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Abstract
Generation expansion decision-making problems within electricity markets are commonly
complicated. Their complexity comes from the fact that modern power systems are
complex dynamic systems with hardly foreseen short- and long-term financial and operational
risks. As a result, appropriate decision-making tools are required to generate informed
investment decisions.

This thesis focuses on a multi-stage capacity expansion problem from a strategic
power producer point of view. This problem is formulated as a large-scale stochastic
complementarity model that allows deriving the optimal timing, sizing, and siting of
combined cycle gas turbines and wind power production technologies appropriately
anticipating the market functioning and all inherent uncertainties. This way, the strategic
producer can identify the optimal investment actions (long-term decisions) along with
the offering strategy in the day-ahead and balancing markets (short-term decisions) for
all assets in its generation portfolio including existing and candidate generation units.

The proposed model is finally recast as a stochastic mixed-integer linear programming
problem. The tractability of the resulting model is limited by a significant number of
discrete variables and constraints. In this line, the progressive hedging algorithm is
applied to achieve a tractable solution with acceptable quality and simulation time.
Particularly, two frameworks are developed to decompose the original problem (i) per
long-term scenarios only and (ii) per both long- and short-term scenarios.

The practical interest of the proposed decision-making tool is demonstrated with a set
of numerical experiments. In the first instance, a small-scale power system is considered
to estimate the quality of the solution, the advantage of the multi-scale decomposition,
and the benefit of the computational implementation concerning simulation time. Two
larger case studies are additionally performed to prove the potential scalability of the
tool for real-life applications.
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Nomenclature
Sets and Indexes
∆LL,D Set of lower-level dual decision variables

∆LL,P Set of lower-level primal decision variables

∆UL Set of upper-level decision variables

B Set of demand blocks, indexed by b.

C Set of candidate generation units, indexed by c.

CFlex Subset of C comprising candidate flexible generation units, indexed by c.

CWP Subset of C comprising candidate wind power generation units, indexed by c.

D Set of demand units, indexed by d.

E Set of existing generation units, indexed by c.

EFlex Subset of E comprising existing flexible generation units, indexed by c.

EWP Subset of E comprising existing wind power generation units, indexed by c.

G Set of long-term scenarios, indexed by either γ or γ′.

H Set of representative days, indexed by h.

J Own,Flex Subset of J Own comprising flexible generation units belonging to the strategic
producer, indexed by j.

J Own,WP Subset of J Own comprising wind power generation units belonging to the
strategic producer, indexed by j.

J Own Set of generation units belonging to the strategic producer, indexed by j.

J Sys,Flex Subset of J Sys comprising all flexible generation units in the system, indexed
by j.

J Sys,WP Subset of J Sys comprising all wind power generation units in the system,
indexed by j.

J Sys Set of all generation units in the system, indexed by j.
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K Set of market scenarios, indexed by either k or k′.

N Set of nodes, indexed by either n or m.

O Set of available capacity options of candidate generation units, indexed by o.

R Set of rival generation units, indexed by r.

RFlex Subset of R comprising rival flexible generation units, indexed by r.

RWP Subset of R comprising rival wind power generation units, indexed by r.

T Set of time stages, indexed by either t and τ .

U Uncertainty space

W Set of wind power generation scenarios, indexed by ω.

Θtγ Set of adjacent nodes to node γ of the long-term decision tree at time period t

C Superscript defining candidate generation units.

E Superscript defining existing generation units.

R Superscript defining rival generation units.

Parameters
αC↑
c , αC↓

c Share of installed capacity of candidate unit c capable of providing up- and
down-reserve [%].

αE↑
e , αE↓

e Share of installed capacity of existing unit e capable of providing up- and
down-reserve [%].

χSoS Sequirity of supply factor [-].

ϵ Convergence criterion [MW].

X̂
C(i)
(·) Probabilistic average of investment solutions of the adjacent nodes of decision

tree [MW].

F nm Capacity of transmission line between node n and m [MW].

I t Investment budget for time stage t [$].

P
D
tγdb Demand of block b of demand unit d at time stage t in long-term scenario γ.

R
R↑
r , R

R↓
tγr Up- and down-reserve capacity of rival unit r at time stage t in long-term
scenario γ.

X
C
co Size of capacity option o of candidate unit c [MW].
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πL
γ Probability of long-term scenario γ [-].

πW
ω Probability of wind power generation scenario ω [-].

πMS
k Probability of market scenario k [-].

DRt Discount rate at time stage t [-].

at Amortization rate at time stage t [-].

bD
tkd Utility of demand unit d at time stage t in scenario k [$/MWh]

cVoLL Value of lost load [$/MWh].

cC
tγc Marginal production costs of candidate unit c at time stage t in long-term scenario

γ [$/MWh].

cInv
tγc Capital costs of candidate unit c at time stage t in long-term scenario γ [$/MW].

cE
tγe Marginal production costs of existing unit e at time stage t in long-term scenario

γ [$/MWh].

cR↑
tγkr, c

R↓
tγkr Up- and down-reserve deployment costs of rival unit r at time stage t in
long-term scenario γ in market scenario k [$/MWh].

cR
tγkr Marginal production costs of rival unit r at time stage t in long-term scenario γ

in market scenario k [$/MWh].

g
(i)
(·) Convergence parameter [MW].

KCF
hj Capacity factor of wind power generation unit j in representative day j [-].

KDF
h Demand factor in representative day j [-].

KWS
jω Wind scenario factor of wind power generation unit j in wind power scenario ω

[-].

M Auxiliary large enough value [-].

m
PH(i)
(·) Progressive hedging multiplier at iteration i [$/MW].

N(·) Number of elements in vector (·).

NRD
h Weight of the hth representative day [-].

Snm Susceptance of transmission line between node n and m [S].

XE
e Installed capacity of existing unit e.

XR
r Installed capacity of rival unit e.
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Primal decision variables

β
(·)↓
tγhk(·) Optimal down-reserve price bid of strategic producer’s flexible generation units

at time stage t in long-term scenario γ in representative day h in market scenario
k [$/MW].

β
(·)↑
tγhk(·) Optimal up-reserve price bid of strategic producer’s flexible generation units at

time stage t in long-term scenario γ in representative day h in market scenario k
[$/MW].

β
(·)
tγhk(·) Optimal day-ahead price bid of strategic producer’s generation units at time

stage t in long-term scenario γ in representative day h in market scenario k
[$/MWh].

P
(·)
tγhk(·) Optimal day-ahead energy bid of strategic producer’s generation units at time

stage t in long-term scenario γ in representative day h in market scenario k [MW].

R
(·)↓
tγhk(·) Optimal down-reserve quantity bid of strategic producer’s flexible generation

units at time stage t in long-term scenario γ in representative day h in market
scenario k [MW].

R
(·)↑
tγhk(·) Optimal up-reserve quantity bid of strategic producer’s flexible generation units

at time stage t in long-term scenario γ in representative day h in market scenario
k [MW].

θRT
tγhknω Real-time voltage angle at bus n at time stage t in long-term scenario γ in

representative day h in market scenario k in wind power scenario ω [-].

θDA
tγhkn Day-ahead voltage angle at bus n at time stage t in long-term scenario γ in

representative day h in market scenario k [-].

lshtγhkdω Load shedding of block of demand unit d at time stage t in long-term scenario γ
in representative day h in market scenario k in wind power scenario ω [MWh].

P
(·),sp
tγhk(·)ω Wind spillage of a wind power producer at time stage t in long-term scenario

γ in representative day h in market scenario k in wind power scenario ω [MWh].

P
(·)
tγhk(·) Scheduled quantity of a generation unit at time stage t in long-term scenario γ

in representative day h in market scenario k [MWh].

PD
tγhkd Scheduled quantity of demand unit d at time stage t in long-term scenario γ in

representative day h in market scenario k [MWh].

r
(·)↓
tγhk(·)ω Down-reserve deployment of a flexible unit at time stage t in long-term scenario

γ in representative day h in market scenario k in wind power scenario ω [MWh].
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Dual Variables
λRT
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CHAPTER 1
Introduction

1.1 Context and motivation
Investment planning is one of the most difficult tasks faced by decision-makers in power
systems. In fact, investment decisions are carried out for years ahead, and without a
proper preliminary analysis, they could lead to a plethora of barely predictable and
costly implications. In an attempt to reduce the financial and operational damage
caused by inappropriate investment decisions, research community proposed a broad
set of decision-making models to support optimal planning. Practically, these models
account for an extensive range of objectives, technical and economic aspects as well as
policies to generate optimal power system expansion solutions.

At the moment, the complexity of the investment planning problems is partially
enforced by growing uncertainty of multiple scales. First, a global trend towards emission-free
power supply technologies leads to a drastic shift in generation mix to the variable
and uncontrollable wind and solar generation. In fact, the hardly foreseen weather
becomes one of the most significant drivers of market conjecture engendering increasing
price volatility [1, 2]. Moreover, electricity energy as a commodity is traded in the
closed auctions such that the true valuation of energy is private knowledge of each
market participant. Thus, the informational asymmetry around pricing policies of
the participants additionally contributes to price stochasticity. Second, technological
advances and growing competition among renewable installations suppliers lead to a
perceptible increase in availability of the wind and solar assets. According to [3], the
levelized cost of offshore wind power in Europe dropped by 56% from 2014 to 2016.
Finally, economic cycles prompting downward and upward movements in the industrial
development bring a sufficient degree of electricity demand variability questioning the
timing, siting and sizing aspects of investment planning and even the necessity of any
investment decisions [4].

The structure of the models and modeling assumptions also define the complexity
of the investment planning models. There are two types of models considered in the
investment studies: static and dynamic models [5]. In the former ones, there is a
single year, and all investment decisions are carried out for that target year. Unlike
static, in the dynamic models, investment decisions are endogenously made at several
time-stages throughout the planning horizon, significantly increasing the computational
burden. Moreover, the centralized investment planning proved to be a useful tool to
find an optimal expansion planning to maximize the overall social welfare. However,
to account for individual objectives of market participants, the consideration of the
decentralized planning, i.e. from a strategic power producer point of view, is required.
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Unlike the centralized planning, these models are typically fit the bilevel structure of
optimization problems resulting in more complex formulations. Apart from that, the
models involve a significant number of discrete variables aiming at fulfilling certain
technical and economic conditions as well as the linearization of the non-linear terms in
objective functions and constraints.

As a result, if the uncertainty is represented by a finite set of scenarios, complex
investment planning problems recast as large-scale mixed-integer stochastic programming
problems with high computational complexity and limited tractability making the models
useless. Typically, there are several ways to achieve tractability and reduce computation
burden: (i) introduction of simplifying assumptions to relax certain technical and economic
sides of power system operations; (ii) lessen the number of uncertainty realization
scenarios; (iii) decomposition of an original problem into a set of smaller sub-problems
governed by a common convergence criterion. The first two items might significantly
influence the quality of the solution, while the latter allows achieving an appropriate
trade-off between the quality of the solution and models’ tractability.

1.2 Thesis goal
This project seeks to develop a decision-making tool which supports generation investment
planning, i.e. optimal timing, siting and sizing of available production technologies,
for a strategic power generation company, participating either at the pool-based or
network-constrained electricity market, for years ahead taking into account multiscale
uncertainty sources. The investment horizon comprises several time periods, such that
the producer is capable of updating its investment plan at later time stages.

In order to achieve model’s tractability, the project aims at applying the progressive
hedging algorithm and find out to what extend the original problem could be decomposed
to improve simulation time providing a reasonable quality of the solution.

1.3 Overview of the investment planning problems
Investment planning problems had been broadly studied in the technical literature.
These problems had been solved from different perspectives, i.e. from the various
entities’ and their objectives’ points of view, considering either deterministic or stochastic
formulation, using different optimization techniques and solution approaches, resulting
in varying degrees of complexity.

One of the most common types of problems is so-called centralized investment planning.
The problem is solved from the publicly controlled regulator which aims at finding an
optimal investment portfolio to maximize the overall welfare or minimize operating costs.
In fact, if all agents in the system are price-takers, i.e. enter the market with their
actual marginal costs or utilities and energy quantities, the centralized planning results
in satisfaction of all individual preferences. For example, the regulator carries out a
transmission expansion planning to reinforce the existing network to accommodate new
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generation and demand units as well as prevent network congestion causing operational
issues as well as price differentiation [6, 7]. Solving centralized generation expansion
planning results in the most beneficial production assets allocation, timing and sizing
from the society point of view satisfying preferences of all generation companies in the
system, as illustrated in [8]. It is worth noticing that the separate consideration of
network and production expansion problems result only in sub-optimal solutions because
this separation does not account for the inherent investment dynamics. However, the
coordinated facility planning leads to the synergy effect resulting in more efficient social
welfare maximization. This synergy from the co-planning of investment decisions is
broadly studied in [9] and [10].

The disadvantage of the centralized planning is the fact that it assumes perfect
competition such that all agents in the system follow price-taking policies. Despite
that, there is some evidence that market participants are inclined to deviate from the
price-taking strategies to gain larger profits or reduce charging costs [11, 12, 13, 14].
In this line, it is reasonable to consider market participants as oligopolistic players
with price-making strategies in the framework of the decentralized planning. Unlike
the centralized approach, under this framework the private entity decides on the own
investment plan, and instead of maximizing the social welfare, it maximizes the expectation
of the own profit only. Substantially, in the decentralized problem formulation, the
actual private valuation of electricity energy reveals such that the investment solution
might significantly differ from the centralized one [15, 16]. Moreover, the overall investment
planning of a set of strategic price-makers is generally different from the investment
equilibrium in the perfect market [17, 18, 19].

It is worth noticing that the network expansion is only carried out in the centralized
fashion. In fact, network companies are considered as natural monopolies, and their
operations are strictly regulated. Thus, there is no room for network facilities to
participate strategically. In this line, it was proposed to coordinate the centralized
network and decentralize generation investment plannings [20, 21]. Apparently, this
coordination brings additional benefits in the form of synergy in the market with strategic
producers.

The centralized problem is generally formulated as a single-level problem. For
example, it might be the co-optimization of the system operating costs and investment
costs as given in [22]. Contrary to the centralized approach, the decentralized models
are commonly formulated as two- or multi-level problems [20, 21, 23, 24]. The multi-level
formulation favorably differs from the single-level one at least because it allows accounting
for several objectives. For example, [23] formulates a problem for capacity expansion of
a single strategic producer which makes investment decisions anticipating the reaction
of other generators. The goal of the strategic producer is given by the upper-level
objective function while the objectives of others are provided by KKT conditions of
the market clearing problems in the lower level. In the transmission and generation
co-optimization planning given by [20, 21], the objectives of the system operator are
defined by the top-level objective function, preferences of the strategic producers - by
the middle-level objective function, and the remaining players’ preferences are considered
in the lower-level problem.
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The multi-level problems are generally more complex to solve due to several reasons.
For example, to achieve a tractable single-level equivalent, the lower-level problems
are replaced with their KKT conditions, involving stationarity conditions, primal and
dual feasibility, as well as complementarity slackness conditions. The former ones are
hard equality constraints which significantly reduce the feasibility space. The latter
ones are non-linear conditions, linearization of which implicates discrete variables, for
instance, binary or SOS1 variables. Moreover, multi-level problems usually comprise
non-linear terms in the upper-level objective function. As an example, it could be a
product of the dual and primal variables of the lower-level problems. The linearization
of these non-linear terms might include an additional set of auxiliary discrete variables,
as illustrated in [25].

Investment planning models might be also distinguished as static and dynamic [5].
Although both models could treat the same planning problem, their solutions are usually
different. In the static formulation, the investment decisions have to be performed by
a certain target year. Dynamic models, in contrast, allocates the investment decisions
among a certain number of time stages inside the planning horizon, and thus result
in more flexible and accurate solution. In fact, the solution of the static model is a
special case of the dynamic model. In the static approach, the investment decisions are
carried out at one single node of the planning decision tree, while the dynamic model
allows dispersing the investments among certain time periods. Moreover, the multistage
formulation makes decision-makers able to adjust the decisions from the previous stages
concerning the updated information throughout the investment horizon, as depicted
in Figure 1.1. In general, compared to the static approach, the dynamic investment
planning requires more computational resources due to two primary reasons. First, since
the dynamic problem considers several time stages, it involves more decision variables,
i.e. the same set of investment and operational decisions per each time stage. Second, in
the static models, there is only one non-anticipativity condition associated with a single
period when the decision has to be performed. In the dynamic planning, the amount
of these constraints is larger and defined by a number of the time stages considered in
the problem. Notice, the non-anticipativity constraints are essential in the stochastic
problems, and their hardness is primarily responsible for a limited tractability of these
models.

As long as investment decisions are carried out for years ahead, they are exposed to
many uncertainty sources. In fact, decision-makers face multiscale uncertainty associated
with both long- and short-term operational and financial risks. The long-term uncertainty
commonly includes demand growth, investment costs, fuel prices, rival investments
as well as regulatory changes [27]. Short-term risk is usually associated with hourly
variability of time-dependent resources, i.e. the wind and solar power generation, as
well as demand patterns. Moreover, the privacy around other participants’ strategies, i.e.
their price and quantity policies, also contributes to the market participation uncertainty.
An appropriate treatment of risks results in accurate solutions, whereas ignoring the
stochasticity of relevant indicators results in costly implications. For example, [28]
demonstrated that by neglecting uncertainty and solving the problem with a simple
deterministic planning, the cost of implications is of the same magnitude as the investment
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Fig. 2.1 Static and dynamic TEP models

the probability distribution functions of the uncertain parameters, which is generally
a hard task. Moreover, a large enough number of scenarios must be generated to
represent the uncertainty accurately, which increases the computational complexity
of the problem. On the other hand, RO does not need scenarios to be generated
but robust sets, which are generally simpler to obtain [2]. Additionally, RO models
have a moderate size, which reduces the computational complexity compared with
stochastic programming models. A general disadvantage of RO is that the results are
usually too conservative. However, this is not a disadvantage for the TEP problem,
in which a reliable supply of demands is required.

