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Motivation - Energy systems under uncertainty

i

» From fuel-based to renewable energy production
» Less controllability and more uncertainty

» Failure to optimize against uncertainty leads to catastrophic consequences
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Motivation - Optimizing uncertainty

i

» Energy flow equations are non-convex, e.g, in natural gas systems:

e
>
p 0 P
—P»— . peloel = weld + 0% — 72

p—pressure  p—gas flow Weymouth equation

» Computational tractability is achieved through simplifications

» Robust and competitive energy pricing under uncertainty
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Motivation - Optimizing uncertainty

i

» Energy flow equations are non-convex, e.g, in natural gas systems:

e
>
p 0 P
—P»— . peloel = weld + 0% — 72

Weymouth equation
p—pressure  p—gas flow

» Computational tractability is achieved through simplifications

» Robust and competitive energy pricing under uncertainty

Objective #1: To develop stochastic control models with robust operational &
market performance guarantees for energy systems under uncertainty.
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Motivation - Energy data and privacy concerns =
d g
8
R

» Real-time data transfers enables cost- and
security-optimal operations

» Energy data tells us more than what we imagine

» Contains private user data
» Data can be reverse-engineered

» Real examples of real-time surveillance
f— flow, d—load,

g—generation, u—voltage

load d; voltage u;

Load data leaks through voltage measurements
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Motivation - Privacy limits in energy optimization
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[ ] L]
> Differential privacy - is the privacy standard
» Privacy guarantees through randomization
» Outputs are stat. similar on diff. datasets
> S .
Two strategies: input or output perturbation 5 3 output
M(d)  M(d
M:R—R
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Motivation - Privacy limits in energy optimization

> Differential privacy - is the privacy standard
» Privacy guarantees through randomization
» Outputs are stat. similar on diff. datasets
» Two strategies: input or output perturbation
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» The two strategies do not apply to energy:

MR~ R

Input: no guarantee of solution existence
Output: no guarantee of solution feasibility

» Unknown implications to energy supply security and economics

>> Introduction

4/22



=
=
=

i

Motivation - Privacy limits in energy optimization

» Differential privacy - is the privacy standard
» Privacy guarantees through randomization
» Outputs are stat. similar on diff. datasets
» Two strategies: input or output perturbation

» The two strategies do not apply to energy:

MR~ R

Input: no guarantee of solution existence
Output: no guarantee of solution feasibility

» Unknown implications to energy supply security and economics

Objective #2: To develop privacy-preserving optimization with formal privacy
guarantees for data owners and performance guarantees for system operators
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Thesis contributions

i

Objective #1: To develop stochastic control models with robust operational &
market performance guarantees for energy systems under uncertainty.

Thesis contributions:

1. Stochastic control policies to govern non-convex operations and markets
under uncertainty and variability of renewable energy resources

P Feasibility guarantees for secure real-time operations

» From LP to SOCP duality to price uncertainty and variability

2. Hierarchical stochastic optimization to ensure the satisfaction of the basic
market properties irrespective of uncertainty realizations

» Trade-offs between market efficiency, cost recovery and revenue adequacy

3. Stochastic energy market equilibrium under information asymmetry:
» Robust market design under information asymmetry

>> Introduction 5/ 22



Thesis contributions (cont’d)

Objective #2: To develop privacy-preserving optimization with formal privacy
guarantees for data owners and performance guarantees for system operators

Thesis contributions:

1. Adversarial models to reveal sensitive data from optimization outcomes:

» Constrained empirical risk minimization

2. Rigorous a priori privacy guarantees for energy optimization data

» At the interface of stochastic programming and privacy
» For both distributed and centralized computations

3. Performance guarantees for the privacy-preserving optimization results

» Feasibility guarantees
» Minimal variability of optimization results
» Expected vs. worst-case optimality loss trade-offs

>> Introduction
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Thesis publications

i

Stochastic optimization of energy systems:

A V. Dvorkin, A. Ratha, P. Pinson. and J. Kazempour. “Stochastic control and pricing for
natural gas networks.” Conditionally accepted for publication in the IEEE Transactions on
Control of Network Systems, 2020.

B V. Dvorkin, S. Delikaraoglou and J. M. Morales. “Setting reserve requirements to approximate
the efficiency of the stochastic dispatch.” in IEEE Transactions on Power Systems, 2019.

C V. Dvorkin, J. Kazempour and P. Pinson. “Electricity market equilibrium under information
asymmetry.” in Operations Research Letters, 2019.

Private optimization of energy systems:

D V. Dvorkin, P. Van Hentenryck, J. Kazempour and P. Pinson. “Differentially private distributed
optimal power flow.” in 59th Conference on Decision and Control, 2020.

E V. Dvorkin, F. Fioretto, P. Van Hentenryck, P. Pinson and J. Kazempour. “Differentially private
convex optimization with feasibility guarantees.” Preprint, 2020.

