation (2c).

C. Linearization of the Weymouth Equation

Let W(ϕ, π, κ) = 0 denote the non-convex constraint (2c),
and let J (x) ∈ RE×n denote the Jacobian of (2c) w.r.t. an
arbitrary vector x ∈ Rn. The relation between the gas flow
rates, nodal pressures, and pressure regulation rates can thus
be approximated by the first-order Taylor series expansion:

W(ϕ, π, κ) ≈W(ϕ̊, π̊, κ̊) + J (ϕ̊)(ϕ− ϕ̊)

+ J (̊π)(π − π̊) + J (̊κ)(κ− κ̊) = 0, (3)

where (ϕ̊, π̊, κ̊) is a stationary point retrieved by solving non-
convex problem (2). As W(ϕ̊, π̊, κ̊) = 0 at a stationary point,
equation (3) implies the affine relation:

ϕ− ϕ̊ = J (ϕ̊)−1J (̊π)(̊π − π) + J (ϕ̊)−1J (̊κ)(̊κ− κ)

⇔ ϕ = J (ϕ̊)−1(J (̊π)̊π + J (̊κ)̊κ) + ϕ̊

γ1(ϕ̊,̊π,̊κ)

−J (ϕ̊)−1J (̊π)

γ2(ϕ̊,̊π)

π −J (ϕ̊)−1J (̊κ)

γ3(ϕ̊,̊κ)

κ

⇔ ϕ = γ1(ϕ̊, π̊, κ̊) + γ2(ϕ̊, π̊)π + γ3(ϕ̊, κ̊)κ, (4)

where γ1 ∈ RE , γ2 ∈ RE×N and γ3 ∈ RE×E are coefficients
encoding the sensitivity of gas flow rates to pressures and
pressure regulation rates. These coefficients depend on the sta-
tionary point. For notational convenience, this dependency is
dropped but always implied. In what follows, the Greek letter
γ denotes sensitivity coefficients and their transformations.

Remark 1 (Reference node): Since rank(γ2) = N − 1,
system (4) is rank-deficient. Since the graph is connected, we
have E > N − 1, thus resulting in infinitely many solutions
to system (4). A unique solution is obtained by choosing a
reference node (r) and fixing the reference pressure πr = π̊r.
The reference node does not host a variable injection or
extraction, nor should be a terminal node of active pipelines. In
practice, this is a node with a large and constant gas injection.

III. GAS NETWORK OPTIMIZATION UNDER UNCERTAINTY

A. Chance-Constrained Formulation

At the operational planning stage, well ahead of the real-
time operations, the unknown gas extractions are modeled as

δ̃(ξ) = δ + ξ, (5)

where δ is the expectation of the gas withdrawal rates and
ξ ∈ RN is a vector of random forecast errors. Having a finite
number of historical forecast error samples observed from the
true distribution Pξ, the network operator approximates its
mean and covariance. Without loss of generality, we consider
that the sample mean is zero and the description of distribution
Pξ reduces to its covariance Σ = E[ξξ>].

The chance-constrained counterpart of the deterministic gas
network optimization in (2) writes as

min
ϑ̃,κ̃,ϕ̃,π̃

EPξ [c>1 ϑ̃(ξ) + ϑ̃(ξ)>diag[c2]ϑ̃(ξ)] (6a)

s.t.

Pξ



Aϕ̃(ξ) = ϑ̃(ξ)−Bκ̃(ξ)− δ̃(ξ),
ϕ̃(ξ) = γ1 + γ2π̃(ξ) + γ3κ̃(ξ),

π̃r(ξ) = π̊r


 a.s.

= 1, (6b)

Pξ

[
π 6 π̃(ξ) 6 π, ϑ 6 ϑ̃(ξ) 6 ϑ,

κ 6 κ̃(ξ) 6 κ, ϕ̃`(ξ) > 0, ∀` ∈ Ea

]
> 1− ε, (6c)

which optimizes stochastic network variables ϑ̃, κ̃, ϕ̃ and π̃
to minimize the expected value of the cost function (6a)
subject to probabilistic constraints. The almost sure constraint
(6b) requires the satisfaction of the gas conservation law and
linearized Weymouth equation with probability 1, while the
chance constraint (6c) ensures that the real-time pressures
together with the injection, pressure regulation and flow rates
remain within their technical limits. The prescribed violation
probability ε ∈ (0, 1) reflects the risk tolerance of the gas
network operator towards the violation of network limits.

B. Control Policies and Network Response Model

The chance-constrained problem (6) is computationally in-
tractable as it constitutes an infinite-dimensional optimization
problem. To overcome its complexity, it has been proposed to
approximate its solution by optimizing stochastic variables as
affine, finite-dimensional functions of the random variable [4].
This functional dependency constitutes the model of the gas
network response to uncertainty.

The explicit dependency on uncertainty is enforced on the
controllable variables through the following affine policies

ϑ̃(ξ) = ϑ+ αξ, κ̃(ξ) = κ+ βξ, (7a)

where ϑ and κ are the nominal (average) response, while
α ∈ RN×N and β ∈ RE×N are variable recourse decisions of
the gas injections and pressure regulation by active pipelines,
respectively. When optimized, policies (7a) provide control
inputs for the network operator to meet the realization of
random forecast errors ξ. As the state variables, such as flow
rates and pressures, are coupled with the controllable variables
through stochastic equations (6b), they implicitly depend on
uncertainty through the control inputs.

Lemma 1: Under control policies (7a), the random gas
pressures and flow rates are given by affine functions

π̃(ξ) = π + γ̆2(α− γ̂3β − diag[1])ξ, (7b)
ϕ̃(ξ) = ϕ+ (γ̀2(α− diag[1])− γ̀3β)ξ, (7c)

both including the nominal and random components, and
where γ̆2, γ̂2, γ̀2, γ̂3, γ̀3 are constants of proper dimensions.

Equations (7) constitute the desired model of the network
response to uncertainty. The model is said to be admissible if
the stochastic gas conservation law and linearized Weymouth
equation in (6b) hold with probability 1, i.e., for any realization
of random variable ξ. This is achieved as follows.

Lemma 2: The model of the gas network response (7) is
admissible if the nominal and recourse variables obey

Aϕ = ϑ−Bκ− δ (8a)
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(α−Bβ)>1 = 1, (8b)
ϕ = γ1 + γ2π + γ3κ, (8c)

πr = π̊r, [α]>r = 0, [β]>r = 0. (8d)

Remark 2: The model of the gas network response (7) does
not make an assumption on the uncertainty distribution.

C. Expected Cost Reformulation

The expected value of the gas network cost function in (6a)
is computationally intractable as it involves an optimization
of infinite-dimensional random variable ϑ̃(ξ). Under control
policy (7a), however, we show that the computation of the
expected cost reduces to solving an SOCP problem.

Due to definition of ϑ̃(ξ), function (6a) rewrites as

EPξ [c>1 (ϑ+ αξ) + (ϑ+ αξ)>diag[c2](ϑ+ αξ)],

where the argument of the expectation operator is separable
into nominal and random components. Due to the linearity of
the expectation operator, it equivalently rewrites as

c>1 ϑ+ ϑ>diag[c2]ϑ+ EPξ [c>1 αξ + (αξ)>diag[c2]αξ].

A zero-mean assumption made on distribution Pξ factors out
the first term under the expectation operator. The reformulation
of the second term is made recalling that the expectation of
the outer product of the zero-mean random variable yields its
covariance, i.e., E[ξξ>] = Σ. Thus, the expected value of cost
function (6a) reduces to a computation of

c>1 ϑ+ ϑ>diag[c2]ϑ+ Tr[α>diag[c2]αΣ],

which is a convex quadratic function in variables ϑ and α.
To bring it to an SOCP form, let vectors cϑ ∈ RN and cα ∈
RN substitute the quadratic terms of the gas injection and
recourse costs. Moreover, let F ∈ RN×N be a factorization
of covariance matrix Σ, such that Σ = FF>, and c̀2 ∈ RN be
the factorization of vector c2, such that diag[c2] = c̀2c̀

>
2 . Then,

for any fixed values of nominal ϑ and recourse α decisions, the
expected value of the cost is retrieved by solving the following
SOCP problem

min
cϑ,cα

c>1 ϑ+ 1>cϑ + 1>cα (9a)

s.t. ‖c̀2nϑn‖2 6 cϑn, ∀n ∈ N , (9b)

‖F [α]>n c2n‖2 6 cαn, ∀n ∈ N , (9c)

where (9b) and (9c) are rotated second-order cone constraints.
Hence, the co-optimization of variables ϑ, α, cϑ and cα re-
sults in the minimal expected cost. As problem (9) acts on
a distribution-free response model (Remark 2), it does not
require any assumption on the uncertainty distribution.

D. Variance of State Variables

The optimization of response model (7) using the criterion
of the minimum expected cost involves the risks of producing
highly variable solutions for the state variables. See, for
example, the evidences in the power system domain [20], [21].
However, since the state variables (7b) and (7c) are affine in

control inputs, they can be optimized to provide the minimal-
variance solution. To achieve the desired result, however, it is
more suitable to optimize the standard deviations of the state
variables as they admit conic formulations.

Let sπ ∈ RN and sϕ ∈ RE be the variables modeling the
standard deviations of pressures and flow rates, respectively.
For any fixed values of recourse decisions α and β, the
standard deviations of pressures and flows rates are retrieved
by solving the following SOCP problem

min
sπ,sϕ

1>sπ + 1>sϕ (10a)

s.t. ‖F [γ̆2(α− γ̂3β − diag[1])]>n ‖ 6 sπn, (10b)

‖F [γ̀2(α− diag[1])− γ̀3β]>` ‖ 6 sϕ` , (10c)
∀n ∈ N ,∀` ∈ E ,

where (10b) and (10c) are second-order cone constraints,
which are tight at optimality. Therefore, the co-optimization of
variables α, β, sπ and sϕ yields the optimized system response
(7) that ensures the minimal-variance solution for the state
variables. We finally note that this co-optimization is also
distribution-free.

E. Tractable Chance-Constrained Formulation

It remains to reformulate the joint chance constraint (6c)
to attain a tractable reformulation. Given network response
model (7), one way to satisfy (6c) is to enforce all its N6
inequalities on a finite number of samples from Pξ [22].
The sample-based reformulation, however, does not explicitly
parameterize the problem by the risk tolerance ε of the
network operator. We thus proceed by enforcing individual
chance constraints with the explicit analytic parameterization
of the risk tolerance through individual violation probabilities
ε̂ ∈ R

N6
+ . This approach admits the Bonferroni approximation

of the joint chance constraint in (6c) when 1>ε̂ 6 ε. The
joint feasibility guarantee is provided even when the choice
of the individual violation probabilities is sub-optimal [23],
e.g. ε̂i = ε

N6
, ∀i = 1, . . . , N6.

From [19] we know that a scalar chance constraint

Pξ[ξ
>x 6 b] > 1− ε̂ (11a)

analytically translates into the second-order cone constraint

zε̂‖Fx‖ 6 b− Eξ[ξ
>x], (11b)

where zε̂ > 0 is a safety parameter in the sense of [19],
and the left-hand side of (11b) is the margin that ensures
constraint feasibility given the parameters of the forecast errors
distribution. Consequently, larger safety parameter zε̂ improves
system security. The choice of zε̂ depends on the knowledge
about distribution Pξ [19], yet it always increases as the risk
tolerance ε̂ reduces.

Given the network response model (7) and the reformu-
lations in (8)–(11), a computationally tractable version of
stochastic problem (6) with the variance awareness formulates
as the following SOCP problem:

min
P

c>1 ϑ+ 1>cϑ + 1>cα + ψπ>sπ + ψϕ>sϕ (12a)

s.t. λc : Aϕ = ϑ−Bκ− δ, (12b)
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λr : (α−Bβ)>1 = 1, (12c)
λw : ϕ = γ1 + γ2π + γ3κ, πr = π̊r, (12d)

λπn : ‖F [γ̆2(α− γ̂3β − diag[1])]>n ‖ 6 sπn, (12e)

λϕ` : ‖F [γ̀2(α− diag[1])− γ̀3β]>` ‖ 6 sϕ` , (12f)

λπn : zε̂‖F [γ̆2(α− γ̂3β − diag[1])]>n ‖ 6 πn − πn, (12g)

λπn : zε̂‖F [γ̆2(α− γ̂3β − diag[1])]>n ‖ 6 πn − πn, (12h)

λ
ϕ

` : zε̂‖F [γ̀2(α− diag[1])− γ̀3β]>` ‖ 6 ϕ`,
∗ (12i)

zε̂‖c̀2nϑn‖2 6 cϑn, (12j)

zε̂‖F c̀2n[α]>n ‖2 6 cαn, (12k)

zε̂‖F [α]>n ‖ 6 ϑn − ϑn, (12l)

zε̂‖F [α]>n ‖ 6 ϑn − ϑn, (12m)

zε̂‖F [β]>` ‖ 6 κ` − κ`, (12n)

zε̂‖F [β]>` ‖ 6 κ` − κ`, (12o)
∀n ∈ N , ∀` ∈ E , ∗∀` ∈ Ea,

in variables P = {ϑ, κ, ϕ, π, α, β, cϑ, cα, sπ, sϕ}. Problem
(12) optimizes the system response model (7) to meet a trade-
off between the expected cost and the standard deviation of
the state variables up to the given penalties ψπ ∈ RN+ and
ψϕ ∈ RE+ for pressures and gas flow rates, respectively.
Notice, that the constraints on the optimal recourse with
respect to the reference node in (8d) are implicitly accounted
for through the conic constraints on the gas injection and
pressure regulation (12l)–(12o).

In formulation (12), the Greek letters λ denote the dual
variables of the coupling constraints. In the next section, we
invoke the SOCP duality theory to establish an efficient pricing
scheme for gas networks under uncertainty.

IV. PRICING GAS NETWORKS UNDER UNCERTAINTY

From program (12), we know that network assets participate
in the satisfaction of the gas network equations through (12b)–
(12d), in state variance reduction (12e)–(12f), and in ensuring
the feasibility of the state variables (12g)–(12i). In this section,
we establish a pricing scheme that remunerates network assets
based on the combination of the classic linear programming
duality [24], [25] and the SOCP duality [21], [26]. We refer
the interested reader to Appendix C for a brief overview on
SOCP duality. For presentation clarity, however, we should
stress that for each second-order cone constraint in (12e)–
(12i) with a dual variable λ ∈ R1 there exists a vector
of dual prices u ∈ RN , corresponding component-wise to
random vector ξ ∈ RN , such that ‖u‖ 6 λ. With a set of
prices λ, u1, . . . , uN , each conic coupling constraint becomes
separable, thus enabling the revenue decomposition associated
with constraints (12e)–(12i).

We first show that the primal and dual solutions of program
(12) solve a competitive equilibrium. This equilibrium con-
sists of a price-setting problem that seeks the optimal prices
associated with the coupling constraints (12e)–(12i), a set of
profit-maximizing problems of gas suppliers n ∈ N , active
pipelines ` ∈ Ea, and a rent-maximization problem solved
by the network operator, as we establish in the proof of the
following result; see Appendix D for details.

Theorem 1 (Equilibrium payments): Let P and D be the
sets of the optimal primal and dual solutions of problem (12),
respectively. Then, both sets P and D solve a competitive gas
network equilibrium with the following payments:

1) Each gas supplier n ∈ N maximizes the expected profit
when receiving the revenue of Rsup

n as in (13a).
2) Each active pipeline ` ∈ Ea maximizes the expected profit

when receiving the revenue of Ract
` as in (13b).

3) The network operator maximizes the expected network
congestion rent when receiving the revenue of Rrent as in
(13c).

4) Each consumer n ∈ N maximizes the gas extraction
utility when it is charged with Rcon

n as in (13d).

Similarly to a deterministic market settlement, the nominal
gas injection or extraction is priced by associated locational
marginal price λc, while the nominal pressure regulation is
priced by the dual variable λw of the Weymouth equation.
The pricing scheme of Theorem 1, however, goes beyond the
deterministic payments and provides three additional revenue
streams for network assets (13). First, each network asset is
paid with the dual variable λr to remunerate its contribution
to the feasibility of the gas network equations for any real-
ization of uncertainty; see Lemma 2. The dual variables of
the reformulated chance constraints (12g)–(12i) are used to
compensate network assets for maintaining gas pressures and
flow rates within network limits. Observe, this revenue stream
is proportional to the safety parameter zε̂, which increases as
risk tolerance ε̂ reduces. The last revenue streams for network
assets come from the satisfaction of the variance criteria set by
the network operator. From the stationarity conditions (23e)
from Appendix D, the variance prices are λπ = ψπ and
λϕ = ψϕ, and from the SOCP dual feasibility condition (19)
from Appendix D we know that ‖[uπ]n‖ 6 λπn, ‖[uϕ]`‖ 6 λϕ` ,
∀n ∈ N , ` ∈ E . Thus, these revenue streams are proportional
to the variance penalties ψπ and ψϕ set by the network
operator. The consumer charges, motivated by their individual
contributions to uncertainty and state variance, are explained
similarly. Finally notice that, in contrast to the deterministic
rent, revenue (13c) additionally includes the variance control
rent, which is non-zero whenever constraints (12e)–(12f) are
binding, i.e., ψπ, ψϕ > 0.

The results of Theorem 1, and thus the equivalence between
the centralized optimization (12) and its equilibrium counter-
part (20)–(22), hold under certain assumptions. First, there
exists at least one strictly feasible solution to SOCP problem
(12) or to its dual counterpart to ensure that Slater’s condition
holds [26]. Second, agents must act according to their true
preferences, i.e., no exercise of market power. Finally, the
information on the uncertainty distribution must be consistent
among equilibrium problems [27].

We next analyze the properties of revenue adequacy and cost
recovery and make them conditioned on the network design.

Corollary 1 (Revenue adequacy): Let γ1 = 0 and π = 0.
Then, the payments established by Theorem 1 are revenue
adequate, i.e.,

∑N
n=1Rcon

n >
∑N
n=1R

sup
n +

∑E
`=1Ract

` .

As a result, the gas network operator does not incur a finan-
cial loss when distributing the payments from consumers to
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Rsup
n , λcnϑn

nominal
balance

+ [λr]>[α]>n
recourse
balance

+ zε̂
(
〈γ̆2〉>n (uπ + uπ) + 〈γ̀2〉>n uϕ

)
F [α]>n

gas pressure and flow limits

+
(
〈γ̆2〉>n uπ + 〈γ̀2〉>n uϕ

)
F [α]>n

gas pressure and flow variance

(13a)

Ract
` ,

(
〈γ3〉>` λw − λc>〈B〉`

)
κ`

nominal pressure regulation

− 1>〈B〉`λr>[β]>`
recourse balance

− zε̂
(
〈γ̆2γ̂3〉>` (uπ + uπ) + 〈γ̀3〉>` u

ϕ)F [β]>`
gas pressure and flow limits

−
(
〈γ̆2γ̂3〉>` uπ + 〈γ̀3〉>` uϕ

)
F [β]>`

gas pressure and flow variance

(13b)

Rrent ,
(
λϕ> − λw> − λc>A

)
ϕ

flow congestion rent

+
(
λw>γ2 + λπ> − λπ>

)
π + λπ>π − λπ>π

pressure congestion rent

+ λϕ>sϕ + λπ>sπ

variance rent

(13c)

Rcon
n , λcnδn

nominal
balance

+ λrn

recourse
balance

+ zε̂[F ]n
(
uϕ>〈γ̀2〉n + (uπ + uπ)>〈γ̆2〉n

)

gas pressure and flow limits

+ [F ]n
(
uϕ>〈γ̀2〉n + uπ>〈γ̆2〉n

)

gas pressure and flow variance

(13d)
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Figure 1. Expected cost versus pressure variance for different assignments
of control polices to network assets. Pressure penalty ψπ ∈ [10−3, 10−1].

network assets. The first condition in Corollary 1 is motivated
by the linearization of the Weymouth equation. If γ1 6= 0,
there exists an extra revenue term λw>γ1. As consumers are
inelastic, this payment can be thus allocated to consumer
charges, however its distribution among the customers remains
an open question. Finally, the second condition in Corollary
1 allows pressures to be zero at network nodes, which is too
restrictive for practical purposes. In the next Section V we
show that the revenue adequacy holds in practice even when
this condition is not satisfied.

Our last result is to show that the cost recovery for network
assets is also conditioned on the network design.

Corollary 2 (Cost recovery): Let ϑ = 0, κ` = 0,∀` ∈ Ec,
and κ` = 0,∀` ∈ Ev . Then, the payments of Theorem 1 ensure
cost recovery for suppliers and active pipelines, i.e., Ract

` >
0,∀` ∈ Ea, and Rsup

n − c1nϑn − cϑn − cαn > 0,∀n ∈ N .

V. NUMERICAL EXPERIMENTS

We run numerical experiments using a 48-node natural
gas network depicted in Fig. 2. The network parameters are
sourced from [28] with a few modifications: we homogenize
the pressure limits across network nodes, add two injections
in the demand area at nodes 32 and 37, and install two valves
in pipelines connecting nodes (28, 29) and (43, 44). The 22
gas extractions are modeled as δ̃(ξ) = δ + ξ, where δ is the
nominal extraction rate reported in [28] and ξ is the zero-mean
normally distributed forecast error. The safety parameter zε̂ is
thus the inverse CDF of the standard Gaussian distribution
at (1 − ε̂)−quantile [19]. The standard deviation of each
gas extraction is set to 10% of the nominal rate. The joint

constraint violation probability ε is set to 1% by default. To
retrieve the stationary point in (4), the non-convex problem (2)
is solved for the nominal gas extraction rates using the Ipopt
solver [18]. The repository [29] contains the input data and
code implementation in the JuMP package for Julia [30].

A. Analysis of the Optimized Network Response

We first study the optimized gas network response to
uncertainty under deterministic and chance-constrained control
policies (7). The deterministic policies are optimized by setting
the safety factor zε̂ in problem (12) to zero. The policies are
compared in terms of the expected cost (9a), the aggregated
variance of gas pressures and flow rates

∑
n Var[%̃n(ξ)] and∑

` Var[ϕ̃`(ξ)], respectively, and the total pressure regulation
by compressors

∑
`∈Ec
√
κ` and valves

∑
`∈Ev
√
κ`. Note, we

discuss the natural pressure quantities, not their squared coun-
terparts used in optimization.

The policies are also compared in terms of network con-
straints satisfaction. We first sample control inputs from (7)
for S = 1, 000 realizations of forecast errors and count the
violations of network limits (6c). Second, we assess the quality
of the control inputs (7a) for the non-convex gas equations,
by solving the projection problem

min
ϑs,κs,ϕs,πs

‖ϑ̃(ξs)− ϑs‖+ ‖κ̃(ξs)− κs‖ (14a)

s.t. Aϕs = ϑs −Bκs − δs − ξs, (14b)
Constraints (2c)− (2e), (14c)

for all realizations ξs,∀s = 1, . . . , S. A control input is
considered feasible if (14a) is zero for a given realization. To
characterize this infeasibility numerically, consider the average
metrics Pinj =

∑
s‖ϑ̃(ξs) − ϑs‖/S for gas injections and

Pact =
∑
s‖κ̃(ξs)− κs‖/S for active pipelines.

The results are reported in Table I. Disregarding uncertainty,
the deterministic policies optimize the network operation for
the nominal gas extraction rates and thus result in the mini-
mum of cost at the operational planning stage. However, the
produced control inputs are infeasible for most of the forecast
error realizations. The projections Pinj and Pact of deterministic
policies require the real-time correction of gas injections by
31.3% and the real-time correction of pressure regulation by
active pipelines by 12.7% of the nominal rates on average.
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Table I
DETERMINISTIC VERSUS CHANCE-CONSTRAINED OPTIMIZATION OF CONTROL POLICIES

Parameter Unit Deterministic
control policies

Chance-constrained control policies

Variance-
agnostic

Pressure variance-aware, ψπ Flow variance-aware, ψϕ

10−3 10−2 10−1 1 101 102

Expected cost $1000 80.9 82.5 (100%) 100.5% 105.6% 113.8% 100.1% 102.5% 112.6%∑
n Var[%̃n(ξ)] MPa2 217.5 63.4 (100%) 44.2% 18.9% 12.8% 92.8% 46.7% 24.7%∑
` Var[ϕ̃`(ξ)] BMSCFD2 26.1 58.0 (100%) 83.4% 64.1% 59.2% 93.4% 44.8% 25.9%

∑
`∈Ec

√
κ` kPa 1939 3914 3570 3734 3661 3914 4030 3888∑

`∈Ev
√
κ` kPa 0 0 0 150 576 0 1 500

Constraint inf. % 53.7 0.04 0.02 0.02 0.02 0.03 0.02 0.03
Average Pinj MMSCFD 960.91 0.01 0.03 0.02 0.02 0.02 0.04 0.04
Average Pact kPa 121.68 0.19 0.08 0.10 0.05 0.28 0.04 0.04
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Figure 2. Comparison of the variance-agnostic (left) and the variance-aware (right) chance-constrained control policies in terms of the state variables variance
for ε = 10%. The red values show the probability of flow reversal. The inset plot shows the correlation between the pressures at nodes 34 and 35.

The chance-constrained policies, on the other hand, produce
the control inputs that remain feasible with a probability at
least 1 − ε = 99% and require a minimal effort to restore
the real-time gas flow feasibility. The variance-agnostic policy
requires only a slight increase of the expected cost relative
to the deterministic solution by 1.6%, while the variance-
aware policies allow to trade-off the expected operational cost
for the smaller variations of pressures and flow rates. The
variance of gas pressures and flow rates can be reduced by
63.8% and 7.2%, respectively, without any substantial impact
on the expected cost. Observe that the subsequent variance
reduction is achieved also due to the activation of valves in
two active pipelines, that are not operating in the deterministic
and variance-agnostic solutions.

Next, we show how the cost-variance trade-offs change
with different assignments of control policies (7) to network
assets. Figure 1 illustrates the cost-variance trade-offs when
the control policies are assigned to gas injections only (α ∈
free, β = 0), to gas injections and compressors (α, β ∈
free, [β]>` = 0,∀` ∈ Ev), and to all network assets including
valves (α, β ∈ free). Observe that the variance reduction
is achieved more rapidly and at lower costs as more active
pipelines are involved into uncertainty and variance control.
Hence, the stochastic control becomes more available as the
network operator deploys more pressure regulation action by
compressors and valves.

With the density plots in Fig. 2, we demonstrate the uncer-
tainty propagation through the network. The variance-agnostic
solution results in the large pressure variance in the eastern
part of the network with a large concentration of stochastic
gas extractions. This solution further allows the probability
of the gas flows reversal up to 11% for certain pipelines,
thus making the prediction of flow directions difficult. The
variance-aware solution with the joint penalization of pressures
and flows variance, in turn, drastically reduces the variation of
the state variables and localizes the most of the variation only
at nodes 34 and 35. Although this variation remains large,
the pressures at these nodes are highly correlated. Thus, by
Weymouth equation (2c), the flow variance and the probability
of flow reversal in edge (34, 35) remain small.

B. Revenue Analysis

Figure 3 depicts the total revenues of active pipelines and
gas injections as well as the total charges of gas consumers.
It further shows their decomposition into revenue streams
defined by the pricing scheme in (13). Relative to the de-
terministic payments, the chance-constrained policies lead to
a substantial increase in payments that further increase due to
the variance awareness. Besides the nominal supply revenues,
the chance-constrained policies produce the compensations
for the uncertainty and variance control that together exceed
deterministic payments by 37.3%. Moreover, the payments for



8
R

ev
en

u
es

[$
]

Network limits
Network variance

Nominal balance
Recourse balance

Deterministic Variance-agnostic Variance-aware

Ract Rsup Rcon Ract Rsup Rcon Ract Rsup Rcon
0

1

2

3
·106

0

1

2

3
·105

0

1

2
·105

1

Figure 3. Total payments for active pipelines Ract, suppliers Rsup and
consumers Rcon under deterministic, chance-constrained variance-agnostic
and chance-constrained variance-aware (ψπ = 0.1, ψϕ = 100) policies.

the nominal supply under stochastic policies also increase due
to several reasons. First, as shown in Table I, the stochastic
policies require a larger deployment of gas compressors and
valves that extract an additional gas mass for fuel purposes, up
to 4.2% of the network demand, thus increasing the marginal
cost of gas suppliers. Second, to provide the security margins
for chance constraints (12g)–(12i) and (12l)–(12o), the op-
timized policies require withholding less expensive injections
from the purposes of the nominal supply. Last, with increasing
assignments of penalty factors ψπ and ψϕ, the optimality of
the nominal injection cost is altered in the interest of reduced
variance of state variables. Finally, the mismatch between the
consumer charges and the revenues of gas injections and active
pipelines is non-negative, thus satisfying the revenue adequacy
in all three instances.

VI. CONCLUSIONS & OUTLOOK

This work has established the stochastic control policies and
pricing scheme for the non-convex steady-state gas network
operations under gas extraction uncertainty. The work offers
an uncertainty- and variance-aware policy optimization that
ensures the gas flow feasibility with a high probability and
minimal variance of the state variables. Moreover, the work
challenged the deterministic market settlement and offered fi-
nancial remunerations to network assets for their contributions
to uncertainty and variance control.

The definition and optimization of gas storage control
policies under uncertainty constitute the relevant direction for
a future work. In addition, the uncertainty- and variance-aware
coordination and financial contracts between the gas and power
network operators are valid research directions.

APPENDIX

A. Proof of Lemma 1

The substitution of the linearized Weymouth equation from
(6b) and policies (7a) into the gas conservation law in (6b)
yields stochastic pressures as

Aϕ̃(ξ) = ϑ̃(ξ)−Bκ̃(ξ)− δ̃(ξ)
⇔ A(γ1 + γ2π̃(ξ) + γ3(κ+ βξ))

= ϑ+ αξ −B(κ+ βξ)− δ − ξ
⇔ Aγ2

γ̂2

π̃(ξ) = ϑ− (B +Aγ3)κ− δ −Aγ1

from (2b),(4) : Aγ2π=γ̂2π

+ (α− (B +Aγ3)

γ̂3

β − diag[1])ξ

⇔ γ̂2π̃(ξ) = γ̂2π + (α− γ̂3β − diag[1])ξ

⇔ π̃(ξ) = π + γ̂−1
2 (α− γ̂3β − diag[1])ξ,

where γ̂2 ∈ RN×N and γ̂3 ∈ RN×E are auxiliary constants.
As γ̂2 = Aγ2, it is only invertible for the tree network
topology. For generality, consider a reference node (r), see
Remark 1, and let γ̂2\r be a reduced matrix γ̂2 without the rth

row and column in γ̂2. The invertible counterpart of γ̂2 is

γ̆2 =

[
γ̂−1

2\r 0

0ᵀ 0

]
,

and the stochastic pressures become

π̃(ξ) = π + γ̆2(α− γ̂3β − diag[1])ξ, (15a)

πr = π̊r, [α]>r = 0, [β]>r = 0, (15b)

for an arbitrary network topology. Here, equation (15b) is
enforced to satisfy the reference node definition.

To obtain the stochastic flow rates, substitute (15a) into the
linearized Weymouth equation in (6b) and rearrange, i.e.,

ϕ̃(ξ) = γ1 + γ2π̃(ξ) + γ3κ̃(ξ)

⇔ ϕ̃(ξ) = γ1 + γ2π + γ3κ

from (4) : ϕ

+ γ2γ̆2

γ̀2

(α− diag[1])ξ

− (γ2γ̆2γ̂3 − γ3)

γ̀3

βξ

⇔ ϕ̃(ξ) = ϕ+ (γ̀2(α− diag[1]) + γ̀3β)ξ,

where γ̀2 ∈ RE×N and γ̀3 ∈ RE×E are constants.

B. Proof of Lemma 2

Consider the stochastic gas conservation law in (6b):

Aϕ̃(ξ) = ϑ̃(ξ)−Bκ̃(ξ)− δ̃(ξ).
From the properties of the edge-node incidence matrix A, we
know that 1>Aϕ̃(ξ) = 0. By summing up N equations above
and by substituting equations (7a), we arrive to equation

1>ϑ− 1>Bκ− 1>δ + 1>αξ − 1>Bβξ − 1>ξ = 0,

which is separable into nominal and random components:

1>ϑ− 1>Bκ− 1>δ = 0, (16a)

1>αξ − 1>Bβξ − 1>ξ = 0, (16b)

where equation (16a) is the deterministic gas conservation law,
which is alternatively expressed through (1a), thus providing
the first condition in (8a). The second condition in (8b) is
provided from (16b), which holds for any realization of ξ if
the recourse variables α and β obey (α−Bβ)>1 = 1.

To obtain condition (8c), substitute (7) into the stochastic
linearized Weymouth equation in (6b):

ϕ = γ1 + γ2π + γ3κ− α(γ̀2 − γ2γ̆2)ξ

+ β(γ̀3 − γ2γ̆2γ̂3 + γ3)ξ + (γ̀2 − γ2γ̆2)diag[1]ξ

= γ1 + γ2π + γ3κ,
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yielding a deterministic equation due to the definition of
constants γ̀2 and γ̀3. Finally, the stochastic equation for the
reference node is satisfied by equations (15b).

C. Dualization of Conic Constraints

The results presented in this section are due to [26, Chapter
5]. Consider the SOCP problem of the form

min
x∈Rn

c>x, s.t. ‖Aix‖ 6 b>i x, ∀i = 1, . . . ,m, (17a)

with c ∈ Rn, Ai ∈ Rni×n, bi ∈ Rn. To dualize the second-
order cone constraint, we use the fact that for any pair λi ∈ R1

and ui ∈ Rni it holds that

max
ui,λi:

‖ui‖6λi

− u>i Aix− λib>i x = max
λi>0

− λi(‖Aix‖ − b>i x)

=

{
0, if ‖Aix‖ 6 b>i x,
−∞, otherwise. (17b)

Therefore, the Lagrangian of the SOCP problem writes in
variables x ∈ Rn, λ ∈ Rm and u ∈ Rni×n as

max
‖ui‖6λi

min
x

L(x, u, λ) = c>x−
m∑

i=1

(u>i Aix+ λib
>
i x).

(17c)

Consider another SOCP problem of the form

min
x∈Rn

c>x, s.t. ‖Aix‖2 6 b>i x, ∀i = 1, . . . ,m, (17d)

with the rotated second-order cone constraint. To dualize this
constraint, we use the fact that for any set of variables µi ∈ R1

, λi ∈ R1 and ui ∈ Rni it holds that

max
ui,µi,λi:

‖ui‖26µiλi

− u>i Aix− 1/2λi − µib>i x

= max
λi>0

− λi(‖Aix‖2 − b>i x) =

{
0, if ‖Aix‖2 6 b>i x,
−∞, otherwise.