As previouslymentioned, theTEPproblem is generally considered for a long-term
planning horizon, e.g., 30years. In this sense, there are two expansion strategies. The
first is to make the transmission expansion plans, i.e., to build the new transmission
lines, at a single point in time (usually at the beginning of the planning horizon). The
model that results from this strategy is known as a static or a single-stage model. The
second one is tomake the transmission expansion decisions at different points in time
of the planning horizon. In this case, the model is known as a dynamic or a multistage
model. This dynamic approach usually provides more accurate solutions since it
allows the transmission planner to adapt to future changes in the system. However,
it further increases the complexity of the TEP problem. Figure2.1 illustrates the
differences between these two expansion strategies. For the sake of simplicity, in
this chapter we focus on a static approach. The use of dynamic models for making
expansion decisions is described and analyzed in the following chapters of this book.

The remainder of this chapter is organized as follows. Section2.2 provides a
TEP-problem model considering a deterministic approach, in which transmission
expansion decisions are made considering a future demand forecast. In this case,

Figure 1.1: Static and dynamic transmission expansion models [26].

costs.
There are two common ways to treat stochastic variables in the optimization problems:

stochastic [20, 21, 23, 15] and robust optimization [29, 30]. In the stochastic programming
approach, the uncertainty is described through the finite set of scenarios and objective is
to maximize or minimize the expected value of the objective function. Robust optimization
is an alternative framework to stochastic programming which aims at determining a
solution that is feasible under any realization of the uncertain parameters involved in an
optimization problem, and optimal in their worst-case realization [31]. Unlike stochastic
programming, this approach commonly represents the uncertainty as a polyhedral set,
in which the worse case solution is located on one of the vertexes.

As a result, due to a number of existing uncertainty sources and complex structures
of the investment planning problems, they are difficult to solve. With a large number
of objectives and uncertainty scenarios, these problems might be intractable, i.e. they
cannot provide accurate solution being solved directly. In this line, several decomposition
techniques were proposed to achieve tractability. One of the most widely used decomposition
approaches is Benders decomposition [32], which separates the investment problem
from the operations problems [5]. Instances of benders decomposition applications
might include [33] for a deterministic case and [34] for a stochastic investment planning
problem. According to [35], there is a sufficient number of alternative to benders
heuristic decomposition techniques to solve investment problems. For example, greedy
randomized methods [36], heuristic solutions to the investment master problem in Benders
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decomposition [37], search algorithms based on sensitivity analysis [38], genetic algorithms
[39], and sequential approximation approaches to account for wind and load variability
[40]. Although they potentially could result in good solutions, they do not provide
a metric of solution quality, such as bounds on the objective function of the original
problem.

Scenario decomposition algorithm based on Progressive Hedging (PHA) proposed by
[41] proved to be a useful tool to tackle large-scale investment problems. In [42] PHA was
employed to solve stochastic transmission expansion planning, [43] applied the algorithm
to solve two-stage capacity investment planning. Later on, [44] introduced a solution
framework to obtain a lower bound for the objective function of the original problem.
It was then successfully applied to estimate the expectation of the total system costs
in the static stochastic mixed-integer transmission planning problem [35]. Moreover,
the estimate of the expected total system costs in the multistage investment planning
formulation was obtained in [22].

1.4 Thesis objectives
To meet the project’s goal in the context above, the following objectives have to be
fulfilled:

1. Identify a suitable bilevel structure for the multistage strategic generation investment
planning problem

2. Find out a decent approximation for the future market participation of the company.
That is, to identify a suitable market clearing problem formulation providing a
reasonable trade-off between simulation time and quality of the market approximation

3. Identify potential long-term and short-term operational and economic sources of
uncertainty

4. Build long-term and short-term decision-making sequences for the investment
planning problem

5. Introduce and justify modeling assumptions

6. Reformulate the original bilevel problem to a sing-level linear problem.

7. Provide theoretical background on the progressive hedging algorithm and formulate
the decomposition approach to solve the original problem.

8. Perform a series of case studies to prove the efficiency of the proposed tool.

1.5 Thesis organization
The thesis is organized as follows. Chapter 2 provides a comprehensive description of the
multistage strategic capacity expansion problem and gives a mathematical formulation
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of the problem. Chapter 3 provides some insights into basics of the progressive hedging
algorithm, how it could be applied to the considered problem and what relevant modeling
and computational issues should be addressed. Chapter 4 introduce a series of case
studies. First, the proposed decision-making tool is applied to a small illustrative
example to highlight the modeling accuracy and computation performance of the algorithm.
Second, the model is tested with a two-area version of IEEE 24-Bus RTS for a two-stage
investment planning problem. Third, the model is applied to a pool-based electricity
market to solve wind power investment planning for a three-stage investment horizon.
Finally, Chapter 5 serves to provide the main findings of this work and emphasize the
future research directions.
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CHAPTER 2
Description of the

multi-stage strategic
capacity expansion problem
2.1 Model description and modelling assumptions
2.1.1 General overview
This thesis considers a capacity expansion problem from the perspective of a strategic
power producer. This producer competes with other companies in a network-constrained
electricity market operating on the hourly basis. Considering the producer as a strategic
player implies that it is capable of exerting market power, i.e. offering prices and
quantities along with investment decisions of this producer could influence the market
outcomes. In fact, if the market share of the generation company is sufficiently large, it
has an incentive to offer energy prices and quantities different from the actual marginal
costs and production capacities to gain more substantial profit compared to the one
under a passive price-taking policy.

The producer faces a dynamic expansion problem. In this case, the investment
horizon is divided into a set of time periods indexed by t. At the beginning of each
period, it decides on optimal site and size of available power production technologies
to be built. Since the investment planning is carried out for years ahead, the company
utilizes a series of long-term scenarios, indexed by γ. At the same time, instead of
estimating market outcomes for each hour of the planning horizon, it employs plausible
aggregated representative days, denoted by h, and wind realizations, denoted by ω, based
on the historical data. Apart from that, it assumes a finite set of scenarios on offering
strategies of rival producers as well as bidding strategies of consumers, all indexed by k.

The assumptions on a price-making policy of a strategic producer and price-taking
policies of rival companies suggest considering the capacity expansion problem through
the prism of Stackelberg competition [45]. In this game, the strategic producer is
considered as a leader, and other market participants are assumed to be followers. The
leader decides its strategy prior to the decisions of the followers and maximizes its profit
taking into account their best response. This game is sequential since the leader has
an advantage of the first decision. Solving this game as an optimization problem, the
producer strategically chooses the offering strategy resulting in generally higher profit
than the one in the perfect competition market. Figure 2.1 depicts this sort of completion
in the framework of the bilevel optimization.
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Figure 2.1: Bilevel work flow of the considered problem.

The upper-level problem (UL) aims at maximizing the strategic producer’s expected
profit over the investment horizon, considering the expected revenue (R), operating costs
(OC) and investment costs (IC). The profit is subject to a set of UL decisions collected
in ∆UL along with primal and dual decisions of the set of market clearing problems,
∆LL,P and ∆LL,D respectively. ∆UL consists of investment decisions and strategic offering
decisions. These decisions are considered as variables in the UL problem which enter the
lower-level (LL) problem as constants. The objective of the LL problems is to maximize
the overall social welfare at the day-ahead stage and minimize the expected balancing
costs at the real-time stage. ∆LL,P primary comprises market operator’s decisions on
power system scheduling, while∆LL,D comprises a set of dual variables, where the market
clearing prices are of the main concern. A number of LL problems is defined by the
amount of considered uncertainty and operation conditions scenarios. These decisions
serve as variables in the LL problem and enter the UL problem as constants. The UL
and LL problems are interconnected. In fact, all UL decisions influence the LL decisions
which, in turn, have an impact on the value of the UL objective function.

Using the bilevel framework in Figure 2.1, the strategic producer makes long-term
decisions on the (i) optimal power portfolio to invest at each period of the planning
horizon as well as (ii) short-term decisions on the optimal offering strategy, such that
all these decisions maximize the expected profit over the planning horizon.
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2.1.2 Approximation of the market participation
Strategic producer participates in two trading floors:

– Day-ahead market. This market is commonly used to trade energy in the
short-run. It is organized as a two-sided auction where power producers, large
consumers, and retail companies sell and purchase electricity for each hour of
the following day. Power producers submit their offering prices and quantities,
whereas consumers submit their bidding prices and quantities. Market operator,
who organizes the auction, collects all offers and bids, determines the aggregated
supply and demand curves and clears the market, i.g. defines the equilibrium
quantities and prices throughout the following day.

– Real-time market. This market arises a few minuted before the real-time
operations and aims at pricing the actions associated with balancing of power
production and consumption which might be different from the day-ahead schedule.
It implies that all deviations from the day-ahead quantities are balanced by activation
of operating reserve from the flexible units, or deploying last preferable wind
spillage and load shedding actions. The balancing actions are scheduled according
to the submitted price-quantity pairs as well.

To accurately estimate market outcomes over the planning horizon, a set of lower-level
problems embodying day-ahead and real-time markets clearing is employed. Figure 2.2
depicts three possible options to simulate the clearing. The first approach is to consider
the day-ahead clearing as an optimization problem and real-time market outcomes as
stochastic parameters, described by a finite set of scenarios. This configuration is
relatively simple to implement due to a small dimension of the lower-level problem,
and thus it provides a relatively faster solution. However, the expectation of the profit
is now subject to the accuracy of the real-time price and quantities estimation. An
alternative solution would be to consider both day-ahead and real-time clearing as two
lower-level optimization problems. In this setup, both day-ahead and real-time outcomes
are decision variables. Thus this approximation results in the best accuracy. However,
the day-ahead scheduling is considered as a parameter in the real-time clearing problem,
which prevents obtaining an exact linear equivalent for the considered investment planning
problem. Particularly, the linear equivalent could be achieved, but it would involve
a certain number of integer variables related to the day-ahead scheduled quantities
desensitization. The accuracy of this discretization significantly affects the quality of
solution and simulation time. The third approach relies on the consideration of market
auction as a stochastic-integrated day-ahead clearing, which schedules power plants
anticipating future wind power fluctuations. In this fashion, the problem involves a
single lower-level problem per each uncertainty scenario and operation condition, which
considers both day-ahead and real-time prices as decision variables. Although it only
approximates the actual market design, it allows obtaining the exact linearization of the
upper-level objective function. Thus, the thesis considers this option to approximate the
market clearing over the planning horizon.
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Figure 2.2: Market approximation options.

2.1.3 Uncertainty characterization
Investment planning involves a plethora of risks associated with the uncertainty of
different scales. First, investment decisions are carried out taking into account long-term
uncertainty which relates to the macroeconomics development. It might be, for instance,
barely predictable demand growth, capital costs, fuel costs, generation mix, regulatory
conditions et cetera. At the same time, daily participation in the electricity markets
grasps the short-term uncertainty which influences the profitability of existing and
candidate generation units during each period of the planning horizon. This uncertainty
could comprise the stochasticity of market participants strategies, wind power and
demand uncertainty, congestion and failure of network facilities. Table 2.3 collects the
sources of uncertainty considered in this project.

Table 2.3: Classification of uncertainty sources.

Long-term uncertainties Market uncertainties Wind uncertainties
Demand growth,
investment cost,
fuel prices, rival producers’
investments

Rival producers’ price offers,
demand price bids

WP real-time
deviation

Each source of uncertainty is represented by a finite set of plausible scenarios, such
that the dimension of uncertainty space U is defined as follows:

dimU = Nγ ×Nk ×Nω (2.1)

whereNγ, Nk, Nω are numbers of long-term, market and wind power production scenarios,
respectively.

2.1.4 Decision sequences
As long as the investment planning involves a plethora of uncertainty sources, the
long-term and short-term decisions of the producer are shaped by assumed uncertainty
sets of scenarios. Figure 2.4 depicted the decision sequence for investment decisions
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throughout the planning horizon involving N t time stages. At the beginning of each
stage, the strategic producer makes its investment decisions. These are here-and-now
investment decisions, independent of future long-term scenario realizations. Future
investment decisions are carried out at the following stages, i.e. wait-and-see decisions,
such that they depend on the long-term uncertainty realizations and express the optimal
adjustment of the investment plan in future. A number of these decisions is defined by
a number of uncertainty scenarios involved at this stage.

...

...

... ...

...

...

Planning horizon

...

...

�1

�2

�N�

�(N��1)

XC
t1c� XC

t2c� XC
t(Nt�1)c�

XC
t(Nt)c�
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t � Time stage

c � Technology
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Figure 2.4: Long-term decisions sequence.
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Figure 2.5: Short-term decisions sequence.

Inside each stage of the planning horizon, the producer faces a short-term decision
sequence, depicted in Figure 2.5. First, it decides the optimal offering strategy, i.e. the
day-ahead energy quantities and prices for a portfolio of existing and candidate units
as well as up- and down-reserve quantities and prices for the real-time market. These
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decisions are independent of the market uncertainty, i.e. rivals’ offering and consumers’
bidding prices. At the next stage, the market operator clears the day-ahead market, and
the strategic producer is paid for its scheduled power quantities for each representative
day and market scenario. Finally, the real-time market is cleared by the system operator,
and depending on the wind energy realizations it receives payment for the up- and
down-reserve deployment from the flexible units as well as receives income or penalty
for the deviations caused by the variability of existing and candidate wind power units.

2.1.5 Modelling assumptions
1. Investment planning is carried out in the framework of multi-stage or dynamic

approach

2. The day-ahead market is cleared using a stochastic network-constrained auction
anticipating future wind power fluctuations, where the profits of the wind and
conventional generation units are ensured in the expectation as described in [46].

3. The marginal pricing scheme is adopted [47]. That is, all energy quantities are
priced with locational marginal prices (LMPs). For the day-ahead market, they are
obtained as a dual variable of the day-ahead balance constraint. For the real-time
market, the price is obtained as a probability removed price as described in [48].

4. Instead of clearing the market for each hour, the formulation assumes a set of
typical days that comprehensively describes the operational conditions, i.e. demand
and wind capacity factors, within each time stage of the planning horizon. It might
be shown that a sufficient number of representative days does not influence the
quality of the solution [49].

5. To avoid non-convexity issues, comprehensively studied in [50] and [51], (i) power
plants are assumed to be fully dispatchable from zero to their maximum capacities
and (ii) on-off commitment decisions are not modeled.

6. At the day-ahead stage, the load is assumed to be elastic, while at the real-time
stage it is inelastic with a large value of lost load. Thus, the day-ahead clearing is
represented by the social welfare maximization problem, and the real-time clearing
boils down to the minimization of the balancing costs.

7. For the sake of simplicity, supply, demand and investment cost curves are linear
functions. However, one might consider alternative stepwise functions [52].

8. For each short- and long-term scenario as well as representative day, the uncertainty
affecting the market-clearing process itself is assumed to be solely induced by
stochastic producers.

9. Long-term, market and wind power uncertainties are considered through the finite
independent sets of scenarios satisfying three Kolmogorov axioms [53].
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10. The intertemporal constraints are not included in the problem. However, reserve
limits of generations units are considered to differentiate the flexibility of various
production technologies.

11. A DC representation of the transmission system is used to account for the system
network topology [54].

12. Strategic producer is capable of exercising market power participating in the
day-ahead and real-time markets. With fixed energy quantities, it is capable of
influencing the market outcomes through strategic price offering, a la Bertrand
competition employed in [55]. With fixed prices, it could affect the equilibrium
through strategic quantity offering, a la Cournot competition, as shown in [25].
Finally, it could exercise the market power by strategically deciding on both
offering prices and quantities, as illustrated in [56].

13. Strategic producer is assumed to be risk-neutral, i.e. it maximizes the expectation
of the profit throughout of the planning horizon. However, it is possible to include a
risk-aversion attitude with linear risk measures, such as VaR or CVaR, as described
in [57, 58, 59, 60]

2.2 Mathematical formulation
2.2.1 Bilevel formulation
The following two-level formulation represents the considered investment problem. The
upper-level objective function is aim at maximizing the expected profit of a strategic
producer over the planning horizon and writes as follows:

Maximize
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The expected profit comprises of four sets of terms:
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1. The first term
∑

j∈J Own(λDA
tγhk(n:j∈Jn)

− ctγj) ·Ptγhkj is the profit obtained by selling
electricity energy from existing and candidate units at the day-ahead market. It
consists of a product of the day-ahead LMP subtracting the generation cost and
dispatched power from these units.

2. The second term
∑
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is the profit/cost associated with the surplus/shortage of energy

production caused by the deviation from the contracted day-ahead quantities
from the existing and candidate wind power units. It consists of a product of
the real-time LMP and delivered energy quantity, expressed as the actual power
production reduced by the scheduled day-ahead quantity and wind power spillage.
Notice that the cumulative capacity of the existing units over the planning horizon
is a predefined parameter, while it is a decision variable for the candidate wind
power units.

3. The third term
∑

ω∈W πW
ω ·

(∑
j∈J Own,Flex

[(
λRT
tγhk(n:j∈Jn)ω

πW
ω

−ctγj
)
·r↑tγhkjω−

λRT
tγhk(n:j∈Jn)ω

πW
ω

·

r↓tγhkjω

])
is the real-time profit generated by the existing and candidate flexible

units. It is defined by the revenue obtained from the up- and down-reserve
deployment and generation costs associated with the up-reserve provision.

4. The last term at ·
∑

c∈C c
Inv
tγc

∑
τ∈T
τ≤t

XC
τγc is the costs related to the deterioration of

candidate units, represented by a product of the amortization rate and investment
costs.