Therefore, the Lagrangian of the SOCP problem writes in
variables x ∈ Rn, µ, λ ∈ Rm and u ∈ Rni×n as

max
‖ui‖26µiλi

min
x

L(x, u, µ, λ) = c>x

−
m∑

i=1

(u>i Aix+ 1/2λi + µib
>
i x). (17e)

D. Proof of Theorem 1

Consider the problem of finding an equilibrium solution
among the following set of agents. First, consider a price-
setter who seeks the optimal prices to coupling constraints
(12b)–(12i) in response to their slacks by solving

maxλc,λr,λw,λϕ,λπ,λϕ,λπ,λπ λc> (Aϕ− ϑ+Bκ+ δ)

+ λr>
(
1− (α−Bβ)>1

)
+ λw> (ϕ− γ1 − γ2π − γ3κ)

+
∑E
`=1 λ

ϕ
`

(
sϕ` − ‖F [γ̀2(α− diag[1])− γ̀3β]>` ‖

)

+
∑N
n=1 λ

π
n

(
sπn − ‖F [γ̆2(α− γ̂3β − diag[1])]>n ‖

)

+
∑E
`=1 λ

ϕ

`

(
ϕ` − zε̂‖F [γ̀2(α− diag[1])− γ̀3β]>` ‖

)

+
∑N
n=1 λ

π
π

(
πn − πn − zε̂‖F [γ̆2(α− γ̂3β − diag[1])]>n ‖

)

+
∑N
n=1 λ

π
π

(
πn − πn − zε̂‖F [γ̆2(α− γ̂3β − diag[1])]>n ‖

)
.

(18)

Problem (18) adjusts the prices respecting the slack of each
constraint, e.g., λc ↓ if Aϕ−ϑ+Bκ > δ, and λc ↑ otherwise.
From SOCP property (17b), we know that the last five terms
associated with the conic constraints rewrite equivalently as

− λϕ>sϕ − λπ>sπ − λϕ>ϕ− λπ> (π − π)− λπ> (π − π)

−∑E
`=1[uϕ + zε̂u

ϕ]`F [γ̀2(α− diag[1])− γ̀3β]>`
−∑N

n=1[uπ + zε̂u
π + zε̂u

π]nF [γ̆2(α− γ̂3β − diag[1])]>n ,

which is linear and separable, and where the dual variables
uϕ, uϕ ∈ RE×N and uπ, uπ, uπ ∈ RN×N are subject to the
following dual feasibility conditions

‖[uπ]n‖ 6 λπn, ‖[uπ]n‖ 6 λπn, ‖[uπ]n‖ 6 λπn, (19a)
‖[uϕ]`‖ 6 λϕ` , ‖[uϕ]`‖ 6 λϕ` ,∀n ∈ N ,∀` ∈ E . (19b)

By separating the terms with respect to the variables of
network assets, network operator, and free terms associated
with each consumer, we obtain the revenue functions in (13).
Consider next that each gas supplier n ∈ N solves

max
ϑn,[α]n,cϑn,c

α
n

Rsup
n (ϑn, [α]n)− c1nϑn − cϑn − cϑα (20a)

s.t. λϑn : zε̂‖c̀2nϑn‖2 6 cϑn, (20b)

λαn : zε̂‖F c̀2n[α]>n ‖2 6 cαn, (20c)

λϑn : zε̂‖F [α]>n ‖ 6 ϑn − ϑn, (20d)

λϑn : zε̂‖F [α]>n ‖ 6 ϑn − ϑn, (20e)

to maximize the profit in response to equilibrium prices. Next,
consider that each active pipeline ` ∈ E solves

max
κ`,[β]`

Ract
` (κ`, [β]`) (21a)

s.t. λκ` : zε̂‖F [β]>` ‖ 6 κ` − κ`, (21b)

λ
κ
` : zε̂‖F [β]>` ‖ 6 κ` − κ`, (21c)

to maximize the revenue in response to equilibrium prices.
Finally, consider a gas network operator which solves

min
π,ϕ,sπ,sϕ

Rrent(π, ϕ, sπ, sϕ) (22a)

s.t. λπ̊r : πr = π̊r (22b)

to maximize the network rent in response to equilibrium prices.
By taking the path outlined in Appendix C, the first-order
optimality conditions of equilibrium problems (20)–(22) are
given by the following equalities

ϑ : c1 − uϑ ◦ c̀2 − λc + λϑ − λϑ = 0, (23a)

κ : [λc>B]> − [λw>γ3]> + λκ − λκ = 0, (23b)

π : λπ − λπ − [λw>γ2]> − Ir ◦ λπ̊ = 0, (23c)

ϕ : [λc>A]> + λw − λϕ = 0, (23d)
sπ : λπ = ψπ, sϕ : λϕ = ψϕ, (23e)

cϑ : µϑ = 1, cα : µα = 1, (23f)

[α]n : F
(
uϕ>〈γ̀2〉n + uπ>〈γ̆2〉n + zε̂[u

ϑ + uϑ]>n
)

+ F [uα]>n c̀2 + λr = 0, (23g)
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[β]` : F
(
uϕ>〈γ̀3〉` + uπ>〈γ̆2γ̂3〉` − zε̂[uκ + uκ]>`

)

+ 1>〈B〉`λr = 0, (23h)

where vector Ir ∈ RN takes 1 at position corresponding to the
reference node, and 0 otherwise. Conditions (23) are identical
to those of centralized problem (12), while the set of first-order
optimality conditions of problem (18) yields primal constraints
(12b)–(12i). Together with the primal constraints of equilib-
rium problems (20)–(22), they are identical to the feasibility
conditions of the centralized problem. Hence, problem (12)
solves the competitive equilibrium.

E. Proof of Corollary 1

From the feasibility conditions (12b)–(12d) and com-
plementarity slackness conditions associted with constraints
(12e)–(12i), we know that the objective function of the price-
setting problem in (18) is zero at optimum. By rearranging the
terms of (18), we have
∑N
n=1Rcon

n −
∑N
n=1R

sup
n −

∑E
`=1Ract

` = Rrent + λw>γ1.

If let γ1 = 0, it remains to show that the congestion rent
accumulated by the network is non-negative, i.e.,
(
λϕ> − λw> − λc>A

)
ϕ

Term A

+
(
λw>γ2 + λπ> − λπ>

)
π

Term B

+ λπ>π − λπ>π
Term C

+ λϕ>sϕ + λπ>sπ

Term D

> 0.

From optimality condition (23d), we know that term A is zero.
Due to (23c), the term B is zero for all nodes but the reference
one, and for the reference node it is λπ̊π̊ > 0 from the dual
objective function of problem (22). Term D is non-negative,
because from (23e) we have that the dual prices λϕ and λπ

are non-negative, and variables sϕ and sπ are lower-bounded
by zero as per (12e) and (12f). In term C, λπ>π and λπ>π
are non-negative due conditions (19a). Thus, the rent is always
non-negative if and only if the network design allows π = 0.

F. Proof of Corollary 2

We need to show that the functions (20a) and (21a) are
non-negative. Both (20a) and (21a) are lower bounded by their
corresponding dual functions, i.e.,

(20a) > 1/2(λϑn + λαn) + λϑnϑn − λϑnϑn, ∀n ∈ N ,
(21a) > λκ` κ` − λκ` κ`, ∀` ∈ Ea.

From the complementarity slackness of constraints in (20) and
(21), we know that λϑ, λα, λϑ, λϑ > 0 and λκ, λκ > 0. As
injection limits are all non-negative, function (20a) is non-
negative if and only if the network design allows ϑ = 0.
As pressure regulation limits for compressors and valves are
respectively non-negative and non-positive, function (21a) is
non-negative if and only if the network design allows κ` =
0,∀` ∈ Ec and κ` = 0,∀` ∈ Ev .
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Setting Reserve Requirements to Approximate the
Efficiency of the Stochastic Dispatch

Vladimir Dvorkin Jr., Student member, IEEE, Stefanos Delikaraoglou, Member, IEEE,
and Juan M. Morales, Senior member, IEEE

Abstract—This paper deals with the problem of clearing
sequential electricity markets under uncertainty. We consider the
European approach, where reserves are traded separately from
energy to meet exogenous reserve requirements. Recently pro-
posed stochastic dispatch models that co-optimize these services
provide the most efficient solution in terms of expected operating
costs by computing reserve needs endogenously. However, these
models are incompatible with existing market designs. This paper
proposes a new method to compute reserve requirements that
bring the outcome of sequential markets closer to the stochastic
energy and reserves co-optimization in terms of cost efficiency.
Our method is based on a stochastic bilevel program that
implicitly improves the inter-temporal coordination of energy
and reserve markets, but remains compatible with the European
market design. We use two standard IEEE reliability test cases
to illustrate the benefit of intelligently setting operating reserves
in single and multiple reserve control zones.

Index Terms—Bilevel optimization, electricity markets, market
clearing, reserve requirements, stochastic programming.

NOMENCLATURE

The main notation used in this paper is stated below.
Additional symbols are defined in the paper where needed. All
symbols are augmented by index t when referring to different
time periods.

A. Sets and Indices

Λ Set of transmission lines.
ω ∈ Ω Set of wind power production scenarios.
i ∈ I Set of conventional generation units.
j ∈ J Set of loads.
k ∈ K Set of wind power units.
n ∈ N Set of nodes.
z ∈ Z Set of reserve control zones.
{}n Mapping of {} into the set of nodes.
{}z Mapping of {} into the set of reserve control zones.
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B. Decision variables

δDA
n Day-ahead voltage angle at node n [rad].
δRT
nω Real-time voltage angle at node n in scenario ω [rad].
DU/D
z Up-/Downward reserve requirement in zone z [MW].

Lsh
jω Shedding of load j in scenario ω [MW].

PC
i Day-ahead dispatch of conventional unit i [MW].
PW
k Day-ahead dispatch of wind power unit k [MW].
PW,sp
kω Wind spillage of unit k in scenario ω [MW].
RU/D
i Up-/Downward reserve provision from unit i [MW].

rU/D
iω Up-/Downward reserve deployment of unit i in sce-

nario ω [MW].

C. Parameters

πω Probability of occurrence of wind power production
scenario ω.

Ci Day-ahead price offer of unit i [$/MWh].
CU/D
i Up-/Downward reserve price offer of unit i [$/MWh].

CVoLL Value of lost load [$/MWh].
Fnm Capacity of transmission line (n,m) [MW].
Lj Demand of load j [MWh].
P i Day-ahead quantity offer of unit i [MW].
R

U/D
i Up-/Downward reserve capacity offer of unit i [MW].

Ŵk Expected generation of wind power unit k [MW].
Wkω Wind power realization of unit k in scenario ω [MW].
Xnm Reactance of transmission line (n,m) [p.u.].

I. INTRODUCTION

ELECTRICITY markets are commonly organized in a
sequence of trading floors in which different services

are traded in various time-frames. According to the Euro-
pean market architecture, this sequence consists of reserve
and day-ahead markets that are cleared 12-36 hours before
actual power system operation and pertain to trading reserve
capacity and energy services, respectively. Getting close to
actual delivery of electricity, a real-time market is organized
to balance deviations from the initial schedule. This market
design has been established following a conventional view
of power system operation, where uncertainty was induced
by equipment contingencies or minor forecast errors of elec-
tricity demand. However, considering the increasing shares of
renewable generation, this design has limited ability to cope
with variable and uncertain energy sources, while maintaining
a sufficient level of reliability at a reasonable cost [1].

To account for the uncertain nature of renewable generation,
recent literature proposes economic dispatch models [2], [3]
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and unit commitment formulations [4]–[6] based on stochastic
optimization. Unlike the conventional market design, which
downplays the cost of uncertainty, the stochastic model makes
use of a probabilistic description of uncertainty and dispatches
the system accounting for plausible forecast errors. In this
case, reserve requirements are computed endogenously, instead
of relying on rule-of-thumb methods such as the N-1 security
criterion. Although the resulting stochastic ideal schedule
provides the most efficient solution in terms of expected
operating system costs, this design is not adopted in practice
due to still unresolved issues like the violation of the least-cost
merit-order principle [7].

There are several research contributions devoted to approx-
imating the stochastic ideal solution, i.e., approaching the
expected operating cost provided by the stochastic dispatch
model while sidestepping its theoretical drawbacks, namely,
the violation of cost recovery and revenue adequacy for certain
realizations of the random variables. The cost recovery prop-
erty guarantees that the profit of each conventional producer
is greater than or equal to its operating costs. The revenue
adequacy property requires that the payments that the system
operator must make to and receive from the participants do
not cause it to incur a financial deficit. Authors in [8] propose
a new market-clearing procedure according to which wind
power is dispatched to a value different than its forecast
mean, such that the expected system cost is minimized. This
procedure respects the merit order of the day-ahead market and
thus ensures cost recovery of the flexible units. An enhanced
stochastic dispatch that guarantees both cost recovery and
revenue adequacy for every uncertainty realization is intro-
duced in [9]. The main obstacle preventing the implementation
of these two models is that they require changing the state
of affairs of conventional market structures. Finally, authors
in [10] propose a stochastic dispatch model that aims at
generating proper price signals that incentivize generators
to provide reliability services akin to reserves. This model
also guarantees cost recovery and revenue adequacy for every
uncertainty realization, but in the meantime it does also require
significant changes in market design as well as in the offering
strategies of the renewable power producers.

More in line with the current practices of the European
market design, [11] proposes a systematic method to adjust
available transfer capacities in order to bring operational effi-
ciency of interconnected power systems closer to the stochastic
solution. In the US electricity markets, several Independent
System Operators (ISOs), e.g., the California ISO (CAISO)
and Midcontinent ISO (MISO) are implementing new ramping
capacity products to increase the ramping ability of the system
during the real-time re-dispatch in order to cope with steep
ramps of net load [12]. Essentially, these flexibility products
aim to resemble the stochastic dispatch, which inherently finds
the optimal allocation of flexible resources between energy
and ramping services. In the same vein, several US ISOs,
as for instance the New York ISO, the ISO New England,
the MISO, and the Pennsylvania-New Jersey-Maryland (PJM)
market, have introduced an operating reserve demand curve
(ORDC) in their real-time market [13]. Motivated by the
two-stage stochastic dispatch model, the ORDC mechanism

adjusts electricity prices to reflect the scarcity value of reserves
for the system operator and incentivize market players to
dispatch their units according to a socially optimal schedule.
The price adjustment through ORDC leads theoretically to
perfect arbitrage between energy and reserves in case these
two products are co-optimized [14]. However, in the European
market that separates energy and reserve capacity trading this
arbitrage is inefficient per se, since market players have to
value reserves prior to the energy-only market clearing.

This paper proposes an alternative approach to approximate
the stochastic ideal dispatch solution through an intelligent
setting of zonal reserve requirements in sequentially cleared
electricity markets akin to the European architecture. Here,
we solely focus on operating reserves, i.e., generation that is
dispatched to respond to net load variations based on economic
bids, rather than on regulating services that are activated by
automatic generation control. Traditionally, requirements for
operating reserves are defined based on deterministic security
criteria, such as N-1 security constraint violations, where
reserves are dimensioned to cover the largest contingency
in the system [15], or based on a mean forecast load error
and forced outage rate of system components over a certain
horizon, as in the PJM market [16]. The main drawback
of those approaches is that they ignore the probabilistic
nature of renewable generation and neglect the economic
impact of reserve needs on subsequent operations. In order
to account for the operational uncertainty, recent literature
proposes reserve dimensioning methods based on probabilistic
criteria, according to which reserve requirements are drawn
from the probabilistic description of uncertainties [17]–[26].
For example, [17] suggests to define the reserve needs such
that they cover 97.7% (3σ) of the total variation of a Gaus-
sian distribution modeling the joint wind-load uncertainty,
disregarding the fact that wind power forecast errors are
described by non-Gaussian distributions [24]. As a remedy to
this drawback, [25] proposed a method for setting the reserve
requirements using non-parametric probabilistic wind power
forecasts. Flying brick and probability box methods in [20] and
[21], respectively, compute robust envelopes that enclose the
net load with a specified probability level. The recent extension
of these methods called flexibility envelopes was suggested in
[22]. These envelopes are based on the same principles but
evolve in time to respect the temporal evolution of reserve
requirements. As demonstrated in [20], [21] and [23], the
probabilistic reserve concepts might be integrated into the
actual energy management system and derive requirements for
capacity, ramping capability and ramping duration of flexible
units. In contrast to the deterministic practices, the benefit
of these methods is that reserve requirements, drawn from
accurately predicted distributions, minimize extreme balancing
actions provoked by under- or over-procurement of reserves.
However, probabilistic requirements are still an exogenous
input to the power dispatch, which disregards their potential
impact on expected cost.

To this end, we propose a model to determine reserves based
on a stochastic bilevel programming problem, which provides
the cost-optimal reserve quantities for a European-type market
structure. In line with the stochastic dispatch mechanism, our
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model computes the reserve requirements that minimize the
expected system cost, anticipating their projected impact on
the subsequent operations. Additionally, these requirements
are defined accounting for the actual decision-making process,
i.e., the sequence of market-clearing procedures, zonal repre-
sentation of the power network and the least-cost merit-order
principle in all trading floors. As a result, the implementa-
tion of these requirements in a conventional market setting,
results in a compromise solution between traditional reserve
dimensioning practices and the stochastic dispatch model in
terms of expected operating cost. Naturally, our approach
has limitations: we consider a simplified market setup with
a strictly convex representation. Nevertheless, our results do
indicate that the intelligent setting of reserve requirements
can enhance the short-run cost efficiency of the conventional
market with large shares of renewable generation.

The proposed model can be used as an analytic tool to
provide technical and economic insights about the efficacy of
different reserve capacity quantification methods, while it can
be also used as a decision-support tool by system operators
during the reserve setting process. In the latter case, this model
can be presumably executed before the day-ahead reserve
capacity auction in order to define the reserve requirements
that will be used as input in the actual market-clearing
process. Nevertheless, the incorporation of this method in the
operational strategy of the system operator does not entail
any changes in the existing market setup, since the model
output is solely under the discretion of the system operator
and decoupled from market operations.

The reminder of this paper is organized as follows. Section
II describes the conventional market design and its counter-
factual stochastic representation. Section III introduces the
proposed stochastic bilevel programming problem to compute
the optimal reserve requirements that approximate the ideal
stochastic solution maintaining the sequential market structure.
Section IV explains the solution strategy based on the multi-
cut Bender’s algorithm for large-scale applications. Section V
provides applications of the proposed model to the IEEE-24
and IEEE-96 reliability test systems. Section VI concludes the
paper.

II. ELECTRICITY MARKET CLEARING MODELS

In this section, we first describe the conventional market
structure and the stochastic dispatch model. We then introduce
the necessary modeling assumptions and provide the mathe-
matical formulations of both models.

A. Conventional market and stochastic dispatch framework

In Europe, power markets are cleared in sequential and
independent auctions which can be represented by the sim-
plified decision-making process illustrated in Fig. 1(a), which
is referred to as the conventional market-clearing model. First,
the system operator defines zonal reserve requirements D
based on certain security standards. Then, the reserve capacity
market is cleared based on the offer prices and quantities
submitted by the flexible producers to find the optimal upward
and downward reserve allocation ΦR∗ that minimizes reserve
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Fig. 1. Decision sequences in conventional (a) and stochastic (b) dispatch
models.

procurement costs CR. This allocation accounts for upward
and downward reserve requirement constraints included in
the set QR. At the next stage, power producers submit their
price-quantity offers to the day-ahead market that provides the
optimal energy schedule ΦD∗ that minimizes the day-ahead
energy cost CD. The set of day-ahead market constraints QD

takes into account the reserve capacity ΦR∗ procured at the
previous stage. Closer to delivery time, when realization of
uncertainty ω′ is known, the system operator runs the real-time
market to define a set of optimal re-dispatch actions ΦB

ω′ that
minimizes the balancing cost CB, considering the previously
procured reserve ΦR∗ . In this conventional market design, the
choice of reserve requirements D has a direct impact on the
total expected system cost. In fact, the choice of D influences
reserve procurement decisions ΦR, which in turn affect day-
ahead ΦD and real-time ΦB energy dispatch decisions.

An alternative model for reserves and energy scheduling
is the stochastic dispatch model outlined in Fig. 1(b). This
is a two-stage stochastic programming model in which first-
stage decisions pertain to reserve procurement and day-ahead
energy schedule, whereas the second stage models the recourse
actions that restore power balance during real-time operation.
The stochastic dispatch model takes as input a probabilistic
wind power forecast in the form of a scenario set Ω and
endogenously computes reserve needs. This way, it naturally
coordinates all trading floors by co-optimizing reserve (ΦR)
and energy (ΦD) schedules, anticipating their impact on the
subsequent expected balancing cost E

ω
[CB(ΦB

ω)] estimated over
the scenario set Ω. It should be noted that the co-optimization
of reserve procurement and energy schedules is a requirement
for the implementation of this ideal coordination between the
different trading floors.

In the stochastic dispatch, reserve requirements are a
byproduct of the energy and reserve co-optimization problem,
resulting in the most efficient solution in terms of total
expected operating cost. Moreover, unlike the conventional
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market model that schedules reserve and day-ahead energy
quantities according to the least-cost merit-order principle,
the stochastic model schedules generation capacity accounting
for potential network congestion during real-time operations,
which may lead to expensive balancing actions [2]. This way
generators may be scheduled out-of-merit, i.e., more expensive
units are dispatched over less expensive ones, in order to
minimize the expected costs.

Despite its superiority in terms of cost efficiency, the
stochastic model suffers from several drawbacks preventing
its practical implementation. As already mentioned, the vi-
olation of the merit-order principle results in cost recovery
and revenue adequacy only in expectation, while for some un-
certainty realizations these two essential economic properties
may not hold [2]. This issue disputes the well-functioning of
electricity markets in long term, since flexible producers may
end up in loss-making positions in one or more scenarios,
despite the fact that their expected profit is non-negative.
Therefore, these market participants may opt out of the short-
run electricity markets or even be discouraged to perform
new investments if they are exposed to significant financial
risks. In the meantime, the fact that revenue adequacy is only
guaranteed in expectation exposes the market operator to the
risk of financial deficit. Therefore, a realistic implementation
of this market model would require the establishment of out-
of-the-market mechanisms, akin to the uplift payments used
in the US markets, to provide an ex-post compensation of
potential economic deficits. In view of this practical caveats,
we do not foresee an actual market clearing implementation of
the stochastic dispatch model. Moreover, the co-optimization
of day-ahead energy and capacity reserve markets is not
compatible with the European market structure, which dictates
that the trading of reserves and energy products is organized
in independent sequential auctions. However, in this work, we
show that the stochastic dispatch solution can be approximated
in the conventional market-clearing model by intelligently
setting the reserve requirements D, sidestepping the drawbacks
of the stochastic model and improving the efficiency of the
existing market setup.

B. Modeling assumptions

We use the following set of assumptions to derive compu-
tationally tractable yet sensible formulations of the different
dispatch models. Following the European practice, we consider
a zonal representation of the network for reserve procurement.
In an attempt to build a more generic model, the network topol-
ogy is included in the day-ahead and real-time dispatch models
considering a DC approximation of power flows. Reserve
and energy supply functions are linear, and all generators are
considered to behave as price takers. System loads are inelastic
with a large value of lost load. This way, the maximization of
the social welfare is equivalent to cost minimization. Flexible
units deploy operating reserves with marginal costs of produc-
tion. The incentive to provide flexibility services is accounted
for in reserve offering prices. Following the prevailing portfo-
lio bidding adopted in the European markets [27], we consider
that all unit commitment and inter-temporal constraints are

integrated into the bidding strategies of the generating units.
For instance, the commitment of thermal units in practice
might be controlled by market participants when offering at
either zero price or market price cap. Similarly, offering a
part of capacity at zero and even negative price ensures the
compliance with the technical minimum constraint of thermal
units. This approach is compatible with the European market
structure and preserves the convexity of the reserve capacity
and day-ahead market-clearing algorithms. In principle, the
proposed model can be also applied to market designs that
involve non-convex constraints, as for instance the majority of
electricity markets in the US, using tight convex relaxations of
the unit commitment binary variables. However, this approach
lies out of scope of this paper, but we refer the interested
reader to [28], [29] for further discussion. Finally, uncertainty
is described by a finite set of scenarios and solely induced by
stochastic wind power production.

C. Mathematical formulation

1) Conventional market-clearing model: The sequential
procedure, sketched in Fig. 1(a), for each hour of the next
day is modeled by the following three linear optimization
problems.

The reserve procurement problem writes as:

min
ΞOR

∑

i∈I

(
CU
i R

U
i + CD

i R
D
i

)
(1a)

s.t.
∑

i∈Iz
RU
i = DU

z ,
∑

i∈Iz
RD
i = DD

z , ∀z ∈ Z, (1b)

RU
i +RD

i ≤ P i, ∀i ∈ I, (1c)

0 ≤ RU
i ≤ R

U
i , 0 ≤ RD

i ≤ R
D
i , ∀i ∈ I, (1d)

where ΞOR = {RU
i , R

D
i ,∀i} is the set of optimization variables

comprising the upward and downward reserve schedule per
each flexible generator. Optimal ΞOR* minimizes the reserve
procurement cost given by (1a). Equality constraints (1b)
ensure that zonal reserve upward and downward requirements,
denoted as DU

z and DD
z , respectively, are fulfilled, whereas

inequality constraints (1c) - (1d) account for the quantity offers
of each flexible generator.

Once reserve allocation {RU∗
i , RD∗

i ,∀i} is determined, the
least-cost day-ahead energy schedule is computed solving the
following optimization problem:

min
ΞDA

∑

i∈I
CiP

C
i (2a)

s.t.
∑

i∈In
PC
i +

∑

k∈Kn
PW
k −

∑

j∈Jn
Lj

−
∑

m:(n,m)∈Λ

δDA
n − δDA

m

xnm
= 0, ∀n ∈ N, (2b)

RD∗
i ≤ PC

i ≤ P i −RU*
i , ∀i ∈ I, (2c)

0 ≤ PW
k ≤ Ŵk, ∀k ∈ K, (2d)

δDA
n − δDA

m

xnm
≤ Fnm, ∀(n,m) ∈ Λ, (2e)

where ΞDA = {PC
i ,∀i;PW

k ,∀k; δDA
n ,∀n} is the set of variables

including day-ahead energy quantities for each conventional
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and stochastic generator as well as voltage angles at each
node. The objective function (2a) to be minimized is the day-
ahead energy cost, subject to nodal power balance constraints
(2b), offering limits of conventional and stochastic generators
(2c)-(2d) and transmission capacity limits (2e). Note that
the reserve procurement decisions from the previous stage
limit the dispatch of flexible generators at the day-ahead
stage. In this design, stochastic production is bounded by the
conditional expectation Ŵk.

Getting closer to real-time operation, any deviation from
the optimal day-ahead dispatch {PC∗

i ,∀i;PW∗
k ,∀k; δDA∗

n ,∀n}
has to be covered by proper balancing actions. For a specific
realization of stochastic production Wkω′ , the optimal re-
dispatch is found solving the following linear programming
problem:

min
ΞRT

∑

i∈I
Ci

(
rU
iω′ − rD

iω′

)
+
∑

j∈J
CVoLLLsh

jω′ (3a)

s.t.
∑

i∈In

(
rU
iω′ − rD

iω′
)

+
∑

k∈Kn

(
Wkω′ − PW*

k − PW,sp
kω′

)

+
∑

j∈Jn
Lsh
jω′ −

∑

m:(n,m)∈Λ

δRT
nω′ − δDA*

n − δRT
mω′ + δDA*

m

xnm

= 0, ∀n ∈ N, (3b)

0 ≤ rU
iω′ ≤ RU∗

i , 0 ≤ rD
iω′ ≤ RD∗

i , ∀i ∈ I, (3c)
δRT
nω′ − δRT

mω′

xnm
≤ Fnm, ∀(n,m) ∈ Λ, (3d)

0 ≤ PW,sp
kω′ ≤Wkω′ , ∀k ∈ K, (3e)

0 ≤ Lsh
jω′ ≤ Lj , ∀j ∈ J, (3f)

where ΞRT = {rU
iω′ , r

D
iω′ ,∀i;Lsh

jω′ ,∀j;P
W,sp
kω′ ,∀k; δRT

nω′ ,∀n} is
the set of re-dispatch decisions, comprising activation of
operating reserves, load shedding, wind spillage and real-time
voltage angles. The objective function (3a) to be minimized is
the balancing cost. Equality constraints (3b) ensure the real-
time nodal power balance. Inequalities (3c) limit activation
of upward and downward reserves considering the procured
reserve quantities. Constraints (3d) account for the power
capacity of transmission lines. Finally, inequalities (3e) and
(3f) limit wind spillage and load shedding actions to the actual
realization of production and system demand, respectively.

2) Stochastic dispatch model: Assuming that wind power
uncertainty is described by a finite set of outcomes Wkω

with corresponding probabilities πω , the stochastic dispatch
procedure outlined in Fig. 1(b) writes as follows:

min
ΞSD

∑

i∈I

(
CU
i R

U
i + CD

i R
D
i + CiP

C
i

)
+

∑

ω

πω

(∑

i∈I
Ci

(
rU
iω − rD

iω

)
+
∑

j∈J
CVoLLLsh

jω

)
(4a)

s.t. constraints (1b) - (1d) (4b)
constraints (2b) - (2e) (4c)
constraints (3b) - (3f), ∀ω ∈ Ω (4d)

where ΞSD = {ΞOR ∪ ΞDA ∪ ΞRT,∀ω ∪ (DU, DD)} is the
set of stochastic dispatch variables. The objective function
(4a) to be minimized is the reserve and day-ahead energy

cost as well as the expectation of the real-time cost, i.e., the
expected cost over the entire decision sequence. Note, that
upward and downward reserve requirements DU

z and DD
z in

(1b) are decision variables and only used to reveal optimal
reserve requirements in a stochastic programming sense.

After the optimal reserve procurement and day-ahead energy
schedule are obtained, the system operator solves the real-time
re-dispatch problem for a specific realization of the stochastic
production ω′ using formulation (3).

III. APPROXIMATING THE STOCHASTIC IDEAL

On the one hand, the conventional procedure has limited ca-
pability to accommodate large shares of stochastic production
in a cost efficient manner compared to the stochastic dispatch.
On the other hand, the adoption of the stochastic procedure
appears to be unrealistic because it does not guarantee revenue
adequacy and cost recovery for every uncertainty realization;
these are important properties that, in contrast, hold in the
sequential market structure [2], [8]. For this reason, our
motivation is to enhance the cost-efficiency of the conven-
tional market-clearing procedure without changing the market
structure. In this line, we introduce a model that approximates
the ideal stochastic solution within the conventional dispatch
model by the appropriate setting of zonal reserve requirements.
In essence, we aim at finding the reserve requirements that
plugged into the conventional market-clearing model (1)-(3)
will yield the minimum total expected system cost. To compute
them, we use the bilevel programming problem illustrated in
Fig. 2.

This model comprises two levels. The objective function of
the upper level is the same as (4a) in the stochastic model (4)
and aims at minimizing the total expected system cost. The
upper-level constraints enforce real-time re-dispatch limits.
The lower level consists of two optimization problems, namely,
the reserve procurement and day-ahead market clearing prob-
lems, which are identical to the corresponding optimization
problems (1) and (2) of the conventional model. However,
in this bilevel structure, reserve requirements D are decision
variables of the upper-level problem, entering as parameters in
the lower-level reserve procurement problem. Hence, reserve
requirements D are not an exogenous input to this model
but are internally optimized, accounting for their impact in
all three trading floors. As shown in Fig. 2, the upper-level
decision on D affects the reserve procurement schedule in the
first lower-level problem, which in turn impacts the day-ahead
clearing obtained from the second lower-level problem. In
addition, the reserve and energy schedules ΦR and ΦD enter the
upper level, constraining the real-time re-dispatch decisions.

The structure of this stochastic bilevel model guarantees
that the temporal sequence of the different markets follows the
existing European paradigm. Having the reserve capacity and
day-ahead market clearings as two independent lower-level
problems, ensures that reserves and day-ahead schedules are
optimized separately, i.e., there is no co-optimization of energy
and reserves, while none of these markets have information
about the future re-dispatch actions. This property suffices to
reproduce the real-time re-dispatch for each scenario indepen-
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dently by including the corresponding constraints only in the
upper-level problem.

Compared to the stochastic model, the main advantage of
this bilevel scheme is that it respects the merit-order principle
in the reserve capacity and day-ahead energy markets. In fact,
given the same reserve requirements, the solutions of both
lower-level problems are identical to the solutions of problems
(1) and (2). Nonetheless, the upper-level problem can still
anticipate the impact of reserve requirements on all trading
floors and consequently on the total expected cost.

Since this model is solved prior to any market-clearing
procedure, we assume that the system operator can gather
information on the price-quantity offers of market participants.
Even in the case of having to use an estimation of price-
quantity offers similar to the ORDC mechanism, our approach
accounts systematically for the impact of reserve procurement
and the structure of forecast errors in all three trading floors. In
a more realistic setup, this information can be obtained using
inverse optimization techniques as proposed in [30] and [31].

Mathematically, the proposed reserve determination model
writes as the following stochastic bilevel programming prob-
lem:

min
ΞRT,DU

z ,D
D
z

(4a) (5a)

s.t. constraints (3b) - (3f), ∀ω ∈ Ω, (5b)

DU
z , D

D
z ≥ 0, ∀z ∈ Z, (5c)

(RU
i , R

D
i ) ∈ arg

{
min
ΞOR

(1a)

s.t. constraints (1b) - (1d)

}
, (5d)

(
P C
i ,P

W
k ,

δDA
n

)
∈ arg

{
min
ΞDA

(2a)

s.t. constraints (2b) - (2e)

}
. (5e)

According to the mathematical structure of model (5),
the lower-level problems (5d) and (5e) guarantee that the
reserve capacity and day-ahead energy markets are serially
and independently optimized. This property is in accordance
with the time-line of these trading floors in the European
market framework. This temporal sequence is accomplished
considering that upward RU*

i and downward RD*
i reserve

schedules are variables of the reserve capacity market (5d)
but enter as parameters in the day-ahead energy market (5e).
Moreover, neither problem (5d) nor (5e) can foresee the
outcome of the balancing market, which is included in the
upper level of model (5). As a result, both markets have no
information about the effect of their decisions on the real-
time market. In turn, constraints (5b)-(5c) and the third term
of the objective function (4a) clear the real-time market of the
conventional model (1)-(3), independently for each scenario
ω ∈ Ω, considering that the real-time re-dispatch cannot
impact the previous trading floors which are ‘fixed’ to the
conventional market solution through the lower-level problems
(5d) and (5e).