The value of the expected profit is subject to the discounting factor, number of long- and
short-term scenarios as well as number of representative days considered. It is worth
noting that at the day-ahead stage the energy quantities are payed with the day-ahead
LMP λDA

tγhk(n:j∈Jn)
, while all actions at the real-time stage are priced with the probability

removed balancing price λRT
tγhk(n:j∈Jn)ω

/πW
ω .

The upper-level problem constraints are represented by the following set of equations:

XC
tγc =

∑
o∈O

uC
tγco ·X

C
co ∀t ∈ T ∀γ ∈ G ∀c ∈ C (2.3a)∑

o∈O

uC
tγco = 1 ∀t ∈ T ∀γ ∈ G ∀c ∈ C (2.3b)

uC
tγco ∈ {0; 1} ∀t ∈ T ∀γ ∈ G ∀c ∈ C ∀o ∈ O (2.3c)
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∑
c∈C

cInv
tγc ·XC

tγc ≤ I t ∀t ∈ T ∀γ ∈ G (2.3d)∑
j∈J Sys

P tγhkj ≥ χSoS ·
∑
d∈D

P
D
tγd ·KDF

h ∀t ∈ T ∀γ ∈ G ∀h ∈ H ∀k ∈ K (2.3e)

βE
tγhke, β

C
tγhkc ≥ 0 ∀t ∈ T ∀γ ∈ G ∀h ∈ H ∀k ∈ K ∀e ∈ E ∀c ∈ C (2.3f)

βE↑
tγhke, β

C↑
tγhkc, β

E↓
tγhke, β

C↓
tγhkc ≥ 0

∀t ∈ T ∀γ ∈ G ∀h ∈ H ∀k ∈ K ∀e ∈ EFlex ∀c ∈ CFlex (2.3g)

0 ≤ P
E
tγhke ≤ XE

e ∀t ∈ T ∀γ ∈ G ∀h ∈ H ∀k ∈ K ∀e ∈ E (2.3h)

0 ≤ P
C
tγhkc ≤

∑
τ∈T
τ≤t

XC
τγc ∀t ∈ T ∀γ ∈ G ∀h ∈ H ∀k ∈ K ∀c ∈ C (2.3i)

0 ≤ R
E↑
tγhke ≤ αE↑

e ·XE
e ∀t ∈ T ∀γ ∈ G ∀h ∈ H ∀k ∈ K ∀e ∈ EFlex (2.3j)

0 ≤ R
C↑
tγhkc ≤ αC↑

c ·
∑
τ∈T
τ≤t

XC
τγc ∀t ∈ T ∀γ ∈ G ∀h ∈ H ∀k ∈ K ∀c ∈ CFlex (2.3k)

0 ≤ R
E↓
tγhke ≤ αE↓

e ·XE
e ∀t ∈ T ∀γ ∈ G ∀h ∈ H ∀k ∈ K ∀e ∈ EFlex (2.3l)

0 ≤ R
C↓
tγhkc ≤ αC↓

c ·
∑
τ∈T
τ≤t

XC
τγc ∀t ∈ T ∀γ ∈ G ∀h ∈ H ∀k ∈ K ∀c ∈ CFlex (2.3m)

XC
tγc = XC

tγ′c ∀t ∈ T ∀γ ∈ G ∀c ∈ C : Θτγ = Θτγ′ , ∀τ ≤ t (2.3n)

A set of constraints (2.3a) - (2.3c) ensures that the producer chooses only one
capacity option over the whole variety of options for a particular production technology.
This condition is enforced assuming that the unitary cost associated with purchasing,
delivering and installation of the particular technology is a linear function of the unit size.
Inequality constraint (2.3d) limits the investment expenses for a given period with the
available budget for that period. Constraint (2.3e) aims at fulfilling the security of supply
conditions declared by TSO. Constraints (2.3f)-(2.3g) maintain the positivity of the
offering prices for the existing and candidate units at the day-ahead and real-time floors.
Constraints (2.3h) and (2.3i) limit strategic day-ahead offering quantities considering the
maximum capacity of existing and candidate units. Constraints (2.3j)-(2.3k) ensure that
strategic quantities for the up- and down-reserve provision will not exceed the technical
limits for these actions. Finally, (2.3n) is a set of non-anticipativity constraints, i.e.
constraints that prevent anticipating information while deciding the investment program
at each time stage of the planning horizon.

The set of upper-level decision variables ∆UL ∈ {XC
tγc, u

C
tγco, P

E
tγhke, P

C
tγhkc, R

E↑
tγhke,

R
C↑
tγhkc, R

E↓
tγhke, R

C↓
tγhkc, β

E
tγhke, β

C
tγhkc, β

E↑
tγhke, β

C↑
tγhkc, β

E↓
tγhke, β

C↓
tγhkc, } consists of the investment

decisions as well as strategic offering prices and quantities only. The rest of the variables
in the upper-level objective function are obtained from the set of lower-level problems
associated with the stochastic integrated market clearing in every time period, representative
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day under all long-term and market uncertainty realizations, as follows:

(
Ptγhkj, λ

DA
tγhk, P

sp
tγhkjω, r

↑
tγhkjω, r

↓
tγhkjω, λ

RT
tγhkω

)
∈ argmax

{
Maximize

∆LL,P∑
d∈D

bD
tkd · PD

tγhkd −
∑
r∈R

cR
tγkr · PR

tγhkr −
∑

j∈J Own

βtγhkj · Ptγhkj −
∑
ω∈W

πω ·

[
∑

r∈RFlex

(
cR↑
tγhkr · r

R↑
tγhkrω − cR↓

tγhkr · r
R↓
tγhkrω

)
+

∑
j∈J Own,Flex

(
β↑
tγhkj · r

↑
tγhkjω − β↓

tγhkj · r
↓
tγhkjω

)
+

∑
d∈D

cVoLL · lshtγhkdω

]
(2.4a)

Subject to∑
j∈J Sys

n

Ptγhkj −
∑
d∈Dn

PD
tγhkd −

∑
m∈Nnm

Snm · (θDA
tγhkn − θDA

tγhkm) = 0 : λDA
tγhkn ∀n ∈ N (2.4b)

∑
j∈J Sys,Flex

n

(r↑tγhkjω − r↓tγhkjω) +
∑

j∈J Sys,WP
n

(
∑
τ∈T
τ≤t

Xτγj ·KCF
hj ·KWS

jω − Ptγhkj − P sp
tγhkjω)+

∑
d∈Dn

lshtγhkdω +
∑

m∈Nnm

Snm · (θDA
tγhkn − θRT

tγhknω − θDA
tγhkm + θRT

tγhkmω) = 0 : λRT
tγhknω

∀n ∈ N ∀ω ∈ W (2.4c)
Snm · (θDA

tγhkn − θDA
tγhkm) ≤ F nm : µF,DA

tγhknm ∀(n,m) ∈ Nnm (2.4d)
Snm · (θRT

tγhknω − θRT
tγhkmω) ≤ F nm : µF,RT

tγhknmω ∀(n,m) ∈ Nnm ∀ω ∈ W (2.4e)
θDA
tγhk(n=1) = 0 : µref,DA

tγhk(n=1) (2.4f)
θRT
tγhk(n=1)ω = 0 : µref,RT

tγhk(n=1)ω ∀ω ∈ W (2.4g)

0 ≤ PD
tγhkd ≤ P

D
tγd ·KDF

h : (µD
tγhkd

;µD
tγhkd) ∀d ∈ D (2.4h)

0 ≤ Ptγhkj ≤ P tγhkj : (µtγhkj
;µtγhkj) ∀j ∈ J Sys (2.4i)

0 ≤ r↑tγhkjω ≤ R
↑
tγhkj : (µ

↑
tγhkjω

;µ↑
tγhkjω) ∀j ∈ J Sys,Flex ∀ω ∈ W (2.4j)

0 ≤ r↓tγhkjω ≤ R
↓
tγhkj : (µ

↓
tγhkjω

;µ↓
tγhkjω) ∀j ∈ J Sys,Flex ∀ω ∈ W (2.4k)

0 ≤ Ptγhlj + r↑tγhkjω − r↓tγhkjω ≤ P tγhkj : (µ
↑↓
tγhkjω

;µ↑↓
tγhkjω) ∀j ∈ J Sys,Flex ∀ω ∈ W

(2.4l)
0 ≤ lshtγhkdω ≤ PD

tγhkd : (µ
D,sh
tγhkdω

;µD,sh
tγhkdω) ∀d ∈ D ∀ω ∈ W (2.4m)

0 ≤ P sp
tγhkjω ≤

∑
τ∈T
τ≤t

Xτγj ·KCF
hj ·KWS

jω : (µsp
tγhkjω

;µsp
tγhkjω) ∀j ∈ J Sys,WP ∀ω ∈ W

(2.4n)}
∀t ∈ T ∀γ ∈ G ∀h ∈ H k ∈ K
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The objective function (2.4a) of each lower-level problem aims at maximizing the
social welfare at the day-ahead stage and minimizing the real-time balancing costs. The
clearing is performed for each period, long-term scenario, operational day and market
scenario. With such objectives, the market operator collects day-ahead prices and
quantities from the existing, candidate and rival generation units as well as bidding prices
and quantities for each block of demand units. The day-ahead clearing is carried out
anticipating the future real-time balancing costs, represented by the up- and down-deployment
costs of flexible units and cost of load shedding. The equality constraint (2.4b) ensures
the balance between scheduled generation and consumption quantities, as well as scheduled
power flows in the network at the day-ahead stage. The real-time balance, controlling
the redispatch of the day-ahead scheduled quantities, is enforced by (2.4c). A set of
inequality constraints (2.4d) and (2.4e) fulfills the capacity limits of network lines at the
day-ahead and real-time, and equality constraints (2.4f) and (2.4g) define a reference
node at both stages. Constraints (2.4h) and (2.4i) provide upper and lower bounds
for the scheduled quantities of the rival units, existing and candidate units as well as
demand units at the day-ahead stage. The real-time deployment of reserves is controlled
by the submitted reserve capacities in conditions (2.4j) and (2.4k). The compliance of
the day-ahead and real-time dispatch of flexible units is ensured by condition (2.4l). The
most expensive balancing actions associated with the load shedding and wind spillage
are limited by (2.4m) and (2.4n), respectively.

A set of the primal lower-level decision variables ∆LL,P ∈ {PD
tγhkd, Ptγhkj, r

↑
tγhkjω,

r↓tγhkjω, l
sh
tγhkdbω, P

sp
tγhkjω, θ

DA
tγhkn, θ

RT
tγhknω} comprises decisions concerning the optimal allocation

of the production and consumption quantities at the day-ahead and real-time stages for
every time period, representative day, long-term and market uncertainty scenarios. The
dual variables of the lower-level problems are listed next to the each constraint after the
colon sign and collected in set ∆LL,D,

∆LL,D ∈ {λDA
tγhkn, λ

RT
tγhknω, µ

F,DA
tγhknm, µ

F,RT
tγhknmω, µ

ref,DA
tγhk(n=1), µ

ref,RT
tγhk(n=1)ω, µ

D
tγhkd

, µD
tγhkd,

µ
tγhkj

, µtγhkj, µ
↑
tγhkjω

, µ↑
tγhkjωµ

↓
tγhkjω

, µ↓
tγhkjω, µ

↑↓
tγhkjω

, µ↑↓
tγhkjω, µ

D,sh
tγhkdω

, µD,sh
tγhkdω,

µsp
tγhkjω

, µsp
tγhkjω}.

2.2.2 MPEC reformulation of the bilevel problem
Standard optimization packages can not handle the bilevel structure of problem (2.2)-(2.4n).
This is because the upper-level profit maximization problem is constrained by a set of
lower-level optimization problems representing market auctions for different scenarios.
However, the objective function of each LL problem is convex and LL constraints are
affine functions. Thus a set of LL problems could be replaced with their Karush–Kuhn–Tucker
optimally conditions. In such way, the strategic expansion problem is materialized as a
single-level mathematical programming with equilibrium constraint (MPEC) problem.

For the sake of clarity, the indexes of time periods, long-term and market uncertainty
scenarios, as well as representative days, are omitted. The Lagrangian function for each
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LL problem is defined as follows:

Ltγhk = −
∑
d∈D

bD
d · PD

d +
∑
r∈R

cR
r · PR

r +
∑

j∈J Own

βj · Pj +
∑
ω∈W

πω ·

[ ∑
r∈RFlex

(
cR↑
r · rR↑

rω

− cR↓
r · rR↓

rω

)
+

∑
j∈J Own,Flex

(
β↑
j · r

↑
jω − β↓

j · r
↓
jω

)
+
∑
d∈D

cVoLL · lshdω

]
−
∑
n∈N

λDA
n ·

( ∑
r∈Rn

PR
r

+
∑
e∈En

PE
e +

∑
c∈Cn

PC
c −

∑
d∈Dn

PD
d −

∑
m∈Nnm

Snm · (θDA
n − θDA

m )
)
−
∑
n∈N

∑
ω∈O

λRT
nω ·

(
∑

r∈RFlex
n

(rR↑
rω − rR↓

rω ) +
∑

e∈EFlex
n

(rE↑
eω − rE↓

eω ) +
∑

c∈CFlex
n

(rC↑
cω − rC↓

cω ) +
∑

r∈RWP
n

(PR,a
rω − PR

r − PR,sp
rω )

+
∑

e∈EWP
n

(PE,a
eω − PE

e − PE,sp
eω ) +

∑
c∈CWP

n

(PC,a
cω − PC

c − PC,sp
cω ) +

∑
d∈Dn

lshtdω +
∑

m∈Nnm

Snm · (θDA
n − θRT

nω

− θDA
m + θRT

mω)

)
+

∑
(n,m)∈Nnm

µF,DA
nm · (Snm · (θDA

tγhkn − θDA
tγhkm)− F nm) +

∑
(n,m)∈Nnm

∑
ω∈O

µF,RT
nmω ·

(Snm · (θRT
tγhknω − θRT

tγhkmω)− F nm) + µref,DA
(n=1) · θ

DA
(n=1) + µref,RT

(n=1)ω · θ
RT
(n=1)ω

+
∑
d∈D

(
µD
d · (PD

d − P
D
d ·KDF

h )− µD
d
· PD

d

)
+
∑
r∈R

(
µR
r · (PR

r − P
R
r )− µR

r
· PR

r

)
+
∑
e∈E

(
µE
e · (PE

e − P
E
e )− µE

e
· PE

e

)
+
∑
c∈C

(
µC
c · (PC

c − P
C
c )− µC

c
· PC

c

)
+
∑

r∈RFlex

∑
ω∈O

(
µR↑
rω · (rR↑

rω −R
R↑
r )− µR↑

rω
· rR↑

rω

)
+
∑

e∈EFlex

∑
ω∈O

(
µE↑
eω · (rE↑

eω −R
E↑
e )− µE↑

eω
· rE↑

eω

)
+
∑

c∈CFlex

∑
ω∈O

(
µC↑
cω · (rC↑

cω −R
C↑
c )− µC↑

cω
· rC↑

cω

)
+
∑

r∈RFlex

∑
ω∈O

(
µR↓
rω · (rR↓

rω −R
R↓
r )− µR↓

rω
· rR↓

rω

)
+
∑

e∈EFlex

∑
ω∈O

(
µE↓
eω · (rE↓

eω −R
E↓
e )− µE↓

eω
· rE↓

eω

)
+
∑

c∈CFlex

∑
ω∈O

(
µC↓
cω · (rC↓

cω −R
C↓
c )− µC↓

cω
· rC↓

cω

)
+
∑

r∈RFlex

∑
ω∈O

(
µR↑↓
rω · (PR

r + rR↑
rω − rR↓

rω − P
R
r )− µR↑↓

rω
· (PR

r + rR↑
rω − rR↓

rω )
)

+
∑

e∈EFlex

∑
ω∈O

(
µE↑↓
eω · (PE

e + rE↑
eω − rE↓

eω − P
E
e )− µE↑↓

eω
· (PE

e + rE↑
eω − rE↓

eω )
)

+
∑

c∈CFlex

∑
ω∈O

(
µC↑↓
cω · (PC

c + rC↑
cω − rC↓

cω − P
C
c )− µC↑↓

cω
· (PC

c + rC↑
cω − rC↓

cω )
)

+
∑
d∈D

∑
ω∈O

(
µD,sh
dω · (l

sh
dω − PD

d )− µD,sh
dω
· lshdω)

)
+
∑

r∈RWP

∑
ω∈O

(
µR,sp
rω · (PR,sp

rω − PR,a
rω )

− µR,sp
rω
· PR,sp

rω

)
+
∑

e∈EWP

∑
ω∈O

(
µE,sp
eω · (PE,sp

eω − PE,a
eω )− µE,sp

eω
· PE,sp

eω

)
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+
∑

c∈CWP

∑
ω∈O

(
µC,sp
cω · (PC,sp

cω − PC,a
cω )− µC,sp

cω
· PC,sp

cω

)
∀t ∈ T ∀γ ∈ G ∀h ∈ H k ∈ K (2.5)

KKT conditions comprise of (i) stationarity conditions, (ii) primal feasibility, (iii)
dual feasibility and (iv) complementary slackness.

Stationarity conditions are defined as private deviates of the Lagrangian function
with respect to each primal decision variable, and writes as follows:

{
∂L
∂PD

d

=− bD
d + λDA

(n:d∈Dn) + µD
d − µD

d
−
∑
ω∈O

µD,sh
dω = 0 ∀d ∈ D (2.6a)

∂L
∂PR

r

=cR
r − λDA

(n:r∈Rn) + µR
r − µR

r
+
∑
ω∈O

(µR↑↓
rω − µR↑↓

rω
) = 0 ∀r ∈ RFlex (2.6b)

∂L
∂PE

e

=βE
e − λDA

(n:e∈En) + µE
e − µE

e
+
∑
ω∈O

(µE↑↓
eω − µE↑↓

eω
) = 0 ∀e ∈ EFlex (2.6c)

∂L
∂PC

c

=βC
c − λDA

(n:c∈Cn) + µC
c − µC

c
+
∑
ω∈O

(µC↑↓
cω − µC↑↓

cω
) = 0 ∀c ∈ CFlex (2.6d)

∂L
∂PR

r

=cR
r − λDA

(n:r∈Rn) +
∑
ω∈O

λRT
(n:r∈Rn)ω

+ µR
r − µR

r
= 0 ∀r ∈ RWP (2.6e)

∂L
∂PE

e

=βE
e − λDA

(n:e∈En) +
∑
ω∈O

λRT
(n:e∈En)ω + µE

e − µE
e
= 0 ∀e ∈ EWP (2.6f)

∂L
∂PC

c

=βC
c − λDA

(n:c∈Cn) +
∑
ω∈O

λRT
(n:c∈Cn)ω + µC

c − µC
c
= 0 ∀c ∈ CWP (2.6g)

∂L
∂rR↑

rω

=πω · cR↑
r − λRT

(n:r∈Rn)ω
+ µR↑

rω − µR↑
rω

+ µR↑↓
rω − µR↑↓

rω
= 0 ∀ω ∈ O ∀r ∈ RFlex

(2.6h)
∂L
∂rE↑

eω

=πω · βE↑
e − λRT

(n:e∈En)ω + µE↑
eω − µE↑

eω
+ µE↑↓

eω − µE↑↓
eω

= 0 ∀ω ∈ O ∀e ∈ EFlex

(2.6i)
∂L
∂rC↑

cω

=πω · βC↑
c − λRT

(n:c∈Cn)ω + µC↑
cω − µC↑

cω
+ µC↑↓

cω − µC↑↓
cω

= 0 ∀ω ∈ O ∀c ∈ CFlex

(2.6j)
∂L
∂rR↓

rω

=− πω · cR↓
r + λRT

(n:r∈Rn)ω
+ µR↓

rω − µR↓
rω
− µR↑↓

rω + µR↑↓
rω

= 0 ∀ω ∈ O ∀r ∈ RFlex

(2.6k)
∂L
∂rE↓

eω

=− πω · βE↓
e + λRT

(n:e∈En)ω + µE↓
eω − µE↓

eω
− µE↑↓

eω + µE↑↓
eω

= 0 ∀ω ∈ O ∀e ∈ EFlex

(2.6l)
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∂L
∂rC↓

cω

=− πω · βC↓
c + λRT

(n:c∈Cn)ω + µC↓
cω − µC↓

cω
− µC↑↓

cω + µC↑↓
cω

= 0 ∀ω ∈ O ∀c ∈ CFlex

(2.6m)
∂L
∂lshdω

=πω · cVoLL − λRT
(n:d∈Dn)ω

+ µD,sh
dω − µD,sh

dω
= 0 ∀ω ∈ O ∀d ∈ D (2.6n)

∂L
∂PR,sp

rω

=λRT
(n:r∈Rn)ω

+ µR,sp
rω − µR,sp

rω
= 0 ∀ω ∈ O ∀r ∈ RWP (2.6o)

∂L
∂PE,sp

eω

=λRT
(n:e∈En)ω + µE,sp

eω − µE,sp
eω

= 0 ∀ω ∈ O ∀e ∈ EWP (2.6p)

∂L
∂PC,sp

cω

=λRT
(n:c∈Cn)ω + µC,sp

cω − µC,sp
cω

= 0 ∀ω ∈ O ∀c ∈ CWP (2.6q)

∂L
∂θDA

n

=
∑

m∈Nnm

Snm ·
[
λDA
n −

∑
ω∈O

λRT
nω + µF,DA

nm

]
−

∑
m∈Nnm

Smn ·
[
λDA
m −

∑
ω∈O

λRT
mω + µF,DA

mn

]
− µref,DA

(n=1) = 0 ∀n ∈ N (2.6r)
∂L
∂θRT

nω

=
∑

m∈Nnm

Snm ·
[
λRT
nω + µF,RT

nmω

]
−

∑
m∈Nnm

Smn ·
[
λRT
mω + µF,RT

mnω

]
− µref,RT

(n=1)ω = 0

∀ω ∈ O ∀n ∈ N

}
∀t ∈ T ∀γ ∈ G ∀h ∈ H k ∈ K (2.6s)

The primal feasibility conditions state that the optimal solution to the problem has to
fulfill the constraint declared by the primal problem, and thus they are written according
to (2.4b)-(2.4n). The dual feasibility conditions imply that the dual variables associated
with the primal inequality constraints have to be positive, such that:

µF,DA
m , µF,RT

mω , µD
db
, µD

db, µj
, µj, µ

↑
jω
, µ↑

jωµ
↓
jω
, µ↓

jω, µ
↑↓
jω
, µ↑↓

jω, µ
D,sh
dbω

, µD,sh
dbω , µsp

jω
, µsp

jω ≥ 0 (2.7)

The last set of KKT conditions is complementarity slackness constraints. These constraints
relate to the primal inequality constraints only and imply that only one state might hold:
either the inequality constraint is not binding and the dual variable of this inequality
constraint is zero or otherwise. They are defined as follows:

{[
F nm − Snm · (θDA

n − θDA
m )
]
· µF,DA

nm = 0 ∀(n,m) ∈ Nnm (2.8)[
F nm − Snm · (θRT

nω − θRT
mω)
]
· µF,RT

nmω = 0 ∀(n,m) ∈ Nnm ∀ω ∈ W (2.9)

(P
D
d − PD

d ) · µD
d = 0 ∀d ∈ D (2.10)

PD
d · µD

d
= 0 ∀d ∈ D (2.11)

(P
R
r − PR

r ) · µR
r = 0 ∀r ∈ R (2.12)

PR
r · µR

r
= 0 ∀r ∈ R (2.13)
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(P
E
e − PE

e ) · µE
e = 0 ∀e ∈ E (2.14)

PE
e · µE

e
= 0 ∀e ∈ E (2.15)

(P
C
c − PC

c ) · µC
c = 0 ∀c ∈ C (2.16)

PC
c · µC

c
= 0 ∀c ∈ C (2.17)

(R
R↑
r − rR↑

rω ) · µR↑
rω = 0 ∀r ∈ RFlex ∀ω ∈ O (2.18)

rR↑
rω · µR↑

rω
= 0 ∀r ∈ RFlex ∀ω ∈ O (2.19)

(R
E↑
e − rE↑

eω ) · µE↑
eω = 0 ∀e ∈ EFlex ∀ω ∈ O (2.20)

rE↑
eω · µE↑

eω
= 0 ∀e ∈ EFlex ∀ω ∈ O (2.21)

(R
C↑
c − rC↑

cω ) · µC↑
cω = 0 ∀c ∈ CFlex ∀ω ∈ O (2.22)

rC↑
cω · µC↑

cω
= 0 ∀c ∈ CFlex ∀ω ∈ O (2.23)

(R
R↓
r − rR↓

rω ) · µR↓
rω = 0 ∀r ∈ RFlex ∀ω ∈ O (2.24)

rR↓
rω · µR↓

rω
= 0 ∀r ∈ RFlex ∀ω ∈ O (2.25)

(R
E↓
e − rE↓

eω ) · µE↓
eω = 0 ∀e ∈ EFlex ∀ω ∈ O (2.26)

rE↓
eω · µE↓

eω
= 0 ∀e ∈ EFlex ∀ω ∈ O (2.27)

(R
C↓
c − rC↓

cω ) · µC↓
cω = 0 ∀c ∈ CFlex ∀ω ∈ O (2.28)

rC↓
cω · µC↓

cω
= 0 ∀c ∈ CFlex ∀ω ∈ O (2.29)

(P
R
r − PR

r − rR↑
rω + rR↓

rω ) · µR↑↓
rω = 0 ∀r ∈ RFlex ∀ω ∈ O (2.30)

(PR
r + rR↑

rω − rR↓
rω ) · µR↑↓

rω
= 0 ∀r ∈ RFlex ∀ω ∈ O (2.31)

(P
E
e − PE

e − rE↑
eω + rE↓

eω ) · µE↑↓
eω = 0 ∀e ∈ EFlex ∀ω ∈ O (2.32)

(PE
e + rE↑

eω − rE↓
eω ) · µE↑↓

eω
= 0 ∀e ∈ EFlex ∀ω ∈ O (2.33)

(P
C
c − PC

c − rC↑
cω + rC↓

cω ) · µC↑↓
cω = 0 ∀c ∈ CFlex ∀ω ∈ O (2.34)

(PC
c + rC↑

cω − rC↓
cω ) · µC↑↓

cω
= 0 ∀c ∈ CFlex ∀ω ∈ O (2.35)

(PD
d − lshdω) · µ

D,sh
dω = 0 ∀d ∈ D ∀ω ∈ O (2.36)

lshdω · µD,sh
dω

= 0 ∀d ∈ D ∀ω ∈ O (2.37)
(PR,a

rω − PR,sp
rω ) · µR,sp

rω = 0 ∀r ∈ RWP ∀ω ∈ O (2.38)
PR,sp
rω · µR,sp

rω
= 0 ∀r ∈ RWP ∀ω ∈ O (2.39)

(PE,a
eω − PE,sp

eω ) · µE,sp
eω = 0 ∀e ∈ EWP ∀ω ∈ O (2.40)

PE,sp
eω · µE,sp

eω
= 0 ∀e ∈ EWP ∀ω ∈ O (2.41)

(PC,a
cω − PC,sp

cω ) · µC,sp
cω = 0 ∀c ∈ CWP ∀ω ∈ O (2.42)

PC,sp
cω · µC,sp

cω
= 0 ∀c ∈ CWP ∀ω ∈ O

}
(2.43)

∀t ∈ T ∀γ ∈ G ∀h ∈ H k ∈ K
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The bilevel problem could be now recast as the following single-level MPEC problem:

Maximize
∆UL∪∆LL,P∪∆LL,D

(2.2)

Subject to (2.3a)− (2.3n), (2.6a)− (2.6s)

(2.4b)− (2.4n), (2.7), (2.8)− (2.43)

2.2.3 MILP reformulation of the MPEC problem
The resulting single-level equivalent of the bilevel problem is non-linear since it consists
of several non-linear terms in the objective function as well as a set of non-linear
complementarity slackness constraints (2.8)-(2.43) . Solving this problem directly could
lead to sub-optimal investment solutions. In this line, it is of crucial importance to
derive a linear equivalent ensuring the global optimum for the expected profit. The
non-linear terms in the objective functions are as follows:

1. Ptγhkj · λDA
tγhk(n:j∈J Own) – product of scheduled energy quantities and LMP at the

day-ahead market.

2. λRT
tγhk(n:j∈J Own,WP)ω ·Xtγj – product of real-time LMP and investment decisions on

candidate wind power units.

3. λRT
tγhk(n:j∈J Own,WP)ω · Ptγhkj – product of real-time LMP and day-ahead scheduled

quantities.

4. λRT
tγhk(n:j∈J Own,WP)ω ·P

sp
tγhkjω – product of real-time LMP and wind spillage balancing

actions for candidate units.

5. λRT
tγhk(n:j∈J Own,Flex)ω · (r

↑
tγhkjω − r↓tγhkjω) – product of real-time LMP and up- and

down-reserve deployment balancing actions for existing and candidate flexible
units.

To derive a linear equivalent of the objective function, the strong duality property
of the lower-level problem is used. In fact, problem (2.4a)-(2.4n) is convex, thus the
duality gap between primal and dual objective functions is equal to zero in optimum.
Thus, the following condition holds:

∑
d∈D

bD
d · PD

d −
∑
r∈R

cR
r · PR

r −
∑

j∈J Own

βj · Pj −
∑
ω∈W

πω ·

[ ∑
r∈RFlex

(
cR↑
r · rR↑

rω − cR↓
r · rR↓

rω

)

+
∑

j∈J Own,Flex

(
β↑
j · r

↑
jω − β↓

j · r
↓
jω

)
+
∑
d∈D

cVoLL · lshdω

]
=
∑
ω∈O

λRT
ω ·

( ∑
r∈RWP

PR,a
rω +

∑
e∈EWP

PE,a
eω
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+
∑

c∈CWP

PC,a
cω

)
+

∑
(n,m)∈Nnm

µF,DA
nm · F nm +

∑
ω∈O

∑
(n,m)∈Nnm

µF,RT
nmω · F nm +

∑
d∈D

µD
d · P

D
d

+
∑
r∈R

µR
r · P

R
r +

∑
e∈E

µE
e · P

E
e +

∑
c∈C

µC
c · P

C
c +

∑
ω∈O

∑
r∈RFlex

µR↑
trω ·R

R↑
r +

∑
ω∈O

∑
e∈EFlex

µE↑
eω ·R

E↑
e

+
∑
ω∈O

∑
c∈CFlex

µC↑
cω ·R

C↑
c +

∑
ω∈O

∑
r∈RFlex

µR↓
rω ·R

R↓
r +

∑
ω∈O

∑
e∈EFlex

µE↓
eω ·R

E↓
e +

∑
ω∈O

∑
c∈CFlex

µC↓
cω ·R

C↓
c

+
∑
ω∈O

∑
r∈RFlex

µR↑↓
rω · P

R
r +

∑
ω∈O

∑
e∈EFlex

µE↑↓
eω · P

E
e +

∑
ω∈O

∑
c∈CFlex

µC↑↓
cω · P

C
c +

∑
ω∈O

∑
r∈RWP

µR,sp
rω · PR,a

rω

+
∑
ω∈O

∑
e∈EWP

µE,sp
eω · PE,a

eω +
∑
ω∈O

∑
c∈CWP

µC,sp
cω · PC,a

cω (2.45)

At the next step, KKT optimality conditions of LL problems are transformed to be
later substituted into (2.45). First, the stationarity conditions (2.6c) - (2.6d), (2.6f) -
(2.6g), (2.6i) - (2.6j), (2.6l) - (2.6m), (2.6p) - (2.6q) are multiplied by PE

e , P
C
c , P

E
e , P

C
c , r

E↑
eω ,

rC↑
cω , r

E↓
eω , r

C↓
cω , P

C,sp
cω , PE,sp

eω , respectively. Then, taking into account complementarity conditions
(2.14) - (2.17), (2.20) - (2.23), (2.26) - (2.29), (2.32) - (2.35), (2.43), the resulting
expressions are substituted into (2.45), such that the linear equivalent of the upper-level
objective function writes as follows:

Maximize
∆UL∪∆LL,P∪∆LL,D∑
t∈T

1

(1 +DRt)t
·

{∑
γ∈G

πL
γ ·

{∑
h∈H

NMC
h ·

[∑
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πMS
k ·

⟨
−
∑
e∈E

cE
tγe · PE

tγhke −
∑
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∑
ω∈W
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cEtγe · r
E↑
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cCtγc · r
C↑
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∑
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r∈R
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)
+
∑
d∈D
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ω∈W

∑
(n,m)∈N

µF,RT
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cInv
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τ∈T
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XC
τγc

}}
(2.46)
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There are two ways to linearize complementarity conditions (2.8)-(2.43). The first
one relies on so-called Big-M approach [61]. On the one hand, this method is relatively
straightforward to implement as two inequality constraints for each complementarity
constraint. On the contrary, considering large scale power systems, a wrong choice of M
might lead to the violation of KKT optimality conditions. An appropriate selection of M
involves the coordinated settings of M and the binary tolerance of optimization solver.
Moreover, the scaling of system parameters is also required if M is intolerably high. An
alternative solution would be to consider the linearization using special ordered set of
type 1 variables, SOS1 [62]. Unlike Big-M approach, the linearization through SOS1
variables might increase the computational time, but the KKT conditions would always
be satisfied.

For instance, linearization of complementarity condition (2.12) is carried out as
following. First, two variables of SOS1 type are introduced, {ν+

tγhkr, ν
−
tγhkr ∈ SOS1 ∀t ∈

T ∀γ ∈ G ∀h ∈ H ∀k ∈ K ∀r ∈ R}. These variables are defined so that one of
them can take a strictly positive value while another is equal to 0. Then, expression
(2.12) is replaced by two equality constraints, as following:

ν+
tγhkr + ν−

tγhkr = µR
tγhkr + (P

R
tγr − PR

tγhkr)

∀t ∈ T ∀γ ∈ G ∀m ∈M ∀ν ∈ N ∀r ∈ R (2.47)

ν+
tγhkr − ν−

tγhkr = µR
tγhkr − (P

R
tγr − PR

tγhkr)

∀t ∈ T ∀γ ∈ G ∀m ∈M ∀ν ∈ N ∀r ∈ R (2.48)

Linearization of the remaining complementarity conditions is carried out similarly.
Finally, the linear MILP equivalent of the original problem writes as the following
problem, which could be efficiently tackled using off-the-shelf commercial software:

Maximize
∆UL∪∆LL,P∪∆LL,D

(2.46)

Subject to (2.3a)− (2.3n), (2.6a)− (2.6s)

(2.4b)− (2.4n), (2.7), (2.8)− (2.43)

+ set of linearized complementarity constraints
similar to (2.47)− (2.48)



CHAPTER 3
Decomposition of the

multi-stage strategic
expansion problem via

progressive hedging
3.1 Motivation behind the decomposition
Over the course of the last two decades, a class of investment planning problems evolved
toward large-scale optimization problems. These problems include diverse and complex
objectives and constraints, accounting for technical, social and economic perspectives of
the problem. Moreover, in the context of increasing operational and financial multi-scale
uncertainty, these problems contain a plenty of scenarios enhancing the dimension
of the models. Therefore, this class of models includes a large number of discrete
variables which affect the computational burden to a great extent. A number of discrete
variables in the considered strategic expansion planning is defined by (i) amount of
binary variables related to the choice of available investment option, and (ii) amount
of SOS1 variables used to linearize the complementarity constraints. Particularly, a
number of binary variables is computed as follows:

NBin = Nt ×Nγ ×Nc ×No, (3.1)

whereNt, Nγ, Nc, No are numbers of time stages, long-term scenarios, candidate generation
technologies and available capacity options, respectively. A number of SOS1 variables
depends on the amount of complementarity constraints involved into a problem and
computes as following:

NSOS1 =Nt ×Nγ ×Nh ×Nk × 2×

[
2×Nn × (1 +Nω) + 2× (Nr +Ne +Nc)

+ 6×Nω × (NrFlex +NeFlex +NcFlex) + 2×Nω × (NrWP +NeWP +NcWP )

+ 2× (Nω + 1)×Nd

]
(3.2)

whereNh, Nk, Nn, Nω, Nr, Ne, Nc, Nd are numbers of representative days, market scenarios,
nodes, wind power scenarios, rival, existing units, candidate units, and loads, respectively.
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Apart from the discrete variables, the complexity of the problem is enforced by
non-anticipativity conditions, preventing dependency of the investment decisions on the
future long-term scenario realization. The number of such constraints is defined by a
number of time stages within a planning horizon, long-term scenarios, and candidate
units.