This formulation is computationally intractable, since it
consists of an upper-level optimization problem constrained by
two lower-level optimization problems. However, since both
lower-level problems are convex with linear objective func-
tions and constraints, they can be replaced by their Karush-

min
ΦB
ω,D

CR(ΦR) + CD(ΦD) + E
ω

[CB(ΦB
ω)]

s.t. Q(ΦB
ω,D), ∀ω

Reserve procurement

min
ΦR

CR(ΦR)

s.t. QR(ΦR,D)

Day-ahead market

min
ΦD

CD(ΦD)

s.t. QD(ΦD,ΦR)

D

Φ
R

ΦR

Φ D

Fig. 2. Bilevel structure of the proposed reserve determination model.

Kuhn-Tucker optimally conditions, such that the problem can
be recast as a single-level mathematical program with equilib-
rium constraints (MPEC). The resulting model includes a set
of nonlinear complementary slackness constraints, which can
be linearized using disjunctive constraints or SOS1 variables,
transforming the MPEC problem into a mixed-integer linear
program (MILP) [32].

IV. SOLUTION STRATEGY

The set of integer variables used to linearize the comple-
mentarity constraints of the lower-level problems (5d) and (5e)
limits the application of the proposed reserve quantification
model to power systems of moderate scale. For the large-scale
applications, we propose an iterative solution strategy based
on the multi-cut Bender’s algorithm [33]. For a fixed reserve
and day-ahead dispatch, the set of real-time constraints (3b)
- (3f) is independent per scenario. This allows for Bender’s
decomposition where each subproblem solves a scenario-
specific real-time re-dispatch problem. The subproblems at
iteration ν write as follows:
{

min
ΞRT,B
s

CRT(ν)
ω :=

∑

i∈I
Ci

(
rU
iω − rD

iω

)
+
∑

j∈J
CVoLLLsh

jω (6a)

s.t. RU
i = R̃

U(ν)
i : θ

RU
i (ν)

iω , ∀i ∈ I, (6b)

RD
i = R̃

D(ν)
i : θ

RD
i (ν)

iω , ∀i ∈ I, (6c)

PW
k = P̃

W(ν)
k : θ

PW
k (ν)

kω , ∀k ∈ K, (6d)

δDA
n = δ̃DA(ν)

n : θ
δDA
n (ν)
nω , ∀n ∈ N, (6e)

constraints (3b) - (3f)

}
∀ω ∈ Ω,

where ΞRT,B
s = ΞRT ∪ {RU

i , R
D
i ,∀i;PW

k ,∀k; δDA
n ,∀n} is the

set of decision variables of each subproblem of the Bender’s
algorithm. Constraints (6b) - (6e) fix the first-stage decisions to
their optimal values obtained at the previous iteration, and the
corresponding dual variables yield sensitivities of the reserve
and day-ahead decisions used in Bender’s cuts.

The master problem of the Bender’s algorithm at iteration
ν writes as follows:

min
ΞM,B

∑

i∈I

(
CU
i R

U
i + CD

i R
D
i + CiP

C
i

)
+
∑

ω∈Ω

πωα
(ν)
ω (7a)

s.t. α(ν)
ω ≥ CRT(ρ)

ω +
∑

i∈I
θ
RU
i (ρ)

iω

(
RU
i −RU(ρ)

i

)



7

+
∑

i∈I
θ
RD
i (ρ)

iω

(
RD
i −RD(ρ)

i

)

+
∑

k∈K
θ
PW
k (ρ)

kω

(
PW
k − PW(ρ)

k

)

+
∑

n∈N
θ
δDA
n (ρ)
nω

(
δDA
n − δDA(ρ)

n

)
,

ρ = 1 . . . ν − 1,∀ω ∈ Ω, (7b)

α(ν)
ω ≥ α, ∀ω ∈ Ω, (7c)

DU
z , D

D
z ≥ 0, ∀z ∈ Z, (7d)

Linearized KKT conditions of (5d), (7e)
Linearized KKT conditions of (5e), (7f)

where ΞM,B = ΞOR ∪ ΞDA ∪ αω is the set of decisions
variables of the master problem, and index ρ is used to
integrate the fixed values of the corresponding variables at
previous iterations. The Bender’s cuts are updated at each
iteration by (7b) using sensitivities from all previous itera-
tions, while (7c) imposes a lower bound α on the auxiliary
variable α. Since the subproblems allow for load shedding,
they are always feasible, requiring no feasibility cuts in the
master problem. The algorithm converges at iteration ν if∣∣∣
∑
ω∈Ω πω

(
α

(ν)
ω − C

RT(ν)
ω

)∣∣∣ ≤ ε, where ε is a predefined
tolerance.

V. CASE STUDY

In this section, we first describe the test system in Section
V-A. In Section V-B and Section V-C we study the impact
of reserve requirements on expected operating costs and we
assess the remaining efficiency gap of our model with respect
to the stochastic solution for a single reserve control zone. In
Section V-D we extend our analysis to the case of multiple
reserve control zones. In Section V-E we assess the model’s
performance in the presence of non-convex technical con-
straints. Finally, in Section V-F we demonstrate the scalability
of the model using the proposed Bender’s decomposition
algorithm.

A. Description of the test system

To assess the performance of the different reserve determi-
nation models, a modified version of the IEEE 24-Bus RTS
[34] is employed. The system consists of 34 transmission
lines, 17 loads and 12 conventional generation units. The
total generation capacity amounts to 3,375 MW, from which
1,100 MW is flexible generation that can provide upward
and downward reserves. We set upward reserve capacity price
offers to be 30% of the marginal costs. Price offers for
downward reserve capacity price offers are selected such that
they compensate for the potential financial deficit induced by a
loss-making position in the day-ahead market. We should note
that this is only a heuristic approach to address the possibility
that some flexible producers incur financial losses due to their
combined positions in the reserve capacity and day-ahead
energy markets. This situation may emerge if the downward
reserve capacity RD∗i awarded to a generator, and in turn
imposed as a lower bound in the day-ahead market constraint

(2c), forces this unit to produce even if the day-ahead energy
price is lower than its marginal production cost. This pitfall
results from the separation of reserve capacity and energy
markets in the European framework. In turn, the physical
coupling of these two products is accounted for internally
in the trading strategies of the market participants when they
submit their price-quantity offers in the corresponding markets
according to their risk appetite. A detailed study of this issue
constitutes a separate research topic and lies out of the scope of
this work, but the interested reader is referred to [35] and [36]
for further information on this topic. Apart from conventional
generators, there are six wind farms bidding at zero marginal
cost and sited as explained in [34]. We consider a 24-hour
load profile with a peak value of 2,650 MW obtained from
[34]. The loads are assumed to be inelastic with the value
of lost load equal to $500/MW for all operating hours. The
relevant GAMS codes and simulation data are provided in the
electronic companion of the paper [37].

All simulations are carried out using a standard PC with
Intel Core i5 CPU with a clock rate of 2.7 GHz requiring no
more than 8GB of RAM. The CPU time required to solve the
conventional model (1)-(3), stochastic model (4) and bilevel
model (5) in Sections V-B–V-D is kept below 30s when
solving per operating hour. The sequential market with unit
commitment and inter-temporal constraints is solved in less
than a minute in Section V-E. The CPU time corresponding
to the last case study is reported separately in Section V-F.

B. Impact of reserve requirements on expected system cost

In this section we assess the expected cost of operating
the power system under the conventional market setup (1)-(3),
when this is fed with the reserve requirements determined by
different approaches for reserve dimensioning, including our
proposal. To this end, we consider the time period correspond-
ing to the peak-load hour. Besides, the capacity of each wind
power farm is set to 100 MW. Next we discuss the results
linked to each reserve dimensioning approach:

1) The probabilistic approach defines the reserve require-
ments from the predictive cumulative distribution func-
tion (CDF) F of the total wind power portfolio, as the
distance between the expected wind power production Ŵ
and a specified quantile q(α) = F−1(α) with nominal
proportion α ∈ [0, 1]. This approach resembles the state-
of-the-art reserve-dimensioning processes employed by
European system operators using probabilistic forecast
information [26]. For a reliability level ξ = α − α, the
upward and downward reserve needs are dimensioned as
follows:

DU = Ŵ − F−1(α), (8a)

DD = F−1(α)− Ŵ . (8b)

We initially consider α = 5% and α = 1 − α = 95%
corresponding to a reliability level ξ = 90%. The result-
ing requirements amount to 127.9 MW and 89.1 MW for
upward and downward reserves, respectively.
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(b) Day-ahead energy cost
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(c) Expected re-dispatch cost
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(d) Expected total system cost

Fig. 3. Impact of downward DD and upward DU operating reserve requirements on the reserve (a), day-ahead (b), expected re-dispatch (c) and expected
total (d) costs in the conventional procedure (1)-(3). The color density indicates the cost at the considered trading floor.

2) The stochastic approach derives the reserve requirements
from the stochastic dispatch model (4). These require-
ments are equal to 214.3 MW for upward and 65.0 MW
for downward reserves, respectively.

3) The enhanced approach computes the reserve require-
ments using the proposed reserve determination model
(5). Resulting reserve needs amount to 282.9 MW and
42.6 MW for upward and downward reserves, respec-
tively.

The expected total system costs resulting from the imple-
mentation of the probabilistic, stochastic and enhanced oper-
ating reserve approaches are $25,890, $24,531 and $24,408,
respectively. The total cost break-down is shown in Fig. 3,
which demonstrates the impact of the reserve requirements
on the cost of the different trading floors in the conventional
dispatch procedure. Figure 3(a) shows that the reserve needs
computed using the proposed model result in the highest
reserve procurement cost among the different approaches,
mainly due to a larger volume of upward reserve provision.
In turn, efficient flexible generation that could be scheduled
in the day-ahead market is now set aside to provide upward
reserves. Considering that the price offers for upward reserve
are proportional to the day-ahead price offers, the withdrawal
of these resources increases the day-ahead energy cost, as
shown in Fig. 3(b). Nonetheless, the benefits of the enhanced
approach realize in real-time operation as the re-dispatch cost
is lower compared to that yielded by the probabilistic and
stochastic approaches as illustrated in Fig. 3(c). As a result,
the minimum of the expected total costs is achieved with the
enhanced approach as demonstrated by Fig. 3(d).

Increasing the reliability level ξ in the the probabilistic
approach may have a positive impact on the performance of
the conventional model. However, Table I shows that this
approach never yields the expected cost provided by the
proposed model, since the probabilistic approach sets the
requirements disregarding their impact on the subsequent op-

TABLE I
COST BREAK-DOWN RESULTING FROM THE IMPLEMENTATION OF A

RANGE OF PROBABILISTIC REQUIREMENTS AND ENHANCED
REQUIREMENTS.

Approach
Probabilistic approach Enhanced

approachQuantiles q(α,α) of wind CDF
q(05/95) q(04/96) q(03/97) q(02/98) q(01/99)

Requirements DU/D [MW] 128/89 168/91 205/93 210/94 283/169 283/43
Exp. total cost [$1000] 25.89 24.99 24.62 24.61 24.78 24.40
– Reserve 0.69 0.84 0.99 1.01 1.70 1.24
– Day-ahead 22.24 22.43 22.70 22.74 22.99 22.99
– Real-time 2.96 1.72 0.93 0.86 0.88 0.18

erations, including potential wind spillage and load shedding.
On the contrary, the proposed model finds the optimal trade-
off between reserve procurement and real-time re-dispatch
decisions that minimizes the total expected system cost. In
this particular case, our model allows more wind curtailment
to reduce downward reserve procurement cost.

Regarding the stochastic model, it should be noted that even
though reserve requirements are set anticipating the real-time
cost, reserve procurement and day-ahead energy schedules
are obtained by a co-optimization of these products that is
incompatible with the European market structure. As a result,
the requirements provided by the stochastic approach lead to
larger amounts of load shedding, highlighting that they are
practically sub-optimal in a sequential dispatch procedure.

C. Approximating the stochastic dispatch solution

We now investigate to what extent the reserve requirements
computed with the proposed model are capable of approximat-
ing the ideal stochastic solution within the sequential dispatch
procedure. To this end, we compare expected daily system
cost of three optimization models for different wind power
penetration levels, defined as the ratio between the installed
capacity of the entire wind power portfolio and the peak load.
The first model represents the sequential market clearing (1)-
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Fig. 4. Expected daily operating cost as a function of wind penetration.
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Fig. 5. Reserve procurement from nine flexible generating units for the peak-
load hour and different wind penetration levels. Color density ranks generation
units according to the reserve capacity price offers.

(3) with reserve requirements computed with the probabilistic
approach for a range of reliability levels ξ ∈ [0.9, 1]. The
second model also follows the sequential market procedure
with reserve requirements computed with the proposed model
(5). The third one is the stochastic ideal dispatch model (4) that
theoretically attains maximum cost-efficiency, and therefore
it is used as a lower bound of the expected system cost. It
is worth noting the different role that the stochastic dispatch
model plays in this part of the case study, compared to the
previous Section V-B. Here, we assume that the solution of
the stochastic dispatch model will be implemented as the ac-
tual system schedule, presuming that the conventional market
setup is replaced with its ideal stochastic counterpart. This is
different from the application of the stochastic dispatch model
(4) as a reserve-dimensioning approach in Section V-B, where
we considered that all trading floors are settled according to
the prevailing European market model.

Figure 4 depicts the daily operating cost as a function of the
wind power penetration level for the three models. The setting
of the reserve requirements provided by the proposed model
always results in a lower expected cost than the implemen-
tation of the requirements under the probabilistic approach.
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Fig. 6. IEEE 24-Bus reliability test system layout with three reserve control
zones.

This figure further indicates that these reserve requirements
efficiently approximate the stochastic ideal solution even for
a high penetration of wind power.

Figure 5 provides further insights on the difference between
the solutions of the three models. Particularly, it shows the
procurement of upward and downward reserves from specific
flexible units ranked according to their reserve capacity price
offers, i.e., from cheap to more expensive units distinguished
by increasing color densities. The proposed model controls
the trade-off between reserve and real-time costs, ensuring
adequate upward reserves to minimize the amount of load
shedding and enough downward reserves to prevent wind
spillage. In contrast, the probabilistic approach underestimates
upward reserve needs, while it overestimates downward re-
serve requirements.

The enhanced solution for the reserve requirements deviates
significantly from the ideal solution given that the stochastic
model has more degrees of freedom, i.e., it controls not
only the sufficiency of the reserve requirements but also
their allocation among the flexible generators. This results in
reserve procurement being ‘generator-specific’ which prevents
network congestion within the reserve control area. In attempt
to minimize expensive balancing actions, the stochastic model
may allocate reserves to more expensive units over cheaper
providers, violating the least-cost merit-order principle that is
inherent in the conventional market design. As a consequence,
the requirement imposed in our enhanced approach to respect
the merit-order principle in the reserve capacity and day-ahead
markets restricts the degree of approximation of the stochastic
solution.

D. Optimal zonal reserve requirements allocation

We now consider the optimal reserve dimensioning in a
multi-zone setting. For this purpose, the IEEE 24-Bus system
is split into three reserve control zones as depicted in Fig. 6.
This zonal layout corresponds to the one proposed in [11]. In
each control zone there are at least one wind power unit with
capacity of 100 MW and at least two flexible generation units.
Unlike in the previous instance, the requirements computed
with the probabilistic approach are now set for each reserve
control zone independently considering the distribution of
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wind power production of each zone. The reliability level ξ is
set to 0.98.

The resulting allocation for upward and downward reserve
requirements among control zones is summarized in Fig. 7,
indicating that the probabilistic approach sets the reserve
needs proportionally to the amount of stochastic in-feed in
the respective control zone. On the other hand, the proposed
model defines the requirements considering not only the zonal
wind power in-feed, but also the cost implications of procuring
reserve in a specific zone. As a result, the model finds it more
efficient to constantly procure upward reserve from the third
zone and obtain the remaining upward reserve that is needed
either from the first or the second zone depending on the
operating hour. In addition, this reserve allocation indicates
that it is never optimal to procure downward reserve from the
second zone in terms of expected system cost.

This optimal reserve allocation among control zones is
supported by the approximation gap depicted in Fig. 8, show-
ing the relative cost difference of the sequential market with
respect to the ideal solution. The requirements provided by
the proposed model efficiently approximate the ideal solution
with nearly zero gap over the first operating hours, and this gap
remains relatively small for the subsequent hours as opposed to
the large gap when probabilistic requirements are used. The
definition of multiple control zones allows to set enhanced
reserve requirements that are closer to the ‘generator-specific’
reserve allocation of the stochastic model. Indeed, compared
to the single-zone setup in section V-B, the operating cost
reduces by 2.5%, from $24,408 to $24,034, after the definition
of three control zones.
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Fig. 9. Expected operating cost yielded by the implementation of the
probabilistic and enhanced reserve requirements in the conventional market-
clearing problem (1)-(3) including the unit commitment constraints (9a)-(9g).

E. Assessing enhanced reserve requirements in the presence
of non-convexities

To assess the performance for the proposed reserve quan-
tification model as a proxy model for the power markets with
a more comprehensive and non-convex representation of tech-
nical constraints, we use the enhanced reserve requirements
provided by the proposed model (5) as inputs to the sequential
market-clearing problem (1)-(3) with unit commitment and
ramping constraints integrated in the day-ahead auction as
explained in Appendix A.

Figure 9 shows the hourly profile of expected operating
system cost resulting from the implementation of the enhanced
requirements in the system with full representation of the
technical constraints. This profile is compared against those
obtained by setting probabilistic reserve requirements with
reliability levels of 98% and 90%. The reserve requirements
provided by the proposed model always attain better cost
efficiency than the probabilistic requirements, even though the
proposed model does not account for the whole set of technical
limits of power plants. In the first case in Fig.9 (a), the model
allows savings of $23,746 that nearly equal to the cost of peak-
hour operation, and it allows even larger savings of $28,845
in the second case in Fig.9 (b).

F. Application to the IEEE-96 RTS

We now consider the modernized version of the IEEE-96
RTS Test System proposed in [38] to assess the scalability of
the proposed model. The test system includes three control
zones interconnected by six tie-lines. The system demand
follows a 24-hour profile with a peak load of 7.5 GW. The
conventional generation is represented by 6 nuclear power
plants serving the base load, 3 coal power plants that offer
40% of their capacities for the reserve needs, and 87 gas-
fired power plants offering 100% of their capacities to the
reserve procurement auction. The reserve offering prices of
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TABLE II
CPU PERFORMANCE OF THE BENDER’S ALGORITHM.

Wind penetration [%] 13.8 23.0 36.8

CPU time [min] 32.1 33.5 58.6

TABLE III
DAILY OPERATING COST WITH PROBABILISTIC AND ENHANCED ZONAL

RESERVE REQUIREMENTS IN COMPARISON WITH THE STOCHASTIC IDEAL
SOLUTION [$1000].

Wind penetration
[%]

Probabilistic
solution Enhanced

solution
Ideal

solution
ξ = 90% ξ = 98%

13.8 1,912.4 1,888.8 1,877.3 1,850.0
23.0 1,760.8 1,719,3 1,700.8 1,660.5
36.8 1,550.7 1,482.3 1,446.0 1,402.8

flexible units are set to 25% of marginal production cost for
both upward and downward reserve needs. There are 19 wind
farms distributed among the control zones with the overall
capacity of 2.76 GW. Their stochastic output is described
by 100 equiprobable scenarios obtained from [39]. The input
data and the corresponding GAMS codes are provided in the
electronic companion of the paper [37].

The test case is solved for wind penetration levels of 13.8%,
23.0%, and 36.8% of the peak-hour load by implementing
the multicut Bender’s algorithm explained in Section IV. The
tolerance of the algorithm is set to 0.02% requiring three to
eight iterations depending on the operating hour. The resulting
CPU time is reported in Table II. The CPU time in all
three cases is kept below one hour allowing timely day-ahead
planning with the proposed model. It is worth mentioning that
the CPU time can be reduced at the expense of a marginal
deviation from the global optimum with higher tolerance.

The daily operating cost resulting from the implementation
of the enhanced zonal reserve requirements computed by the
proposed model is always lower than those provided by the
probabilistic approach with reliability levels of 90% and 98%,
as demonstrated in Table III. The difference in operating cost
is explained by the anticipated cost of procuring upward and
downward reserves from a specific control zone, while the
probabilistic requirements are solely obtained proportionally to
the amount of stochastic in-feed in control zones. As a result,
the relative cost savings provided by the model increases with
the wind penetration level and ranges between 0.6% and 7.2%.
Further cost savings towards the ideal solution provided by the
stochastic model is limited due to the enforced merit order in
both reserve and day-ahead markets. Finally, Table IV illus-
trates the economic benefit that the proposed model yields as a
proxy for the system with the full network representation and
technical constraints of power plants described in Appendix A.
The results show that in spite of the incomplete description of
technical constraints in the lower level of the proposed bilevel
model, it still provides a feasible input with a sensible cost
reduction for the markets with non-convexities. The economic
benefit provided by the model ranges from 0.5% to 1.6%.
Moreover, the proposed approach further outperforms the
probabilistic one for the largest wind penetration level, where
the overestimated requirements provided by the probabilistic
approach lead to a reserve schedule that results in an infeasible

TABLE IV
DAILY OPERATING COST WITH PROBABILISTIC AND ENHANCED ZONAL
RESERVE REQUIREMENTS WITH FULL REPRESENTATION OF TECHNICAL

CONSTRAINTS [$1000].

Wind penetration
[%]

Probabilistic
solution Enhanced

solution
ξ = 90% ξ = 98%

13.8 2,072.2 2,073.4 2,061.5
23.0 1,947.9 1,949.1 1,928.6
36.8 1,764.4 infeas. 1,735.9

day-ahead operation.

VI. CONCLUSION

This paper considers the optimal setting of reserve require-
ments in a European market framework. We propose a new
method to quantify reserve needs that brings the sequence of
the reserve, day-ahead and real-time markets closer to the ideal
stochastic energy and reserves co-optimization model in terms
of total expected cost. The proposed model is formulated as
a stochastic bilevel problem, which is eventually recast as a
MILP problem. To reduce the computational burden of this
model, we apply an iterative solution approach based on the
multi-cut Bender’s decomposition algorithm.

Our numerical studies demonstrate the benefit of properly
setting reserve requirements. Our reserve quantification model
outperforms both the probabilistic and the stochastic reserve
setting approaches due to its preemptive ability to anticipate
the impact of day-ahead decisions on the real-time opera-
tion, while taking into account the actual market structure.
Considering the increasing penetration of stochastic power
producers, we show that the reserve requirements provided
by the proposed model take the expected system operating
cost closer to that given by the ideal energy and reserve
co-optimization model, but the degree of this approximation
is limited due to the sequential scheduling of reserve and
energy in European electricity markets. However, our analysis
further indicates that the definition of multiple reserve control
zones allows for a more efficient spatial allocation of reserves,
which reduces the approximation gap with respect to the
ideal stochastic model. Finally, the efficiency of the proposed
reserve dimensioning model was tested against market designs
whose clearing process explicitly account for inter-temporal
and non-convex constraints, i.e. ramping limits and unit com-
mitment constraints. Even though the proposed model does
not account for the whole set of technical constraints of such
markets, the enhanced reserve requirements still bring the cost
of sequential market operation closer to the stochastic ideal,
highlighting the importance of the intertemporal coordination
between the three trading floors through the intelligent setting
of reserve needs.

Future research may focus on the consideration of the tight
relaxations of the unit commitment constraints to achieve bet-
ter approximations for the case of non-convex market designs,
and the corresponding tuning of the Bender’s decomposition
algorithm to better cope with the intertemporal constraints.
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APPENDIX

A. Incorporation of unit commitment and ramping constraints
In contrast to the prevailing approach of the European

market design, other electricity markets, e.g., the majority of
US markets, explicitly model unit commitment constraints and
thermal limits of power plants in the market-clearing problem.
To assess the performance of the proposed reserve quantifica-
tion model in markets with unit commitment constraints, the
following set of constraints are integrated in the day-ahead
market-clearing problem:

uitP i ≤ PC
it ≤ uitP i, ∀i ∈ I, ∀t ∈ T, (9a)

SUit ≥ CSU
i (uit − ui(t−1)), ∀i ∈ I, ∀t > 1, (9b)

SUit ≥ CSU
i (uit − u0

i ), ∀i ∈ I, t = 1, (9c)

PC
it − PC

i(t−1) ≤ R+
i , ∀i ∈ I, ∀t > 1, (9d)

PC
it − PC,0

i ≤ R+
i , ∀i ∈ I, t = 1, (9e)

PC
i(t−1) − PC

it ≤ R−i , ∀i ∈ I, ∀t > 1, (9f)

PC,0
i − PC

it ≤ R−i , ∀i ∈ I, t = 1, (9g)

where t ∈ T is the set of operating hours, CSU
i is a start-

up cost of unit i, R+
i and R−i are the ramp-up and ramp-

down limits, P i is a minimum power output limit, and PC,0
i

and u0
i are the initial power output and commitment status of

unit i. The set of decision variables of the original problem
is supplemented with variable uit ∈ {0, 1} that denotes the
commitment status of generating units, and variable SUit
that computes the cost induced by the start-up of generating
units. Now, the generating limits of each unit are additionally
enforced by commitment decisions of the system operator by
(9a). Binary logic is controlled by (9b) and (9c) and activated
by augmenting SUit into the original objective function of
problem (2). The ramp limits of generators are accounted for
through (9d)-(9g).
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Abstract

We study a competitive electricity market equilibrium with two trading stages, day-ahead and real-time. The welfare of
each market agent is exposed to uncertainty (here from renewable energy production), while agent information on the
probability distribution of this uncertainty is not identical at the day-ahead stage. We show a high sensitivity of the
equilibrium solution to the level of information asymmetry and demonstrate economic, operational, and computational
value for the system stemming from potential information sharing.
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1. Introduction

With increasing shares of renewable energy resources,
electricity markets are exposed to uncertainty associated
with intermittent power supply. To accommodate this un-
certainty, electricity trading in short term has been ar-
ranged in several subsequent trading floors, such as day-
ahead and real-time markets. At the first stage (day-
ahead), market agents, e.g., producers and consumers, com-
pete to contract energy considering the forecast of renew-
able production, while at the second stage (real-time) they
settle power imbalances caused by forecast errors.

Such competition can be modeled as a stochastic equi-
librium problem in the sense of [1], where each market
agent is a self-optimizer and maximizes its welfare, e.g.
expected profit for producers or expected utility for con-
sumers. Each agent computes a day-ahead decision while
anticipating the real-time outcomes using its private infor-
mation (e.g., probabilistic forecast) about uncertainty. To
find the equilibrium among such agents, distributed algo-
rithms as in [2] have been proposed to let agents integrate
their private forecasts. After a finite number of iterations,
the agents find a set of equilibrium prices that reflect their
private information and support the equilibrium. This dis-
tributed solution is promising for the operation of local
markets [3] or parts of larger systems [4].

In contrast, large electricity markets, such as NordPool
or CAISO, use a centralized optimization to compute the
equilibrium, where the central entity called market opera-
tor collects bids from agents and clears the market on its
own. To efficiently operate markets with renewables, it
has been proposed to cast the centralized optimization as
a two-stage stochastic model [5, 6]. This model considers
that the operator generates a set of plausible renewable
outcomes based on its own information about the prob-
ability distribution of renewable energy production, and

clears the day-ahead market while accounting for the an-
ticipated real-time imbalances.

The important property of the two problems is that
they are equivalent in the case where all market agents in
the equilibrium model optimize against the same probabil-
ity distribution as that of market operator in the central-
ized model. Under this scenario, the two problems yield
the same market-clearing results and the centralized mar-
ket is complete as it satisfies the preferences of all agents
in the equilibrium problem. However, this equivalence no
longer holds when agents in the equilibrium problem opti-
mize against different distributions. In this situation, the
centralized market settlement is inefficient as it does not
support the true preferences of agents. We refer to this
situation as information asymmetry that typically holds
for many reasons. Naturally, agents use different data and
forecast tools to build uncertainty distributions. Further-
more, agents may explicitly assign different probabilities
across plausible outcomes depending on their rationality,
e.g., in the sense of prospect theory [7].

In this line, this letter analyzes electricity market com-
petition among agents that have asymmetric information
about a common source of uncertainty. We propose an
equilibrium model in which agents may assign different
probabilities over a common set of renewable power pro-
duction outcomes. We show that the centralized model in
[5, 6] satisfies the preferences of all market agents only if
they all agree on the probability distribution of renewable
power production. We discuss the existence and unique-
ness of the solution to the equilibrium problem, and refer
the stability theory to discuss the challenges associated
with its computation. With our analytic results, we point
out a high sensitivity of equilibrium prices to the level of
information asymmetry. We then propose a distributed
algorithm to numerically assess the equilibrium outcomes.



We eventually demonstrate the overall benefits from in-
formation sharing, as we show that for any asymmetry in
agents information, there exist the loss of social welfare,
increase in real-time imbalances, and decrease of the con-
vergence rate of the distributed algorithm.

The letter is outlined as follows. In Section 2 we de-
scribe the setup and introduce the stochastic equilibrium
model. We proceed with analytical solution to equilibrium
prices as a function of agent private forecasts in Section 3.
In Section 4 we describe the algorithm to compute equi-
librium and provide extensive numerical experiments. All
proofs are gathered in an Appendix.

2. Problem statement

2.1. Main notation and assumptions

We consider a finite set of uncertainty outcomes Ω in-
dexed by ω “ t1, . . . ,Ωu. ξω is the renewable power output
that corresponds to outcome ω. The renewable produc-
ers are not modeled as market agents, but represented as
an aggregated stochastic in-feed. The controllable gener-
ation (consumption) is represented by a single producer
(consumer). The dispatch of power producer at the day-
ahead stage is denoted by p P O, and it can be adjusted
by rω P O in real-time if outcome ω realizes. The set O

denotes the feasible operating region of the producer based
on its technical constraints. The cost function of the pro-
ducer is quadratic given by cpxq “ 1

2αx
2, where α is a

positive constant. The consumer procures energy at the
day-ahead stage in amount of d P K that is subject to ad-
justment lω P K in real-time if outcome ω realizes. The
set K exhibits the feasible region of the decision-making
problem of the consumer. The utility of the consumer is
described by concave function upxq “ γx ´ 1

2βx
2, where

γ and β are positive constants. We assume that both O

and K are convex and compact sets. The dual price in
scenario ω is denoted by λω in the optimization problem.
Its counterpart in the equilibrium problem is denoted by
λ̃ω. In this work, we do not consider network, subsidies
and unit commitment constraints, that often cause nega-
tive electricity prices [8], and exclusively focus on perfect
competition. Therefore, both λω and λ̃ω belong to a com-
pact set of non-negative reals Λ`.

2.2. Centralized model for market-clearing problem

Consider a centralized market organization, where the
market operator collects bids of agents and finds socially
optimal contracts tp, du at the day-ahead stage, followed
by real-time recourse decisions trω, lωu@ω. The market op-
erator integrates its own information about underlying un-
certainty that is described by a finite set of probabilities
tπmo
ω u@ω assigned to uncertain outcomes. This yields

max
p,rω,d,lω

“
updq ´ cppq‰`

ÿ

ωPΩ
πmo
ω

“
uplωq ´ cprωq

‰
, (1a)

s.t. p` rω ` ξω ´ d´ lω “ 0 : λω, @ω P Ω, (1b)

pp, rωq P O, pd, lωq P K, @ω P Ω, (1c)

where objective function (1a) represents the expected social
welfare seen by the market operator, and constraint (1b)
enforces the power balance for each outcome of renewable
energy production. A set of dual prices tλωu@ω shows the
sensitivity of the expected social welfare to the stochas-
tic in-feed and, therefore, is an implicit function of the
information of market operator. Hence, the outcomes for
market participants are subject to the information avail-
able to the market operator.

Remark 1. As dual prices are non-negative, stating (1b)
as either equality or inequality constraint is the same.

Remark 2. The real-time electricity price in outcome ω
anticipated by the market operator at the day-ahead stage
is the probability-removed price λω

πmo
ω

[5].

Remark 3. Unlike settings in [5, 6], we do not explicitly
model the day-ahead power balance constraint. Instead, we
use the notion of price convergence between day-ahead and
real-time stages [9] to obtain the day-ahead electricity price
as λDA “ Σωπ

mo
ω

λω
πmo
ω
“ Σωλω.

2.3. Equilibrium model for market-clearing problem

We now introduce an equilibrium model given by a set
of individual optimization of three agents, i.e.,

max
λ̃ωPΛ`

Jps
ω :“ ´λ̃ω

“
p` rω ` ξω ´ d´ lω

‰
, @ω P Ω, (2a)

max
pp,rωqPO

Jp :“
ÿ

ωPΩ
πp
ω

«
λ̃ω
πp
ω
pp` rωq ´ cprωq

ff
´ cppq, (2b)

max
pd,lωqPK

Jc :“
ÿ

ωPΩ
πc
ω

«
uplωq ´ λ̃ω

πc
ω

pd` lωq
ff
` updq, (2c)

The price-setting agent solves (2a) and optimizes a
set of equilibrium prices tλ̃ωu@ω in response to the value
of the system imbalance for each outcome of renewable
production. For any surplus of generation, problem (2a)
yields zero price, while it yields a strictly positive price
in case of generation shortage. The power producer op-
timizes its first- and second-stage decisions p and trωu@ω
in (2b) to maximize the expected profit for a given set of
prices tλ̃ωu@ω. In its optimization, the producer integrates
its own information about the uncertain in-feed character-
ized by a finite set of probabilities tπp

ωu@ω. Finally, the
consumer computes optimal first-stage and recourse deci-
sions d and tlωu@ω in (2c) to maximize its expected util-
ity using its own information set tπc

ωu@ω. Observe, that
agents in (2b) and (2c) use the probability-removed prices
obtained by dividing the equilibrium prices by the asso-
ciated probabilities [5]. The probability-removed prices
define the actual electricity price that each agent expects
to receive once uncertainty is resolved.

The three problems are interconnected in the sense that
the problem of the price-setter is parametrized by the deci-
sions of the producer and consumer, while their problems
are conditioned by the price provided by the price-setting
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agent. Similarly to the centralized problem (1a), equilib-
rium prices provide the sensitivity of the expected social
welfare with respect to the marginal change in random
in-feed. Therefore, a set of equilibrium prices tλ̃ωu@ω is
implicitly a function of the information that agents inte-
grate into their optimization problems.

Proposition 1. The solution to the equilibrium problem
(2) exists and is unique for any agent information sets.