The decomposition of the original problem into a set of sub-problem governed by
a common convergence criterion allows speeding up the simulations. This is due to
the fact that the dimension of each sub-problem is generally much smaller than the
size of the original model. For example, by decomposing the considered problem per
long-term scenarios, the amount of discrete and SOS1 variables will be reduced down
to NBin/Nγ and NSOS1/Nγ, respectively. Thus, solving scenario-specific sub-problems
iteratively yields in less computational burden compared to the direct approach to the
original problem.

3.2 General background on the progressive hedging
decomposition

Progressive Hedging Algorithm (PHA) introduced by [41] belongs to a class of augmented
Lagrangian relaxation techniques. Unlike Benders decomposition which separates the
investment decisions from the operational ones, the PH approach relies on scenario
decomposition of the original problem. In this line, the non-anticipativity conditions
are relaxed, and investment decisions are transformed into scenario-dependent decisions,
such that the original problem boils down to the set of scenario-specific sub-problems.
The non-anticipativity conditions are restored iteratively by penalizing the objective
function of each sub-problem with respect to the deviation of the investment solution
from the average over the adjacent nodes of the decision tree, as depicted in Figure 3.1.

The figure illustrates the PHA relaxation of the three-stage investment planning
problem involving two long-term scenarios at each time stage. At the beginning of
the first time stage, the producer has to decide on optimal site and size of available
technologies to invest. At the second time stage, the long-term uncertainty partially
discloses, and it adjusts its investment planning by building new generation units at the
second stage. Then, at the third stage, the uncertainty again discloses and it makes the
final investment decisions. The PH algorithm relaxes the non-anticipativity conditions
and solves 4 sub-problems independently, one per each long-term scenario. Apparently,
in some sense, each sub-problem is deterministic since it does not consider the entire set
of long-term scenarios, and thus it is less complicated to solve. The sub-problems are
solved iteratively to tighten the nodes of the relaxed tree to fulfill the conditions declared
by the original tree. In this line, the PH algorithm penalizes the objective function of
each sub-problem with respect to the deviation of the investment solution from the
probability-weighted average over the bundle of nodes highlighted by blue dashed lines.
Eventually, PHA converges if the solution of each problem results in the same investment
decisions for the adjacent nodes.
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Planning horizon
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t1c� XC
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Average over
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Figure 3.1: PH relaxation of the long-term decision tree.

3.3 Implementation of the progressive hedging
algorithm

3.3.1 Decomposition over long-term uncertainty scenarios
To give a formal description of the algorithm, the following compact formulation of the
multi-stage stochastic optimization problem is introduced:

Minimize
xtγ

∑
t∈T

∑
γ∈G

πL
γ · c⊤tγ · xtγ (3.3a)

Subject to (xtγ ∈ Qtγ,∀t ∈ T ,∀γ ∈ G) (3.3b)

where ctγ is a cost coefficient vector, xtγ - a vector of decision variables, ctγ and xtγ are of
the same length; notation xtγ ∈ Qtγ expresses the problem constraints, i.e. to ensure xtγ

is a feasible solution in the scenario γ at time stage t. Notice, that the original problem is
maximization of the expected profit, while the standard form of an optimization problem
writes with minimization operator.

To formulate the PHA relaxation of problem (3.3) over the long-term scenarios, first
the probability-weighed average of investment solutions among the adjacent nodes of
the decision tree at each time stage t for each long-term scenario γ and each candidate
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unit c X̂C(i)
tγc is introduced, such that:

X̂
C(i)
tγc =

∑
γ′∈Gt

πL
γ′ ·XC(i)

tγ′c∑
γ′∈Gt

πL
γ′

(3.4)

where XC(i)
tγ′c is a solution of XC

tγ′c at ith iteration of PHA and Gt denotes a set of adjacent
scenarios to scenario γ at time stage t, as depicted in Figure 3.1.

At the next step, the Lagrange-multiplier vector of non-anticipativity conditions, or
so-called PH multiplier, mPH(i)

tγc is introduced. The superscript (i) stands for an iteration
counter of the algorithm. This multiplier is computed as follows:

m
PH(i)
tγc = m

PH(i−1)
tγc + ρ · (XC(i)

tγc − X̂
C(i)
tγc ) (3.5)

where ρ > 0 is arbitrary chosen penalization factor. This multiplier is substituted into
objective function of each sub-problem, such that the deviation of investment decisions
from the relevant probability-weighted average is penalized. Given the introduced
notations, the PHA for the long-term scenarios decomposition writes as follows:

Algorithm 1 Multistage PHA for long-term uncertainty scenario decomposition
1: Initialization: i := 0
2: Iteration 0: ∀γ ∈ G, X

C(i)
tγc ← argmin

xt

{∑
t∈T c⊤tγ · xt : xt ∈ Qtγ

}
3: Aggregation: ∀t ∈ T ,∀γ ∈ G,∀c ∈ C, X̂

C(i)
tγc ←

∑
γ′∈Gt

πL
γ′ ·X

C(i)

tγ′c∑
γ′∈Gt

πL
γ′

4: PH Multiplier: ∀t ∈ T ,∀γ ∈ G, ∀c ∈ C, m
PH(i)
tγc ← ρ · (XC(i)

tγ′c − X̂
C(i)
tγc )

5: Iteration update: i← i+ 1

6: Iteration i: ∀γ ∈ G, X
C(i)
tγc ← argmin

xt

{∑
t∈T c⊤tγ · xt +

∑
t∈T
∑

c∈C m
PH(i−1)
tγc ·

XC
tc +

∑
t∈T
∑

c∈C
ρ
2
· ||XC

tc − X̂
C(i−1)
tγc ||2 : xt ∈ Qtγ

}
7: Aggregation: ∀t ∈ T ,∀γ ∈ G,∀c ∈ C, X̂

C(i)
tγc ←

∑
γ′∈Gt

πL
γ′ ·X

C(i)

tγ′c∑
γ′∈Gt

πL
γ′

8: PH Multiplier: ∀t ∈ T ,∀γ ∈ G, ∀c ∈ C, m
PH(i)
tγc ← m

PH(i−1)
tγc + ρ · (XC(i)

tγc − X̂
C(i)
tγc )

9: Convergence: If ∀t ∈ T , ∀γ ∈ G,∀c ∈ C, g
(i)
tγc ←

(
X

C(i)
tγc − X̂

C(i)
tγc

)
< ϵ - exit,

otherwise go to Step 5.

The algorithm consists of several steps. First, the iteration counter is initialized.
Second, PHA solves the original problem per each long-term scenario and collects the
initial solution for scenario-specific investment decisionsXC(0)

tγc for all time stages, long-term
scenarios and candidate generation units. Third, it computes the probability-weighted
average of investment solutions over the adjacent nodes of the long-term decision tree.
At the next step, it calculates the initial value of PH multiplier based on the distance
between individual solutions of each sub-problem and their relevant average. Once
the iteration counter is updated, the algorithm solves the relaxed version of the original
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problem, which includes two augmented terms in the objective functions:
∑

t∈T
∑

c∈C m
PH(i−1)
tγc ·

XC
tγc aims at adjusting the investment solutions toward the mean of adjacent nodes,

while the square proximal term
∑

t∈T
∑

c∈C
ρ
2
· ||XC

tγc − X̂
C(i−1)
tγc ||2 aims at reaching the

convergence criterion. The next step is to recompute the average concerning new
investment solution and update PH multiplier including its historical value. Steps 5
to 8 are repeated iteratively till the convergence criterion is satisfied.

Apparently, step 6 requires solving the quadratic mixed-integer problem since the
objective function includes the square term. In general, unlike the linear solvers, the
quadratic solvers take more computation efforts and time towards the global optimum.
In this line, it is reasonable to rewrite the square term in its linear equivalent form as
follows:

||XC
tγc − X̂

C(i−1)
tγc ||2 = (XC

tγc − X̂
C(i−1)
tγc ) · (XC

tγc − X̂
C(i−1)
tγc )

= (XC
tγc)

2 − 2 ·XC
tγc · X̂

C(i−1)
tγc + (X̂

C(i−1)
tγc )2

=
∑
o∈O

uC
tγco · (X

C
co)

2 − 2 ·XC
tγc · X̂

C(i−1)
tγc + (X̂

C(i−1)
tγc )2 (3.6)

X
C
co and X̂

C(i−1)
tγc are parameters and the square of binary variable uC

tγco is the value of
this variable, thus term (3.6) does not involve quadratic variables.

3.3.2 Decomposition over long-term and short-term
uncertainty scenarios

Each sub-problem of iterative Algorithm 1 solves the original problem per each long-term
scenario only. Thus each problem decides on the optimal investment decisions taking
into account market and wind power uncertainty only. These sets of scenarios together
could include a significant number of rivals’ and consumers’ price policies and stochastic
generation realizations. Therefore, each sub-problem could be itself difficult to solve.

This observation motivates to decompose the original problem even deeper as depicted
in Figure 3.2. During each time stage of the planning horizon, the market participation is
modulated with a certain number of representative daysNh. For each h, the producer has
to decide on optimal day-ahead and real-time offering strategy, i.e. short-term strategy.
The structure of the short-term decision tree includes three stages: (i) day-ahead submission
of offering prices and quantities, (ii) market uncertainty realization and (iii) wind
power uncertainty realization. This framework suggests decomposing the problem not
only per long-term uncertainty scenarios but also per market uncertainty scenarios.
In this way, the producer will decide the investment planning anticipating market
uncertainty realizations, such that the decision variable XC

tγc rewrites as XC
tγkc, where k

is an index of market scenarios. Apparently, a new PH algorithm has to tighten both
the adjacent nodes of the relaxed long-term decision tree and first-stage nodes of the
relaxed short-term decision tree for every representative day inside each time stage of
the planning horizon. Therefore, each sub-problem of the proposed solution framework
will be less difficult to solve.
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Figure 3.2: PH relaxation over long-term and short-term scenarios.

For the relaxation given in Figure 3.2, the optimal solution will be found if and
only if both long-term and short-term non-anticipativity conditions are fulfilled. Thus,
the Algorithm 1 has to be modified. First, a new probability-weighted average for the
investment solutions is introduced, such that:

X̂
C(i)
tγkc =

∑
γ′∈Gt

∑
k∈K πL

γ′ · πMS
k ·XC(i)

tγ′kc∑
γ′∈Gt

∑
k∈K πL

γ′ · πMS
k

(3.7)

Notice, that this formulation is only possible if the market and long-term uncertainty
scenarios are independent. Unlike the long run conditions, the short-term non-anticipativity
conditions have to be fulfilled at every first-stage node of the short-term decision sequence.
Therefore, a new PH multiplier is introduced to comply with this principle, such that:

m
PH(i)
tγkc = m

PH(i−1)
tγkc + ρ · (XC(i)

tγkc − X̂
C(i)
tγkc) (3.8)

Finally, solving the original problem in a decomposed manner, the solution of each
sub-problem has to be feasible for the set of constraints Qtγk, declared by both long-term
and market uncertainty scenarios. Moreover, the cost coefficient vector in the objective
function of each sub-problem also has to account for specifics of each market scenarios,
thus ctγ → ctγk. With the introduced definitions, the new PHA relaxing both long-term
and short-term decision trees writes as follows:
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Algorithm 2 Multistage PHA decomposition over short- and long-term uncertainty
scenarios

1: Initialization: i := 0
2: Iteration 0: ∀γ ∈ G,∀k ∈ K, X

C(i)
tγkc ← argmin

xt

{∑
t∈T c⊤tγk · xt : xt ∈ Qtγk

}
3: Aggregation: ∀t ∈ T ,∀γ ∈ G,∀k ∈ K, ∀c ∈ C, X̂

C(i)
tγkc =

∑
γ′∈Gt

∑
k∈K πL

γ′ ·π
MS
k ·XC(i)

tγ′kc∑
γ′∈Gt

∑
k∈K πL

γ′ ·π
MS
k

4: PH Multiplier: ∀t ∈ T , ∀γ ∈ G,∀k ∈ K,∀c ∈ C, m
PH(i)
tγkc = ρ · (XC(i)

tγkc − X̂
C(i)
tγkc)

5: Iteration update: i← i+ 1

6: Iteration i: ∀γ ∈ G, ∀k ∈ K, X
C(i)
tγkc ← argmin

xt

{∑
t∈T c⊤tγk · xt +∑

t∈T
∑

c∈C m
PH(i−1)
tγkc ·XC

tc +
∑

t∈T
∑

c∈C
ρ
2
· ||XC

tc − X̂
C(i−1)
tγkc ||2 : xt ∈ Qtγ

}
7: Aggregation: ∀t ∈ T ,∀γ ∈ G,∀k ∈ K, ∀c ∈ C, X̂

C(i)
tγkc =

∑
γ′∈Gt

∑
k∈K πL

γ′ ·π
MS
k ·XC(i)

tγ′kc∑
γ′∈Gt

∑
k∈K πL

γ′ ·π
MS
k

8: PH Multiplier: ∀t ∈ T ,∀γ ∈ G,∀k ∈ K,∀c ∈ C, m
PH(i)
tγkc ← m

PH(i−1)
tγkc +ρ · (XC(i)

tγkc−
X̂

C(i)
tγkc)

9: Convergence: If ∀t ∈ T , ∀γ ∈ G,∀k ∈ K,∀c ∈ C, g
(i)
tγkc ←

(
X

C(i)
tγkc − X̂

C(i)
tγkc

)
< ϵ -

exit, otherwise go to Step 5.

3.3.3 Lower bound for the progressive hedging algorithm
Although PH algorithms 1 and 2 can be successfully applied to solve the multi-stage
capacity expansion planning, the solution of each algorithm is limited by the optimal
investment decisions only, such that the information on the value of the expected profit
is not provided. However, this deficiency of the PH algorithm was solved, for instance
in [44] and [22], for the two-stage and multi-stage mixed-integer programs by providing
a solution framework for computing the global lower bound for the objective function.
This section restates the proof for the solution approach in terms of the considered
multi-stage strategic capacity expansion planning decomposed per long-term scenarios.

Proposition 1. By denoting optimal investment decisions by x∗, the following
condition holds for each PHA iteration:

∑
γ∈G

πL
γ

∑
t∈T

m
PH(i)⊤
tγ · x∗

tγ = 0. (3.9)

Proof. It might be proved by induction. Let’s first consider iteration 0, in which
m

PH(0)
tγ = ρ · (x0

tγ − x̂0
tγ). Thus, for ∀γ ∈ G and ∀t ∈ T∑

γ∈G

πL
γ ·m

PH(0)⊤
tγ = ρ

∑
γ∈G

πL
γ · (x0

tγ − x̂0
tγ)

= ρ
∑
γ∈G

πL
γ

∑
γ′∈Gt

πL
γ′ · (x0

tγ − x0
tγ′)∑

γ′∈Gt
πL
γ′

= 0. (3.10)
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By induction, the same is proved for i ≥ 1.
The following is next introduced:

D(i)
γ = Minimize

xt∈Qtγ

{∑
t∈T

(
c⊤tγ · xt +m

PH(i)⊤
tγ · xt

)}
. (3.11)

Theorem 1. By denoting the global minimum of the stochastic mixed-integer
program (3.3) as z∗, the following holds:∑

γ∈G

πL
γ ·D(i)

γ ≤ z∗. (3.12)

where
∑

γ∈G π
L
γ ·D

(i)
γ is a global lower bound of (3.3) at each PHA iteration.

Proof. From the definitions of Dγ and x∗, the following expression holds:

D(i)
γ ≤

∑
t∈T

(
c⊤tγ · x∗

t +m
PH(i)⊤
tγ · x∗

t

)
. (3.13)

Taking into account (3.9),∑
γ∈G

πL
γ ·D(i)

γ ≤
∑
γ∈G

πL
γ

∑
t∈T

(
c⊤tγ · x∗

t +m
PH(i)⊤
tγ · x∗

t

)
=
∑
γ∈G

πL
γ

∑
t∈T

c⊤tγ · x∗
t +

∑
γ∈G

πL
γ

∑
t∈T

m
PH(i)⊤
tγ · x∗

t

=
∑
γ∈G

πL
γ

∑
t∈T

c⊤tγ · x∗
t = z∗ (3.14)

The lower bound for Algorithm 2 is computed similarly. Notice, the lower bound was
defined for a standard form of an optimization problem. The original problem involves
the maximization operator, thus (3.12) will define a global upper bound for the expected
profit of the strategic producers.