Remark 4. The proof of Proposition 1 relies on the strict
monotonicity of agent preferences. In the case of linear
preferences, other approaches would be required (see [10,
Chapter 2]).

2.4. Relation between centralized and equilibrium models

The equivalence between centralized and equilibrium
market-clearing models is established as follows.

Proposition 2. Let πmo
ω “ πpω “ πcω,@ω P Ω. Then, there

exists a set of prices tλ̃‹ωu@ω that yields the optimal solution
p‹, d‹, tr‹ω, l‹ωu@ω in the equilibrium model (2) that solves
the centralized model (1). Moreover, λ̃‹ω “ λ‹ω,@ω.

However, this equivalence no longer holds when the in-
formation of market agents about the renewable in-feed in
the equilibrium model is different from that of the market
operator in the centralized model. In this scenario, the
prices in (1) and (2) are not necessarily identical as they
depend on different information sets, making the market
based on (1) incomplete in terms of information. In what
follows, we study model (2) that reveals the true equi-
librium state among agents with private information on
uncertainty. Eventually, we show that the system overall
benefits when agents agree on a common information set
that completes the market.

3. Analytic solution for equilibrium prices

Let us define the demand excess function for renewable
power outcome ω as zω “ d` lω ´ p´ rω ´ ξω. We derive
the optimality conditions associated with (2b) and (2c) to
define variables d, lω, p, and rω as a function of equilibrium
prices λ̃. Assuming the agent constraints are not binding,
the demand excess function writes as:

zωpλ̃q “ γ ´ Σωλ̃ω
β

` πc
ωγ ´ λ̃ω
πc
ωβ

´ Σωλ̃ω
α

´ λ̃ω
πp
ωα

´ ξω.
By solving zωpλ̃q “ 0,@ω P Ω, we obtain a closed-

form characterization of equilibrium prices as a function
of probabilities that agents assign to uncertain outcomes.
In the interest of illustration, let us consider a set Ω P th, `u
with only two outcomes with ξ` “ 1 and ξh “ 3. For any
agent it holds that π`` πh “ 1. Let α “ 1.5, β “ 0.3, and
γ “ 5. Figure 1 depicts the two equilibrium prices λ̃` and
λ̃h as a function of π` and πh . We find a clear relationship
between the equilibrium prices and agent information. In
case (N), where producer assigns the whole probability
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Figure 1: Prices as a function of probabilities that agents assign to the two uncertainty outcomes
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Figure 1: Equilibrium prices λ̃` and λ̃h as a function of probabili-
ties that agents assign to the two uncertainty outcomes. The black
markers indicate the three boundary equilibrium cases.

(a) πp
` “ 0.5, πc

` “ 0.5 (b) πp
` “ 0.99, πc

` “ 0.5

Figure 2: Equilibrium point and vector field around equilibrium
point in case of (a) symmetric and (b) asymmetric information.

mass to outcome `, the price associated with outcome h is
nearly zero. A similar situation holds in the opposite case
(‹). In a quite critical case (�) with highly asymmetric
assignment of probabilities, the equilibrium yields almost
zero prices for both outcomes. Moreover, we find that the
day-ahead price, i.e., λ̃DA “ λ̃` ` λ̃h, attains maximum
with symmetric information, i.e., πp

` “ πc
` .

As shown in [2], the unstable equilibrium may not be
computable by standard distributed algorithms. To verify
the stability of equilibrium under different assignments of
probabilities, we consider a dynamic price adjustment pro-
cess as the following first order differential equation [11]:

dλ̃ptq
dt

“ τzpλ̃ptqq, λ̃p0q “ λ̃0, (3)

where τ is some positive constant, and λ̃0 is a vector of
initial prices. We discuss the stability of the equilibrium
solution using the following proposition.

Proposition 3 (Adapted from [12]). If λ̃ is a solution
of (3) and all the eigenvalues of the Jacobian matrix of z
have strictly negative real parts, then λ̃ is locally stable. If
at least one eigenvalue has strictly positive real part, then
λ̃ is unstable.

By verifying the eigenvalues of the Jacobian of z, we
find that for any assignment of probabilities, the equilib-
rium solution is locally stable and, thus, supposedly com-
putable. However, we observe that for asymmetric cases
the ratio of the two eigenvalues significantly increases. This
ratio heavily affects the convergence rate for gradient search
algorithms [13], as illustrated by vector fields in Figure 2
for some choice of λ̃0. In particular, in Figure 2(a), a gra-
dient search is almost uniform in both directions λ̃` and
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λ̃h, while in Figure 2(b) the gradient in direction λ̃` is no-
tably smaller than that in direction λ̃h. Next, we demon-
strate how large eigenvalue ratios affect the convergence
properties of the distributed market-clearing algorithms.

4. Equilibrium computation

In this section, we first introduce a distributed algo-
rithm to compute the solution to the equilibrium problem.
We then describe the setup and provide numerical results.

4.1. Algorithm

To compute the equilibrium solution, we use a dis-
tributed algorithm that naturally embodies the Walrasian
tatonnement [14]. The price-setter in (2a) updates the
prices based on the optimal response of the producer and
consumer in (2b) and (2c), respectively.

We first show that the price-setter optimization (2a)
reduces to a single analytic expression.

Proposition 4. Consider the response of producer pν , trνωu@ω
and the response of consumer dν , tlνωu@ω to a set of prices
tλ̃ν´1
ω u@ω at some iteration ν. Then, the solution of (2a)

converges to optimum over iterations using

λ̃νω “ max
!

0, λ̃ν´1
ω ´ ρ“pν ` rνω ` ξω ´ dν ´ lνω

‰)
, @ω P Ω,

for some positive constant ρ.

Using the analytic expression for the price-update, we
compute the solution of the equilibrium problem (2) us-
ing Algorithm 1. As objective function of each agent is
strictly monotone in decision variables and its feasibility
set is convex and compact, the algorithm provably con-
verges to the global optimum for ν Ñ 8 with rate Op 1

ν q,
given that the solution exists [15]. The algorithm is imple-
mented in JuMP environment [16] in Julia, and the source
code is available in the e-companion [17].
4.2. Setup

We choose α “ 1.5, γ “ 5, β “ 0.3, tλ̃0
ωu@ω “ 0,

ρ “ ε “ 10´5. The magnitude of these parameters is kept
at the same order as those in [2] and [18]. The outcomes of
uncertain renewable production are described by 100 sam-
ples drawn from a normal distribution N pµ, σ2q with µ “
1.5 and σ2 “ 0.25. The rationale behind these parameters
lies in the fact that the producer and consumer are willing
to trade energy for any realization of wind power produc-
tion, whereas the wind fluctuations bring about observable
impacts on the market-clearing outcomes. The practical
choice of these parameters is subject to the specifics of a
given power system, e.g. cost/utility structure and wind
penetration level.

We consider the reference distribution R that assigns
equally likely probabilities over 100 samples. We then gen-
erate a series of distributions that tweak either mean or
variance of the reference distribution R using the proba-
bility weighting function of the following form [19, Eq.(3)]:

Φpξq “ δ
“
Φ R pξq‰γ

δ
“
Φ R pξq‰γ ` “

1´ Φ R pξq‰γ , (4)

Data: νMAX, ρ, λ̃0
ω @ω, ε

for ν from 1 to νMAX do

1 For tλ̃ν´1
ω u@ω, update producer response

pν , trνωu@ω Ð argmax
pp,rωqPO

Jppp, rωq

2 For tλ̃ν´1
ω u@ω, update consumer response

dν , tlνωu@ω Ð argmax
pd,lωqPK

Jcpd, lωq

3 For pν , trνωu@ω and dν , tlνωu@ω, update prices:

λ̃νω “ max
!

0, λ̃ν´1
ω ´ ρ“pν ` rνω ` ξω ´ dν ´ lνω

‰)

4 Return ε-equilibrium prices and dispatch if:

∥∥pν ` rνω ` ξω ´ dν ´ lνω
∥∥2 ď ε, @ω P Ω,

otherwise go to 1 .
end

Algorithm 1: Solution algorithm

Table 1: Descriptive statistics of distributions: µ -labeled distribu-
tions primarily tweak the mean of the reference distribution R , while
σ -labeled distributions primarily tweak the variance of R .

Label µ Ò
3

µ Ò
2

µ Ò
1

R µ Ó
1

µ Ó
2

µ Ó
3

µ 2.02 1.79 1.65 1.56 1.34 1.22 1.07
σ2 0.35 0.35 0.34 0.33 0.31 0.30 0.27

Label σ Ò
3 σ Ò

2 σ Ò
1 R σ Ó

1 σ Ó
2 σ Ó

3
µ 1.63 1.60 1.57 1.56 1.55 1.55 1.56
σ2 1.62 0.92 0.54 0.33 0.10 0.04 0.02

where Φ represents the cumulative distribution function of
stochastic renewable production, δ P R` primarily affects
the mean of the reference distribution R , and γ P R`
primarily impacts the variance. By applying (4) to the
reference distribution for different δ and γ, we obtain a
collection of probability assignments to the same set of
outcomes. Table 1 summarizes the distributions that we
use in the following analysis.

In our setup, consumer always optimizes against the
reference distribution R , while producer optimizes against
one of the distributions in Table 1. When producer uses
R in its local optimization, the equilibrium solution cor-
responds to the symmetric case, and any deviation from
R corresponds to the asymmetric equilibrium.

4.3. Numerical results

We first consider the impact of information asymmetry
on the electricity price at the day-ahead stage depicted in
Figure 3. We see that it is maximized when the two agents
use the same uncertainty distribution R . Any deviation
from R in producer optimization decreases the day-ahead
price. The resulting price-supported day-ahead contracts
illustrated in Figure 4 show that such deviations in terms
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Figure 3: Impacts of information asymmetry on the day-ahead price.
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Figure 4: Impacts of information asymmetry on the contracted quan-
tities of consumer (d) and producer (p) at the day-ahead stage.

of either mean or variance lead to increasing power mis-
match between controllable generation and consumption.

Next, we compute the realization of the social welfare
for each uncertainty outcome as SWω “

“
upd‹q ´ cpp‹q‰`“

uplωq ´ cprωq
‰
, where d‹ and p‹ are the fixed day-ahead

decisions of consumer and producer. They are computed
considering symmetric and some asymmetric information
cases. The social welfare per outcome SWω should not be
confused with the expected social welfare Eω

“
SWω

‰
pro-

vided in (1a). The results are summarized in Figure 5.
We observe that the social welfare improves in larger re-
alizations of renewable output, and records the maximum
when producer employs R . For any deviation of the pro-
ducer from the reference distribution, we find a social loss,
that is smaller for deviations in terms of the mean rather
than variance for given distributions. Moreover, we see the
welfare reduces more significantly if the producer assigns
smaller variance relatively to that of the consumer.

Finally, we show how the computational performance
of the algorithm is affected by the asymmetry of informa-
tion. Table 2 collects the number of iterations required
by the algorithm to converge along with the ratio between
the largest and the smallest eigenvalues of Jacobian of the
demand excess function. We see that apart from the case
of µ Ò

1
distribution, the asymmetry of agent information

yields larger ratio of eigenvalues, and thus requires more
iterations to converge. Moreover, for a highly asymmetric
case of a low-variance distribution σ

Ó
3, this ratio boosts

so that the algorithm does not converge for any iteration
limit. The computational time of each iteration, though,
is not affected by information asymmetry and kept below
a few milliseconds for all distributions.
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Figure 5: Social welfare for each outcome of renewable production. The 100 outcomes are ordered from the smallest to largest. The colored
area between the curves shows the welfare loss caused by asymmetry of information.

Definition 1. Consider a mapping F : Rn Ñ Rn and a
set K Ď R. A solution set SOL(K,F ) to the variational
inequality problem VI(K,F ) is a vector x‹ P K such that
xF px‹q, x´ x‹y ě 0, @x P K.

We use the results from [10] to establish the existence
and uniqueness of the equilibrium solution.

Theorem 1 (Corollary 2.2.5 [10]). Suppose that K is a
compact and convex set, and that the mapping F is contin-
uous. Then, the set SOL(K,F ) is nonempty and compact.

Theorem 2 (Theorem 1.3.1 [10]). Let F : U Ñ R be con-
tinuously differentiable on the open convex set U Ď R. The
following three statements are equivalent: (a) there exists
a real-valued function θ such that F pxq “ ∇θpxq @x P U ;
(b) the Jacobian matrix of F pxq is symmetric @x P U ; (c)
F is integrable on U .

In terms of equilibrium problem (2), K “ OˆKˆΛ`,
vector x “ rp, r, d, l, λ̃sJ, and

FJ “ r∇pJppp,rq ∇rJppp,rq ∇dJcpd,lq ∇lJcpd,lq ∇λ̃Jpspλ̃q s,
where symbols in bold are properly dimensioned vectors.
In what follows, by diagprx1, . . . , xnsq we denote diagonal
nˆ n matrix, and by ˝ we denote Schur product.

Appendix A.2. Proof

1 Existence. Recall that by definition O, K and Λ`
are convex and compact. The map F is continuous as
agents’ objective functions are differentiable. Thus, the
solution to equilibrium exists by Theorem 1.

2 Uniqueness. We rely on the symmetry principle
that states that if Jacobian of F is symmetric, there exists
an equivalent optimization problem that solves VI(K,F ).
The Jacobian writes as:

∇xF pxq “

¨
˚̊
˚̊
˝

α 0J 0 0J ´1J
0 diagpαπpq 0 diagp0q diagp´1q
0 0J β 0J 1J
0 diagp0q 0 diagpβπcq diagp1q
1 diagp1q ´1 diagp´1q diagp0q

˛
‹‹‹‹‚
,

which includes a symmetric part with entries correspond-
ing to the elements of variable set x1 “ tp, r, d, lu. We
further observe that F px1q is continuous in x1, thus the
conditions (b,c) of Theorem 2 hold for the symmetric part,
such that there exists a function θpx1q given by

θpx1q “
ż 1

0

F px10 ` tpx1 ´ x10qqJpx1 ´ x10qdt

x10Ñ0“
ż 1

0

¨
˚̊
˝

tαp
tαπp ˝ r
´γ ` tβd
´γπc ` tβπc ˝ l

˛
‹‹‚

J¨
˚̊
˝

p
r
d
l

˛
‹‹‚dt

“ rαp2 ` Σωπ
p
ωαr

2
ω ` βd2 ` Σωπ

c
ωβl

2
ωs

ż 1

0

tdt

´ rγd` Σωπ
c
ωlωs

“ 1

2
αp2 ´ rγd´ 1

2
βd2s ` Σωπ

p
ω

1

2
αr2

ω ´ Σωπ
c
ωrγlω ´

1

2
βl2ωs.

If we optimize θpx1q subject to the stationarity conditions
of the price-setting agent, we obtain

max
p,rω,d,lω

“
updq ´ cppq‰`

ÿ

ωPΩ

“
πc
ωuplωq ´ πp

ωcprωq
‰
, (A.1a)

s.t. p` rω ` ξω ´ d´ lω ě 0 : λ̃ω, @ω P Ω, (A.1b)

pp, rωq P O, pd, lωq P K, @ω P Ω, (A.1c)

whose stationarity conditions correspond to those of equi-
librium problem (2). We know that optimization (A.1)
yields a unique solution due to strict concavity of objective
function and convex and compact constraint set. Since the
solution of (A.1) constitutes set SOL(K,F ), the solution
of original equilibrium problem (2) is also unique.

Appendix B. Proof of Proposition 2.

Since producer and consumer optimize over indepen-
dent variables, we can optimize problems (2b) and (2c)
jointly. If we constrain the joint problem by the optimal-
ity conditions of price-setter problem (2a), we obtain

max
p,rω,d,lω

Jppp, rωq ` Jcpd, lωq, (B.1a)

s.t. pp, rωq P O, pd, lωq P K, @ω P Ω, (B.1b)

0 ď p` rω ` ξω ´ d´ lω K λ̃ω ě 0, @ω. (B.1c)

This is equivalent to the optimality condition of the cen-
tralized problem (1) given that expectations over uncertain
renewable production are the same.

Appendix C. Proof of Proposition 4

The descent direction of the price-setter problem writes
as

´∇λ̃ωJps
ω pλ̃ωq “ pν ` rνω ` ξω ´ dν ´ lνω.

Then, the solution of the price-setter problem evolves along
the decent direction with a suitable step size ρ as follows:

λ̃νω “ λ̃ν´1
ω ´ ρ∇λ̃ωJps

ω pλ̃ωq,
that is bounded from below by zero due to λ̃ω P Λ`.

6
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Differentially Private Distributed Optimal Power Flow

Vladimir Dvorkin1, Pascal Van Hentenryck2, Jalal Kazempour1, Pierre Pinson1

Abstract— Distributed algorithms enable private Optimal
Power Flow (OPF) computations by avoiding the need in shar-
ing sensitive information localized in algorithms sub-problems.
However, adversaries can still infer this information from the
coordination signals exchanged across iterations. This paper
seeks formal privacy guarantees for distributed OPF computa-
tions and provides differentially private algorithms for OPF
computations based on the consensus Alternating Direction
Method of Multipliers (ADMM). The proposed algorithms
attain differential privacy by introducing static and dynamic
random perturbations of OPF sub-problem solutions at each
iteration. These perturbations are Laplacian and designed
to prevent the inference of sensitive information, as well as
to provide theoretical privacy guarantees for ADMM sub-
problems. Using a standard IEEE 118-node test case, the paper
explores the fundamental trade-offs among privacy, algorithmic
convergence, and optimality losses.

I. INTRODUCTION

Centralized OPF computations operate over large datasets
of system parameters, such as electrical loads, and their
unintended release poses privacy risks for data owners.
Recognizing these risks, the literature suggests replacing
the centralized computations with distributed algorithms [1],
e.g., using the well-known Alternating Direction Method
of Multipliers (ADMM). These algorithms distribute OPF
computations among sub-problems that coordinate through
primal and dual coordination signals without sharing the
parameters used in their local computations and thus, pre-
serving privacy. However, in the presence of side infor-
mation, adversaries can reverse-engineer local parameters
from observed coordination signals [2]. To overcome this
limitation, this paper augments these ADMM-based OPF
algorithms with differential privacy.

Differential privacy, first formalized by Dwork et al. [3],
[4], is a theoretical framework quantifying the privacy risk as-
sociated with computing functions (queries) on datasets with
sensitive information. It ensures that the same query applied
to two adjacent datasets, i.e., differing by one item, return
essentially similar results (i.e., up to specified parameters),
thus preventing adversaries from learning any substantial
information over individual items. Chatzikokolakis et al. [5]
generalized this concept to a metric-based differential privacy
for cases where publicly known participants have sensitive
data to protect. For instance, in power systems, instead of
hiding the presence of industrial customers, their electrical
loads may need to be obfuscated (up to a certain threshold)

1V. Dvorkin, J. Kazempour. and P. Pinson are with the Department of
Electrical Engineering, Technical University of Denmark, Lyngby, Denmark.
Email: {vladvo,seykaz,ppin}@elektro.dtu.dk

2Pascal Van Hentenryck is with the School of Industrial and Sys-
tems Engineering, Georgia Institute of Technology, Atlanta, USA. Email:
pascal.vanhentenryck@isye.gatech.edu

to avoid revealing their commercial activities. Traditionally,
differential privacy is achieved by adding Laplacian noise
to query outputs and the noise can be calibrated using a
small set of parameters (e.g., the privacy loss ε) to control
the differences between the outputs on two adjacent datasets
and obtain the guarantee known as ε−differential privacy [3].

Contributions: This paper applies differential privacy to
distributed OPF computations using a consensus ADMM,
where the OPF sub-problems coordinate voltage variables
iteratively without disclosing their local load parameters.
The paper introduces an adversarial model and shows that,
in the presence of additional information, adversaries can
infer local load parameters from the sub-problem responses
to the coordination signals. To remedy this privacy leak,
the paper introduces two privacy-preserving ADMM al-
gorithms for OPF computations using static (SP-ADMM)
and dynamic (DP-ADMM) random perturbations of sub-
problem solutions across iterations. The paper proves that
the two algorithms ensure ε−differential privacy but differ
in the amount of noise they introduce. The DP-ADMM
algorithm ensures privacy at each iteration, but needs to
scale the noise magnitude in order to minimize the privacy
loss across multiple iterations. On the other hand, the SP-
ADMM preserves differential privacy across all iterations
uniformly but the worst-case sensitivity of its sub-problem
solutions to load datasets must be defined ahead of the
algorithm iterations. Numerical experiments highlight that,
with a fine calibration of privacy parameters, the inference
of loads from primal-dual coordination signals is equivalent
to random guessing, even if an adversary acquires all but
one unknown sub-problem parameters. The experiments also
explore the convergence properties of the two algorithms
and evaluate their fidelity with respect to the non-private
ADMM. In particular, despite similar privacy properties,
DP-ADMM results in smaller optimality losses, while SP-
ADMM, exhibits faster convergence rates.

Related work: Differentially private distributed compu-
tation was first introduced by Zhang et al. [6] for the
unconstrained empirical risk minimization (ERM) problem.
The authors distribute the ERM problem using ADMM
and obtain differential privacy for local training datasets by
adding noise to either primal or dual variables. The privacy
guarantees, however, are provided for a single ADMM iter-
ation. Moreover, the results hold for the unconstrained ERM
problem, and are not appropriate for heavily constrained
OPF computations. Han et al. [7] build a private distributed
projected gradient descent algorithm with gradient perturba-
tions for electrical vehicle charging, preventing the inference
of charging power from coordination signals. In the OPF
context, Mak et al. [8] extend the centralized private release



of OPF test cases [9], [10] to a distributed ADMM-based
algorithm. However, the work is meant for the private release
of input datasets and does not provide the OPF solution itself.

II. TOWARDS DISTRIBUTED OPF COMPUTATIONS

Consider a power system as an undirected graph Γ (B,Λ),
where B is the set of nodes and Λ is the set of transmission
lines. Each transmission line has a susceptance β ∈ R|Λ|+ and
a capacity f ∈ R|Λ|+ . The mapping functions s : Λ 7→ B and
r : Λ 7→ B are used to return the sending and receiving ends
of lines, respectively. The network topology is described by a
weighted Laplacian matrix B ∈ R|B|×|B|, where the weights
on the lines are given by their susceptances. The network
loads are given by vector d ∈ R|B|+ . Each node generates an
amount p ∈ R|B| of real power in the interval [p, p] for a cost
given by a quadratic function whose second- and first-order
coefficients are c2 ∈ R|B|+ and c1 ∈ R|B|+ , respectively. The
OPF solution amounts to generator set-points p ∈ R|B| and
voltage angles θ ∈ R|B|, obtained from the optimization

min
p,θ

c (p) =
∑
i∈B

c2ip
2
i + c1ipi (1a)

s.t. p
i
6 pi 6 pi, , ∀i ∈ B, (1b)

− f l 6 β`
(
θs(`) − θr(`)

)
6 f l, ∀` ∈ Λ, (1c)∑

j∈B

Bijθj = pi − di,∀i ∈ B, (1d)

which minimizes the total generation cost (1a). Inequality
constraints (1b) and (1c) respectively ensure that generation
and power flows are within their corresponding limits. Equa-
tions (1d) ensure the balance among the load, generation and
power flow injection at every network node.

The centralized computation in (1) requires that all net-
work parameters are submitted to a central entity. To avoid
the need for sharing network parameters, one may consider
instead, a distributed OPF computation, where the network
is arbitrarily split into zones z ∈ Z [11]. The domestic
nodes of each zone z are collected in a set Rz , such that
Rz ∩ Rz′ = ∅,∀z 6= z′. The extended set Vz contains the
domestic nodes of, and adjacent nodes to, zone z. The set
of end nodes from the transmission lines adjacent to zone z
is then defined as Mz = Vz ∩ Vz′ .∀z 6= z′. To enable the
distributed computation, the voltage angles are duplicated per
zone, i.e., they are redefined as θ ∈ R|B|×|Z|. Towards the
purpose, the following consensus constraint is enforced:

θiz = θi : µiz, ∀z ∈ Z, ∀i ∈Mz, (2)
where θiz is a local copy of the voltage angle at node i,
θ ∈ R|B| is the consensus variable, and µ ∈ R|B|×|Z| is the
dual variable of the consensus constraint. This decomposition
separates the feasibility region (1b)-(1d) per zone, so we
denote the constraint set of each zone by Fz . Now, the
computation boils down to the optimization of the following
partial Lagrangian function:

max
µ

min
p,θ,θ
L(µ, p, θ, θ) = c (p) + µ>z

(
θ − θz

)
s.t. p, θ ∈ ∩z∈ZFz,

where the objective function includes the dualized consensus
constraint (2) with µz and θz being zth columns of µ and

θ, respectively. The distributed OPF computation is thus
enabled by the following ADMM algorithm:

θk+1
z ← argmin

(p,θz)∈Fz
L(µk, p, θz, θ

k
) +

ρ

2
‖θk − θz‖22, ∀z ∈ Z,

θ
k+1 ← argmin

θ

L(µk, θk+1, θ) +
ρ

2

∑
z∈Z

‖θ − θk+1
z ‖22,

µk+1
z ← µkz + ρ

(
θ
k+1 − θk+1

z

)
, ∀z ∈ Z,

where k is an iteration index and the squared norms denote
the ADMM regularization terms augmented with a non-
negative penalty factor ρ. The algorithm is indeed distributed,
as it solely requires the exchange and update of primal and
dual coordination signals between the neighboring zones.

The rest of the paper makes the following assumption.
Assumption 1: The function c(p) is convex and strictly

monotone in p, the set Fz is compact and convex for all
z ∈ Z, and ∩z∈ZFz has a non-empty interior. As a result,
the distributed OPF algorithm converges to a unique optimal
solution in a finite number of iterations [12].

III. DIFFERENTIAL PRIVACY FOR OPF

The privacy goal in this paper is to ensure that individual
loads cannot be inferred from the outputs of the ADMM sub-
problems. Each sub-problem is thus considered as a query
Qkz that maps the dataset of loads Dz = {di}i∈Rz to a vector
of all voltage angles {θk+1

iz }i∈Mz
to be released at iteration

k. Under Assumption 1, each sub-problem has a unique
response for a given load dataset, i.e., it computes a one-
to-one mapping of the load dataset to the voltage solution.
Hence, the release of the voltage solution leads to the leakage
of the load dataset.

The dependencies between sub-problem solutions and
their load datasets can be weakened by making queries Qkz
differentially private, i.e., by adding a carefully calibrated
noise to their outputs. More precisely, the added noise aims
at making the outputs for two adjacent load datasets Dz and
D′z indistinguishable from each other.

Definition 1 (Adjacency [5]): Dz = {di}i∈Rz and D′z =
{d′i}i∈Rz are α−adjacent datasets, denoted by Dz ∼α D′z ,
if they differ in one element by α, i.e.,

∃i s.t. ‖di − d′i‖1 6 α ∧ dj = d′j ,∀j 6= i.

Differential privacy relies on the concept of global sensi-
tivity to calibrate the noise.

Definition 2 (Global Query Sensitivity): The global sen-
sitivity ∆z of query Qkz is defined by

∆k
z := max

Dz∼αD′
z

‖Qkz(Dz)−Qkz(D′z)‖1.

where Dz and D′z belong to the universe Dz of all datasets
of interest for zone z. Note that the datasets in Dz are
projections of the globally feasible solutions of interest.

In practice, especially in off-peak hours, the global sen-
sitivity is overly pessimistic. The notion of local query
sensitivity can be used to obtain more precise upper bounds.

Definition 3 (Local Query Sensitivity): The local query
sensitivity of query Qkz with respect to Dz , denoted by



Algorithm 1 The SP-ADMM Algorithm
1: Input: Datasets Dz , privacy parameters ε, α, algorithmic pa-

rameters γ, ρ,K, θ
1
, µ1

2: Draw random samples ξz ∼ Lap(∆z
ε
), ∀z ∈ Z

3: while k 6= K or
∑
z∈Z‖θ̃

k
z − θ

k+1‖2 6 γ do
4: Update voltage angles θk+1

z ,∀z ∈ Z, by solving

min
(p,θz)∈Fz

Lz(µk, p, θz, θ
k
) +

ρ

2
‖θk − θz‖22

5: Perturb sub-problem solutions θ̃k+1
z = θk+1

z + ξz,∀z ∈ Z,

6: Update consensus variables θ
k+1
i ,∀i ∈Mz, z ∈ Z, as

min
θ
L(µk, θ̃k+1, θ) +

ρ

2

∑
z∈Z

‖θ − θ̃k+1
z ‖22

7: Update dual variables µk+1
z ,∀z ∈ Z, by solving

µk+1
z ← µkz + ρ

(
θ
k+1
z − θ̃k+1

z

)
8: Iteration update k ← k + 1

9: Output: Private OPF solution.

δz(Dz), is defined as
δz(Dz) = max

D′∼αDz

‖Qkz(Dz)−Qkz(D′z)‖1. (3)

For simplicity, when Dz is clear from the context, δz is used
to denote δz(Dz).

Remark 1: The maximal local sensitivity of Qkz depends
not only on the magnitude of loads {di}i∈Rz , but also on
their relative position with respect to the nodes in Mz .

This work introduces noise drawn from a zero-mean
Laplace distribution with scale b, denoted by Lap(b) for
short, with a probability density function Lap(ξ|b) =
1
2bexp(−‖ξ‖1b ). It can be used to attain differential privacy
for numerical queries as per the following result [3].

Theorem 1 (Laplace mechanism): Let Q : D 7→ R be
a query that maps dataset D to real numbers, and let ∆
be a query sensitivity. The Laplace mechanism that outputs
Q (D)+ξ with ξ ∼ Lap (∆/ε) is ε−differential privacy, i.e.,

P[Q(D) + ξ] 6 P[Q(D′) + ξ]exp(ε),

where D ∼α D′ are any α−adjacent datasets.
The parameter ε, called the privacy loss, bounds the multi-

plicative difference between distributions of query outputs on
any two α-adjacent datasets. Stronger privacy requirements
can be obtained by choosing smaller values for ε and larger
values for α. The last building block is the sequential
composition theorem [3], which characterizes the guarantees
for sequential applications of differential privacy.

Theorem 2 (Sequential composition): Consider T runs of
query function {Qtz(Dz)}Tt=1 such that every run depends
on the result of the previous runs, i.e.,
Qtz (Dz) = Qtz

(
Dz,Q1

z(Dz),Q2
z(Dz), . . . ,Qt−1

z (Dz)
)
.

Suppose that Qtz preserve εt−differential privacy for Qt′z
for all t′ < t. Then, the T -tuple mechanism Qz =(
Q1
z,Q2

z, . . . ,Qtz
)

preserves
∑T
t=1 εt−differential privacy.

IV. PRIVATE DISTRIBUTED OPF ALGORITHMS

This section presents two differentially private ADMM
algorithms for distributed OPF computations.

A. The SP-ADMM Algorithm

The SP-ADMM algorithm relies on a key insight: the
upper bound on the global query sensitivity is independent
from the input coordination signals.

Proposition 1: The global sensitivity of the ADMM sub-
problem Qkz is upper-bounded by maxDz∈Dzmaxi{di}i∈Rz .

Proof: The result follows from the nodal balance con-
straint (1d). Consider that the voltage angle sensitivity to
load changes reduces with the size of the network graph.
Therefore, the worst-case sensitivity is observed in a minimal
size two-node network, i.e.,

θi θj

β`(θi−θj)−→pi

di

pj

dj

where node i is chosen as a reference node, i.e., θi = 0.
Then, the power balance at node j is −β`θj = pj − dj . The
worst-case sensitivity is provided given that pj = 0, so the
change of load directly translates into β`θj . As β` � 1 in
power system networks, the change of θj is upper-bounded
by the magnitude of dj . In turn, dj has to be chosen as the
largest feasible load in a dataset universe Dz,∀z ∈ Z.

As a result, the SP-ADMM algorithm, shown in Algorithm
1, generates the Laplacian noise ξz ∈ R|Mz|,∀z ∈ Z, once,
at the beginning of the algorithm, using an upper bound ∆z

on the global sensitivity. It takes the dataset, privacy and
algorithm parameters as inputs, and runs ADMM iterations
until reaching iteration limit K or the primal residual is
below the tolerance γ. Unlike the conventional ADMM, once
a sub-problem produces the optimal response to the dual and
consensus variables, the algorithm perturbs the response with
the initially generated noise. The perturbed solution θ̃k+1

z then
participates in the consensus and dual variable updates.

B. The DP-ADMM Algorithm

The DP-ADMM algorithm is fundamentally different: it
uses the concept of local query sensitivity to perturb the
phase angles differently at each iteration. Its key insight is
the recognition that the local sensitivity of the queries/sub-
problems can be obtained by solving an optimization prob-
lem. As a result, for each iteration, the DP-ADMM perturbs
the phase angles using the local sensitivity. The DP-ADMM
is outlined in Algorithm 2. The noise ξkz ∈ R|Mz|,∀z ∈
Z, is dynamically updated respecting the change of local
sensitivity δkz on α−adjacent datasets. The sensitivity is
obtained by identifying the individual load, whose α−change
brings the maximal change of the sub-problem solution. The
rest of the algorithm is similar to SP-ADMM.

C. Properties

This section reviews the properties of the two algorithms.
Theorem 3: Let Q̃kz(Dz) be a randomized sub-problem of

zone z acting on optimization dataset Dz i.e.,
Q̃kz(Dz) = θk+1

z + ξkz .

Let δkz be a sensitivity of Qkz(Dz) for all α−adjacent dataset
D′z . Then, if the random perturbation ξkz is sampled from the



Algorithm 2 The DP-ADMM Algorithm
1: Input: Datasets Dz , privacy parameters ε, α, algorithmic pa-

rameters γ, ρ,K, θ
1
, µ1

2: while k 6= K or
∑
z∈Z‖θ̃

k
z − θ

k+1‖2 6 γ do
3: Update voltage angles θk+1

z ,∀z ∈ Z, by solving

min
(p,θz)∈Fz

Lz(µk, p, θ, θ
k
) +

ρ

2
‖θk − θz‖22

4: For µkz and θ
k

, compute sensitivity δkz , ∀z ∈ Z, by solving
δkz = max

D′∈D
‖Qkz(Dz)−Qkz(D′z)‖1,

s.t. ‖Dz −D
′
z‖1 6 α

5: Perturb sub-problem solutions by ξkz ∼ Lap( δ
k
z
ε
),∀z ∈ Z,

θ̃k+1
z = θk+1

z + ξkz

6: Update consensus variables θ
k+1
i ,∀i ∈Mz, z ∈ Z, as

min
θ
L(µk, θ̃k+1, θ) +

ρ

2

∑
z∈Z

‖θz − θ̃k+1
z ‖22

7: Update dual variables µk+1
z ,∀z ∈ Z, by solving

µk+1
z ← µkz + ρ

(
θ
k+1
z − θ̃k+1

z

)
8: Iteration update k ← k + 1

9: Output: Private OPF solution.

probability distribution with density function Lap(
δkz
ε ), then

Q̃kz(D) provides ε−differential privacy at iteration k, i.e.,
P[Q̃kz(Dz)] 6 P[Q̃kz(D′z)]exp(ε), ∀D′z ∈ Dz.