3.3.4 Implementation issues and innovations
3.3.4.1 Cycling behavior of the algorithm

PHA proved to be an efficient tool to solve mixed-integer stochastic programs. However,
its heuristic nature involves some level of risk related to the so-called cycling behavior
which could lead to non-convergence of the PH algorithm. The cycling behavior is
manifested in the fact that some of the hedged integer variables, such as investment
decisions, might be repeated in cycles throughout the iteration procedure. In this case,
there is a risk that the value of particular decision will not meet the average solution
of the adjacent nodes. To fix this issue, a heuristic method was proposed in [63, 64],
which detects the cycling focusing on historical values of the PH multiplier. Under
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this approach, a set of integer values lγ is generated for each decomposition scenario
using a random number generator. Then, at each iteration hash values are computed as∑

γ lγ ·m
PH(i)
γ . By comparing hash values throughout subsequent iterations, the cycling

behavior might be detected. To break the cycle in order to achieve the convergence of
PHA, the values of hedged variable xγ are fixed to maxγ∈Gxγ, ensuring feasibility for
one-sided problems.

3.3.4.2 Optimal choice of penalization factor ρ

The choice of penalty factor ρ significantly influences the quality of the solution as well
as simulation time. Practically, there is a trade-off between the speed of the algorithm
and precision of the lower bound estimate. Using large values of ρ involves a lower
number of iteration and fewer computation efforts. However, the lower bound of the
objective function could be estimated too far from the optimal objective value [44]. In
contrast, small values of ρ result in higher computational complexity, but the quality of
the solution is significantly improved.

This issue had been broadly studied in the technical literature. For example, [65]
found it beneficial to use ρ updating across different PHA iterations to improve the
simulation time of the stochastic unit commitment problem. The adaptive factor ρ
could be chosen according to cost coefficient vector of hedged variables [63], shadow
prices of hedged variables [66], locational marginal prices [67] and a certain proportion
of the objective function’s value [65]. Despite that, this thesis considers fixed values of ρ
ensuring the smooth profile of the lower bound estimate throughout iterations providing
good quality of the solution.

3.3.4.3 Scenario bundling

Dealing with a large number of scenarios, one of the proven ways to accelerate the
convergence of PHA is to group a certain amount of scenarios in bundles [44, 68, 69, 70].
Under this approach, each sub-problem of the algorithm is solved for a small number of
scenarios satisfying the non-anticipativity constraints on the considered bundle. However,
the number of scenarios in the bundle should be balanced with increasing computational
complexity of each sub-problem.

Unfortunately, all sub-problems in Algorithms 1 and 2 themselves are complicated
to solve, and thus the scenario bundling was not applied.

3.3.5 Programming implementation
Algorithms 1 and 2 include three groups of computation tasks. First, at zero iteration
the original problem is solved per each decomposition scenario. Second, starting from
the first iteration, a set of PH relaxation sub-problems is solved. Third, once all PH
relaxation sub-problems are solved, the lower bound is computed at the same iteration.
Each of these groups involves a plenty of computational tasks defined by a number of
sub-problems to be solved inside each cluster.
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There are two approaches to solve tasks inside each group: sequential and distributed
(asynchronous). The first one solves all tasks one by one using all computation power of
the processor. The second one considers splitting of the processor into portions solving
several tasks simultaneously. Apparently, with the balanced sub-problem complexity
and computational power of one processor portion, the computational time significantly
reduces.
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Figure 3.3: Sequential and distributed PHA implementation.

Figure 3.3 depicts these two approaches applied to Algorithm 1. It shows the
advantage of the distributed optimization compared to the standard sequential approach
in terms of simulation time. The distributed optimization approach was implemented
using CPLEX 12.1 under GAMS [71] and grid-enabled framework [72] on Intel Xeon
processor E5-2680 v2 with 8 cores clocking at 2.8 GHz and 128 GB of RAM at DTU
Computing Center [73].



CHAPTER 4
Case Studies

4.1 Two-bus illustrative example
4.1.1 Case description
In this section, the purposed decision-making tool is applied to a small power system,
depicted in Figure 4.1. Generation and demand units are allocated among two nodes,
connected through the overhead transmission line of 50MW capacity and 7.7S susceptance.
Initially, there are two conventional power plants in the system: existing unit with a
total capacity of 300MW, which belongs to a strategic producer, and rival unit of 250MW
of overall capacity. The producer has two investment options, i.e. WP and CCGT power
plants, to be built in any of the nodes. The capital costs of building 1 unit of CCGT
and WP technologies are 0.2 and 0.6 mil.$/MW, respectively. Detailed parameters of
generation units are collected in Table 4.2. Notice, it is assumed that generation units
enter the real-time market with price bids for up- and down-reserve deployment equal to
1.1× c and 0.9× c, respectively. System demand is represented by two loads of 200MW
and 150MW of peak demand, one per each node. For simplicity, it is assumed that they
enter with one block bid with the utility of 50 and 40 $/MW, respectively. For the sake
of simplicity, there is only one representative day considered, such that the capacity
factor of existing and candidate units is 0.61 and 0.69, respectively, and the demand
factor is 0.71 for each load.

D1 = 200MW D2 = 150MW

F 1�2 = 50MW

P
E
= 300MW

1 2

P
R
= 250MW

Figure 4.1: Network of the illustrative example.

The model is applied to a two-stage investment planning horizon. In this time-frame,
a strategic producer has to decide on optimal siting and sizing of available technologies
at the begging of the first and second years.
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Table 4.2: Illustrative example: parameters of generation units.

Unit P [MW] c [$/MW] R
↑ [MW] R

↓ [MW]
PE 300 30 0.25× P 0.25× P
PR 250 25 0.25× P 0.25× P
PC,WP 25,50,75,100 0 - -
PC,CCGT 25,50,75,100 22 1.0× P 1.0× P

Three types of uncertainty are considered: long-term uncertainty, short-term market
uncertainty, and very short-term wind power uncertainty. The first class of uncertainty
includes unpredictability of long-lasting macroeconomics indicators, such as demand
growth and investment costs. Short-term uncertainty comprises stochasticity of market
participation strategies of rival producers and consumers and reveals at the day-ahead
stage. The last uncertainty class relates to the stochastic nature of wind power production
and discloses at the real-time stage. All of this uncertainty sources are modeled through
finite sets of scenarios.

The long-term uncertainty includes three demand growth (DG) scenarios and three
investment costs (IC) scenarios. The system demand varies at the second stage with 1.2
(γDG

1 ), 1.0 (γDG
2 ) and 0.8 (γDG

3 ) rates with probability of 0.3, 0.4 and 0.3, respectively.
The investment costs for WP technology at the second stage remains the same (γIC

1 ), or
decrease with 0.8 (γIC

2 ) or 0.6 (γIC
3 ) rates with probability of 0.2, 0.4 and 0.4, respectively.

Market uncertainty set includes three scenarios: rival generation units offer and
consumers bid with 1.1, 1.0 and 0.9 rates of their marginal costs and utilities at each
representative days with identical probabilities.

Three plausible scenarios describe wind power uncertainty: wind energy output
changes by +20%, 0% and -20% from the average wind capacity factor of a given
representative day. The probabilities of these scenarios are 0.25, 0.5 and 0.25, respectively.

Investment budget is 1 bill.$ and assumed to be large enough, such that the budget
constraint is not binding. For simplicity, the discount factor is set to zero. Annual
amortization rate is 10% of the capital costs. The cost of load shedding is 2000 $/MW.
Finally, the security of the supply factor declared by TSO is set to 1.2. Notice that this
requirement is not bidding in any scenario of uncertainty realization.

4.1.2 Direct solution
The problem is first solved directly, without any decomposition applied. Table 4.3
collects the value of objective function along with computational time for different cases
depending on what sources of uncertainty are considered. The relevant investment
decisions are summarized in Table 4.4. The model optimizes the expected value of the
stochastic parameter if the uncertainty around it is not explicitly included in the model.

First three cases do not consider any long-term scenarios. The expectation of the
profit is the same for these cases since the wind and market uncertainty has symmetric
distributions. The investment decisions are quite similar in this case: the power producer
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finds it profitable to invest in 200 MW of the wind generation and invest only 25MW of
the CCGT generation at the first period. At the subsequent period, it invests only in
150 MW of the wind power. It is noteworthy that in the third instance, the producer
allocates the candidate units at the second stage slightly differently. In this particular
example, the slight reallocation of the units among the buses at the second stage does
not significantly influence the profit. Considering the market uncertainty only, and fixing
the solution for the second stage to the values obtained in two previous cases, the profit
reduces by 20000$ only.

When the long-term uncertainty comes into play, the investment planning is significantly
reshaped. Anticipating the future demand fluctuations, the company strategically decides
to invest more resources in CCGT technology in the first period. It then adjusts its
investment decisions with respect to the different demand realizations: with a decrease
of the system demand, it invests in smaller wind power production capacities at the
second stage. Unlike demand fluctuations, the variation in the investment costs does
not have an impact on the investment decisions at the second stage. Despite that, the
producer tends to postpone the investments to the second time period compared to the
previous case.

The consideration of the demand and investment costs uncertainty together turns
to be a challenging task. The problem includes 23,618 constraints, 27,433 continues
variables, 360 discrete variables and 13,824 SOS1 variables. Thus, the problem consumes
a lot of computation efforts: the simulation time is 250 times larger compared to the
cases, where both sources were considered independently. Second, the solver could only
reach 2.48% duality gap.

Table 4.3: Illustrative example: direct solution: objective function value and
simulation time.

Uncertainty Expected profit [mil.$] CPU Time [s]
- 97.791 2.4

Wind 97.791 3.1
Market 97.791 3.1

Wind + Market 90.897 4.7
Wind + Market + DG 86.945 326.9
Wind + Market + IC 89.217 325.5

Wind + Market + DG + IC 88.9871 81386.1
1 Duality gap is 2.48%
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Table 4.4: Illustrative example: direct solution: investment decisions [MW].

Uncertainty LT scenario
Period 1 Period 2

Bus 1 Bus 2 Bus 1 Bus 2
WP CCGT WP CCGT WP CCGT WP CCGT

- - 100 25 100 0 75 0 75 0
Wind - 100 25 100 0 75 0 75 0
Market - 100 25 100 0 50 0 100 0

Wind + Market - 100 25 100 0 100 0 50 0

Wind + Market+DG
γDG
1

100 50 100 25
50 0 100 0

γDG
2 25 0 50 0

γDG
3 0 0 25 0

Wind + Market+IC
γIC
1

100 25 100 0
75 0 75 0

γIC
2 75 0 75 0

γIC
3 75 0 75 0

Wind + Market+DG+IC

γDG
1 +γIC

1

100 50 100 0

100 0 100 0
γDG
1 +γIC

2 100 0 100 0
γDG
1 +γIC

3 100 0 100 0
γDG
2 +γIC

1 75 0 75 0
γDG
2 +γIC

2 100 0 50 0
γDG
2 +γIC

3 100 0 50 0
γDG
3 +γIC

1 25 0 50 0
γDG
3 +γIC

2 0 25 25 0
γDG
3 +γIC

3 0 0 25 0
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4.1.3 Solution via progressive hedging
The progressive hedging decomposition is carried out with two different algorithms:

– Decomposition over the long-term scenarios only. Under this framework,
there are 9 sub-problems solved in the first iteration, and 18 sub-problems solved
at each subsequent interaction.

– Decomposition over the long-term and market scenarios. Under this
framework, there are 27 sub-problems solved in the first iteration, and 54 sub-problems
solved at each subsequent interaction.

Table 4.5 summarizes the solutions for the upper-bound of the expected profit with
respect to the algorithm applied and a value of penalization factor defining the accuracy
of the objective function estimation. The solution demonstrates that both approaches
resulted in similar profit estimates.

Table 4.5: Illustrative example: PH solution: upper bound of the expected profit for
different value of penalization factor ρ [mil.$.].

PH Decomposition ρ = 500 ρ = 100 ρ = 50 ρ = 30 ρ = 20 ρ = 10

Over LT scenarios 89.371 89.301 89.315 89.309 89.310 89.308
Over LT&MS scenarios 89.383 89.340 89.316 89.308 89.305 89.304

Two decomposition algorithms resulted in the same first-stage decisions indicated
in Table 4.4. The solution for the second-stage decisions for the highest precision with
ρ = 10 is collected in Table 4.6. As it illustrated in the table, the decomposition
over the long-term scenarios only and decomposition over the long-term and market
scenarios provided almost identical results: only 4 out of 36 recourse decisions are
different. The small difference is observed in the first and fifth scenarios. However,
as it was stated earlier, the slight reallocation of the candidate units among the system
buses at the second stage does not have a significant influence on the expected profit
estimate. Despite that, the overall wind power capacity to be installed in the second
period is perfectly matched.

Table 4.7 describes how the precision of the algorithms affects the computational
burden. With lower values of ρ, the solutions tend to converge with a larger number of
iterations and time resources.

Figures 4.8 and 4.9 illustrate the evolution of the upper bound of the objective
function over the PH algorithm iterations. It is seen that when the investment decisions
are closer to the conditions declared by the non-anticipativity constraints, the expected
profit logically decreases. The small difference between the first and last iterations
testifies that the expected value of perfect information is relatively small for this illustrative
example.

It is also observed that the decomposition over the long-term and market scenarios
results in a smoother upper bound profile. It is because the bound is computed as a
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Table 4.6: Illustrative example: PH solution for the investment decisions in the second
period with ρ = 10 [MW].

Decomposition LT only LT&MS
Match1

Scenario Bus 1 Bus 2 Bus 1 Bus 2
WP CCGT WP CCGT WP CCGT WP CCGT

γDG
1 +γIC

1 75 0 75 0 50 0 100 0 -
γDG
1 +γIC

2 50 0 100 0 50 0 100 0 +
γDG
1 +γIC

3 75 0 75 0 75 0 75 0 +
γDG
2 +γIC

1 25 0 50 0 25 0 50 0 +
γDG
2 +γIC

2 100 0 50 0 75 0 75 0 -
γDG
2 +γIC

3 75 0 75 0 75 0 75 0 +
γDG
3 +γIC

1 0 0 25 0 0 0 25 0 +
γDG
3 +γIC

1 0 0 25 0 0 0 25 0 +
γDG
3 +γIC

1 0 0 25 0 0 0 25 0 +
1 Shows whether solutions of two PHA are identical or not.

Table 4.7: Illustrative example: simulation time and number of iterations for different
value of ρ.

Penalization factor ρ = 500 ρ = 100 ρ = 50 ρ = 30 ρ = 20 ρ = 10

Over LT scenarios
CPU Time [s] 26.9 46.2 69.7 145.5 187.3 374.9
Number of iterations 6 10 15 31 38 69

Over LT&MS scenarios
CPU Time [s] 35 92.8 222.2 379.8 515.1 1083.7
Number of iterations 9 23 51 83 121 235

probability-weighted average among 27 sub-problems, whereas under the decomposition
over the long-term scenarios only, the average is computed out of 9 sub-problems
only. This observation suggests that the decomposition over the long-term and market
scenarios results in a more accurate estimation of the expected profit.
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Figure 4.8: PH decomposition over LT scenarios only: evolution of the upper bound
of the objective function for different value of ρ.
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Figure 4.9: PH decomposition over LT&MS scenarios: evolution of the upper bound
of the objective function for different value of ρ.
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4.1.4 Sequential vs. distributed optimization
Table 4.10 collects the computational time for two PH algorithms when sub-problems
are solved sequentially and in the distributed fashion. In this particular example,
decomposing the problem over the long-term scenarios only, there are 9 sub-problems
to be solved at the first iteration and 18 sub-problems at the subsequent iterations.
By decomposing the problem through the long-term and market scenarios, there are
27 sub-problems at the first iteration and 54 sub-problems at the subsequent iterations.
Solving the problems sequentially, all eight cores are employed to address each sub-problem.
If the problem is solved in the distributed manner, only one available core is used for
each sub-problem. The results demonstrate that the distributed approach to the PH
algorithm allows improving simulation time vastly.

Table 4.10: Illustrative example: simulation time applying PHA in sequential and
distributed fashion [s].

Penalization facor ρ = 500 ρ = 100 ρ = 50 ρ = 30 ρ = 20 ρ = 10

Decomposition over LT scenarios
Sequential 55.2 251.5 531.7 892.0 1186.0 1872.7
Distributed 26.9 46.2 69.7 145.5 187.3 374.9

Decomposition over LT&MS scenarios
Sequential 242.7 1199.5 2926.2 2884.3 4709.0 9714.9
Distributed 35 92.8 222.2 379.8 515.1 1083.7

4.1.5 Decomposition over long-term scenarios only vs.
decomposition over long-term and market scenarios

So far, the simulations were performed assuming that the market uncertainty scenarios
for the rival offering prices and demand bidding prices are depended: they increase,
decrease or remain the same simultaneously. Assuming that they are independent, the
number of market scenarios is increased up to 9. The computational performance of both
PH algorithms with respect to this assumption is summarized in Table 4.11. For the
worst precision with ρ = 500, the decomposition over the long-term scenarios converged
in 3.5 hours, while the decomposition over the long-term and market scenarios converged
in slightly more than 1 minute. In the case of the highest precision, the time difference
is also impressive: 12.1 hours against 11.4 minutes.

4.1.6 Impact of the market power on the investment planning
In this section, the impact of the market power of a strategic producer on its investment
decisions and expected profit is investigated. The company exercises its market power
deciding on the day-ahead energy quantities and prices (energy and reserve quantities)
as well as real-time prices for up- and down-reserve deployment for each unit in the
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Table 4.11: Illustrative example: computational time and number of iterations
involved in two PH algorithms with 9 market scenarios.

Penalization factor ρ = 500 ρ = 100 ρ = 50

Decomposition over LT scenarios
CPU Time [s] 12793.7 29005.9 43621.3
Number of iterations 5 13 16

Decomposition over LT&MS scenarios
CPU Time [s] 80.3 593.1 688.4
Number of iterations 9 52 59

generation portfolio, i.e. the existing and candidate units. There are five cases under
consideration:

– Case 1. The company strategically decides on the entire range of decision variables
defining the participation strategy, i.e. full market power is studied.

– Case 2. The company strategically decides on the offering prices only, and fixes the
energy and reserve quantities to the maximum possible capacity, i.e. a la Bertrand
competition is studied

– Case 3. The company strategically decides on the offering quantities only, and
fixes the energy offering prices to the marginal costs of production and the reserve
offering prices to ±10% of the marginal costs of production for the up- and
down-reserve deployment, respectively, i.e. a la Cournot competition is studied.

– Case 4. The company enters the market with true energy and reserve quantities
and prices, i.e. no market power is exercised.

– Case 5. No investments are performed. This instance is used as an auxiliary
benchmark to the rest of the cases.

The PH algorithm with the decomposition over the long-term and market scenarios
and ρ = 100 is applied to solve the first four cases. For the last case, the problem is solved
with fixed investment decisions directly. Table 4.12 summarizes the expected profits
and simulation time for each considered case. As it turned out, the partial limitation of
the market power through the prices or quantities did not result in a significant profit
downturn. The PH algorithm accuracy explains the slight difference in the values of
the lower bound of the expected profit. However, if the strategic producer is forced
to enter the market as a price-taker, the expected profit drops by 41%. Apparently,
when the company does not carry out any investment decisions, the lowest expected
profit is observed. By investing in new generation units, it increases the profit by 64%
as a price-taking market participant, and it increases the profit by 208% acting as a
price-maker.

The computation time derived in the first four cases varies significantly. First of all,
it is important to mention that the decision variables defining the strategic participation
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are positive variables, and strategic offering prices are not limited above. Fixing these
variables to particular parameters while limiting the market power of the company, the
problem becomes more constrained, and thus it is supposed to take more CPU time and
efforts towards the optimum. However, solving the problem in the decompose fashion,
this proposition is not necessarily held. According to Table 4.12, by fixing the strategic
energy and reserve quantities to their maximum capacities, the simulation time increases
by 60%. In the case of the fixed offering prices, the time drops by 70%. However, the
real difference in the computational time and efforts is observed while considering the
company as a price-taker. First of all, it takes 25 times more resources compared to the
case of a price-maker. Moreover, the algorithm converged only in 1 iteration meaning
that the investment decisions are the same for any long-term and market scenarios.
This iteration took 33.5 minutes, while the average iteration time in the case of a full
price-maker is 4 seconds.

Table 4.12: Expected profits and simulation time for the different cases of market
power exercise.

Case Expected profit [mil.$] Iterations CPU time [s]
Case 1 89.304 23 92.8
Case 2 88.902 9 227.8
Case 3 89.331 31 28.4
Case 4 52.287 1 2007.0
Case 5 32.285 - 1.3

Tables 4.13-4.16 illustrate the optimal investment decisions in the first four cases.
The decisions in the first instance had already been discussed above and used as a
reference for the following case. Limiting the market power of the strategic producer by
forcing it to enter the market with actual power capacity, the company tends to postpone
the investments to the second period. Indeed, it reduces the capacity of the CCGT
candidate unit at bus 1 to build more wind power capacity later in the most negative
demand growth scenario in the most positive investment costs realization. Moreover,
if demand increases by 20% and capital costs drop by 40%, it tends to invest more
resources into wind power production compared to the reference case. Similarly, if the
system demand and investment cost are not changed in the second period, it significantly
increases investments in the wind generation. By restricting the ability of the company
to exert market power through the strategic prices, the investment planning does not
change substantially. Indeed, compared to the first case, it only reallocates the candidate
wind energy capacities among the buses at the second stage. In the fourth case, when the
company is considered as a price-taker, the investment planning had changed a lot. First,
the company no longer considers CCGT technology as a profitable investment option.
Second, it considers the second bus, where the rival unit is located, as a most profitable
one. Finally, the investment cost scenarios do not influence the decision-making process
at the second stage; only the demand growth scenarios shape the investment planning.
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Table 4.13: Investment decisions in case 1: the company completely exercises the
market power [MW].

Scenario
Period 1 Period 2

Bus 1 Bus 2 Bus 1 Bus 2
WP CCGT WP CCGT WP CCGT WP CCGT

γDG
1 +γIC

1

100 50 100 0

50 0 100 0
γDG
1 +γIC

2 50 0 100 0
γDG
1 +γIC

3 75 0 75 0
γDG
2 +γIC

1 25 0 50 0
γDG
2 +γIC

2 75 0 75 0
γDG
2 +γIC

3 75 0 75 0
γDG
3 +γIC

1 0 0 25 0
γDG
3 +γIC

2 0 0 25 0
γDG
3 +γIC

3 0 0 25 0

Table 4.14: Investment decisions in case 2: the company strategically decides on the
offering prices only [MW].

Scenario
Period 1 Period 2

Bus 1 Bus 2 Bus 1 Bus 2
WP CCGT WP CCGT WP CCGT WP CCGT

γDG
1 +γIC

1

100 25 100 0

100 0 50 0
γDG
1 +γIC

2 100 0 50 0
γDG
1 +γIC

3 100 0 100 0
γDG
2 +γIC

1 100 0 50 0
γDG
2 +γIC

2 75 0 75 0
γDG
2 +γIC

3 75 0 75 0
γDG
3 +γIC

1 0 0 25 0
γDG
3 +γIC

2 0 0 25 0
γDG
3 +γIC

3 25 0 50 0
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Table 4.15: Investment decisions in case 3: the company strategically decides on the
offering quantities only [MW].

Scenario
Period 1 Period 2

Bus 1 Bus 2 Bus 1 Bus 2
WP CCGT WP CCGT WP CCGT WP CCGT

γDG
1 +γIC

1

100 50 100 0

75 0 75 0
γDG
1 +γIC

2 75 0 75 0
γDG
1 +γIC

3 75 0 75 0
γDG
2 +γIC

1 25 0 50 0
γDG
2 +γIC

2 75 0 75 0
γDG
2 +γIC

3 75 0 75 0
γDG
3 +γIC

1 0 0 25 0
γDG
3 +γIC

2 0 0 25 0
γDG
3 +γIC

3 0 0 25 0

Table 4.16: Investment decisions in case 4: the company does not exercise the market
power [MW].

Scenario
Period 1 Period 2

Bus 1 Bus 2 Bus 1 Bus 2
WP CCGT WP CCGT WP CCGT WP CCGT

γDG
1 +γIC

1

100 0 100 0

50 0 100 0
γDG
1 +γIC

2 50 0 100 0
γDG
1 +γIC

3 50 0 100 0
γDG
2 +γIC

1 25 0 50 0
γDG
2 +γIC

2 25 0 50 0
γDG
2 +γIC

3 25 0 50 0
γDG
3 +γIC

1 0 0 25 0
γDG
3 +γIC

2 0 0 25 0
γDG
3 +γIC

3 0 0 25 0
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4.2 Two-stage wind and CCGT expansion planning
with modified two-area version of IEEE 24-Bus
RTS

The aim of this case study is to estimate the ability of the proposed decision-making
tool to handle larger power systems and number of uncertainty realization scenarios. In
this line, two-period strategic CCGT and WP expansion is considered in the framework
of the modified IEEE 24-Bus RTS [74].

4.2.1 Case description
The network configuration of this case study is depicted in Figure 4.17 and comprises
of two areas. The capacity of the internal network lines is assumed to be enough, such
that there is no congestion inside each zone. However, the aggregated capacity of the
tie-lines connecting two areas is set 700MW to cause bottlenecks in the system. The
susceptance of the transmission lines is 40S.

Initially, there are 13 generating units in the system; their parameters are collected
in Table 4.18. 9 out of 12 conventional generators are flexible with various ramping
characteristics. It is assumed that they enter the real-time market with price bids for
up- and down-reserve deployment equal to 1.1× cj and 0.9× cj, respectively. Units 8, 9
and 10 are inflexible power plants but with relatively small marginal costs of production.
Only the last unit is a stochastic wind power producer. The strategic producer possesses
the first two generating units while the rest of power plants belong to rivals. The loads
in each area are aggregated to a single demand unit with parameters given in Table 4.19.

To account for demand and wind power variability within each year of a planning
horizon, five representative days are considered. Their parameters are summarized in
Table 4.20.

Planning its future power portfolio, the strategic producer is capable of building up
to 200MW of wind power and CCGT technologies in any area per year. The generation
parameters of the investment options are summarized in Table 4.21. CCGT technology
is characterized by relatively small installation costs and nearly average production costs.
Notice, that these units are fully dispatchable and able to enter the real-time market
with full capacities for up- and down-reserve. Although the production cost of WP is
zero, they are four times more expensive than the conventional generators.

Three plausible scenarios describe the real-time WP deviation: it is 20% higher, the
same or 20% lower than the day-ahead contracted quantities with equal probabilities.
Market uncertainty comprises three scenarios for rivals’ offering price policies: they are
10% higher, the same or 10% lower than their marginal costs of production.

Long-term uncertainty is only related to the second time stage and consists of five
independent stochastic processes: demand growth, investment costs, fuel costs, rival
investments in CCGT and WP production technologies. Their scenario description is
provided in table 4.22.
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Figure 4.17: Network of two-area version of IEEE 24-Bus RTS.

Investment budget is assumed to be large enough so that strategic producer is capable
of expanding its portfolio up to the maximum capacity of the candidate units in both
periods. The producer assumes a low risk of future cash flows in the following two
years and chooses a relatively small discount factor of 3%. The lifetime of candidate
units is ten year, thus linear amortization factor of 10% is considered. TSO requires
supply to be at least 10% higher than the expected demand for each representative day
in the planning horizon. Although this requirement affects participation strategy of
the strategic producer, it does not provoke the investments in excess generation. The
tolerance of PHA ϵ is 0MW
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Table 4.18: Two-stage WP and CCGT expansion planning: parameters of initial
generation units.

Unit Area P j

[MW]
R

↑
j

[MW]
R

↓
j

[MW]
cj

[$/MW]
1 I 152 40 40 13.32
2 I 152 40 40 13.32
3 I 350 70 70 20.7
4 II 591 180 180 20.93
5 II 60 60 60 26.11
6 II 155 30 30 10.52
7 II 155 30 30 10.52
8 II 400 - - 6.02
9 II 400 - - 5.47
10 II 300 - - 0
11 II 310 60 60 10.52
12 II 350 40 40 10.89
13 II 200 - - 0

Table 4.19: Two-stage WP and CCGT expansion planning: demand data.

Area P
D
d ,

[MW]
bD
d ,

[$/MW]
I 1332 25
II 1518 35

Table 4.20: Two-stage WP and CCGT expansion planning: representative days data.

Representative
day

Demand
Factor
[p.u.]

Wind Power
Capacity factor

[p.u.]

Weight
[hour]

h1 0.6920 0.1223 1036
h2 0.7107 0.1415 4306
h3 0.7093 0.6968 443
h4 0.7292 0.1307 955
h5 0.7300 0.7671 2020
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Table 4.21: Two-stage WP and CCGT expansion planning: parameters of candidate
generation units.

Technology Area P c

[MW]
R

↑
c

[MW]
R

↓
c

[MW]
Cc

[$/MW]
cInv
c

[$/MW]

CCGT I,II 20,40,60,80,100,
120,140,160,180,200 Full capacity 15 100000

WP I,II 20,40,60,80,100,
120,140,160,180,200 - 0 400000

Table 4.22: Two-stage WP and CCGT expansion planning: scenario description of the
long-term uncertainty.

Uncertainty source Scenario Probability Rate of
change

Demand growth
γDG
1 30% +5%

γDG
2 40% 0%

γDG
3 30% -5%

Investment costs
γIC
1 20% 0%

γIC
2 30% -5%

γIC
3 50% -10%

Fuel costs
γFC
1 33.3% +5%

γFC
2 33.3% 0%

γFC
3 33.3% -5%

Rival investment
in CCGT in area I

γRI, CCGT
1 50% 400MW

γRI, CCGT
2 50% 0MW

Rival investment in
WP in area II

γRI, WP
1 50% 200MW

γRI, WP
2 50% 0MW
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4.2.2 Results
PH with decomposition over LT and MS scenarios is applied. At the first iteration, there
are 324 scenario specific problems to be solved, formed by 108 long-term scenarios and
3 market scenarios. At the second iteration, there are 648 sub-problems to be solved,
half of them for PH relaxation, and another half for the upper-bound estimation. The
complexity of each sub-problem in PH relaxation section of the algorithm is defined
by 8,989 constraints, 10,347 continues variables, 88 discrete variables, and 844 SOS1
variables. The solution to the two-stage strategic capacity investment planning is found
with 18 PHA iterations taking 50.7 hours of computational time with penalization factor
ρ = 1000. The algorithm estimates the upper bound on the expected profit over the
next two years at 11.96 mil.$, as depicted in Figure 4.23.
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Figure 4.23: PH decomposition over LT scenarios only: evolution of the upper bound
of the objective function for different value of ρ.

This level of profit is expected with building 140MW of WP units in area I and 60MW
of the same technology in area II in the first year of the planning horizon. The flexible
CCGT units are not financially attractive to invest at this stage. The information on the
further capacity expansion is given in Tables A.1-A.4. In fact, new reserve providers are
built in the second year in two scenarios only. Disregarding the demand growth dynamic,
they are built if and only if fuel prices are increased by 5% and rivals introduce 200MW of
new wind power generation. This observation suggests that (i) the given power system is
sufficiently saturated with flexible generation and (ii) investments in CCGT technology
are caused rather by rival wind energy enlargement than by own wind power expansion.

For the sake of clear results interpretation, the second stage decisions on wind power
investments are studied from the perspective of concrete realizations of the demand
growth, capital costs, fuel costs, and rival investments. These outcomes are collected in
Table 4.24. The rate of load turned out to have a substantial impact on the second-stage
expansion decisions, which are aligned with demand dynamic. As it shown in the table,
a 5% demand growth requires nearly 60MW of new wind power units. Moreover, with
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a decreasing demand rate, the producer gives preference to the candidate units located
in the second area, reducing the wind expansion in the domestic region, i.e. negative
demand development stimulates to increase market share in the neighbouring area.

Table 4.24: Two-stage WP and CCGT expansion planning: wind power investment
decisions for the second time period for specific long-term uncertainty
realizations.

Scenario Probability Rate Installed capacity [MW] Share [%]
Total Area I Area II Area I Area II

Demand growth
γDG
1 30% +5% 187 143 44 76 24

γDG
2 40% 0% 120 84 36 70 30

γDG
3 30% -5% 69 19 50 28 72

Investment costs
γIC
1 20% 0% 53 46 8 86 14

γIC
2 30% -5% 110 75 35 68 32

γIC
3 50% -10% 162 101 61 62 38

Fuel costs
γFC
1 33.3% +5% 167 96 71 58 42

γFC
2 33.3% 0% 126 81 44 65 35

γFC
3 33.3% -5% 49 36 13 74 26

Rival investments in CCGT in Area I
γRI, CCGT
1 50% 400MW 75 66 9 88 12

γRI, CCGT
2 50% 0MW 174 98 76 56 44

Rival investments in WP in Area II
γRI, WP
1 50% 200MW 125 81 44 65 35

γRI, WP
2 50% 0MW 125 83 42 67 33

Investment costs scenarios also demonstrate their impact on recourse actions. The
aggregated capacity of new wind installations significantly increases even with 5% decrease
in capital costs. Allocation of the wind units among areas shows that in all cases
the strategic producer carries out the planning favoring the residential area for any
realization of investment costs.

According to the initial expectations, the fuel cost uncertainty was included in an
attempt to provoke or correct the investments in flexible but expensive CCGT technology.
However, the fuel prices turned to have an impact rather on the wind power units with
practically zero marginal costs of production. In fact, the strategic producer permanently
offers a slightly lower price than the cost of marginal generation unit in the system. Thus,
with increasing generation costs of marginal producers, the company receives greater
profits, which are sufficient to cover high investment costs of wind power units.

Despite the fact that in some uncertainty realizations investment decisions are indifferent
to rival expansion, in average it proves to have a substantial impact on the strategic
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development planning. This influence entirely depends on the area of interest. On the
one hand, if rival producers introduce 400MW in the domestic, it decides to compensate
the market share concentrating new wind installations in that area. Otherwise, it nearly
equality allocates new capacity among the areas but in greater quantities. In contrary,
if rivals build new 200MW of wind power in the second area, it practically does not
affect any recourse decision.

To sum up, the investment decisions resulting from the PHA application are quite
aligned with a long-term dynamic of power system development providing a fair response
to the future challenges, highlighting the practical interest of the proposed decision-making
tool.

4.3 Three-stage wind power investment planning in
a pool-based electricity market

The aim of this case study is to validate the ability of the proposed decision-making
tool to carry out the investment planning for a multi-stage planning horizon. In this
line, a three-year strategic wind power investment planning in a pool-based electricity
market from a private investor point of view is studied. Initially, there are no existing
units in the investor’s generation portfolio. In addition, the impact of different long-term
uncertainty sources on the investment decisions and expected profit is investigated.

4.3.1 Case description
The pool is represented by generation units given in Table 4.18 and 2700MW of system
load with the utility of 40$/MW. For the sake of simplicity, there is only one representative
day for each year of the planning horizon: demand factor is equal to 1, and wind power
factor is a weighted average of the values collected in Table 4.20.

Market uncertainty is portrayed by a set of three scenarios for rival power producers:
they offer energy quantities with 1.1, 1.0 and 0.9 rates of their marginal costs with
identical probabilities. Wind power uncertainty is given with a set of three scenarios:
wind power is equal to, 20% higher or 20% lower than the average wind capacity factor
with equal probabilities.