Proof: The proof follows a similar line of arguments as
for numerical queries. We consider the ratio of probabilities
that the query Õkz returns the same solution θ̂k+1

z on two
α−adjacent datasets Dz ∼α D′z at ADMM iteration k:

P[Q̃kz(Dz) ∈ θ̂k+1
z ]

P[Q̃kz(D′z) ∈ θ̂k+1
z ]

=
P[Qkz(Dz) + Lap(ξz| δ

k
z

ε ) ∈ θ̂k+1
z ]

P[Qkz(D′z) + Lap(ξz| δ
k
z

ε ) ∈ θ̂k+1
z ]

=
∏
i∈Mz

ε
2δkz

exp
(
−‖ξiz−Q

k
iz(Dz)‖1
δkz

)
ε

2δkz
exp

(
−‖ξiz−Q

k
iz(D′

z)‖1
δkz

)
=
∏
i∈Mz

exp

(
ε
(
‖ξiz −Qkiz(D′z)‖1 − ‖ξiz −Qkiz(Dz)‖1

)
δkz

)

6
∏
i∈Mz

exp
(
ε‖Qkiz(Dz)−Qkiz(D′z)‖1

δkz

)
= exp

(
ε‖Qkz(Dz)−Qkz(D′z)‖1

δkz

)
, (4)

where the second equality follows from the definition of the
probability density function of the Laplace distribution, and
the inequality follows from the inequality of norms. Recall
Definition 3 of the local sensitivity. Hence, by substituting
(3) in (4), we obtain the desired result.

Remark 2: Theorem 3 holds not only for the DP-ADMM,
but also for the SP-ADMM algorithm when used with an
upper bound on the global sensitivity.

Remark 3: Theorem 3 makes use of the local sensitivity
δkz , thus attaining local ε−differential privacy. By substituting
δkz with the global query sensitivity ∆z , the algorithms
provide global ε−differential privacy. The robustness of the
two approaches to privacy attacks is analyzed in Section VI.

Observe that every new iteration of the DP-ADMM al-
gorithm reveals more information to an adversary, thus
diminishing the privacy guarantee. Assume that the algorithm
implementation can limit the adversary to observing T
iterations, e.g., by using secure switching of communication
channels. Then, the following result applies.

Theorem 4: Let Q̃kz(Dz) = θk+1
z + ξkz be a randomized

query as specified in Theorem 3 with the difference that
the noise ξkz is drawn from Lap(T

δkz
ε ). Then, DP-ADMM

preserves ε−differential privacy across T iterations.
Proof: It follows from combining Theorems 2 and 3.

Finally, observe that the feasibility of the OPF solution
is not affected by either dynamic or static perturbations,
as the two algorithms add noise only to the unconstrained
consensus and dual variable updates.

V. ADVERSARIAL PROBLEM

The strength of differentially private algorithms is their
robustness to side information. The framework guarantees
that, even if an adversary obtains information on all but one
items in a dataset, the privacy of the remaining one item is
ensured. This section presents an adversarial problem for this
worst-case scenario of privacy attack on OPF sub-problems.

Consider a set T = {k − T, . . . , k} of ADMM iterations
observed by an adversary. Let θ̃t+1

z be a response of each sub-
problem z ∈ Z to dual and consensus variables µtz and θ

t

z at
iteration t ∈ T. For sub-problem z, the adversarial inference
problem can be formulated as the following empirical risk
minimization problem across T iterations:

min
p̂t,θ̂tz,d̂i

∑
t∈T

cz
(
p̂t
)
− [µtz]

>θ̂tz

+
∑
t∈T

ρ

2
‖θt − θ̂tz‖22

+ Υ
∑
t∈T

‖θ̂tz − θ̃t+1
z ‖2 (5a)

s.t. Equations (1b)− (1c), ∀t ∈ T, (5b)∑
m∈Vz

Bnmθ̂
t
mz = p̂tn − dn,∀n ∈ Rz\i, t ∈ T, (5c)∑

m∈Vz

Bimθ̂
t
mz = p̂ti − d̂i,∀t ∈ T, (5d)

where decision variables are indicated with a (̂·) notation,
and the rest are the parameters available to an adversary.
The unknown load magnitude d̂i at node i of interest is
modelled as a decision variable. An adversary seeks the value
of d̂i that minimizes the Euclidean distance between the
voltage variables θ̂t+1

z modeled in the adversarial problem
and the voltage solution θ̃t+1

z released by the sub-problem
at all iterations t ∈ T. By penalizing the distance with a
sufficiently large coefficient Υ, an adversary identifies the
load magnitude that produces the same voltage solution
as that released by the sub-problem, thus identifying the
unknown load magnitude.

VI. NUMERICAL EXPERIMENTS

This section examines the proposed Algorithms 2 and 1
using a standard IEEE 118-node test case with a 3-zone



lay-out taken from [13, case 118-3]. The algorithms are
compared in terms of their robustness to privacy attacks,
convergence properties, and fidelity with respect to the non-
private ADMM algorithm. By default, we set ADMM penalty
factor ρ = 100, iteration limit K = 300, algorithm tolerance
γ = 0.5, and coefficient Υ = 106. The privacy requirements
are selected such that the privacy loss is fixed ε = 1
whereas the adjacency coefficient varies in the range α =
{1, 2.5, 5, 7, 10}%. For the given algorithmic parameters, the
standard non-private ADMM converges to the optimal OPF
solution in 59 iterations.

1) Robustness to the Privacy Attacks: The robustness of
the algorithms to the load inference is assessed by using the
adversarial model in (5). The adversarial model identifies
all network loads if the standard ADMM is used. The
random perturbations of sub-problem solutions, however,
prevent the adversary from inferring the actual loads. The
results focus on the load at bus 20, which has a median
load in the first zone. As per Theorem 3, by specifying
the adjacency coefficient α, the algorithms guarantee that,
at a given iteration k, an adversary cannot distinguish the
magnitude of unknown load d20 from any other magnitude
in the range d20 ± α.

The load inference results for the DP-ADMM algorithm
are shown in Fig. 1. The plots show the inferred load at every
iteration of the algorithm assuming that only a single iteration
is available to an adversary. The inferred load is given as a
probability density with each observation corresponding to a
single iteration. By increasing α, the inferred load deviates
more substantially from the true value of 9 MW, hence, the
probability of recovering the true load magnitude reduces.
The load obfuscation with SP-ADMM is depicted in Fig. 2.
Since the noise is fixed across iterations, the results display
1000 ADMM runs. Similarly to the DP-ADMM algorithm,
increasing values of α result in wider distributions of inferred
loads. It is important to note that the attacker observes
only one sample from these distributions. Observe that the
variance of load distributions is notably larger than that
of DP-ADMM for a given adjacency value. Moreover, the
support of the distributions in Fig. 2 extends drastically with
increasing values of α, making the load inference essentially
equivalent to a random guess.

Fig. 2 further shows that the use of upper bound on
the global sensitivity ∆z in SP-ADMM, which is set to
the largest installed load in the system, results in much
stronger privacy protection than the use of local sensitivity,
which is set to be at least as much as the maximum
local sensitivity observed across DP-ADMM iterations, i.e.,
δz = maxk{δkz}Kk=1. Although both methods enable privacy
protection, the formal privacy guarantees provided by SP-
ADMM are only achieved with the use of global sensitivity.

Finally, observe that every new iteration of DP-ADMM
reveals more information to an adversary, as shown on the
left plot in Fig. 3. If the attack budget, i.e., the number
of compromised iterations, increases up to T , an adversary
recovers the load more precisely. To overcome this limitation,
Theorem 4 can be applied to preserve ε−differential privacy

TABLE I
OPTIMALITY LOSS INDUCED BY DP-ADMM AND SP-ADMM (%)

α,% 1 2.5 5 7 10
DP-ADMM 0.48 0.92 1.23 1.51 3.83
SP-ADMM 0.28 4.33 11.0 11.35 20.41

across T iterations. This requires to scale the noise parame-
ters by T . The corresponding results in the right plot in Fig. 3
show that the magnitude of the noise increases substantially,
thus reducing the quality of load inference even with more
information available to an adversary.

2) Convergence analysis: The convergence statistics of
the two algorithms obtained with 100 simulation runs are
summarized in Fig. 4. The figure shows the evolution of the
aggregated primal residual across iterations highlighting im-
portant differences between dynamic and static perturbations
of sub-problem solutions. With dynamic perturbations, the
DP-ADMM algorithm perturbs the sub-problem solutions at
every iteration, and the magnitude of the noise increases with
α. While the non-private ADMM converges in 59 iterations
on this test case, the DP-ADMM requires up to 300 iterations
in average, depending on the choice of α. In contrast, the
SP-ADMM exhibits a similar computational complexity as
the non-private ADMM algorithm. Moreover, in average, the
convergence of SP-ADMM is not affected by the choice of
adjacency coefficient.

3) Fidelity analysis: It remains to quantify the loss in
efficiency of differentially-private OPF solutions. The aver-
age optimality loss induced by DP-ADMM and SP-ADMM
algorithms for 100 runs is provided in Table 4. The results
for attack budget T = 1 show that with increasing privacy
requirements, both algorithms converge in sub-optimal so-
lutions as compared to the non-private ADMM solution.
However, due to dynamically updated zero-mean pertur-
bations, the DP-ADMM has notability better fidelity than
the SP-ADMM, which fixes the noise across iterations and
constantly steers the OPF dispatch from the optimal solution.
This unfolds the following trade-offs among the algorithms:
despite better convergence properties of SP-ADMM, it yields
a larger optimality gap compared to the DP-ADMM, which
demonstrates weaker convergence statistics.

VII. CONCLUSIONS

Although the distributed algorithms have been long trusted
to preserve the privacy of network parameters in OPF
computations, this paper shows that the standard distributed
algorithms do not ensure the information integrity as the
sensitive parameters, e.g., electrical loads, are leaked through
the exchange of coordination signals. To overcome this
limitation, this paper introduces two privacy-preserving OPF
ADMM algorithms that satisfy the definition of ε-differential
privacy. The algorithms provide privacy be means of either
static or dynamic perturbations of the sub-problem solutions
at each iteration. The paper shows theoretically and through
numerical results that the two algorithms are able to negate
the adversarial inference of sensitive information from coor-
dination signals. Despite their complementary privacy prop-
erties, the numerical performance of the two algorithms is
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Fig. 1. DP-ADMM: Results of privacy attack on the load sited at node 20. The plots show the densities of inferred load by an adversary across iterations
for different adjacency coefficients for a single simulation run.
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Fig. 2. SP-ADMM: Results of privacy attack on the load sited at node 20. The plots depict the distribution of inferred load by an adversary across 1000
simulation runs for different adjacency coefficient. The red and blue distributions are given for the global and local sensitivities ∆z and δz , respectively.
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Fig. 3. DP-ADMM: Mean absolute inference error, i.e., mismatch between
the actual and inferred loads in MWh, across last T iterations with (right)
and without (left) application of Theorem 4 for 100 simulation runs.
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mutually exclusive: if static perturbations demonstrate a more
robust convergence, their fidelity with respect to the non-
private solution is lower than that of dynamic perturbations
with weaker convergence statistics.
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Abstract

This paper develops a novel differentially private framework to solve convex
optimization problems with sensitive optimization data and complex physical
or operational constraints. Unlike standard noise-additive algorithms, that act
primarily on the problem data, objective or solution, and disregard the problem
constraints, this framework requires the optimization variables to be a function of
the noise and exploits a chance-constrained problem reformulation with formal
feasibility guarantees. The noise is calibrated to provide differential privacy for
identity and linear queries on the optimization solution. For many applications,
including resource allocation problems, the proposed framework provides a trade-
off between the expected optimality loss and the variance of optimization results.

1 Introduction

Differential privacy (Dwork et al., 2006) is a rigorous definition of privacy that quantifies and bounds
the risk of disclosing sensitive attributes of datasets used in computations. Differentially private
algorithms ensure privacy by introducing a calibrated noise to the inputs, outputs, or objectives of
computations. It has been successfully applied to a variety of contexts, including histogram queries
(Li et al., 2010), census surveys (Abowd, 2018; Fioretto and Van Hentenryck, 2019), linear regression
(Chaudhuri et al., 2011) and deep learning (Abadi et al., 2016) to name but a few examples. However,
their applications to constrained optimization problems remains limited, because it is generally hard
to certify the feasibility of differentially private optimization solution.

This paper considers a parametric constrained optimization problems of the form

minimize
z

c(z) subject to Z , {z | Az 6 b, Gz = d}, (1)

with variables z ∈ Rn+, convex cost function c : Rn 7→ R, and convex, compact and non-empty
feasible space Z with parameters A ∈ Rm×n, b ∈ Rm, G ∈ R`×n, and d ∈ R`, with m > 0 and
` > 0. The paper assumes elements c, A, b and G as public, non-sensitive information about the
system design, whereas vector d = {di}`i=1 contains private, sensitive data of every user i, e.g. the
customer loads in an electrical power system. In such applications, the feasible space Z encodes hard
operational constraints or physical laws that must be satisfied.

Releasing queries over the solutions of problem (1) may leak information about the sensitive data d.
For example, in energy network operations, releasing the nodal energy supplies using identity queries,
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or aggregated supply quantities using sum queries, exposes the allocation of energy demand d across
the network (Zhou et al., 2019). Therefore, the goal of this work is to compute such solution z that
makes queries over z differentially private, while also being feasible for problem constraints.

While there exist various differential privacy algorithms to solve convex optimization problems,
their application to constrained problems is limited because they do not generally guarantee that the
privacy-preserving result necessarily satisfies the feasibility conditions. Algorithms based on input
perturbation of the sensitive data d modify the feasible space Z (Dwork et al., 2006; Fukuchi et al.,
2017), thus returning an approximate solution to (1) that may not satisfy the original constraints. The
output perturbation mechanisms (Chaudhuri and Monteleoni, 2009; Rubinstein et al., 2012), that add
noise to the optimization results, generally cannot be certified feasible for Z; see, for example, the
impossibility results of Hsu et al. (2014). The feasibility and near-optimality of the privacy-preserving
results can be restored by leveraging the post-processing immunity of differential privacy. This,
however, requires solving bilevel optimization problems (Mak et al., 2020).

This paper addresses these limitations and develops a new framework that provides both privacy and
feasibility guarantees for constrained optimization problems. Instead of applying the noise to either
the parameters or the results of the optimization, the framework solves a stochastic chance-constrained
optimization problem whose solution is used to sample a solution to (1), which guarantees privacy
and ensures feasibility with high probability. The approach requires a linear dependency between the
optimization variables and the noise (Georghiou et al., 2019) and reveals a novel connection between
differential privacy and stochastic chance-constrained optimization.

Example 1 (Identity queries over z(⇠)). Consider a diagonal matrix E 2 Rn⇥n, such that6

Eii =

⇢
1, if ith element of vector z(⇠) is subject to release,
0, otherwise.

The optimal recourse Z 2 Rn⇥n is made independent from the dataset d if and only if

Z 2 Q(E) , {Z |Z � E = E, Z � (E � diagv(E)1>n ) = 0n⇥n},
which yields zi(⇠) = z̃i + ⇠i if element i is subject to release and zi(⇠) = z̃i + Zi⇠ otherwise.7

Example 2 (Sum queries over z(⇠)). Consider g number of sum statistics made over solution z(⇠)8

and consider matrix L 2 Rn⇥g , such that9

Lij =

⇢
1, if ith element of vector z(⇠) is in group j,
0, otherwise

The optimal recourse Z 2 Rn⇥g is made independent from the dataset d if and only if

Z 2 Q(L) , {Z |LZ = diag(1p)},
which yields L>

j z(⇠) = L>
j z̃ + ⇠j , for all groups j = 1, . . . , g.10

z
c
(z

)
de

ns
ity

of
z
(⇠

)
�

?

z
○

z̃

Z

�
c

P [z 2 Z]

P [z /2 Z]

3

The functioning of the framework is illustrated in the adjacent figure,
showing the projections of solutions z onto cost function c and feasible
space Z . Consider the optimal solution

?
z returned by problem (1).

The output perturbation of
?
z results in solutions whose density

?
z (ξ)

(dashed line on the bottom of the figure) is prone to lie outside the
feasible space Z . By restricting the optimization variables to be a
linear function of the noise, e.g., z(ξ) = z̃ + f(ξ) where z̃ is the
expected value of the solution with respect to the random variable
distribution and f(ξ) is the linear functional recourse, the stochastic
problem optimizes z̃ and f(ξ) providing a new probability density of
solution z (solid line). This new density renders any realization of
the noise ξ feasible within a prescribed probability P [z̃ + f(ξ) ∈ Z],
specified by the curator of problem (1). If the functional recourse f(ξ) is made independent from the
sensitive data d, the framework enjoys both privacy and feasibility guarantees. However, it introduces
a trade-off between privacy and the optimality loss with expected value ∆c = E[c(z(ξ))− c( ?

z )].

The chance-constrained optimization always ensures the satisfaction of the system Gz = d, which
may represent flow conservation constraints and other physical laws that cannot be violated. This
setting, however, restricts the queries to be made only on strict subsets of solution z, because the
perturbation needs to be redistributed among the variables to guarantee the feasibility of the system.
By separating the solution into released and non-released variables, the latter can be optimized to
provide trade-offs between the optimality loss and its variance, as well as the trade-offs between the
optimality loss and the overall solution variance. The contributions of this work can be summarized
as follows: (1) It develops a novel differentially private framework for the release of identity and
sum queries over the solutions of constrained convex programs, using stochastic chance-constrained
optimization (Section 3). (2) The released solutions are guaranteed feasible with a high probability.
The feasibility guarantees are studied for individual and joint constraint satisfaction, providing higher
or lower optimality losses, respectively (Section 4). (3) The framework establishes a trade-off between
the expected and the worst-case errors by controlling the variance of the optimization results and the
optimality loss (Section 5). (4) On the benchmark energy optimization datasets, the framework is
shown to outperform the standard output perturbation algorithm (Section 6).

Notation Upper and lower case symbols are used to denote, respectively, matrices and vectors. The
indexed notation Ai is used to denote the ith row vector of matrix A. The operator diag(a) returns
the diagonal matrix with entries of vector a, and diagv(A) returns the vector of diagonal elements of
matrix A. The ceil dre maps real number r into the least succeeding integer. Notation ◦ denotes a
Schur product. 0 and 1 respectively denote vectors of zeros and ones of proper dimensions.
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2 Preliminaries

Across the paper, it is assumed that the optimal solution to problem (1) exists and is unique and that
the data di, contributed by each individual i, in d are not correlated. Thus, the problem can be seen as
an algorithmM : R` 7→ Rn with a unique mapping of datasets d to optimization results. To enable
private queries over the optimization results, this work considers a differentially private counterpart
M̃ ofM. While the traditional differential privacy definition aims at protecting the participation of
an individual data (Dwork et al., 2006), this work focuses on obfuscating the magnitude di associated
with participant i of the input vector d. To capture this privacy notion, the paper focuses on the
indistinguishability framework proposed by Chatzikokolakis et al. (2013), which protects the sensitive
data of each individual up to some measurable quantity α > 0 and defines two neighboring datasets
d, d′ (written ∼α) as

d ∼α d′ ⇐⇒ ∃i s.t. |di − d′i| 6 α ∧ dj = d′j ,∀j 6= i,

where d and d′ are input vectors to problem (1) and α is a positive real value. Following previous
work (Muñoz et al., 2019), this relation requires the assumption that the neighboring datasets are
feasible for problem (1), which is not restrictive, as only feasible solutions are of interest to release.

Differential privacy requires that the maximum divergence of the algorithm output distributions on
neighboring inputs to be bounded by privacy parameters ε and δ, such that

P
[
M̃(d) = O

]
6 P

[
M̃(d′) = O

]
exp(ε) + δ

for a random algorithm M̃ and any output O, where P denotes the probability over runs of M̃. If
δ = 0, M̃ is said to be ε-differentially private.

The global sensitivity methods are known to provide differential privacy by augmenting the output of
computations with the noise calibrated to the `1- or `2-sensitivity. The `p−sensitivity

∆α , max
d∼αd′

‖M(d)−M(d′)‖p , p = 1, 2,

is used to bound the change in the algorithm output induced by any two α-indistinguishable inputs.
In many applications of interest, G ∈ {0, 1}`×n is a binary matrix and the domain of datasets d is
normalized in [0, 1]. Thus, ∆α is directly upper-bounded by α.

Let Lap(λ)n denote the i.i.d. Laplace distribution over n dimensions with 0 mean and scale λ. The
following ubiquitous result provides an ε-differentially private algorithm (Dwork et al., 2006).
Theorem 1 (Laplace mechanism). LetM be an algorithm with `1 sensitivity ∆α that maps datasets
d to Rn. The Laplace mechanismM(d) + ξ, with ξ ∼ Lap(∆α/ε)n, attains ε-differential privacy.

3 Internalizing global sensitivity methods into constrained optimization

The direct application of Theorem 1 to the optimal optimization solution may produce a result that
violates the problem constraints. This section introduces a suitable transformation of problem (1) into
a stochastic chance-constrained problem that internalizes the global sensitivity methods to establish
both privacy and constraint feasibility guarantees. This section first discusses the Laplace mechanism
and then extends the results to the Gaussian mechanism.

Consider a random perturbation ξ ∈ Rp calibrated to Laplace distribution Pξ = Lap(∆α/ε)p for some
arbitrary dimension p, and assume that the solution z depends on the realization of ξ as

z(ξ) = z̃ + f(ξ) = z̃ + Zξ, (2)

where z̃ ∈ Rn is the expected value of the solution with respect to distribution Pξ and Zξ is the
linear functional recourse with recourse decision Z ∈ Rn×p, which is used to adjust the expected
solution to any realization of ξ. Therefore, any query made over z(ξ) will constitute the expected
and random components. To provide privacy guarantees, the random component is required to be
independent from data d. This can be achieved by enforcing additional, query-specific, constraints Q
on the recourse Z. While the framework can accommodate the general class of linear queries over
solution z(ξ), for ease of presentation, this work focuses on identity and sum queries.
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Definition 1 (Identity query). This query releases a specified subset of solution z(ξ). Consider a
random perturbation ξ ∈ Rn and a diagonal matrix I ∈ Rn×n, such that

ξi =

{
Lap(∆α/ε),
0,

Iii =

{
1, if ith element of vector z(ξ) is subject to release,
0, otherwise.

The identity query release is thus Iz(ξ) = Iz̃ + IZξ for Z ∈ Rn×n. The random component IZξ is
made independent from the dataset d if the recourse decision Z is constrained as follows

Z ∈ Q(I) , {Z |Z ◦ I = I, Z ◦ (I − diagv(I)1>n ) = 0n×n},

which yields Iz(ξ) =

{
z̃i + ξi, if Iii = 1,
0, otherwise.

Definition 2 (Sum query). This query releases p sum statistics over non-intersecting subsets of z(ξ).
Consider a random perturbation ξ ∈ Rp and a matrix S ∈ Rp×n, such that

Sij =

{
1, if element zj(ξ) participates in sum statistic i,
0, otherwise.

The sum query releases Sz(ξ) = Sz̃ + SZξ for Z ∈ Rn×p. The random component SZξ is made
independent from the dataset d if the recourse decision Z is constrained as follows

Z ∈ Q(S) , {Z |SZ = diag(1p)},
which yields Sz(ξ) = Sz̃ + ξ.

To produce random solutions to (1), function (2) is optimized using the following stochastic program

minimize
z̃,Z∈Q

EPξ [c(z̃ + Zξ)] (3a)

subject to Pξ [A(z̃ + Zξ) 6 b] > 1− η, (3b)
G(z̃ + Zξ) = d Pξ-a.s., (3c)

which optimizes z̃ and Z by anticipating all realizations of the random variable ξ. This problem
minimizes the expected value of the convex cost function (3a) with respect to the random variable ξ.
The problem constraints are given by a set of probabilistic constraints. The joint chance constraint
(3b) requires the satisfaction of the inequality constraints with a prescribed probability 1−η, specified
by the curator of problem (3). The almost sure constraint (3c) requires the equality constraints to
hold with probability 1. Note that, if problem (3) is infeasible, it follows that the privacy parameters
α and ε are too strong for the feasibility requirement η.

As the recourse of problem (3) amounts to finitely-dimensional linear functions, objective function
(3a) and chance constraint (3b) admit computationally tractable reformulations (Ben-Tal et al., 2009)
(additional details will be given in Section 4). The almost sure constraint (3c) includes a random
variable and, therefore, satisfying it is computationally intractable. However, it can be equivalently
reformulated using the following set of equations:

Gz̃ = d, GZ = 0. (4)

If variables z̃ and Z are subject to (4), their optimal solution satisfies the equality constraint (3c) for
any realization of ξ. The structural properties of G restrict the set of potential queries and a query is
said to be implementable if there exists Z ∈ Q such that GZ = 0 holds.

Example (Flow conservation constraint). Assume G ∈ R`×n represents the incidence matrix of a
fully connected graph G (its rank is n− 1) and that Gz = d represents a flow conservation constraint.
Consider an identity query Iz(ξ) = Iz̃+ IZξ and Z ∈ Q(I) as in Definition 1. The identity query is
implementable if Tr[I] < n, i.e., not all elements of Z are constrained by Q(I) and GZ = 0 holds.

The constraint GZ = 0 plays a critical role: it balances the perturbation between the released and
non-disclosed variables. As a result, the query should leave enough degree of freedom to satisfy the
equality constraint. This limitation is solely induced by the need to preserve the satisfaction of the
equality constraint and it is not seen as a limiting factor for many applications (see Section 6).
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Algorithm 1: Private identity query (PIQ)
1 Input: d,∆α, ε, η, I

2 (
?

z̃ ,
?

Z )← Solve (3) for Z ∈ Q(I)

3 ξ̂ ← Sample from Lap(∆α/ε)n

4 Compute solution to (1) as ẑ =
?

z̃ +
?

Z ξ̂
5 Release: Iẑ

Algorithm 2: Private sum query (PSQ)
1 Input: d,∆α, ε, η, S

2 (
?

z̃ ,
?

Z )← Solve (3) for Z ∈ Q(S)

3 ξ̂ ← Sample from Lap(∆α/ε)p

4 Compute solution to (1) as ẑ =
?

z̃ +
?

Z ξ̂
5 Release: Sẑ

Private identity query (PIQ) algorithm The procedure is summarized in Algorithm 1, which
takes as inputs the dataset d, the `1-sensitivity of the identity query, the privacy ε and feasibility η
requirements, the known covariance Σ, and the query specification I . Upon receiving the optimal
chance-constrained solution (line 2), the algorithm draws a sample from the Laplace distribution
(line 3) and computes a (1− η)-feasible solution for problem (1) (line 4). The algorithm returns an
ε-differentially private identity query which satisfies problem (1) constraints with probability (1− η).
Theorem 2 (ε-differentially PIQ). Algorithm 1 is ε-differentially private, i.e.,

P
[
I
( ?
z (d)+

?

Z (d)ξ
)

= O
]
6 P

[
I
( ?
z (d′)+

?

Z (d′)ξ
)

= O
]

exp(ε)

for any two α−neighboring datasets d and d′ and output solutions O.

Private sum query (PSQ) algorithm The procedure is summarized in Algorithm 2, which differs
from Algorithm 1 by the query specification S and the noise dimension.
Theorem 3 (ε-differentially PSQ). Algorithm 2 is ε-differentially private, i.e.,

P
[
S(

?
z (d)+

?

Z (d))ξ = O
]
6 P

[
S(

?
z (d′)+

?

Z (d′))ξ = O
]

exp(ε) (5)

for any two α−neighboring datasets d and d′ and output solutions O.

In addition to releasing a privacy-preserving answer with a probabilistic feasibility certificate, the
proposed framework also allows to verify the feasibility of the sampled solution ẑ without incurring
an additional privacy loss. Since the equality constraint holds due to (4), it is sufficient to verify the
feasibility of constraint Aẑ 6 b without accessing the original data d. The operation is private by
post-processing immunity of differential privacy (Dwork et al., 2014).

Furthermore, since formulation (3) is independent from the distribution of the noise, the framework
can accommodate other global sensitivity methods. In particular, the following result holds.
Theorem 4 (Gaussian algorithms). Let δ, ε ∈ (0, 1) and let ∆2

α be the `2−sensitivity. Algorithms 1
and 2 that calibrate ξ ∈ N (0, σ2) to the Gaussian distribution with σ > ∆2

α

√
2 ln(1.25/δ)/ε satisfy

(ε, δ)- differential privacy.

The relation between the feasibility requirement η and the privacy parameters ε and δ is implicit
in the formulation of the chance-constrained problem: the variance of the noise affects the ability
to satisfy the problem constraints within the feasibility requirement and vice-versa. To render this
relation explicit, Appendix D discusses a version of Algorithms 1 and 2 that iterates lines 3 to 5 an
optimal number T of times to guarantee the release of a feasible solution with probability 1− µ, for
some 0 < µ < 1.
Theorem 5 (Composition to improve feasibility). Given feasibility requirement η, privacy parameter
ε/T , and value 0 < µ < 1, the iterative variants of Algorithms 1 and 2 return an ε-differentially
private solution that is feasible with probability at least 1− µ within T = d log(µ)

log(η) e steps.

4 Reformulations and feasibility guarantees

The optimization problem (3) is intractable because it constitutes the optimization of a random
variable. However, due to the convexity assumption on (1), linear functional recourse and known
distribution of ξ, problem (3) admits tractable reformulations. There are several avenues to reformulate
the joint chance constraint (3) with different degrees of conservatism in terms of expected optimality
loss (Nemirovski and Shapiro, 2007). This work provides a conservative joint constraint satisfaction
guarantee, using a sample approximation, and a less conservative individual constraint satisfaction
guarantee, using an analytic reformulation. The objective function is reformulated as follows.
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Objective function reformulation Consider a quadratic cost function with first- and second-order
coefficients c1 ∈ Rn and c2 ∈ Rn, and a diagonal covariance matrix Σ = E[ξξ>] with diagonal
elements being equal to λ = ∆α/ε. Then, the objective function (3a) reformulates as

EPξ
[
c>1 (z + Zξ) + (z + Zξ)>diag(c2)(z + Zξ)

]
= c>1 z + z>diag(c2)z + Tr

[
Z>diag(c2)ZΣ

]
,

which follows from the zero-mean distribution Pξ and the fact that E[ξξ>] = Σ. Notice that for the
affine cost functions, the analytic reformulation of (3a) reduces to c>1 z.

Sample approximation This approximation substitutes the chance constraint (3b) with a finite
number of deterministic constraints, each enforced on a specific realization of random perturbation
(Campi and Garatti, 2008; Alamo et al., 2010; Margellos et al., 2014). This work invokes the sample
approximation method from (Margellos et al., 2014), which enforces (3b) on the vertices of the
rectangular sample set extracted from distribution Pξ, i.e., for ξ ∈ Rp

Pξ [(A(z + Zξ) 6 b)] > 1− η ≡ Az 6 b−AZξ̂v, ∀v = 1, . . . , 2p, (6)

where ξ̂v ∈ R2p is the vth vertex of the extracted sample set. Margellos et al. (2014) show that the
joint constraint satisfaction is attained if the number of samples N from Pξ is properly chosen.

Theorem 6 (Margellos et al. (2014)). The equivalence (6) holds with confidence (1 − β) if the
rectangular set is built upon S samples extracted from Pξ, with N at least as much as

N >
⌈

1

η

e

e− 1

(
2p− 1 + ln

1

β

)⌉
.

Finally, notice that this approximation requires an additional input β to Algorithms 1 and 2 to
accommodate the confidence level of the data curator.

Analytic reformulation The joint chance constraint (3b) can be rewritten as a union of individual
chance constraints. For some vector η ∈ Rm+ of individual constraint violation probabilities, the
individual chance constraints can be reformulated exactly using second-order cone constraints (Ben-
Tal and Nemirovski, 2001):

Aiz 6 bi − f(1− ηi)
∥∥∥AiZΣ

1/2
∥∥∥

2
, ∀i = 1, . . . ,m, (7)

where f(1− ηi) is a distribution-dependent safety parameter and Σ1/2 is the lower triangular matrix
resulting from the Cholesky factorization of Σ. For any symmetric and unimodal distribution of ξ,
f(1− ηi) amounts to (2/9ηi)

1/2 if 0 6 ηi 6 1/6 (see the result from Van Parys et al. (2016)). For the
Gaussian distribution of ξ, f(1−ηi) amounts to the inverse CDF of the standard Gaussian distribution
at (1− ηi)−quantile (Ben-Tal and Nemirovski, 2001). Observe that, for the fixed parameter ηi, the
last term in the right-hand side of (7) is a safety margin, which reduces the feasible space of the
original problem (1) to guarantee individual constraint feasibility for (1− ηi) realizations of ξ.

If 1>η 6 η holds, the individual chance constraints guarantee joint constraint satisfaction probability
η. Yet, finding the optimal value η is an NP- hard problem (Xie et al., 2019). Section 6, shows that,
for small problem instances, the choice η = η results in the desired joint constraint satisfaction while
providing a significantly less conservative solution than the sample approximation.

5 Variance-aware differentially private algorithms

For many systems governed by the solution of problem (1), e.g. energy networks, it is important
to control the impact of the differentially private solutions on the optimality loss (e.g., extra supply
cost) and the variance of the state variables (e.g., supply and flow allocations). This section extends
Algorithms 1 and 2 to provide a minimal variance solution without affecting the privacy guarantees.

Minimal variance of optimality loss The chance-constrained problems of Algorithms 1 and 2
optimize against the expected value of the cost function. Its solution provides the estimate of the
expected optimality loss relative to the solution of problem (1). The worst-case outcome of the
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optimality loss, however, may significantly exceed the expected value. A trade-off between the
expected and worst-case outcomes can be attained by controlling the variance of the optimality loss.

As the value of the cost function of problem (1) is deterministic, it is sufficient to control the variance
of (3a) to attain the desired result. For a linear cost function, the variance admits a convex expression
Var
[
c>1 (z + Zξ)

]
= Tr

[
Z>diag(c1)diag(c1)ZΣ

]
in recourse variable Z. Therefore, it can be

minimized by optimizing, instead, the following objective function

minimize
z,Z∈Q

(1− ϕ)EPξ
[
c>1 (z + Zξ)

]
+ ϕ

∥∥∥Σ
1/2Z>c1

∥∥∥
2
, (8)

which optimizes the trade-off between the expected value and the standard deviation of the cost
function for some factor ϕ ∈ [0, 1]. Thus, varying the factor ϕ establishes a Pareto frontier between
the optimality loss and its variance. Since the recourse decision Z is subject to query-specific
constraints Q, the results of Theorems 2 and 3 hold. Finally, the variance of the non-affine cost
functions does not permit convex formulations and is not considered in this paper.

Minimal variance of optimization variables The variance of the optimization solution z (ξ) =
z + Zξ admits a convex expression Var [z (ξ)] = Tr

[
Z>ΣZ

]
in Z. Therefore, it can be controlled

by optimizing the recourse decision Z using the following objective function

minimize
z,Z∈Q

(1− ϕ)EPξ [c(z + Zξ)] + ϕ
∥∥∥ZΣ

1/21

∥∥∥
2
, (9)

which finds the optimal trade-off between the expected cost and the standard deviation of the
optimization variables for some factor ϕ ∈ [0, 1]. Since the optimal recourse is still guided by the
query-specific constraints, the privacy guarantees provided by Theorems 2 and 3 are preserved.

6 Experiments

Problem description The proposed framework is applied to the energy resource allocation problem
using a set of benchmark networks from (Coffrin et al., 2018). The problem goal is to compute the
cost-optimal supply allocations across the network to satisfy nodal demands while respecting the
supply and network limits. The problem is described by an undirected graphs G(N,E) with a set of
nodes N and a set of edges E, connecting those nodes. The graph typology is represented by the
weighted Laplacian matrix B formed from non-negative edge weights β ∈ R

|E|
+ . The nodal supply

p ∈ R
|N |
+ is allocated in the network to meet nodal demand d ∈ R

|N |
+ . The flow along the edges is

modeled considering a vector of nodal potentials θ ∈ R|N |, their difference is proportional to the
network flows, i.e., the flow in edge ` amounts to f`(θ) = β`(θs(`) − θr(`)),∀` ∈ E, with operators
s(`) and r(`) returning the sending and receiving nodes of edge `, respectively. Finally, the nodal
supply incurs costs computed by function c : R|N | 7→ R. This allocation problem gives rise to the
following optimization

minimize
p,θ

c(p) (10a)

subject to Bθ = p− d (10b)
p 6 p 6 p (10c)

f 6 f(θ) 6 f. (10d)

The objective function minimizes the total supply cost, while the equality constraint balances nodal
demand, supply, and net flow injection. The inequality constraints respect the minimum and maximum
nodal supply and the network flow limits p, p ∈ R

|N |
+ , f ∈ R

|E|
− , f ∈ R

|E|
+ . A rearrangement of the

terms in (10b)-(10d) makes the problem representable in the form expressed by problem (1), thus its
chance-constrained counterpart is achieved as detailed in Sections 3 and 4.

The experiments concern the identity and sum queries made over the subset of nodal supplies p and
make use of the `1−sensitivity ∆α of vector p on the two α−indistinguishable datasets d and d′.
Consider the optimal supply allocations

?
p and

?
p ′ obtained, respectively, on datasets d and d′.

Proposition 1. ∆α =
∥∥ ?
p− ?

p ′
∥∥

1
6 α.
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Experimental setup The experiments are organized as follows. For every network instance, the
variable limits are fixed, while cost coefficients and nodal demands are i.i.d. drawn from the following
uniform distributions c1 ∼ U(1, 3), c2 ∼ U(1/10, 3/10), and d ∼ U(1/2, 1). The results are thus
reported for 100 independent simulation runs. The identity and sum queries are made over an
arbitrary set of 30% of nodal supplies, which is sampled at every simulation run. The privacy loss
parameter ε is set to 1 and the indistinguishability parameter α is set to 0.1 for identity queries and 0.5
for sum queries. As `1-sensitivity ∆α is bounded by α, random perturbations thus obey the Laplace
distribution Lap(α). The feasibility requirements for the joint and individual constraint satisfaction
are set uniformly at η = η = 2.5%, and the out-of-sample empirical constraint violation probability
is obtained for 1000 samples at every simulation run.

Privacy-preserving algorithms The algorithm abbreviations PIQ and PSQ are appended by -a
or -s to indicate whether the chance constraints are reformulated, respectively, analytically or by
samples (Section 4). They are compared with the output perturbation OP algorithm, which adds noise
to the query answer. The OP solution is said to be feasible if problem (1) returns a feasible solution
for the fixed solution of the OP algorithm.

Implementation The simulations were carried out using the standard PC with Intel Core i5 3.4 GHz
processor and 8 GB memory. Solving optimization problems with the analytic reformulation requires
less than a few seconds on average, whereas the sample approximation of the chance constraints
requires by at most 78 seconds on average. The optimization models were implemented in the Julia
Language and the source code can be accessed at https://github.com/wdvorkin/DP_CO_FG.

Algorithm comparison The algorithms are compared in terms of their ability to release private
queries while satisfying the feasibility requirement. Table 1 summarizes the results for identity query
answers obtained on several networks differing by the number of variables (n) and constraints (|Z|).
The results indicate that the OP algorithm returns private answers that violate the problem constraints
at a far greater rate that the one imposed by the requirement η. Additionally, its performance degrades
with the increase of the problem size. The application of PIQ-a,on the other hand, provides formal
guarantees for the individual constraint satisfaction. These guarantees suffice to attain the desired
feasibility requirement for smaller network instances. However, with an increasing network size, the
probability of violating multiple constraints increases, and the average PIQ-a feasibility performance
reduces. To guarantee the joint constraint satisfaction within the prescribed probability 1− η, the
PIQ-s uses a sample approximation. While the guarantees are attained, notice that (last four columns
of the table) this algorithm generates solutions with larger optimality loss than those generated by
PIQ-a, reflecting the discussion in Section 5.

Next, Table 2 reports the results for the sum queries made over the largest test case 118_ieee.These
sum queries return a single aggregated statistic for the subset of selected nodes (first row of the table),
or return the sums over 3, 6, or 9 partitions of the selected nodes. A single statistic requires one
perturbation, which is accommodated by all algorithms in a feasible manner. With an increasing
number of statistics, however, the differences between OP and PSQ algorithms are clearly observed.

Variance-aware differentially private optimization The last experiments show the ability of
the chance-constrained framework to control the variance of the optimization results by means of
Equations (8) and (9). Due to the inherent dependency between the optimality loss and the cost values,
the results are given for different degrees of sparsity (c̄) of supply cost among network nodes. Figure 1
illustrates the results for the PSQ-a algorithm releasing 9 sum statistics for the 118_ieee case and for
the various assignments of the trade-off parameter ϕ ∈ [0, 1]. The left plot shows that independently
of cost sparsity, the algorithm can produce a differentially private output at zero variance of the
optimality loss. The right plot demonstrates the drastic reduction of the overall solution variance
Var [z(ξ)] = Tr

[
Z>ΣZ

]
, almost to the Tr[Σ] total variance of the 9 random perturbations. Both

results, however, require larger conservatism of the solution in terms of optimality loss.

7 Related work

There is a large body of work on differentially private algorithms for convex optimization in the
context of empirical risk minimization (ERM) problems. Output perturbation algorithms (Chaudhuri
and Monteleoni, 2009; Rubinstein et al., 2012) focus on adding the noise to the optimization results.
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Table 1: Identity query summary for 100 network data samples

Case ID n× |Z|
Empirical constraint violation P[ẑ /∈ Z] [%] Optimality loss ∆c [%]

OP PIQ-a PIQ-s PIQ-a PIQ-s

mean std mean std mean std mean std mean std

3_lmbd 6×17 29.7 23.07 0.64 0.34 0.27 0.31 3.42 3.55 5.72 7.64
5_pjm 10×29 18.32 22.94 0.39 0.41 0.12 0.3 1.22 2.07 2.04 3.03
14_ieee 28×84 52.24 26.85 1.48 0.78 0.27 0.25 1.55 1.33 3.45 2.88
39_epri 78×211 95.56 4.69 4.86 1.32 0.49 0.35 2.17 0.81 4.7 1.68
57_ieee 114×333 98.59 1.91 7.17 1.50 1.28 1.06 2.4 0.78 5.51 5.06
118_ieee 236×728 99.99 0.02 14.35 2.06 1.51 0.47 2.46 0.56 4.89 1.20

Table 2: Sum query summary for 100 network data samples

qu
er

ie
s

# Empirical constraint violation P[ẑ /∈ Z] [%] Optimality loss ∆c [%]

OP PSQ-a PSQ-s PSQ-a PSQ-s

mean std mean std mean std mean std mean std

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.62 0.03 0.00 0.00 0.00 0.00 0.07 0.04 0.12 0.11
6 16.48 20.2 1.39 0.84 0.2 0.24 0.58 0.32 1.81 0.82
9 59.83 23.6 4.94 1.11 1.00 0.92 2.36 1.01 13.35 7.31

20 25 30 35

0.0

2.5

5.0

7.5 ϕ
increases

E [∆c]

V
ar
[∆
c]

c = 10

c = 20

c = 30

c = 40

c = 50

20 25 30 35

101

102

ϕ
increases

Tr[Σ] = 4.5

E [∆c]

V
ar
[z
(ξ
)]

Figure 1: Trade-offs: expected value of optimality loss vs. variance (left) and vs. variance of
optimization solution (right). The results are given for c1∼U [1, c] and averaged over 100 runs.

Objective perturbation algorithms (Chaudhuri et al., 2011) perturb the optimization objective and
perform well for smooth loss functions. Exponential sampling algorithms (McSherry and Talwar,
2007; Bassily et al., 2014) rely on an evaluation function to select a candidate output, while achieving
(ε, 0)-differential privacy that may be difficult to implement due to the exponential nature of evaluation
function. Finally, noisy stochastic gradient descent (SGD) algorithms (Abadi et al., 2016; Song et al.,
2013; Bassily et al., 2014; Wang et al., 2015) provide a privacy-preserving version of SGD that can
be combined with accountant methods to provide tight bounds. All these algorithms, however, are
meant for a particular class of unconstrained or regularized convex optimization problems and do not
focus on reporting solutions that must satisfy problem constraints.

The contributions on differentially private constrained convex optimization for generic decision-
making problems are much more sparse. Gupta et al. (2010) studied differential privacy in combi-
natorial optimization problems and derived information-theoretic bounds on the task utility. Hsu
et al. (2014) proposed to solve linear programs privately using a differentially private variant of
the multiplicative weights mechanism. Han et al. (2014) focused on a particular class of convex
optimization problems whose objective function is piecewise affine, with the possibility of including
linear inequality constraints. Fioretto et al. (2020) proposed a private data-release mechanism relying
on projections to restore the feasibility of the violated constraints due to input perturbation. Finally,
Muñoz et al. (2019) developed a differentially private algorithm for a class of linear programs that
solely include the inequality constraints whose right-hand side contains sensitive data. The work
relies on the input perturbation of the inequality right-hand sides to achive (ε, δ)−differential privacy.

There are also differential privacy proposals for the distributed convex optimization. A privacy-
preserving version of the alternating direction method of multipliers (Boyd et al., 2011) has been
studied in the context of the unconstrained ERM problem (Zhang and Zhu, 2016; Ding et al., 2019) and
constrained energy resource allocation problem (Dvorkin et al., 2019). Han et al. (2016) proposed a

9



private distributed projected gradient descent algorithm for constrained convex optimization problems.
This collection of work, however, minimizes the privacy leakage by acting on the information
exchanged by agents during the coordination process and does not provide privacy guarantees for the
release of optimization solution.

8 Conclusion

The paper proposed a novel framework to release privacy-preserving solutions of constrained convex
optimization problems that contain complex feasibility constraints. The framework relies on a
combination of differential privacy and stochastic optimization theory and provides the foundations
for two algorithms answering privacy-preserving identity and sum queries over the optimization
solutions. The feasibility guarantees were studied for both individual and joint constraint satisfaction
and the paper examined the trade-off between the expected and the worst-case errors by controlling
the variance of the solutions and the optimality loss. Finally, the proposed framework was shown to
outperform standard output perturbation algorithms on several energy benchmark networks.
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A Proof of Theorem 2

Proof. Without loss of generality, consider that the identity query Iz(ξ) = Iz̃ + IZξ requires
releasing first k items of z(ξ), such that the diagonal matrix I can be described as

I =

[
diag(1)k×k

diag(0)n−k×n−k

]
,

the perturbation vector ξ as

ξ =
[
ξ1, . . . , ξk, 0

>
n−k

]>
,

and an arbitrary identity outcome O as

O =
[
O1, . . . , Ok, 0

>
n−k×n−k

]>
.

Denote the optimal solution of the chance-constrained problem (3) by
?

z̃ and
?

Z . It needs to
be shown that the ratio of probabilities that the algorithm returns the same outcome O on two
α−indistinguishable input datasets d and d′ is bounded by a constant exp (ε):

P
[
I
(

?

z̃ (d)+
?

Z (d)ξ
)

= O
]
/ P

[
I
(

?

z̃ (d′)+
?

Z (d′)ξ
)

= O
]
6 exp (ε) .

It follows that:

P
[
I

?

z̃ (d) + I
?

Z (d)ξ = O
]
/ P

[
I

?

z̃ (d′) + I
?

Z (d′)ξ = O
]

(i)
=

P







?

z̃ 1(d)
...

?

z̃ k(d)
0n−k


+




ξ1
...
ξk

0n−k


 =




O1
...
Ok
0n−k







P







?

z̃ 1(d′)
...

?

z̃ k(d′)
0n−k


+




ξ1
...
ξk

0n−k


 =




O1
...
Ok
0n−k







(ii)
=

P






ξ1
...
ξk


 =



O1
...
Ok


−




?

z̃ 1(d)
...

?

z̃ k(d)







P






ξ1
...
ξk


 =



O1
...
Ok


−




?

z̃ 1(d′)
...

?

z̃ k(d′)







(iii)
=

∏k
i=1 exp

(
− ε‖Oi−

?
z̃i(d)‖

1

∆α

)

∏k
i=1 exp

(
− ε‖Oi−

?
z̃i(d′)‖

1

∆α

) =
k∏

i=1

exp



ε
∥∥∥Oi−

?

z̃ i(d
′)
∥∥∥

1
− ε

∥∥∥Oi−
?

z̃ i(d)
∥∥∥

1

∆α




(iv)

6
k∏

i=1

exp



ε
∥∥∥

?

z̃ i(d)−
?

z̃ i(d
′)
∥∥∥

1

∆α


 = exp



ε
∥∥∥

?

z̃ (d)−
?

z̃ (d′)
∥∥∥

1

∆α


 (v)

6 exp (ε) ,

where (i) is obtained from the primal feasibility condition Z ∈ Q(I), which enforces independence
between the query random component and the sensitive data (see Definition 1), (ii) comes from
rearranging the terms and removing zero entries, (iii) is due to the definition of the probability density
function of the Laplace distribution, (iv) follows the reverse inequality of norms, and (v) is from the
definition of `1−sensitivity on α−indistinguishable input datasets.

B Proof of Theorem 3

Proof. Without loss of generality, consider that the sum query Sz(ξ) = S(z̃+Zξ) requires releasing
p amount of sum statistics over non-intersecting subsets of z(ξ). We thus need to show that the ratio
of probabilities that the algorithm returns the same outcome O ∈ Rp, i.e.,

P
[
S(

?

z̃ (d)+
?

Z (d))ξ = O
]
/ P

[
S(

?

z̃ (d′)+
?

Z (d′))ξ = O
]
6 exp(ε),

12



Algorithm 3: Private identity query (PIQ)
1 Input: d,∆α, ε, η, µ, I

2 (
?

z̃ ,
?

Z )← Solve (3) for Z ∈ Q(I) and
ξ ∼ Lap(T∆α/ε)

3 for i = 1, . . . , T = d log(µ)
log(η) e do

4 ξ̂ ← Sample from Lap(T∆α/ε)n

5 Compute solution to (1) as ẑ =
?

z̃ +
?

Z ξ̂
6 if Aẑ 6 b ∨ i = T then
7 Release: Iẑ
8 end
9 end

Algorithm 4: Private sum query (PSQ)
1 Input: d,∆α, ε, η, µ, S

2 (
?

z̃ ,
?

Z )← Solve (3) for Z ∈ Q(S) and
ξ ∼ Lap(T∆αε)

3 for i = 1, . . . , T = d log(µ)
log(η) e do

4 ξ̂ ← Sample from Lap(T∆α/ε)p

5 Compute solution to (1) as ẑ =
?

z̃ +
?

Z ξ̂
6 if Aẑ 6 b ∨ i = T then
7 Release: Sẑ
8 end
9 end

is bounded by a constant exp(ε), where S ∈ Rp×n and ξ ∈ Rp as in Defintion 2. By denoting the
optimal solution of the chance-constrained problem (3) by

?

z̃and
?

Z , this ratio writes as

P
[
S

?

z̃ (d) + S
?

Z (d)ξ = O
]

P
[
S

?

z̃ (d′) + S
?

Z (d′)ξ = O
] (i)

=
P
[
S

?

z̃ (d) + ξ = O
]

P
[
S

?

z̃ (d′) + ξ = O
] =

P
[
ξ = O − S

?

z̃ (d)
]

P
[
ξ = O − S

?

z̃ (d′)
]

(ii)
=

∏p
i=1 exp

(
− ε‖Oi−[S

?
z̃ (d)]i‖

1

∆α

)

∏p
i=1 exp

(
− ε‖Oi−[S

?
z̃ (d′)]i‖

1

∆α

) =

p∏

i=1

exp



ε
∥∥∥Oi − [S

?

z̃ (d′)]i
∥∥∥

1
− ε

∥∥∥Oi − [S
?

z̃ (d)]i

∥∥∥
1

∆α




(iii)
6

p∏

i=1

exp



ε
∥∥∥[S

?

z̃ (d)]i − [S
?

z̃ (d′)]i
∥∥∥

1

∆α


 = exp



ε
∥∥∥S

?

z̃ (d)− S
?

z̃ (d′)
∥∥∥

1

∆α


 (iv)

6 exp (ε) ,

where (i) follows from the primal feasibility condition Z ∈ Q(S), which requires the random
component of the sum query to be independent from the data (see Definition 2), (ii) is due to the
definition of the probability density function of the Laplace distribution, (iii) follows from the reserve
inequality of norms, and (iv) is from the `1−sensitivity of the sum query, which is identical to the
`1−sensitivity of the identity query.

C Proof of Theorem 4

Similarly to the proofs of Theorems 2 and 3, the random components of the identity and linear queries
can be shown to be independent from a datasets d and d′ using the query specific feasibility conditions
Q. The reminder of the proof can be obtained by following the same steps of the proof in (Dwork
et al., 2006, Appendix A), using notation f(d) = I

?

z̃ (d) for the identity query and f(d) = S
?

z̃ (d)
for the sum query, where f(·) is the function of interest in (Dwork et al., 2006, Appendix A).

D Proof of Theorem 5

The iterative versions of the Algorithms 1 and 2 are provided, respectively, in Algorithms 3 and 4.

Proof. Consider the optimal solution (
?

z̃ ,
?

Z ) returned by the chance constraint problem (line 2) and
recall that the sampling process (lines 4–5) generates a (1− η)-feasible solution ẑ.

The new algorithms, illustrated in Algorighms 3 and 4, alternate this step with a constraint satisfaction
test (line 6) for a maximum number of number T of times with the goal of generating a solution that
satisfies the problem constraints with probability at least 1− µ. Recall that the constraint satisfaction
test, performed in line 6, can be achieved at no extra privacy loss (see Section 3 for details).

The repetition of such process can be seen as a sequence of independent Bernulli trials, each with
probability 1− η of success (i.e., ẑ satisfies the problem constraints) and probability η of failure (i.e.,
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ẑ violates the problem constraints). Let FAIL be the discrete random variable describing the number
of unsuccessful trials prior to the first success. Thus, FAIL is described by a Geometric random
variable with probability (1− η). Formally, the goal is described by the following problem:

T , arg min
T

P(FAIL > T ) 6 µ,

requiring that the first success is seen after T trials with probability no larger than µ. Using a
Geometric distribution of order T , it follows that:

P(FAIL > T ) = 1− P(FAIL < T )

= 1− (1− η)
T−1∑

i=1

ηi

= 1− (1− η)
1− ηT
1− η = ηT

Thus, the solution to the minimizer above is for T =
⌈

log(µ)
log(η)

⌉
.

E Proof of Proposition 1

Proof. The equality constraint (10b) requires the balance between the total supply and total demand.
By construction,

∑
i∈N [B

?

θ ]i = 0, thus from (10b) it follows
∑

i∈N

?
p i −

∑

i∈N
di = 0

∑

i∈N

?
p ′
i −

∑

i∈N
d′i = 0,

therefore, ∑

i∈N

?
p i −

∑

i∈N

?
p ′
i =

∑

i∈N
di −

∑

i∈N
d′i 6 α,

because the datasets d and d′ differ by at most α in one entry, i.e., ‖d− d′‖1 6 α. Therefore,
∆α =

∥∥ ?
p− ?

p ′
∥∥

1
6 α.
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Differentially Private Optimal Power Flow
for Distribution Grids

Vladimir Dvorkin Jr., Student member, IEEE, Ferdinando Fioretto, Pascal Van Hentenryck, Member, IEEE,
Pierre Pinson, Fellow, IEEE, and Jalal Kazempour, Senior Member, IEEE

Abstract—Although distribution grid customers are obliged to
share their consumption data with distribution system operators
(DSOs), a possible leakage of this data is often disregarded in
operational routines of DSOs. This paper introduces a privacy-
preserving optimal power flow (OPF) mechanism for distribution
grids that secures customer privacy from unauthorised access
to OPF solutions, e.g., current and voltage measurements. The
mechanism is based on the framework of differential privacy
that allows to control the participation risks of individuals
in a dataset by applying a carefully calibrated noise to the
output of a computation. Unlike existing private mechanisms,
this mechanism does not apply the noise to the optimization
parameters or its result. Instead, it optimizes OPF variables
as affine functions of the random noise, which weakens the
correlation between the grid loads and OPF variables. To ensure
feasibility of the randomized OPF solution, the mechanism makes
use of chance constraints enforced on the grid limits. The
mechanism is further extended to control the optimality loss
induced by the random noise, as well as the variance of OPF
variables. The paper shows that the differentially private OPF
solution does not leak customer loads up to specified parameters.

Index Terms—Data obfuscation, optimization methods, privacy

I. INTRODUCTION

THE increasing observability of distribution grids enables
advanced operational practices for distribution system

operators (DSOs). In particular, high-resolution voltage and
current measurements available to DSOs allow for continu-
ously steering the system operation towards an optimal power
flow (OPF) solution [1]–[3]. However, when collected, these
measurements expose distribution grid customers to privacy
breaches. Several studies have shown that the measurements of
OPF variables can be used by an adversary to identify the type
of appliances and load patterns of grid customers [4], [5]. The
public response to these privacy risks has been demonstrated
by the Dutch Parliament’s decision to thwart the deployment
of smart meters until the privacy concerns are resolved [6].

Although grid customers tend to entrust DSOs with their
data in exchange for a reliable supply, their privacy rights are
often disregarded in operational routines of DSOs. To resolve
this issue, this paper augments the OPF computations with the
preservation of customer privacy in the following sense.

V. Dvorkin Jr., P. Pinson, and J. Kazempour are with the Technical
University of Denmark, Kgs. Lyngby, Denmark. F. Fioretto is with the
Syracuse University, Syracuse, NY, USA. P. Van Hentenryck is with the
Georgia Institute of Technology, Atlanta, GA, USA.

Definition 1 (Customer privacy). The right of grid customers
to be secured from an unauthorized disclosure of sensitive
information that can be inferred from the OPF solution.

To ensure this right, privacy needs to be rigorously quanti-
fied and guaranteed. Differential privacy (DP) [7] is a strong
privacy notion that quantifies and bounds privacy risks in
computations involving sensitive datasets. By augmenting the
computations with a carefully calibrated random noise, a DP
mechanism guarantees that the noisy results do not disclose
the attributes of individual items in a dataset. Chaudhuri et al.
[8] and Hsu et al. [9] introduced several mechanisms to solve
optimization models while preventing the recovery of the input
data from optimization results. These mechanisms apply noise
to either the parameters or the results of an optimization. The
applied noise, however, fundamentally alters the optimization
problem of interest. Therefore, the direct application of these
mechanisms to OPF problems has been limited. First, they may
fail to provide a feasible solution for constrained optimization
problems. To restore feasibility, they require an additional level
of complexity such as the post-processing steps proposed in
[10], [11]. Second, although these mechanisms provide bounds
on the worst-case performance, they do not consider the
optimality loss as a control variable. As a result, they cannot
provide appropriate trade-offs between the expected and the
worst-case mechanism performances. Finally, the previously
proposed mechanisms overlook the impact of the noise on
the variance of the optimization results. Hence, their direct
application to OPF problems may lead to undesired overloads
of system components [12].

Contributions: To overcome these limitations, this paper
proposes a novel differentially private OPF mechanism that
does not add the noise to the optimization parameters or to the
results. Instead, it obtains DP by optimizing OPF variables as
affine functions of the noise, bypassing the above-mentioned
theoretical drawbacks. More precisely, the paper makes the
following contributions:

1. The proposed mechanism produces a random OPF so-
lution that follows a Normal distribution and guarantees
(ε, δ)−differential privacy [7]. Parameters ε and δ, respec-
tively, bound the multiplicative and additive differences
between the probability distributions of OPF solutions
obtained on adjacent datasets (i.e., differing in at most
one load value). The mechanism is particularly suitable
for protecting grid loads from unauthorized access to OPF
solutions, as fine-tuned (ε, δ) values make randomized OPF
solutions similar, irrespective of the used load dataset.
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2. The mechanism enforces chance constraints on random
OPF variables to guarantee solution feasibility for a given
constraint satisfaction probability. This way, it does not
require a post-processing step to restore OPF feasibility, as
in [10] and [11]. Since the OPF variables are affine in the
Gaussian noise, the chance constraints are reformulated into
computationally efficient second-order cone constraints.

3. The mechanism enables the control of random OPF out-
comes without weakening the DP guarantees. Using results
from stochastic programming [13], the optimality loss
induced by the noise is controlled using Conditional Value-
at-Risk (CVaR) risk measure, enabling a trade-off between
the expected and the worst-case performance. Furthermore,
with a variance-aware control from [14], the mechanism
attains DP with a smaller variance of OPF variables.

Broader Impact: Distribution OPF proposals have been
around for at least a decade, though their adoption in real op-
erations is complicated by the need of utilizing load datasets,
which raises significant privacy concerns by many regulators
worldwide. The adoption of the proposed mechanism, in turn,
extends standard OPF models to enable a privacy-cognizant
utilization1 of this data, thus facilitating the digitization of
the energy sector. The mechanism treats the DSOs as trust-
worthy parties and places them on the same ground with the
digital service providers, e.g. Amazon, enabling the regulation
and securing legal responsibility of the digitalized distribution
grids under modern data protection and privacy standards,
including the General Data Protection Rights (GDPR) in the
European Union, the California Consumer Privacy Act (CCPA)
and the New York Privacy Act (NYPA) in the United States.
Moreover, the mechanism provides the means to hedge the
financial risks of the DSOs by avoiding the cost incurred by
privacy violations, such as legal costs, as it relies on a strong
quantification of privacy and co-optimizes the joint cost of
energy supply and privacy.

Related Work: Thanks to its strong privacy guarantees, DP
has been recently applied to private OPF computations. In
particular, the mechanism of Zhou et al. [15] releases aggre-
gated OPF statistics, e.g., aggregated load, while ensuring the
privacy for individual loads, even if all but one loads are com-
promised. The proposals by Fioretto et al. [10] and Mak et al.
[11] provide a differentially private mechanism to release high-
fidelity OPF datasets (e.g., load and network parameters) from
real power systems while minimizing the risks of disclosing
the actual system parameters. The mechanisms, however, are
meant for the private release of aggregate statistics and input
datasets and do not provide the OPF solution itself.

Private OPF computations have also been studied in a
decentralized and distributed setting. Dvorkin et al. [16]
designed a distributed OPF algorithm with a differentially
private exchange of coordination signals, hence preventing
the leakage of the sensitive information contained in the
algorithm subproblems. Han et al. [17] proposed a privacy-
aware distributed coordination scheme for electrical vehicle
charging. The privacy frameworks in [16] and [17], however,

1Note that privacy concerns a safe utilization of the data, not its storage,
which falls within the field of cyber-security.

are not suitable for centralized computations and solely focus
on the privacy leakage through the exchange of coordination
signals. Moreover, to negate the privacy loss induced at every
iteration, they require scaling the parameters of the random
perturbation, thus involving larger optimality losses and poorer
convergence. The centralized mechanisms proposed in this
work, however, allow obtaining the private OPF solution in
a single computation run. In distribution systems, Zhang et
al. [18], among other proposals reviewed in [6], designed a
privacy-aware optimization of behind-the-meter energy storage
systems to prevent the leakage of consumption data from the
smart meter readings. However, they disregard OPF feasibility
of distribution systems, which has to be preserved in all
circumstances.

Paper Organization: Following the preliminaries in Section
II, Section III formalizes the privacy goals and provides an
overview of the proposed solution. Section IV provides the for-
mulation of the proposed privacy-preserving OPF mechanism
and its properties, whereas Section V presents its extensions.
Section VI provides numerical experiments and Section VII
concludes. The proofs are relegated to the appendix.

II. PRELIMINARIES

A. Optimal Power Flow Problem

The paper considers a low-voltage radial distribution grid
with controllable distributed energy resources (DERs). A DSO
is responsible for controlling the DERs and supplying power
from the high-voltage grid while meeting the technical limits
of the grid. The grid is modeled as a graph Γ (N,L), where
N = {0, 1, . . . , n} is the set of nodes and L = N \ {0} is the
set of lines connecting those nodes. The root node, indexed
by 0, is a substation with a large capacity and fixed voltage
magnitude v0 = 1. The radial topology, depicted in Fig. 1,
associates each node i ∈ N with the sets Ui and Di of,
respectively, upstream and downstream nodes, as well as with
the set Ri of nodes on the path to the root node.

Each node i is characterized by its fixed active dpi and
reactive dqi power load and by its voltage magnitude vi ∈
[vi, vi]. For modeling convenience, the voltage variables are
substituted by ui = v2

i , ∀i ∈ N. A controllable DER sited at
node i outputs an amount of active gpi ∈ [gp

i
, gpi ] and reactive

gqi ∈ [gq
i
, gqi ] power. Its costs are linear with a cost coefficient

ci. To model the relation between the active and reactive DER
power output, the constant power factor tanφi is assumed for
each node i. The active and reactive power flows, fp` and fq` ,
∀` ∈ L, respectively, are constrained by the apparent power
limit f `, and each line is characterized by its resistance r` and
reactance x`. The deterministic OPF model is formulated as:

D-OPF : min
g†,f†,u

∑
i∈N

cig
p
i (1a)

s.t. g†0 =
∑
i∈D0

(d†i − g†i ), u0 = 1, (1b)

f†` = d†` − g
†
` +

∑
i∈D`

(d†i − g†i ), ∀` ∈ L, (1c)

ui = u0 − 2
∑
`∈Ri

(fp` r` + fq` x`), ∀i ∈ L, (1d)

(fp` )2 + (fq` )2 6 f
2

` , ∀` ∈ L, (1e)
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Gaussian noise, the chance constraints are reformulated into
computationally efficient second-order cone constraints.

3. The mechanism enables the control of random OPF out-
comes without weakening the DP guarantees. Using results
from stochastic programming [13], the optimality loss in-
duced by the noise is controlled using Conditional Value-at-
Risk (CVaR) risk measure, enabling the trade-off between
the expected and the worst-case performance. Furthermore,
with a variance-aware control from [14], the mechanism
attains DP with a smaller variance of OPF variables.

Related Work: Thanks to its strong privacy guarantees, DP
has been recently applied to private OPF computations. In
particular, the mechanism of Zhou et al. [15] releases aggre-
gated OPF statistics, e.g., aggregated load, while ensuring the
privacy for individual loads, even if all but one loads are com-
promised. The proposals by Fioretto et al. [10] and Mak et al.
[11] provide a differentially private mechanism to release high-
fidelity OPF datasets (e.g., load and network parameters) from
real power systems while minimizing the risks of disclosing
the actual system parameters. The mechanisms, however, are
meant for the private release of aggregate statistics and input
datasets and do not provide the OPF solution itself.

Private OPF computations have also been studied in a
decentralized setting. Dvorkin et al. [16] designed a distributed
OPF algorithm with a differentially private exchange of co-
ordination signals, hence preventing the leakage of sensitive
information in the algorithm subproblems. Han et al. [17]
proposed a privacy-aware distributed coordination scheme for
electrical vehicle charging. The privacy frameworks in [16]
and [17], however, are not suitable for centralized compu-
tations. In distribution systems, Zhang et al. [18], among
other proposals reviewed in [6], designed a privacy-aware
optimization of behind-the-meter energy storage systems to
prevent the leakage of consumption data from the smart meter
readings. However, they disregard OPF feasibility of distribu-
tion systems, which has to be preserved in all circumstances.

Paper Organization: Following the preliminaries in Section
II, Section III formalizes the privacy goals and provides an
overview of the proposed solution. Section IV provides the
formulation of the proposed privacy-preserving OPF mecha-
nism, whereas Section V presents its properties and extensions.
Finally, Section VI provides numerical experiments.

II. PRELIMINARIES

A. Optimal Power Flow Problem

The paper considers a low-voltage radial distribution grid
with controllable distributed energy resources (DERs). A DSO
is responsible for controlling the DERs and supplying power
from the high-voltage grid while meeting the technical limits
of the grid. The grid is modeled as a graph � (N,L), where
N = {0, 1, . . . , n} is the set of nodes and L = N \ {0} is the
set of lines connecting those nodes. The root node, indexed
by 0, is a substation with a large capacity and fixed voltage
magnitude v0 = 1. The radial topology, depicted in Fig. 1,
associates each node i 2 N with the sets Ui and Di of,
respectively, upstream and downstream nodes, as well as with
the set Ri of nodes on the path to the root node.

0 i � 1 i

i + 1

i + 2

f†
i

d†
i

g†
i

f
†
i+

1

f †
i+

2

Di

Ui

Ri

Fig. 1. Topology of the distribution grid relative to node i, † = {p, q}.