The long-term uncertainty involves variability of system load, investment costs and
rival investments at the second and third years of the planning horizon. Variability of the
system demand is described by two scenarios: demand is 5% higher than (γDG-I

t ) or equal
to (γDG-II

t ) demand at the previous period with probabilities of 0.6 and 0.4, respectively.
Investment cost uncertainty is given by two scenarios: they remain the same (γIC-I

t ) or
5% less than the values at the previous time stage (γIC-II

t ) with probability of 0.6 and
0.4, respectively. Finally, the investment uncertainty is described by two equiprobable
scenarios: rival producers build (γRI-I

t ) or not build (γRI-II
t ) the wind power units of

aggregated capacity of 600MW. In total there are 8 possible long-term uncertainty
realizations at the beginning of the second year, and 64 realizations at the beginning of
the third year.
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Capital costs are assumed to be 0.93 mil.$/MW. The lifetime of wind power units
is set to 15 years, such that with a linear amortization rate the investor loses 6.7% of
the initial asset value. The investor is capable of building up to 300MW of wind power
generation every year with a step of 1MW. The tolerance of PHA ϵ is 1MW. The rest
of model’s parameters are the same as in the previous case.

4.3.2 Results
The simulations are carried out by applying PHA decomposition for both long-term and
short-term decisions tree. To validate the ability of the algorithm to tackle a multi-stage
strategic investment planning, it was applied to several cases. First, the problem is
solved with no long-term uncertainty considered. Then, the impact of demand growth,
investment costs, and rival investment uncertainty is studied independently. Finally,
all uncertainty sources are considered simultaneously. The complexity of each PH
relaxation sub-problem is defined by 1,504 constraints, 1,681 continues variables, 903
binary variables, and 496 SOS1 variables.

As it was shown in [28], if a decision-maker ignores uncertainty of specific parameters
and solves the problem in a deterministic fashion, the cost of this negligence is of the
same magnitude as the investment costs. In this line, the present case study estimates
the opportunity costs caused by misjudgment of uncertainty. Notice, if demand growth,
investment costs or rival investments are not explicitly considered as stochastic parameters,
they are set to expected values.

Table 4.25 summarizes the optimal investment decisions with respect to different
uncertainty sources engaged. In the deterministic case, where no variability of long-term
indicators is taken into account, the investor finds it profitable to invest in all available
wind power capacity at all three time periods. This solution is used as a benchmark for
other cases.

When demand growth uncertainty is taken into consideration, the solution slightly
changes. Strategic investor keeps the same investment decisions for the first and second
stages, and then his decisions are strongly dependent on the demand realizations. If
demand increases at the second stage, the investor decides to reduce investments if
demand further increases and continue expansion if it remains the same. The motivation
behind this is the fact that under certain circumstances, it strategically reduces wind
power penetration to keep energy prices high. In contrary, if demand remains the same at
the second stage, further expansion decisions are quite aligned with demand trajectories.

Capital costs scenarios tuned to have a larger impact on the investment planning.
Building all available capacity in the first period, the subsequent investment dynamic
is shaped by investment costs variation. On the one hand, with diminishing capital
expenses, producer always choices entire capacity to build. On the other hand, it
significantly cuts the expansion if investment costs remain the same: at the second
stage by 43% and at the third stage by 85% of the deterministic solution.

Rival investment decisions also have a substantial impact on the strategic investment
planning. If rivals do not expand their wind assets, the strategic producer decides on the
largest capacity option. However, if rivals build 600MW of wind power at the second
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Table 4.25: Three-stage WP investment planning: investment decisions and expected
profit for different uncertainty cases.

Uncertainty Scenario
Inv. decisions

[MW] Expected profit
[mil.$]

t1 t2 t3

No - 300 300 300 2.194

DG

γDG-I
t2

+ γDG-I
t3

300
300 284

2.359γDG-I
t2

+ γDG-II
t3

300
γDG-II
t2

+ γDG-I
t3 300 300

γDG-II
t2

+ γDG-II
t3

293

IC

γIC-I
t2

+ γIC-I
t3

300
170 46

2.401γIC-I
t2

+ γIC-II
t3

300
γIC-II
t2

+ γIC-I
t3 300 300

γIC-II
t2

+ γIC-II
t3

300

RI

γRI-I
t2

+ γRI-I
t3

300
246 189

2.238γRI-I
t2

+ γRI-II
t3

225
γRI-II
t2

+ γRI-I
t3 300 300

γRI-II
t2

+ γRI-II
t3

300
DG+IC+RI Expectation 300 240 201 2.295

stage, further investor’s expansion is reduced. In fact, if all producers realize their
investments to the full extent of available options, it leads to a sensible price reduction,
such that capital costs are not ensured. In this line, investor strategically decides to
interrupt expansion to keep high prices in the market, enhancing capital cost recovery.

In the last experiment, all uncertainty sources are considered together. In this case,
strategic investor builds all available generation capacity at the first stage. Later, the
expansion is gradually decreasing in the expectation and kept at much lower level than it
is proposed by the deterministic solution. Table 4.27 summarizes the detailed investment
plan for the strategic investor. As it turns out, in some certain scenarios the most
profitable option is do not invest at all. For example, with unaltered demand growth and
investment cost at the second stage, and if rivals introduce new wind power capacities,
the best response is to postpone expansion further till, for example, system load will be
increased.

Although investment decisions significantly differ from one case to another, the
expectation of the profit over planning horizon is estimated at nearly the same level.
Despite that, solving the model considering the entire set of uncertainty allows deriving
an informed investment planning anticipating the inherent dynamic of power system
development.

Finally, Table 4.26 collects PHA performance for all considered cases. It is noteworthy
that even for the deterministic case several iterations are required to find the solution.
This is explained by the fact that solutions for different market uncertainty scenarios,
comprising stochasticity of rival offering price policies, might be different at first iteration,
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such that several steps are required to tighten short-term decision tree. In the last case,
the algorithm only converges with a tolerance of 5MW due to cycling issue occurred for
the second stage investment decisions.

Table 4.26: Three-stage WP investment planning: computational complexity.

LT uncertainty CPU time [s] Iterations
- 22614 21

DG 7717 12
IC 12274 18
RI 9835 16

DG+IC+RI 27680 100
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Table 4.27: Three-stage WP investment planning: detailed investment decisions with full uncertainty included [MW].

t2 t3
t1 t2 t3

t2 t3
t1 t2 t3Scenario Scenario

DG IC RI DG IC RI DG IC RI DG IC RI

5%

0%

600

5%
0% 600

300

205

0

0%

0%

600

5%
0% 600

300

0

0
0 193 0 15

-5% 600 300 -5% 600 300
0 300 0 300

0%
0% 600 0

0%
0% 600 0

0 0 0 0

-5% 600 153 -5% 600 0
0 300 0 300

0

5%
0% 600

300

96

0

5%
0% 600

252

0
0 300 0 300

-5% 600 284 -5% 600 300
0 300 0 300

0%
0% 600 0

0%
0% 600 0

0 300 0 0

-5% 600 300 -5% 600 300
0 300 0 300

-5%

600

5%
0% 600

300

300

-5%

600

5%
0% 600

300

56
0 284 0 300

-5% 600 300 -5% 600 56
0 284 0 300

0%
0% 600 56

0%
0% 600 0

0 300 0 295

-5% 600 56 -5% 600 0
0 300 0 300

0

5%
0% 600

300

284

0

5%
0% 600

300

300
0 300 0 300

-5% 600 284 -5% 600 300
0 300 0 300

0%
0% 600 300

0%
0% 600 293

0 300 0 300

-5% 600 300 -5% 600 293
0 300 0 300
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CHAPTER 5
Conclusions

The aim of this thesis is to build a decision-making tool which supports strategic
multi-stage investment planning for a generation company for years ahead in the presence
of uncertainty. As a result, the main outcome of this work is a generic equilibrium model
allowing to smartly allocate investment decisions in the given time-frame and network
topology, optimally deciding on an appropriate timing, siting, and sizing of CCGT and
wind power production units.

The initial foundation of the proposed tool is formalized in a framework of the
bilevel optimization problem. The upper-level problem aims at maximizing the expected
profit of a strategic producer over the planning horizon, defining technical and financial
boundaries on company’s operations. The purpose of a set of lower-level problems is
to approximate market participation strategy anticipating various short- and long-term
uncertainty. To achieve an equivalent and tractable single-level linear formulation, a set
of KKT conditions of lower-level problems is applied. As a result, the problem is recast
as a mixed-integer linear programming problem. Despite that, the tractability of the
model is still limited for large-scale applications.

To achieve scalability of the proposed tool, progressive hedging decomposition is
employed. This approach belongs to a class of augmented Lagrangian relaxation techniques
and decomposes the problem per scenarios. Treating the problem in an iterative manner,
the algorithm solves a set of scenario-specific problems restoring the non-anticipativy
conditions on investment variables declared by original problem. Specifically, two algorithms
were built. The first one is based on the relaxation of the long-term decision tree
comprising investment decisions throughout a multi-stage planning horizon. The second
one aims at more deeper decomposition based on the simultaneous relaxation of the
long-term decision tree and short-term decision tree bound up with market participation
decisions. Despite the heuristical nature of this method, this work develops a generic
framework that allows obtaining a reasonable trade-off between quality of the solution
and simulation time.

A series of case studies is performed to highlight a practical interest in the proposed
solution framework. A small two-bus system is used to estimate the quality of the
solution provided by two PHA algorithms. As it turned out, both approaches resulted
in nearly the same solution as the one given by a direct approach. More specifically, due
to computational limitation, a direct solution was obtained for a duality gap of 2.5% and
required almost one day of computational time. PHA application provided the solution
for a duality gap of 2% in a matter of minutes.

To perform a more realistic investment planning, two larger case studies were performed.
In the first one, a two-area version of IEEE 24-Bus RTS was used to carry out two-stage
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CCGT and wind power expansion planning for a strategic company. The second one was
focused on the three-year wind-power investment planning for a strategic investor in a
pool-based market. In both cases, PHA relaxation over long- and short-term uncertainty
scenarios proved to be a useful tool to generate informed decisions. To validate the
quality of the solution, the impact of different uncertainty sources was investigated. As
a result, the obtained investment solutions are properly aligned with demand, investment
costs, fuel costs and rival expansion dynamics.

Despite that, the simulation results suggest several research directions for further
enhancement of the proposed model. First, large cases studies were performed with a
small number of representative days and wind power real-time outcome scenarios. Even
with simultaneous relaxation of the short- and long-term decision trees, the resulting
sub-problems are complicated to solve. Thus, even deeper decomposition might be
necessary to solve larger instances. In this line, the future work will be focused on a
multi-scale decomposition per long-term scenarios, market scenarios and representative
days. Second, a small case study indicated that price-making strategy might significantly
affect investment decisions compared to a passive price-taking policy. However, in
real operations generation companies do not always exercise their market power, and
thus solution provided by the model might be too optimistic. In this way, in order to
control a degree of market power exertion, it might be interesting to include linear risk
measures such as CVaR into a problem. An alternative way to limit market power of a
strategic company might be a consideration of long-term bilateral contracts. Finally, the
study revealed that rivals’ expansion has a substantial impact on company’s long-term
planning, rising concerns on the fairness of performing the analysis from a perspective
of one firm only. In this line, another direction would be to consider a co-planning of
capacity expansion of several strategic firms. This analysis could be efficiently tackled
in the framework of equilibrium programming with equilibrium constraints problem.



APPENDIX A
Investment decisions for the

two-stage CCGT and WP
expansion planning

Table A.1: Two-stage WP and CCGT expansion planning: investment decisions for
the second time period [MW].

Demand
growth

Investment
costs

Fuel
costs

Rival inv.
in CCGT

Rival inv.
in WP

CCGT WP
Area I Area II Area I Area II

+5% 0% +5% 400 200 0 0 200 0
+5% 0% +5% 400 0 0 0 100 40
+5% 0% +5% 0 200 0 0 180 100
+5% 0% +5% 0 0 0 0 200 0
+5% 0% 0% 400 200 0 0 0 0
+5% 0% 0% 400 0 0 0 0 0
+5% 0% 0% 0 200 0 0 200 0
+5% 0% 0% 0 0 0 0 0 0
+5% 0% -5% 400 200 0 0 0 0
+5% 0% -5% 400 0 0 0 0 0
+5% 0% -5% 0 200 0 0 0 0
+5% 0% -5% 0 0 0 0 0 0
+5% -5% +5% 400 200 0 0 160 0
+5% -5% +5% 400 0 0 0 180 0
+5% -5% +5% 0 200 20 0 120 140
+5% -5% +5% 0 0 0 0 160 100
+5% -5% 0% 400 200 0 0 180 0
+5% -5% 0% 400 0 0 0 180 0
+5% -5% 0% 0 200 0 0 120 100
+5% -5% 0% 0 0 0 0 200 40
+5% -5% -5% 400 200 0 0 0 0
+5% -5% -5% 400 0 0 0 20 0
+5% -5% -5% 0 200 0 0 180 0
+5% -5% -5% 0 0 0 0 200 0
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Table A.2: Two-stage WP and CCGT expansion planning: investment decisions for
the second time period [MW] (continuation).

Demand
growth

Investment
costs

Fuel
costs

Rival inv.
in CCGT

Rival inv.
in WP

CCGT WP
Area I Area II Area I Area II

+5% -10% +5% 400 200 0 0 180 20
+5% -10% +5% 400 0 0 0 160 80
+5% -10% +5% 0 200 0 0 160 160
+5% -10% +5% 0 0 0 0 160 160
+5% -10% 0% 400 200 0 0 160 0
+5% -10% 0% 400 0 0 0 180 0
+5% -10% 0% 0 200 0 0 160 140
+5% -10% 0% 0 0 0 0 160 140
+5% -10% -5% 400 200 0 0 180 0
+5% -10% -5% 400 0 0 0 200 0
+5% -10% -5% 0 200 0 0 160 80
+5% -10% -5% 0 0 0 0 200 0
0% 0% +5% 400 200 0 0 60 0
0% 0% +5% 400 0 0 0 60 0
0% 0% +5% 0 200 0 0 180 0
0% 0% +5% 0 0 0 0 120 80
0% 0% 0% 400 200 0 0 20 0
0% 0% 0% 400 0 0 0 0 0
0% 0% 0% 0 200 0 0 20 0
0% 0% 0% 0 0 0 0 160 0
0% 0% -5% 400 200 0 0 0 0
0% 0% -5% 400 0 0 0 0 0
0% 0% -5% 0 200 0 0 0 0
0% 0% -5% 0 0 0 0 0 0
0% -5% +5% 400 200 0 0 60 20
0% -5% +5% 400 0 0 0 80 20
0% -5% +5% 0 200 0 0 140 60
0% -5% +5% 0 0 0 0 80 100
0% -5% 0% 400 200 0 0 60 0
0% -5% 0% 400 0 0 0 20 40
0% -5% 0% 0 200 0 0 80 80
0% -5% 0% 0 0 0 0 80 0
0% -5% -5% 400 200 0 0 0 0
0% -5% -5% 400 0 0 0 20 0
0% -5% -5% 0 200 0 0 60 0
0% -5% -5% 0 0 0 0 180 0
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Table A.3: Two-stage WP and CCGT expansion planning: investment decisions for
the second time period [MW] (continuation).

Demand
growth

Investment
costs

Fuel
costs

Rival inv.
in CCGT

Rival inv.
in WP

CCGT WP
Area I Area II Area I Area II

0% -10% +5% 400 200 0 0 80 20
0% -10% +5% 400 0 0 0 80 20
0% -10% +5% 0 200 0 0 180 100
0% -10% +5% 0 0 0 0 80 180
0% -10% 0% 400 200 0 0 60 20
0% -10% 0% 400 0 0 0 80 0
0% -10% 0% 0 200 0 0 160 120
0% -10% 0% 0 0 0 0 120 100
0% -10% -5% 400 200 0 0 60 0
0% -10% -5% 400 0 0 0 60 0
0% -10% -5% 0 200 0 0 140 40
0% -10% -5% 0 0 0 0 140 40
-5% 0% +5% 400 200 0 0 20 20
-5% 0% +5% 400 0 0 0 20 0
-5% 0% +5% 0 200 0 0 20 0
-5% 0% +5% 0 0 0 0 40 40
-5% 0% 0% 400 200 0 0 0 0
-5% 0% 0% 400 0 0 0 0 0
-5% 0% 0% 0 200 0 0 0 0
-5% 0% 0% 0 0 0 0 20 0
-5% 0% -5% 400 200 0 0 0 0
-5% 0% -5% 400 0 0 0 0 0
-5% 0% -5% 0 200 0 0 0 0
-5% 0% -5% 0 0 0 0 0 0
-5% -5% +5% 400 200 0 0 20 20
-5% -5% +5% 400 0 0 0 0 20
-5% -5% +5% 0 200 0 0 20 180
-5% -5% +5% 0 0 0 0 40 140
-5% -5% 0% 400 200 0 0 20 0
-5% -5% 0% 400 0 0 0 20 20
-5% -5% 0% 0 200 0 0 20 60
-5% -5% 0% 0 0 0 0 20 60
-5% -5% -5% 400 200 0 0 0 0
-5% -5% -5% 400 0 0 0 0 0
-5% -5% -5% 0 200 0 0 0 80
-5% -5% -5% 0 0 0 0 0 0
-5% -10% +5% 400 200 0 0 20 20
-5% -10% +5% 400 0 0 0 20 20
-5% -10% +5% 0 200 20 0 20 180
-5% -10% +5% 0 0 0 0 40 180
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Table A.4: Two-stage WP and CCGT expansion planning: investment decisions for
the second time period [MW] (continuation).

Demand
growth

Investment
costs

Fuel
costs

Rival inv.
in CCGT

Rival inv.
in WP

CCGT WP
Area I Area II Area I Area II

-5% -10% 0% 400 200 0 0 20 20
-5% -10% 0% 400 0 0 0 40 0
-5% -10% 0% 0 200 0 0 20 160
-5% -10% 0% 0 0 0 0 20 140
-5% -10% -5% 400 200 0 0 20 0
-5% -10% -5% 400 0 0 0 40 0
-5% -10% -5% 0 200 0 0 20 40
-5% -10% -5% 0 0 0 0 40 60
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