Each node i is characterized by its fixed active dpi and
reactive dqi power load and by its voltage magnitude vi 2
[vi, vi]. For modeling convenience, the voltage variables are
substituted by ui = v2i , 8i 2 N. A controllable DER sited at
node i outputs an amount of active gpi 2 [gp

i
, gpi ] and reactive

gqi 2 [gq
i
, gqi ] power. Its costs are linear with a cost coefficient

ci. To model the relation between active and reactive power
output, the paper assumes a constant power factor tan�i.
Similarly, the constant power factor is assumed for loads,
such that each load i can be described solely by its active
component dpi . The active and reactive power flows, fp

` and fq
` ,

8` 2 L, respectively, are constrained by the apparent power
limit f `, and each line is characterized by its resistance r` and
reactance x`. The deterministic OPF model is formulated as:

D-OPF : min
g†,f†,u

P
i2N

cig
p
i (1a)

s.t. g†0 =
P

i2D0

(d†i � g†i ), u0 = 1, (1b)

f†
` = d†` � g†` +

P
i2D`

(d†i � g†i ), 8` 2 L, (1c)

ui = u0 � 2
P
`2Ri

(fp
` r` + fq

` x`), 8i 2 N \ {0},

(1d)

(fp
` )2 + (fq

` )2 6 f
2

` , 8` 2 L, (1e)

g†
i
6 g†i 6 g†i , 8i 2 N, (1f)

v2i 6 ui 6 v2i , 8i 2 N \ {0}, (1g)

where superscript † = {p, q} indexes active and reactive
power. The objective is to minimize the total operational
cost subject to the OPF equations (1b)–(1d) and grid limits
(1e)–(1g). The OPF equations balance the grid based on the
LinDistFlow AC power flow equations [19].

B. Differential Privacy

The paper uses the framework of differential privacy [7]
to quantify and control the privacy risks of the customer
loads. It considers datasets D 2 Rn as n-dimensional vectors
describing the active load values, denoted by di for each node
i. To protect the participation of the load in the ith entry of
the dataset, the following adjacency relation is introduced:

D ⇠� D0 , 9i s.t. |di � d0i| 6 �i ^ dj = d0j , 8j 6= i,

where D and D0 are two adjacent datasets, � 2 Rn is a vector
of positive real values, and the values di and d0i are the load
values corresponding to customer i in D and D0, respectively.

Fig. 1. Topology of the distribution grid relative to node i, † = {p, q}.
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where superscript † = {p, q} indexes active and reactive
power. The objective is to minimize the total operational
cost subject to the OPF equations (1b)–(1d), that balance
the grid based on the LinDistFlow AC power flow equations
[19, equations (9)] for distribution grids, and grid limits (1e)–
(1g). Equation (1b) requires the total mismatch between power
generation and loads in the distribution grid to be compensated
for by the power from the substation at the root node. Equation
(1c) requires the balance between the power flow along every
edge `, power mismatch at the in-flow node ` as well as
that at the downstream nodes. The last term in (1c) can be
also rewritten as the sum of power flows in the adjacent
downstream lines, but kept as it is in the interest of the
subsequent derivations. Last, equation (1d) models the voltage
drop along the path from the root node to the node of interest.

Although OPF equations (1b)-(1d) establish the affine re-
lation between the OPF variables, which is necessary for
the subsequent chance-constrained formulation, they neglect
distribution grid losses. The losses, however, can be included
in an affine manner using various linearization techniques,
such as in [20], [21] and [22] to mention but a few examples.

B. Differential Privacy

The paper uses the framework of differential privacy [7]
to quantify and control the privacy risks of the customer
loads. It considers datasets D ∈ Rn as n-dimensional vectors
describing the active load values, denoted by di for each node
i. To protect the participation of the load in the ith entry of
the dataset, the following adjacency relation is introduced:

D ∼β D′ ⇔ ∃i s.t. |di − d′i| 6 βi and dj = d′j ,∀j 6= i,

where D and D′ are two adjacent datasets, β ∈ Rn is a vector
of positive real values, and values di and d′i are the load values
corresponding to customer i in D and D′, respectively. The
adjacency relates two load vectors that differ in at most one
item, at position i, by a value not greater than βi.

If a mechanism satisfies the definition of differential privacy,
it returns similar results on adjacent datasets in a probabilistic
sense. This intuition is formalized in the following definition.

Definition 2 (Differential Privacy). Given a value β ∈ Rn+, a
randomized mechanism M̃ :D→R with domain D and range

R is (ε, δ)-differential private if, for any output s ⊆ R and
any two adjacent inputs D ∼β D′ ∈ Rn

P[M̃(D) ∈ s] 6 eεP[M̃(D′) ∈ s] + δ,

where P denotes the probability over runs of M̃.

In the context of OPF problem (1), domain D includes
all feasible load datasets, mechanism M denotes the OPF
problem itself, and M̃ is its randomized counterpart, and range
R denotes the feasible region of the OPF problem.

The level of privacy is controlled by DP parameters (ε, δ).
The former corresponds to the maximal multiplicative differ-
ence in distributions obtained by the mechanism on adjacent
datasets, whereas the latter defines the maximal additive
difference. Consequently, smaller values of ε and δ provide
stronger privacy protection. Definition 2 extends the metric-
based differential privacy introduced by Chatzikokolakis et al.
[23] to control of individual privacy risks.

If a mechanism satisfies Definition 2, it features two impor-
tant properties. First, by acting on adjacent datasets D and D′,
it provides privacy for each item i irrespective of the properties
of all remaining items in a dataset. Second, it is immune to the
so-called side attacks, i.e., it ensures that even if an attacker
acquires the data of all other users but i, when accessing the
output M̃(D) of the differential private mechanism, it will
not be able to infer the load value of user i up to differential
privacy bounds ε and δ [24].

The differentially private design of any mechanism is
obtained by means of randomization using, among others,
Laplace or Gaussian noise for numerical queries and expo-
nential noise for the so-called non-numerical events [24]. The
DP requirements for an optimization problem are achieved
by introducing a calibrated noise to the input data [9] or to
the output or objective function of the mechanism itself [8].
Regardless of the strategy adopted to attain DP, the amount
of noise to inject depends on the mechanism sensitivity. In
particular, the L2−sensitivity of a deterministic mechanism
M on β-adjacent datasets, denoted by ∆β , is defined as:

∆β = max
D∼βD′

‖M(D)−M(D′)‖2 .

This work employs the Gaussian mechanism, because the
Gaussian noise allows for the exact analytic reformulation of
chance constraints into tractable second-order cone constraints.

Theorem 1 (Gaussian mechanism [24]). Let M be a mech-
anism of interest that maps datasets D to Rn, and let ∆β be
its L2−sensitivity. For ε ∈ (0, 1) and γ2 > 2 ln( 1.25

δ ), the
Gaussian mechanism that outputs M̃(D) =M(D) + ξ, with
ξ noise drawn from the Normal distribution with 0 mean and
standard deviation σ > γ∆β

ε is (ε, δ)-differentially private.

When the DP mechanism produces solutions to an opti-
mization problem, it is also important to quantify the opti-
mality loss, i.e., the distance between the optimal solutions of
the original mechanism M(D) and its differentially private
counterpart M̃(D) evaluated on the original dataset D.
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The adjacency relation relates two load vectors that differ in
at most one item, at position i, by a value not greater than �i.

If a mechanism satisfies the definition of differential privacy,
it returns similar results on adjacent datasets in a probabilistic
sense. This intuition is formalized in the following definition.

Definition 2 (Differential Privacy). Given a value � 2 Rn
+, a

randomized mechanism M̃ :D!R with domain D and range
R is (", �)-differential private if, for any output s ✓ R and
any two adjacent inputs D ⇠� D0 2 Rn

P[M̃(D) 2 s] 6 e"P[M̃(D0) 2 s] + �,

where P denotes the probability over runs of M̃.

The level of privacy is controlled by DP parameters (", �).
The former corresponds to the maximal multiplicative differ-
ence in distributions obtained by the mechanism on adjacent
datasets, whereas the latter defines the maximal additive
difference. Consequently, smaller values of " and � provide
stronger privacy protection. Definition 2 extends the metric-
based differential privacy introduced by Chatzikokolakis et al.
[20] to control of individual privacy risks.

The differentially private design of any mechanism is
obtained by means of randomization using, among others,
Laplace, Gaussian, or exponential noise [21]. The DP require-
ments for an optimization problem are achieved by introducing
a calibrated noise to the input data [9] or to the output or
objective function of the mechanism itself [8]. Regardless of
the strategy adopted to attain DP, the amount of noise to
inject depends on the mechanism sensitivity. In particular, the
L2�sensitivity of a deterministic mechanism M on �-adjacent
datasets, denoted by �� , is defined as:

�� = max
D⇠�D0

kM(D)�M(D0)k2 .

This work makes use of the Gaussian mechanism, which
provides (", �)�differential privacy as per the following result.

Theorem 1 (Gaussian mechanism [21]). Let M be a mech-
anism of interest that maps datasets D to Rn. For " 2 (0, 1)
and �2 > 2 ln( 1.25� ), the Gaussian mechanism that outputs
M̃(D) = M(D) + ⇠, with ⇠ noise drawn from the Normal
distribution with 0 mean and standard deviation � > ���

" is
(", �)-differentially private.

When the DP mechanism produces solutions to an opti-
mization problem, it is also important to quantify the opti-
mality loss, i.e., the distance between the optimal solutions of
the original mechanism M(D) and its differentially private
counterpart M̃(D) evaluated on the original dataset D.

III. PROBLEM STATEMENT

In the context of the underlying dispatch problem, the DSO
collects a dataset D = {dpi }i2N of customer sensitive loads
and dispatches the DER according to the solution of the OPF
model (1). The OPF model acts as a mechanism M : D 7! s
that maps the dataset D into an optimal OPF solution s?. The
solution is a tuple comprising generator set points {gpi , gqi }i2N,
power flows {fp

` , fq
` }`2L, and voltages {ui}i2N, as depicted

on the left plane in Fig. 2. However, the release of s? poses
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Fig. 2. Projections of OPF solutions onto operating cost and feasibility space.

a privacy threat: an adversary with access to the items in s?

could decode the customers activities [4], [5]. For instance,
the voltage sags at a node of interest discloses the activity
of residential costumers (e.g., charging an electrical vehicle).
Voltages and flows (currents) also encode information about
the technology, production patterns, and other commercial data
of industrial customers [10].

To minimize privacy risks, this work proposes a mechanism
M̃ for the DSO, which returns a feasible solution s̃ at the
expense of an optimality loss, as shown in Fig. 2. A non-trivial
benefit of choosing s̃ over s? is that the former includes a
particular perturbation of the optimal solution and thus carries
less information about the real load data D. For instance, the
sub-optimal solution can feature a more intensive deployment
of the DERs to compensate for the voltage sags instead of
purchasing power from the high-voltage grid. To ensure that
M̃ returns a differentially private solution, s̃ has to follow
a carefully calibrated noise distribution, as depicted on the
right plane in Fig. 2. In other words, the mechanism must
satisfy Definition 2, i.e., on adjacent load datasets, it must
output distributions (describing the generator outputs, flows,
and voltages) that differ by at most " and � in multiplicative
and additive terms, respectively. However, with smaller " and
�, the variance of the OPF solutions and hence the probability
of producing an infeasible solution increases. The mechanism
thus needs to address this feasibility issue. Finally, the last
desired property is the ability to control the induced optimality
loss ⇥ in order to ensure cost-effective grid operations.

IV. DIFFERENTIALLY PRIVATE OPF MECHANISM

This section provides a mathematical description of mech-
anism M̃ and details its application. The intuition behind the
mechanism is as follows. Consider an optimal OPF solution s?.
The DP mechanism could perturb the optimal power flows in
s? with random noise ⇠ and then adapt the optimal generation
schedule and voltages to match the perturbed power flows.
However, there is no guarantee that this will result in a feasible
dispatch. To remedy this limitation, the mechanism does not
use s?, but instead solves a chance-constrained optimization
that produces an OPF solution s̃?, which is robust to flow
perturbations, i.e., with high probability, it is possible to find
a feasible generator dispatch and its associated voltages for
any calibrated noise injection on the power flow. Once s̃?

is obtained, the mechanism perturbs the power flows in s̃?

Fig. 2. Projections of OPF solutions onto operating cost and feasibility space.

III. PROBLEM STATEMENT

In the context of the underlying dispatch problem, the DSO
collects a dataset D = {dpi }i∈N of customer sensitive loads
and dispatches the DER according to the solution of the OPF
model (1). The OPF model acts as a mechanism M : D 7→ s
that maps the dataset D into an optimal OPF solution s?. The
solution is a tuple comprising generator set points {gpi , gqi }i∈N,
power flows {fp` , f

q
` }`∈L, and voltages {ui}i∈N, as depicted

on the left plane in Fig. 2. However, the release of s? poses
a privacy threat: an adversary with access to the items in s?

could decode the customers activities [4], [5]. For instance,
the voltage sags at a node of interest discloses the activity
of residential costumers (e.g., charging an electrical vehicle).
Voltages and flows (currents) also encode information about
the technology, production patterns, and other commercial data
of industrial customers [10].

To minimize privacy risks, this work proposes a mechanism
M̃ for the DSO, which returns a feasible solution s̃ at
the expense of an optimality loss, as shown in Fig. 2. A
non-trivial benefit of choosing s̃ over s? is that the former
includes a particular perturbation of the optimal solution and
thus carries less information about the real load data D. For
instance, the sub-optimal solution can feature a more intensive
deployment of expensive DERs instead of purchasing less
expensive power from the high-voltage grid. To ensure that
M̃ returns a differentially private solution, s̃ has to follow a
carefully calibrated noise distribution, as depicted on the right
plane in Fig. 2. In other words, the mechanism must satisfy
Definition 2, i.e., on adjacent load datasets, it must output
distributions that differ by at most ε and δ in multiplicative
and additive terms, respectively. However, with smaller ε and
δ, the variance of the OPF solutions and hence the probability
of producing an infeasible solution increases. The mechanism
thus needs to address this feasibility issue. Finally, the last
desired property is the ability to control the induced optimality
loss Θ in order to ensure cost-effective grid operations.

To provide differentially private OPF solutions, the work
focuses on the randomization of active power flows as their
sensitivities to grid loads can be directly upper-bounded by the
load magnitudes in radial grids. Since the OPF equations (1b)–
(1d) couple OPF variables, the randomization of power flows
will also induce the randomization of reactive power flows
and voltages. Therefore, the randomized OPF mechanism M̃
is now seen as a mapping from a dataset D to the active power

flow solution fp. Let F p ∈ R|L| be a particular realization of
the randomized active power flows. The privacy goal of this
work is to ensure that M̃ satisfies

D ∼β D′ : P[M̃(D) ∈ F p] 6 eεP[M̃(D′) ∈ F p] + δ, i.e.,

the definition of (ε, δ)−DP on β−adjacent load datasets.

IV. DIFFERENTIALLY PRIVATE OPF MECHANISM

This section provides a mathematical description of mecha-
nism M̃ and details its application. Section IV-A describes the
perturbation of generator outputs to attain the randomization
of power flows, Section IV-B details the chance-constrained
program that accommodates the perturbation in a feasible
manner, and Section IV-C explains the mechanism application
as well as its feasibility and privacy guarantees.

A. Random Perturbation of OPF Solutions

Consider a random perturbation ξ ∈ R|L| which obeys a
Gaussian distribution N (0,Σ) with covariance matrix

Σ = diag([σ2
1 , . . . , σ

2
|L|]) = diag(σ2) ∈ R|L|×|L|.

Throughout the paper, Σ, σ2, and σ are used interchangeably
to discuss the perturbation parameters. The power flows are
conditioned on perturbation ξ when the following affine poli-
cies are imposed on DERs and substation supplies:

g̃pi (ξ) = gpi +
∑
`∈Di

αi`ξ` −
∑
`∈Ui

αi`ξ`, ∀i ∈ N, (2a)

where g̃pi (ξ) and gpi are, respectively, the random and nominal
(mean) active power outputs, and αi` is the portion of random
perturbation ξ` provided by the supplier at node i, modeled
as a free variable. The policies in (2a) are viable when the
following balancing conditions are enforced:

∑
i∈U`

αi` = 1,
∑
i∈D`

αi` = 1, ∀` ∈ L, (2b)

such that for each line `, the upstream suppliers adjust their
aggregated output by ξ` and the downstream DERs counter-
balance this perturbation by ξ`, thus satisfying power balance.

The policies in (2) differ from those in stochastic dispatch
models in [2], [3], [14], [25], [26], where the overall generator
recourse compensates for the mismatch between grid loads and
renewable forecast error realizations. However, since the affine
nature of generator response remains similar, the proposed
policy directly extends to balance renewable forecast errors.

To provide a succinct representation of the randomized OPF
variables, consider a topology matrix T ∈ R|N|×|L| whose
elements are such that:

Ti` =





1, if line ` is downstream w.r.t. node i,
−1, if line ` is upstream w.r.t. node i

0, otherwise.

Consider also an auxiliary row vector ρpi = Ti ◦αi that returns
a Schur product of ith row of T and ith row of α, and set
ρqi = ρpi tanφi. If the grid DERs allow, the later can be relaxed
to model variable DER power factors. Using this notation, the



5

perturbed OPF solution is modeled as the following set of
random variables:

g̃†i (ξ) = g†i + ρ†i ξ, ∀i ∈ N, (3a)

f̃†` (ξ) = f†` −
[
ρ†` +

∑
j∈D`

ρ†j

]
ξ, ∀` ∈ L, (3b)

ũi(ξ) = ui + 2
∑
j∈Ri

[
rj
(
ρpj +

∑
k∈Dj

ρpk)+

xj
(
ρqj +

∑
k∈Dj

ρqk
)]
ξ, ∀i ∈ L, (3c)

where the randomized power flows f̃†i are obtained by substi-
tuting generator policy (2a) into (1c), and randomized voltage
magnitudes ũi are expressed by substituting f̃†i into (1d), refer
to Appendix A for details. Each variable is thus represented
by its nominal component and its random component whose
realization depends on ξ. Furthermore, the random compo-
nents of power flows in (3b) and voltages (3c) also depend
on the generator dispatch decisions ρ†. Therefore, by properly
calibrating the parameters of ξ and finding the optimal dispatch
decisions, the randomized OPF solution in (3) provides the
required privacy guarantees (see Section IV-C, Theorem 2).
However, there is yet no guarantee that the randomized OPF
solution in (3) is feasible.

B. The Chance-Constrained Optimization Program

To obtain a feasible dispatch, the proposed mechanism uses
a chance-constrained program which optimizes the affine func-
tions in (3) to make OPF solution feasible for any realization
of random variable ξ with a high probability. The chance-
constrained program is obtained by substituting variables (3)
into the base OPF model (1) and enforcing chance constraints
on the grid limits. Its tractable formulation is provided in (5),
which is obtained considering the following reformulations.

1) Objective Function Reformulation: The chance-
constrained program minimizes the expected cost, which is
reformulated as follows:

Eξ
[∑
i∈N

cig̃
p
i

]
= Eξ

[∑
i∈N

ci(g
†
i + ρ†i ξ)

]
=
∑
i∈N

cig
p
i , ∀i ∈ N,

due to the zero-mean distribution of ξ.
2) Inner Polygon Approximation of the Quadratic Power

Flow Constraints: The substitution of the random power flow
variables in (3b) into the apparent power flow limit constraints
(1e) results in the following expression

(f̃p` )2 + (f̃p` )2 ≤ f̄2
` , ∀` ∈ L,

which exhibits a quadratic dependency on random variable
ξ, for which no tractable chance-constrained reformulation is
known. To resolve this issue, the above quadratic constraint is
replaced by the inner polygon [22], [27], which writes as

γpc f̃
p
i + γqc f̃

q
i + γscf i 6 0, ∀i ∈ L,∀c ∈ C, (4)

where γpc , γ
q
c , γ

s
c are the coefficients for each side c of the

polygon. The cardinality |C| is arbitrary, but a higher cardi-
nality brings a better accuracy. Equation (4) is not a relaxation
but an inner convex approximation: if the power flow solution
is feasible for (4), it is also feasible for the original quadratic
constraint (1e).

Algorithm 1: DP CC-OPF mechanism M̃
1 Input: D, ε, δ, β, ηg, ηu, ηf
2 Define covariance Σ = f(ε, δ, β) as per Theorem 2
3 Solve

?

V ← argmin problem (5) using D and Σ

4 Sample random perturbation ξ̂ ∼ N (0,Σ)

5 Obtain final OPF solution from (3) using
?

V and ξ̂
6 Release: f̃†(ξ̂), ũ(ξ̂), g̃†(ξ̂)

3) Conic Reformulation of Linear Chance Constraints: For
the normally distributed variable ξ with known moments, the
chance constraint of the form Pξ[ξ>x 6 b] > 1−η is translated
into a second-order cone constraint as [28, Chapter 4.2.2]:

zη‖std(ξ>x)‖2 6 b− Eξ[ξ>x],

where zη = Φ−1(1− η) is the inverse cumulative distribution
function of the standard Gaussian distribution at the (1 − η)
quantile, and η is the constraint violation probability. There-
fore, the individual chance constraints on the generation, volt-
age, and power flow variables are formulated in a conic form
in (5c)–(5g), respectively. The resulting tractable formulation
of the chance-constrained OPF program is as follows:

CC-OPF : min
V={g†,f†,u,ρ†}

∑
i∈N

cig
p
i (5a)

s.t. Equations (1b)− (1d), (2b), (5b)

zηg
∥∥ρ†iσ

∥∥
2
6 g†i − g†i , ∀i ∈ N, (5c)

zηg
∥∥ρ†iσ

∥∥
2
6 g†i − g†i , ∀i ∈ N, (5d)

zηu
∥∥∥
[ ∑
j∈Ri

[
rj
(
ρpj +

∑
k∈Dj

ρpk) + xj
(
ρqj +

∑
k∈Dj

ρqk
)]]

σ
∥∥∥

2

6 1
2 (ui − ui) , ∀i ∈ L, (5e)

zηu
∥∥∥
[ ∑
j∈Ri

[
rj
(
ρpj +

∑
k∈Dj

ρpk) + xj
(
ρqj +

∑
k∈Dj

ρqk
)]]

σ
∥∥∥

2

6 1
2 (ui − ui) , ∀i ∈ L, (5f)

zηf
∥∥∥
(
γpc
[
ρp` +

∑
i∈D`

ρpi
]

+ γqc
[
ρq` +

∑
i∈D`

ρqi
])
σ
∥∥∥

2
6

− γpc fp` − γqcf
q
` − γscf `, ∀` ∈ L,∀c ∈ C. (5g)

C. The Privacy-Preserving Mechanism and Guarantees

The functioning of the privacy-preserving mechanism M̃ is
explained in Algorithm 1. The Algorithm first computes the
covariance matrix Σ that encodes the DP parameters (ε, δ),
and adjacency parameter β. The mechanism then solves the
optimization problem in (5) to obtain an optimal chance-
constrained solution

?

V. Last, the mechanism samples the
random perturbation and obtains the final OPF solution using
equations (3). By design of problem (5), the sampled OPF
solution is guaranteed to satisfy grid limits and customer loads
up to specified violation probabilities ηg, ηu and ηf , of the
generator, voltage, and power flow constraints.

The privacy guarantees, in turn, depend on the specification
of DP parameters (ε, δ) and the vector of adjacency coef-
ficients β. For simplicity, the DP parameters are assumed
to be uniform for all customers and specified by the DSO,



6

whereas customer privacy preferences are expressed in the
submitted adjacency coefficients. In this setting, the load of
every customer i is guaranteed to be indistinguishable from
any other load in the range [dpi − βi, dpi + βi] in the release
of OPF solution related to node i up to DP parameters (ε, δ).
This guarantee is formalized by the following result.

Theorem 2 (Privacy Guarantees). Let (ε, δ) ∈ (0, 1) and
σi > βi

√
2ln(1.25/δ)/ε, ∀i ∈ L. Then, if problem (5) returns

an optimal solution, mechanism M̃ is (ε, δ)-differentially
private for β-adjacent load datasets. That is, the probabilities
of returning a power flow solution in set F p on any two β-
adjacent datasets D and D′ are such that

P[M̃(D) ∈ F p] 6 eεP[M̃(D′) ∈ F p] + δ,

where P denotes the probability over runs of M̃.

Proof. The full proof is available in Appendix B and relies on
two intermediate results summarized in Lemmas 1 and 2. The
first lemma shows that the standard deviation of power flow
related to customer i is at least as much as σi. Therefore,
by specifying σi, the DSO attains the desired degree of
randomization. The second lemma shows that βi > ∆β

i , i.e.,
if σi is parameterized by βi, then σi is also parameterized
by sensitivity ∆β

i , required by the Gaussian mechanism in
Theorem 1.

V. MECHANISM EXTENSIONS

A. OPF Variance Control

Due to the radial topology of distribution grids, the flow
perturbations along the same radial branch induce larger flow
variances than those intended by the covariance matrix Σ.
This section extends the mechanism M̃ to reduce the overall
flow variance while still preserving privacy guarantees. Two
strategies are proposed to achieve this goal.

1) Total Variance Minimization: The flow standard devia-
tion, obtained from (3b), depends on the DER participation
variables ρ†. Therefore, the variance of power flows can be
controlled by optimizing the DER dispatch. This variance
control strategy is enabled by replacing problem (5) at the
core of mechanism M̃ by the following optimization:

ToV-CC-OPF : min
V∪{t}

∑
i∈N

cig
p
i +

∑
`∈L

ψ`t` (6a)

s.t.
∥∥∥
[
ρp` +

∑
i∈D`

ρpi
]
σ
∥∥∥

2
6 t`, ∀` ∈ L, (6b)

Equations (5b)− (5g), (6c)

where the decision variable t` represents the standard deviation
of the active power flow in line `, which is penalized in
the objective function by a non-negative parameter ψ`. By
choosing ψ`,∀` ∈ L, the DSO minimizes the total variance
at the expense of operational cost. Note that, by Lemma 1,
optimization (6) does not violate the privacy guarantees.

2) Pursuing Target Variance: This strategy solely perturbs
the flow in the selected line of the radial branch (e.g., adjacent
to the customer with the strongest privacy requirement) and
constrains the DERs to maintain the flow variance in each
line as required by the original matrix Σ. It specifies a new

matrix Σ̂ = diag([σ̂2
1 , . . . , σ̂

2
|L|]), 1>σ̂2 6 1

>σ2, that contains
a smaller number of perturbations. This control is enabled by
replacing problem (5) by the following optimization:

TaV-CC-OPF : min
V∪{t,τ}

∑
i∈N

cig
p
i +

∑
`∈L

ψ`τ` (7a)

s.t.
∥∥∥
[
ρp` +

∑
i∈D`

ρpi
]
σ̂
∥∥∥

2
6 t`, ∀` ∈ L, (7b)

∥∥t` − σ`
∥∥

2
6 τ`, ∀` ∈ L, (7c)

Equations (5b)− (5g) with σ̂, (7d)

where, t` returns the resulting flow standard deviation, while
constraint (7c) yields the distance τ` between the resulting
standard deviation and original one σ` = Σ

1/2
`,` required to

provide customer at node ` with differential privacy. By pe-
nalizing this distance in the objective function, the DSO attains
privacy at a smaller amount of random perturbations. Note, as
optimization (7) acts on covariance matrix Σ̂ instead of Σ, the
DSO needs to verify a posteriori that t` > σ`, ∀` ∈ L.

B. Optimality Loss Control

The application of mechanism M̃ necessarily leads to
an optimality loss compared to the solution of non-private
mechanism M. This section slightly abuses the notation and
denotes the cost of the non-private OPF solution and that of
the proposed DP mechanism when evaluated on a dataset D
by M(D) and M̃(D), respectively. The optimality loss Θ is
measured in expectation as the L2 distance, i.e.,

E[Θ] = ‖M(D)− E[M̃(D)]‖2,
as M(D) always provides a deterministic solution. However,
the worst-case realization of M̃(D) may significantly exceed
the expected value and lead to a larger optimality loss. To this
end, this section introduces the optimality loss control strategy
using the Conditional Value-at-Risk (CVaR) measure [13].

Consider %% of the worst-case realizations of the optimally
loss. The expected value of these worst-case realizations can
be modeled as a decision variable using the CVaR measure as

CVaR% = µc + σcφ
(
Φ−1(1− %)

)
/%, (8)

where µc and σc represent the expected value and standard
deviation of operational costs, while φ and Φ−1(1−%) denote
the probability density function and the inverse cumulative
distribution function at the (1 − %) quantile of the standard
Normal distribution. From Section (IV-B), it follows that

µc = E[c>g̃p] = E[c>(gp + ρξ)] = c>gp,

for zero-mean ξ, and the standard deviation finds as

σc = std[c>(gp + ρξ)] = std[c>(ρξ)] = ‖c>(ρσ)‖2,
providing a convex reformulation of the CVaR in (8). There-
fore, for some trade-off parameter θ ∈ [0, 1], the DSO can
trade off the mean and CVaR% of the optimality loss by
substituting problem (5) at the core of mechanism M̃ by the
following optimization CVaR-CC-OPF:

min
V∪σc

(1− θ)c>gp + θ
[
c>gp + σcφ

(
Φ−1(1− %)

)
/%
]

(9a)
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s.t. ‖c>(ρσ)‖2 6 σc, (9b)
Equations (5b)− (5g), (9c)

where the standard deviation σc is modeled as a decision
variable. Notice, the optimality loss control by means of (9)
does not violate the privacy guarantees as per Lemma 1.

VI. NUMERICAL EXPERIMENTS

The experiments consider a modified 15-node radial grid
from [29], which includes network parameters taken from [30],
nodal loads as given in Table I, and nodal DERs with cost
coefficients drawn from Normal distribution ci ∼ N (10, 2)
$/MWh, generation limits gp

i
= 0 MW, gp

i
= 8 MW, and

power factor tanφi = 0.5, ∀i ∈ N. The constraint violation
probabilities are set as ηg = 1%, ηu = 2% and ηf = 10%.
The DP parameters are set to ε → 1, δ = 1/n = 0.071 with
n being a number of grid customers, while the adjacency
parameters βi,∀i ∈ L, vary across the experiments. All
models are implemented in Julia using the JuMP package [31],
and all data and codes are relegated to the e-companion [32].

A. Illustrative Example

The purpose of the illustrative example is to simulate and
obfuscate periodic components of the load profile in power
flow and voltage measurements. Assume that the customer at
node 7 has an atypical load pattern representing its produc-
tion technology. Her pattern is obtained by multiplying the
maximum load by k(t), a multiplier with the following three
periodic components:

k(t) =max
{

sin 5
102 t,

7
10

}
+ 5

102 sin 5
102 t+ 25

103 sin 75
102 t

where t is the time step. The parameters of multiplier k(t)
are selected such that the load components have different
magnitudes and frequencies. The non-private OPF solution
provided by the D-OPF model leaks the information about this
pattern through the power flow fp7 and voltage v7 readings, as
displayed on the left plots in Fig. 3. To obfuscate the load
pattern in the OPF solution, the customer submits the privacy
preference β7, which is accommodated by the DSO using
mechanism M̃. Figure 3 shows that by setting β7 → 0.07
MW, the presence of the smallest periodic component is
obfuscated through randomization, while the presence of the
two remaining components is still distinguished. With an
increasing β7, the mechanism further obfuscates the medium
and largest periodic components.

B. Privacy Guarantees

To illustrate the privacy guarantees of Theorem 2, consider
the same grid customer at node 7 with the load of 2.35 MW. For
β7, consider two adjacent load datasets D′ and D′′, containing
d′p7 = dp7−β7 and d′′p7 = dp7+β7, respectively. The non-private
OPF mechanism returns the following power flows

M(D′) = 2.05MW, M(D) =2.35MW, M(D′′) = 2.65MW,

for β7 = 0.3 MW, clearly distinguishing the differences
in datasets through power flow readings. The differentially

private mechanism M̃ in Algorithm 1, in turn, obfuscates
the load value used in the computation. Figure 4 shows
that the mechanism makes the OPF solutions on the three
datasets similar in the probabilistic sense, thus providing pri-
vacy guarantees for the original load dataset D. The maximal
difference between the distributions of power flow solutions
is bounded by the parameters ε and δ. Observe that the larger
specification δ = 0.75 results in weaker guarantees, as the
distributions slightly stand out from one another. On the other
hand, δ = 0.07 yields a larger noise magnitude overlapping
the support of the three distributions. The OPF solution to be
implemented is obtained from a single sample drawn from the
blue distribution. By observing a single sample, an adversary
cannot distinguish the distribution, and thus the dataset, it
was sampled from. Finally, Fig. 4 shows randomized OPF
solutions obtained on a given load dataset. The parameters
of the noise, however, are independent from load dataset (see
Theorem 2), and the privacy guarantee for the customer at
node 7 is independent from the loads and their variations at
other grid nodes.

C. OPF Variance Control

Consider the application of the mechanism when all grid
customers have their adjacency coefficients set to 10% of
their loads. The non-private D-OPF and private OPF solutions,
obtained with the variance-agnostic CC-OPF and variance-
aware ToV- and TaV-CC-OPF models, are summarized in
Table I: Each row i presents the power flow and voltage
solutions related to customer i, and the bottom rows report
the expected operational cost, optimality loss E[Θ] in %, sum
of power flow standard deviations, percentage η̂ of infeasible
instances on 5000 noise samples, and CPU times.

The table shows that, unlike non-private, deterministic D-
OPF model, the DP mechanisms return OPF variables as
probability densities with given means and standard deviations.
For all three DP mechanisms, the flow standard deviations
are at least as much as those required by Theorem 2, thus
providing differential privacy. However, due to the noise
applied to each network flow, the flow standard deviations
provided by the CC-OPF model exceed the intended quantities,
e.g., by 458% for the first customer close to the substation.
To minimize the OPF variance, the ToV-CC-OPF and TaV-CC-
OPF models are used with the uniform variance penalty factor
ψ` = 105,∀` ∈ L. The ToV-CC-OPF model also perturbs each
flow in the network but it alters the optimal DER dispatch
to reduce the sum of flow standard deviations by 50%. The
TaV-CC-OPF model, in turn, introduces a limited number of
perturbations to lines {1, 5− 7, 9, 11− 13} and constrains the
DERs to maintain the intended standard deviation σ across the
entire network, reducing the flow standard deviation by 63%.
As ToV-CC-OPF and TaV-CC-OPF prioritize the flow variance
over expected cost, the models provide larger optimality loss
than the CC-OPF model.

The OPF solution to be implemented by the DSO is a
sample drawn from the probability densities reported in Table
I. The empirical probability of the joint constraint violation
η̂ demonstrates an appropriate out-of-sample performance.
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Fig. 4. Power flow and voltage magnitude at node 7 as functions of adjacency coefficient �7. The flow and voltage solutions are given by their mean value
(blue) and the range of ±3 standard deviations (light blue). The OPF solution implemented by the DSO is given by sample trajectories (red).
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Fig. 5. The overlay of power flow probability densities obtained on the three
�7�adjacent load datasets for � = 0.75 and � = 0.07.

C. OPF Variance Control

Consider the application of the mechanism when all grid
customers have their adjacency coefficients set to 10% of
their loads. The non-private D-OPF and private OPF solutions,
obtained with the variance-agnostic CC-OPF and variance-
aware ToV- and TaV-CC-OPF models, are summarized in
Table I: Each row i presents the power flow and voltage
solutions related to customer i, and the bottom rows report
the expected operational cost, optimality loss E[⇥] in %, sum
of power flow standard deviations, percentage ⌘̂ of infeasible
instances on 5000 noise samples, and CPU times.

The table shows that, unlike non-private, deterministic D-
OPF model, the DP mechanisms return OPF variables as
probability densities with given means and standard deviations.
For all three DP mechanisms, the flow standard deviations
are at least as much as those required by Theorem 2, thus
providing differential privacy. However, due to the noise
applied to each network flow, the flow standard deviations
provided by the CC-OPF model exceed the intended quantities,
e.g., by 458% for the first customer close to the substation.
To minimize the OPF variance, the ToV-CC-OPF and TaV-CC-
OPF models are used with the uniform variance penalty factor
 ` = 105, 8` 2 L. The ToV-CC-OPF model also perturbs each
flow in the network but it alters the optimal DER dispatch
to reduce the sum of flow standard deviations by 50%. The
TaV-CC-OPF model, in turn, introduces a limited number of
perturbations to lines {1, 5� 7, 9, 11� 13} and constrains the
DERs to maintain the intended standard deviation � across the

entire network, reducing the flow standard deviation by 63%.
As ToV-CC-OPF and TaV-CC-OPF prioritize the flow variance
over expected cost, the models provide larger optimality loss
than the CC-OPF model.

The OPF solution to be implemented by the DSO is a
sample drawn from the probability densities reported in Table
I. The empirical probability of the joint constraint violation
⌘̂ demonstrates an appropriate out-of-sample performance.
However, if the DP mechanism returns an infeasible sample,
the DSO may re-sample the OPF solution at the expense of a
marginal relaxation of privacy guarantees. Finally, the privacy-
preserving mechanisms keep the CPU time acceptable.

D. Optimality Loss Control

The DSO is capable to trade off between the expected and
the worst-case optimality loss by substituting the CC-OPF
model in mechanism M̃ by the CVaR-CC-OPF model in (8).
Consider the same setting as in the previous section. For a
trade-off parameter ✓ 2 [0, 1], the expected optimality loss in
% = 10% of the worst-case scenarios is contrasted with the
expected loss in Table II. For ✓ = 0, the CVaR10% signif-
icantly exceeds the expected value. However, by increasing
✓, the DSO alters the DER dispatch to reduce the worst-case
optimality loss at the expense of increasing the expected value.
For ✓ > 0.7, the expected value corresponds to CVaR10%, thus
providing differential privacy at a fixed cost. Eventually, the
choice of ✓ is driven by the DSO’s risk preference.

VII. CONCLUSIONS

This paper introduced a differentially private OPF mech-
anism for distribution grids, which provides formal pri-
vacy guarantees for grid customer loads. The mechanism
parametrizes OPF variables as affine functions of a carefully
calibrated noise to weaken the correlations between grid loads
and OPF variables, thus preventing the recovery of customer
loads from the voltage and power flow measurements. Fur-
thermore, the mechanism was extended to enable the DSO
to control the OPF variance induced by the noise in the
computations, providing better practices for systems with

Fig. 3. Power flow and voltage magnitude at node 7 as functions of adjacency coefficient β7. The flow and voltage solutions are given by their mean value
(blue) and the range of ±3 standard deviations (light blue). The OPF solution implemented by the DSO is given by sample trajectories (red).

TABLE I
SOLUTION SUMMARY FOR THE NON-PRIVATE AND DIFFERENTIALLY PRIVATE OPF MECHANISMS.

i dpi σi

D-OPF, Eq. (1) CC-OPF, Eq. (5) ToV-CC-OPF, Eq. (6) TaV-CC-OPF, Eq. (7)

fpi vi
fpi vi fpi vi fpi vi

mean std mean std mean std mean std mean std mean std
0 0 – – 1.00 – – 1.00 – – – 1.00 – – – 1.00 –
1 2.01 0.48 8.5 1.00 11.3 2.68 1.00 0.0016 12.6 0.69 1.00 0.0004 13.0 0.48 1.00 0.0003
2 2.01 0.48 6.5 1.00 9.3 2.68 0.99 0.0057 11.4 0.71 0.99 0.0015 11.0 0.48 0.99 0.0010
3 2.01 0.48 4.4 1.00 7.3 2.68 0.99 0.0123 10.2 0.78 0.97 0.0033 9.0 0.48 0.98 0.0022
4 1.73 0.41 -8.0 1.00 -1.4 1.72 0.99 0.0128 3.6 0.69 0.97 0.0034 1.7 0.41 0.98 0.0023
5 2.91 0.70 5.1 1.00 3.1 0.87 0.99 0.0128 2.5 0.82 0.97 0.0035 1.9 0.70 0.98 0.0024
6 2.19 0.52 2.2 1.00 0.1 0.87 0.99 0.0128 0.7 0.63 0.97 0.0038 1.0 0.52 0.98 0.0024
7 2.35 0.56 2.3 0.99 0.9 0.63 0.98 0.0134 0.9 0.61 0.97 0.0039 1.0 0.56 0.98 0.0024
8 2.35 0.56 10.5 0.99 6.7 1.18 0.98 0.0130 5.8 0.78 0.97 0.0036 6.4 0.56 0.98 0.0023
9 2.29 0.55 5.8 0.99 3.5 0.88 0.98 0.0132 3.1 0.70 0.97 0.0037 3.6 0.55 0.98 0.0023

10 2.17 0.52 3.5 0.99 1.2 0.88 0.98 0.0135 1.6 0.65 0.97 0.0038 1.3 0.52 0.97 0.0023
11 1.32 0.32 1.3 0.99 0.4 0.39 0.98 0.0135 0.4 0.40 0.97 0.0038 0.6 0.32 0.97 0.0023
12 2.01 0.48 6.5 1.00 3.6 1.23 1.00 0.0008 3.3 0.73 1.00 0.0004 3.6 0.48 1.00 0.0003
13 2.24 0.54 4.5 0.99 1.6 1.23 1.00 0.0034 2.1 0.72 1.00 0.0019 3.2 0.54 0.99 0.0012
14 2.24 0.54 2.2 0.99 -0.6 1.23 1.00 0.0050 0.8 0.64 0.99 0.0027 1.0 0.54 0.99 0.0018

cost (E[Θ]) $396.0 (0%) $428.0 (8.1%) $463.5 (17.1%) $459.3 (16.0%)∑
i std[fpi ] 0 MW 19.1 MW 9.5 MW 7.1 MW

infeas. η̂ 0% 3.3% 6.9% 5.5%
CPU time 0.016s 0.037s 0.043s 0.052s
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Fig. 4. Power flow and voltage magnitude at node 7 as functions of adjacency coefficient �7. The flow and voltage solutions are given by their mean value
(blue) and the range of ±3 standard deviations (light blue). The OPF solution implemented by the DSO is given by sample trajectories (red).
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Fig. 5. The overlay of power flow probability densities obtained on the three
�7�adjacent load datasets for � = 0.75 and � = 0.07.

C. OPF Variance Control

Consider the application of the mechanism when all grid
customers have their adjacency coefficients set to 10% of
their loads. The non-private D-OPF and private OPF solutions,
obtained with the variance-agnostic CC-OPF and variance-
aware ToV- and TaV-CC-OPF models, are summarized in
Table I: Each row i presents the power flow and voltage
solutions related to customer i, and the bottom rows report
the expected operational cost, optimality loss E[⇥] in %, sum
of power flow standard deviations, percentage ⌘̂ of infeasible
instances on 5000 noise samples, and CPU times.

The table shows that, unlike non-private, deterministic D-
OPF model, the DP mechanisms return OPF variables as
probability densities with given means and standard deviations.
For all three DP mechanisms, the flow standard deviations
are at least as much as those required by Theorem 2, thus
providing differential privacy. However, due to the noise
applied to each network flow, the flow standard deviations
provided by the CC-OPF model exceed the intended quantities,
e.g., by 458% for the first customer close to the substation.
To minimize the OPF variance, the ToV-CC-OPF and TaV-CC-
OPF models are used with the uniform variance penalty factor
 ` = 105, 8` 2 L. The ToV-CC-OPF model also perturbs each
flow in the network but it alters the optimal DER dispatch
to reduce the sum of flow standard deviations by 50%. The
TaV-CC-OPF model, in turn, introduces a limited number of
perturbations to lines {1, 5� 7, 9, 11� 13} and constrains the
DERs to maintain the intended standard deviation � across the

entire network, reducing the flow standard deviation by 63%.
As ToV-CC-OPF and TaV-CC-OPF prioritize the flow variance
over expected cost, the models provide larger optimality loss
than the CC-OPF model.

The OPF solution to be implemented by the DSO is a
sample drawn from the probability densities reported in Table
I. The empirical probability of the joint constraint violation
⌘̂ demonstrates an appropriate out-of-sample performance.
However, if the DP mechanism returns an infeasible sample,
the DSO may re-sample the OPF solution at the expense of a
marginal relaxation of privacy guarantees. Finally, the privacy-
preserving mechanisms keep the CPU time acceptable.

D. Optimality Loss Control

The DSO is capable to trade off between the expected and
the worst-case optimality loss by substituting the CC-OPF
model in mechanism M̃ by the CVaR-CC-OPF model in (8).
Consider the same setting as in the previous section. For a
trade-off parameter ✓ 2 [0, 1], the expected optimality loss in
% = 10% of the worst-case scenarios is contrasted with the
expected loss in Table II. For ✓ = 0, the CVaR10% signif-
icantly exceeds the expected value. However, by increasing
✓, the DSO alters the DER dispatch to reduce the worst-case
optimality loss at the expense of increasing the expected value.
For ✓ > 0.7, the expected value corresponds to CVaR10%, thus
providing differential privacy at a fixed cost. Eventually, the
choice of ✓ is driven by the DSO’s risk preference.

VII. CONCLUSIONS

This paper introduced a differentially private OPF mech-
anism for distribution grids, which provides formal pri-
vacy guarantees for grid customer loads. The mechanism
parametrizes OPF variables as affine functions of a carefully
calibrated noise to weaken the correlations between grid loads
and OPF variables, thus preventing the recovery of customer
loads from the voltage and power flow measurements. Fur-
thermore, the mechanism was extended to enable the DSO
to control the OPF variance induced by the noise in the
computations, providing better practices for systems with

Fig. 4. The overlay of power flow probability densities obtained on the three
β7−adjacent load datasets for δ = 0.75 and δ = 0.07 (5000 samples).

However, if the DP mechanism returns an infeasible sample,
the DSO may re-sample the OPF solution, yet it comes at
the expense of the relaxation of privacy guarantees: every re-
sampling round increases the privacy loss linearly, by ε, as per
composition of DP [24, Theorem 3.14]. Finally, the privacy-
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C. OPF Variance Control

Consider the application of the mechanism when all grid
customers have their adjacency coefficients set to 10% of
their loads. The non-private D-OPF and private OPF solutions,
obtained with the variance-agnostic CC-OPF and variance-
aware ToV- and TaV-CC-OPF models, are summarized in
Table I: Each row i presents the power flow and voltage
solutions related to customer i, and the bottom rows report
the expected operational cost, optimality loss E[⇥] in %, sum
of power flow standard deviations, percentage ⌘̂ of infeasible
instances on 5000 noise samples, and CPU times.

The table shows that, unlike non-private, deterministic D-
OPF model, the DP mechanisms return OPF variables as
probability densities with given means and standard deviations.
For all three DP mechanisms, the flow standard deviations
are at least as much as those required by Theorem 2, thus
providing differential privacy. However, due to the noise
applied to each network flow, the flow standard deviations
provided by the CC-OPF model exceed the intended quantities,
e.g., by 458% for the first customer close to the substation.
To minimize the OPF variance, the ToV-CC-OPF and TaV-CC-
OPF models are used with the uniform variance penalty factor
 ` = 105, 8` 2 L. The ToV-CC-OPF model also perturbs each
flow in the network but it alters the optimal DER dispatch
to reduce the sum of flow standard deviations by 50%. The
TaV-CC-OPF model, in turn, introduces a limited number of
perturbations to lines {1, 5� 7, 9, 11� 13} and constrains the
DERs to maintain the intended standard deviation � across the

entire network, reducing the flow standard deviation by 63%.
As ToV-CC-OPF and TaV-CC-OPF prioritize the flow variance
over expected cost, the models provide larger optimality loss
than the CC-OPF model.

The OPF solution to be implemented by the DSO is a
sample drawn from the probability densities reported in Table
I. The empirical probability of the joint constraint violation
⌘̂ demonstrates an appropriate out-of-sample performance.
However, if the DP mechanism returns an infeasible sample,
the DSO may re-sample the OPF solution at the expense of a
marginal relaxation of privacy guarantees. Finally, the privacy-
preserving mechanisms keep the CPU time acceptable.

D. Optimality Loss Control

The DSO is capable to trade off between the expected and
the worst-case optimality loss by substituting the CC-OPF
model in mechanism M̃ by the CVaR-CC-OPF model in (8).
Consider the same setting as in the previous section. For a
trade-off parameter ✓ 2 [0, 1], the expected optimality loss in
% = 10% of the worst-case scenarios is contrasted with the
expected loss in Table II. For ✓ = 0, the CVaR10% signif-
icantly exceeds the expected value. However, by increasing
✓, the DSO alters the DER dispatch to reduce the worst-case
optimality loss at the expense of increasing the expected value.
For ✓ > 0.7, the expected value corresponds to CVaR10%, thus
providing differential privacy at a fixed cost. Eventually, the
choice of ✓ is driven by the DSO’s risk preference.

VII. CONCLUSIONS

This paper introduced a differentially private OPF mech-
anism for distribution grids, which provides formal pri-
vacy guarantees for grid customer loads. The mechanism
parametrizes OPF variables as affine functions of a carefully
calibrated noise to weaken the correlations between grid loads
and OPF variables, thus preventing the recovery of customer
loads from the voltage and power flow measurements. Fur-
thermore, the mechanism was extended to enable the DSO
to control the OPF variance induced by the noise in the
computations, providing better practices for systems with

Fig. 3. Power flow and voltage magnitude at node 7 as functions of adjacency coefficient �7. The flow and voltage solutions are given by their mean value
(blue) and the range of ±3 standard deviations (light blue). The OPF solution implemented by the DSO is given by sample trajectories (red).

TABLE I
SOLUTION SUMMARY FOR THE NON-PRIVATE AND DIFFERENTIALLY PRIVATE OPF MECHANISMS.

i dpi �i

D-OPF, Eq. (1) CC-OPF, Eq. (5) ToV-CC-OPF, Eq. (6) TaV-CC-OPF, Eq. (7)

fp
i vi

fp
i vi fp

i vi fp
i vi

mean std mean std mean std mean std mean std mean std
0 0 – – 1.00 – – 1.00 – – – 1.00 – – – 1.00 –
1 2.01 0.48 8.5 1.00 11.3 2.68 1.00 0.0016 12.6 0.69 1.00 0.0004 13.0 0.48 1.00 0.0003
2 2.01 0.48 6.5 1.00 9.3 2.68 0.99 0.0057 11.4 0.71 0.99 0.0015 11.0 0.48 0.99 0.0010
3 2.01 0.48 4.4 1.00 7.3 2.68 0.99 0.0123 10.2 0.78 0.97 0.0033 9.0 0.48 0.98 0.0022
4 1.73 0.41 -8.0 1.00 -1.4 1.72 0.99 0.0128 3.6 0.69 0.97 0.0034 1.7 0.41 0.98 0.0023
5 2.91 0.70 5.1 1.00 3.1 0.87 0.99 0.0128 2.5 0.82 0.97 0.0035 1.9 0.70 0.98 0.0024
6 2.19 0.52 2.2 1.00 0.1 0.87 0.99 0.0128 0.7 0.63 0.97 0.0038 1.0 0.52 0.98 0.0024
7 2.35 0.56 2.3 0.99 0.9 0.63 0.98 0.0134 0.9 0.61 0.97 0.0039 1.0 0.56 0.98 0.0024
8 2.35 0.56 10.5 0.99 6.7 1.18 0.98 0.0130 5.8 0.78 0.97 0.0036 6.4 0.56 0.98 0.0023
9 2.29 0.55 5.8 0.99 3.5 0.88 0.98 0.0132 3.1 0.70 0.97 0.0037 3.6 0.55 0.98 0.0023

10 2.17 0.52 3.5 0.99 1.2 0.88 0.98 0.0135 1.6 0.65 0.97 0.0038 1.3 0.52 0.97 0.0023
11 1.32 0.32 1.3 0.99 0.4 0.39 0.98 0.0135 0.4 0.40 0.97 0.0038 0.6 0.32 0.97 0.0023
12 2.01 0.48 6.5 1.00 3.6 1.23 1.00 0.0008 3.3 0.73 1.00 0.0004 3.6 0.48 1.00 0.0003
13 2.24 0.54 4.5 0.99 1.6 1.23 1.00 0.0034 2.1 0.72 1.00 0.0019 3.2 0.54 0.99 0.0012
14 2.24 0.54 2.2 0.99 -0.6 1.23 1.00 0.0050 0.8 0.64 0.99 0.0027 1.0 0.54 0.99 0.0018

cost (E[⇥]) $396.0 (0%) $428.0 (8.1%) $463.5 (17.1%) $459.3 (16.0%)P
i Std[fp

i ] 0 MW 19.1 MW 9.5 MW 7.1 MW
infeas. ⌘̂ 0% 3.3% 6.9% 5.5%
CPU time 0.016s 0.037s 0.043s 0.052s
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Fig. 4. Power flow and voltage magnitude at node 7 as functions of adjacency coefficient �7. The flow and voltage solutions are given by their mean value
(blue) and the range of ±3 standard deviations (light blue). The OPF solution implemented by the DSO is given by sample trajectories (red).
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Fig. 5. The overlay of power flow probability densities obtained on the three
�7�adjacent load datasets for � = 0.75 and � = 0.07.

C. OPF Variance Control

Consider the application of the mechanism when all grid
customers have their adjacency coefficients set to 10% of
their loads. The non-private D-OPF and private OPF solutions,
obtained with the variance-agnostic CC-OPF and variance-
aware ToV- and TaV-CC-OPF models, are summarized in
Table I: Each row i presents the power flow and voltage
solutions related to customer i, and the bottom rows report
the expected operational cost, optimality loss E[⇥] in %, sum
of power flow standard deviations, percentage ⌘̂ of infeasible
instances on 5000 noise samples, and CPU times.

The table shows that, unlike non-private, deterministic D-
OPF model, the DP mechanisms return OPF variables as
probability densities with given means and standard deviations.
For all three DP mechanisms, the flow standard deviations
are at least as much as those required by Theorem 2, thus
providing differential privacy. However, due to the noise
applied to each network flow, the flow standard deviations
provided by the CC-OPF model exceed the intended quantities,
e.g., by 458% for the first customer close to the substation.
To minimize the OPF variance, the ToV-CC-OPF and TaV-CC-
OPF models are used with the uniform variance penalty factor
 ` = 105, 8` 2 L. The ToV-CC-OPF model also perturbs each
flow in the network but it alters the optimal DER dispatch
to reduce the sum of flow standard deviations by 50%. The
TaV-CC-OPF model, in turn, introduces a limited number of
perturbations to lines {1, 5� 7, 9, 11� 13} and constrains the
DERs to maintain the intended standard deviation � across the

entire network, reducing the flow standard deviation by 63%.
As ToV-CC-OPF and TaV-CC-OPF prioritize the flow variance
over expected cost, the models provide larger optimality loss
than the CC-OPF model.

The OPF solution to be implemented by the DSO is a
sample drawn from the probability densities reported in Table
I. The empirical probability of the joint constraint violation
⌘̂ demonstrates an appropriate out-of-sample performance.
However, if the DP mechanism returns an infeasible sample,
the DSO may re-sample the OPF solution at the expense of a
marginal relaxation of privacy guarantees. Finally, the privacy-
preserving mechanisms keep the CPU time acceptable.

D. Optimality Loss Control

The DSO is capable to trade off between the expected and
the worst-case optimality loss by substituting the CC-OPF
model in mechanism M̃ by the CVaR-CC-OPF model in (8).
Consider the same setting as in the previous section. For a
trade-off parameter ✓ 2 [0, 1], the expected optimality loss in
% = 10% of the worst-case scenarios is contrasted with the
expected loss in Table II. For ✓ = 0, the CVaR10% signif-
icantly exceeds the expected value. However, by increasing
✓, the DSO alters the DER dispatch to reduce the worst-case
optimality loss at the expense of increasing the expected value.
For ✓ > 0.7, the expected value corresponds to CVaR10%, thus
providing differential privacy at a fixed cost. Eventually, the
choice of ✓ is driven by the DSO’s risk preference.

VII. CONCLUSIONS

This paper introduced a differentially private OPF mech-
anism for distribution grids, which provides formal pri-
vacy guarantees for grid customer loads. The mechanism
parametrizes OPF variables as affine functions of a carefully
calibrated noise to weaken the correlations between grid loads
and OPF variables, thus preventing the recovery of customer
loads from the voltage and power flow measurements. Fur-
thermore, the mechanism was extended to enable the DSO
to control the OPF variance induced by the noise in the
computations, providing better practices for systems with

Fig. 4. The overlay of power flow probability densities obtained on the three
�7�adjacent load datasets for � = 0.75 and � = 0.07 (5000 samples).

of the worst-case outcomes is shown very small on out-
of-sample, the expected value over 10% of the worst-case
outcomes is at relatively large 20.7%. The DSO. however,
is capable to trade off between the expected and the worst-
case optimality loss by substituting the CC-OPF model in

0 5 10 15 20 25 30

optimality loss, ⇥[%]

Fig. 5. CVaR-CC-OPF: Empirical out-of-sample density of the optimality
loss for a trade-off parameter ✓ = 0 (5000 samples)

mechanism M̃ by the CVaR-CC-OPF model in (9). For a
trade-off parameter ✓ 2 [0, 1], the expected optimality loss in
% = 10% of the worst-case scenarios is contrasted with the
expected loss in Table II. For ✓ = 0, the CVaR10% signif-
icantly exceeds the expected value. However, by increasing
✓, the DSO alters the DER dispatch to reduce the worst-case

Fig. 5. CVaR-CC-OPF: Empirical out-of-sample density of the optimality
loss for a trade-off parameter θ = 0 (5000 samples)

preserving mechanisms keep the CPU time within the same
time-frame as the standard, non-private D-OPF mechanism.

D. Optimality Loss Control

The application of mechanism M̃ yields an optimality loss
with respect to the solution of the standard, non-private OPF
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TABLE II
TRADE-OFFS OF THE EXPECTED AND CVAR10% PERFORMANCE

θ
exp. value CVaR10%

∑
i std[fpi ], MWcost, $ Θ,% cost, $ Θ,%

0.0 428.0 8.1 478.1 20.7 19.1
0.1 428.0 8.1 476.3 20.3 19.4
0.2 428.3 8.2 475.0 19.9 19.6
0.3 428.9 8.3 473.3 19.5 19.8
0.4 431.9 9.1 467.8 18.1 17.3
0.5 434.5 9.7 464.4 17.3 15.7
0.6 438.2 10.7 461.7 16.6 14.6
0.7 452.9 14.4 452.9 14.4 13.0

mechanism. For the same setting as in the previous experiment,
the out-of-sample empirical distribution of the cost is depicted
in Fig. VI-D. Observe that the probability mass is centered
at 8.1% of optimality loss and that the distribution is biased
towards smaller optimality losses. Although the probability
of the worst-case outcomes is shown very small on out-
of-sample, the expected value over 10% of the worst-case
outcomes is at relatively large 20.7%. The DSO, however,
is capable to trade off between the expected and the worst-
case optimality loss by substituting the CC-OPF model in
mechanism M̃ by the CVaR-CC-OPF model in (9). For a
trade-off parameter θ ∈ [0, 1], the expected optimality loss in
% = 10% of the worst-case scenarios is contrasted with the
expected loss in Table II. For θ = 0, the CVaR10% signif-
icantly exceeds the expected value. However, by increasing
θ, the DSO alters the DER dispatch to reduce the worst-case
optimality loss at the expense of increasing the expected value.
For θ > 0.7, the expected value corresponds to CVaR10%, thus
providing differential privacy at a fixed cost. Eventually, the
choice of θ is driven by the DSO’s risk preference. Finally,
the optimality loss can be further reduced by relaxing the
feasibility guarantee with larger probabilities η, though it may
result in an increasing out-of-sample violation probability η̂.

E. Comparison with the Output Perturbation Mechanism

It remains to compare the proposed privacy-preserving OPF
mechanism with the standard, non-adapted to the specifics of
OPF problems, output perturbation (OP) mechanism [24]. The
functioning of this mechanism is depicted in Algorithm 2: it
solves the deterministic OPF problem, perturbs the optimal
power flow solution with the random noise, and then finds
the feasible DER and substation dispatch that satisfies AC-
OPF equations for the perturbed values of power flows. If
exists, the mechanism returns an (ε, δ)−differentially private
OPF solution on β−adjacent datasets, or reports infeasibility
otherwise. Observe, unlike the proposed mechanism in Al-
gorithm 1, the output perturbation mechanism does not offer
feasibility guarantees, because the perturbation step is done
independently from the OPF computations.

To compare the two mechanisms, consider the provision
of differential privacy for sets of nodes 1 : n, i.e., from 1
to n, for which βi → 10%. By increasing n, the amount
of noise that the DSO needs to accommodate in the grid
increases. Table III summarizes the feasibility statistics for

Algorithm 2: Output Perturbation (OP) Mechanism

1 Input: D, ε, δ, β
2 Solve {

?

fp` }∀`∈L ← argmin problem (1) using D
3 Sample ξ̂` ∼ N (0, β`

√
2ln(1.25/δ)/ε),∀` ∈ L

4 Perturb power flows f̂p` =
?

fp` +ξ̂`,∀` ∈ L

5 Re-solve problem (1) for the fixed fp` = f̂p` ,∀` ∈ L

6 if problem (1) feasible then
7 Implement perturbed solution
8 else
9 Report infeasibility

10 end

TABLE III
PERCENTAGE OF INFEASIBLE OPF INSTANCES (5000 SAMPLES) [%]

Mechanism Node set 1 : n (with non-zero adjacency βi)
1 1:2 1:3 1:4 1:5 ... 1:14

OP 52.1 87.0 97.9 99.7 100 ... 100
CC-OPF 0.1 0.9 0.9 1.0 1.1 ... 3.3

the two algorithms. Observe, even for a single customer, the
output perturbation mechanism produces infeasible solutions
in 52.1% of instances, and its performance further reduces
in n. By optimizing affine functions in (3), the proposed
mechanism, instead, produces feasible OPF instances with a
high probability, e.g. 96.7% for the entire set of customers.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduced a differentially private OPF mech-
anism for distribution grids, which provides formal pri-
vacy guarantees for grid customer loads. The mechanism
parametrizes OPF variables as affine functions of a carefully
calibrated noise to weaken the correlations between grid loads
and OPF variables, thus preventing the recovery of customer
loads from the voltage and power flow measurements. Fur-
thermore, the mechanism was extended to enable the DSO
to control the OPF variance induced by the noise in the
computations, providing better practices for systems with
more emphasis on component overloads than on operational
costs. Finally, the optimality loss induced by the mechanism
translates into privacy costs. To minimize the risk of large
privacy costs, the mechanism was extended to enable the trade-
off between the expected and worst-case performances.

There are several avenues for future work. To understand the
impacts of the privacy preservation on distribution electricity
pricing, one can explore the connection between DP parame-
ters and distribution locational marginal prices following price
decomposition approach from [22] and [29]. Alternatively, the
coalition game theory can be used to find an adequate privacy
cost allocation among customers, similar to game-theoretic
reserve cost allocation in [33]. Finally, the private OPF mecha-
nism has been developed in a technically suitable ecosystem: it
builds upon LinDistFlow OPF equations neglecting the effects
of power losses, adopts a constant DER power factor, and does
not include the control of stochastic DERs. Although these
three factors are well-studied in the context of the chance-
constrained OPF problems under uncertainty, it remains valid,
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if not crucial, for future work to explore their effects on the
limits of the differential privacy provision in distribution grids.

APPENDIX

A. System Response to the Random Perturbation

The affine dependency of power flows on the random
perturbation is obtain by substituting generator response policy
(2a) into OPF equations (1c), that is:

f̃†` (ξ) =d†` − g
†
` (ξ) +

∑
i∈D`

(d†i − g†i (ξ))

=d†` − g
†
` − ρ

†
`ξ +

∑
i∈D`

(d†i − g†i − ρ†i ξ)

=d†` − g
†
` +

∑
i∈D`

(d†i − g†i )− [ρ†`ξ +
∑
i∈D`

ρ†i ξ]

due to (1c)
= f†` −

[
ρ†` +

∑
j∈D`

ρ†j

]
ξ, ∀` ∈ L, (10a)

where f†` is the nominal (average) component and the last
term is the random flow component. The affine dependency of
voltages on the random perturbation is obtain by substituting
(10a) into voltage drop equation (1d), that is:

ũi(ξ) =u0 − 2
∑
`∈Ri

(f̃p` (ξ)r` + f̃q` (ξ)x`)

=u0 − 2
∑
`∈Ri

(fp` r` + fq` x`)

+ 2
∑
`∈Ri

[
r`
(
ρp` +

∑
k∈D`

ρpk
)

+ x`
(
ρq` +

∑
k∈D`

ρqk
)]
ξ

due to (1d)
= ui + 2

∑
`∈Ri

[
r`
(
ρp` +

∑
k∈D`

ρpk
)

+ x`
(
ρq` +

∑
k∈D`

ρqk
)]
ξ,

(10b)

where ui is the nominal (average) component and the last term
is the random voltage component. Together with the response
policy in (2a), equations (10) constitute the model of system
response to the random perturbation, given in equations (3).

B. Proof of Theorem 2

The proof of Theorem 2 relies on Lemmas 1 and 2. The first
lemma shows that the standard deviation of power flow related
to customer i is at least as much as σi. Therefore, by specifying
σi, the DSO attains the desired degree of randomization.

Lemma 1. If OPF mechanism (5) returns optimal solution,
then σ` is the lower bound on std[f̃p` ].

Proof. Consider a single flow perturbation with ξ` ∼ N (0, σ2
` )

and ξj = 0, ∀j ∈ L\`. The standards deviation of active
power flow (3b) in optimum finds as

std
[ ?
fp` −

[ ?
ρp` +

∑
j∈D`

?

ρpj

]
ξ
]

= std
[[ ?
ρp` +

∑
j∈D`

?

ρpj

]
ξ
]

= std
[ ∑
j∈D`

?
αj`ξ`

]
(2b)
= std

[
ξ`

]
= σ`, (11)

where the second to the last equality follows from balancing
conditions (2b). As for any pair (`, j) ∈ L the covariance

matrix returns Σ`,j = 0, σ` is a lower bound on std[f̃p` ] in the
optimum for any additional perturbation in the network.

Remark 1. The result of Lemma 1 holds independently from
the choice of objective function and is solely driven by the
feasibility conditions.

The second lemma shows that βi > ∆β
i , i.e., if σi is pa-

rameterized by βi, then σi is also parameterized by sensitivity
∆β
i .

Lemma 2. Let D and D′ be two adjacent datasets differing
in at most one load dpi by at most βi > 0. Then,

∆β
i = max

`∈L
‖M(D)|fp` −M(D′)|fp` ‖2 6 βi,

where the notation M(·)|fp` denotes the value of the optimal
active power flow on line ` returned by the computationM(·).

Proof. Let
?

fp` be the optimal solution for the active power
flow in line ` obtained on input dataset D = (dp1, . . . , d

p
n).

From OPF equation (1c), it can be written as
?

fp` = dp` −
?

gp` +
∑
i∈D`

(dpi −
?

gpi ),

which expresses the flow as a function of the downstream
loads and the optimal DER dispatch. A change in the active
load dp` translates into a change of power flow as

∂
?

fp`
∂dp`

=
∂dp`
∂dp`︸︷︷︸

1

−∂
?

gp`
∂dp`

+
∑
i∈D`

( ∂dpi
∂dp`︸︷︷︸

0

−∂
?

gpi
∂dp`

)

= 1− ∂
?

gp`
∂dp`
− ∑
i∈D`

∂
?

gpi
∂dp`

, (12)

where the last two terms are always non-negative due to
convexity of model (1). The value of (12) attains maximum
when

?

gpk = gpk 7→
∂
?

gpk
∂dp`

= 0, ∀k ∈ {`} ∪D`. (13)

Therefore, by combining (12) with (13) we obtain the
maximal change of power flows as

∂
?

fp`
∂dp`

= 1.

Since the dataset adjacency relation considers loads dp` that
differ by at most β`, it suffices to multiply the above by β` to
attain the result. It finds similarly that for a βi change of any
load i ∈ N, all network flows change by at most βi.

Proof of Theorem 2. Consider a customer at non-root node i.
Mechanism M̃ induces a perturbation on the active power
flow fpi by a random variable ξi ∼ N (0, σ2

i ). The randomized
active power flow fpi is then given as follows:

f̃pi =
?

fpi −
[ ?
ρpi +

∑
j∈Di

?

ρpj
]
ξ,
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where ? denotes optimal solution for optimization variables.
For privacy parameters (ε, δ), the mechanism specifies

σi > βi
√

2ln(1.25/δ)/ε, ∀i ∈ L.

As per Lemma 1, we know that σi is the lower bound on the
standard deviation of power flow fp` . From Lemma 2 we also
know that the sensitivity ∆β

i of power flow in line i to load
dpi is upper-bounded by βi, so we have

std[f̃pi ] > σi > ∆β
i

√
2ln(1.25/δ)/ε.

Since the randomized power flow follow is now given by
a Normal distribution with the standard deviation std[f̃pi ]
as above, by Theorem 1, mechanism M̃ satisfies (ε, δ)-
differential privacy for each grid customer up to adjacency
parameter β.
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