F V. Dvorkin, F. Fioretto, P. Van Hentenryck, P. Pinson and J. Kazempour. “Differentially private
optimal power flow for distribution grids.” in /EEE Transactions on Power Systems, 2020.
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Optimization of natural gas network operations =
on W, : T T4 i
2\ Y ,min ¢ J+ 1 diag[e]d gas injection costs
- SR, P, T
st. Ap=9v—Brk—9§ gas conservation law
wo|p| = diag[w](ATT + k) Weymouth equation
T&i r<T<T 9<I<LD network limits

1 = X X
ﬁ<K<E7 805207 Veega
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Optimization of natural gas network operations

i

©, 6,'{ /19" ﬁmi;m o ¥ 4 9" diag[cy]? gas injection costs
st. Ap=9v—Brk—9§ gas conservation law
wo|p| = diag[w](ATT + k) Weymouth equation
T&? r<n<7 V<YLY network limits

~ ~
K< KR, =20, Ve,

» Non-convex problem, yet solvable when parameters are certain

» To improve tractability under uncertainty, consider the linearization
W(p,m, k) =J (F)(m — &) + T(¢) (¢ — ) + T (F)(k — k) = 0

of the Weymouth equation around stationary point (¢, 7, &)

» After rearranging the terms, we have

Y= §1(¢7 f ) + §2(507 )7T + §3(§05 E)H T = Ty

where ¢1, ¢, <3 denote linear sensitivities

>> Stochastic control and pricing for energy networks 8/ 22



=
=
=

Optimization of natural gas network operations

©, 6,'{ /19" 19"r’?’i(27r o ¥ 4 9" diag[c]? gas injection costs
st. Ap=9v—Brk—9§ gas conservation law
Y =61+ m+ gk, ™ = 7, lin. Weymouth equation
T§ T<T LT 9LV network limits

N N N
K< KSR, @20, Ve,

» Non-convex problem, yet solvable when parameters are certain

» To improve tractability under uncertainty, consider the linearization
W(p,m, k) =T (&)(m = &) + T (@) (e — &) + T (E)(k — k) =0

of the Weymouth equation around stationary point (¢, 7, &)

» After rearranging the terms, we have

Y= §1(¢,ﬁ',f€) +§2(¢7 7?')7T+§3(¢), fi)’%a Ty = Tr

where ¢1, ¢, <3 denote linear sensitivities
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Optimization of natural gas network operations =
dn+&n
(&)
oo\
T@
3
§~P0,X)
9/22
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Optimization of natural gas network operations =
min  EP[¢] J(&) + I(&) diag[c]0(€)] — exp. cost
0,737
On+&n subject to stochastic gas flow equations
I, ~ ~ ~ -
g\ @ AZ(E) = 3(¢) - BR(E) - 5(6)
B(&) = a + @ (&) + k()
and a joint chance constraint
[¥ T<HEO<T I<IEO <,
Q >1—¢
<R SE, ¢(§) 20, VEEE,
¢ ~ P(0,7) where € is a small prescribed parameter
9/22
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Optimization of natural gas network operations

5n+£n

A

—
Tw
&
<
<

§~P(0,1)

> Affine control policies for gas injection
¥(&) and pressure regulation %(&):

I(€)

=v+ak,
9, £ — nominal (mean) control inputs
a, B — variable recourse decisions

_min_ EP[¢] 9(€) + J(€) T diag[c:]I(€)] — exp. cost

97,37
subject to stochastic gas flow equations

AB(&) = I(€) - BR(€) — (¢)

P(&) =<1 + @7 (&) + :R(§)

and a joint chance constraint

< _
<H(E) <7 V<) < .
SRE) <E W(S) 20, W €&,

where € is a small prescribed parameter

s
K

» State variables then express as

7, ¢ — nominal (mean) values,
followed by recourse

>> Stochastic control and pricing for energy networks
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(&) =7+ SH(a — &P — diag[1])€
R(&) =K+ B¢ B(&) = ¢ + (2 — diag[1]) — 38)€
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Optimization of natural gas network operations

min  E7[¢] 9(¢) + J(&) " diag[c]0(€)] — exp. cost

B,7,@,7%
on+&n subject to stochastic gas flow equations
Iy ~ ~ ~ -
g\ @ AB(€) = T(6) — BR(E) - 50
P(&) =<1 + @7 (&) + :R(§)
and a joint chance constraint
w
~— < e
[¥ p[r<FO <7 2<iE) < .
E<REE)SE W(S) 20, W €&,
where € is a small prescribed parameter
§~P0,X)
» Chance constraint reformulation » State variables then express as

(&) =7+ SH(a — &P — diag[1])€
P(&) = ¢ + (2 — diag[1]) — G38)E

7, ¢ — nominal (mean) values,

is equivalent to
2z | Fl&(a — &B — diag[1))], | < 7o —

pressure standard deviation

followed by recourse
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Optimization of natural gas network operations

min  EP[e] 9(¢) + 0(¢) " diagleo] ()] + o "™

B,7,@,7%
on+&n subject to stochastic gas flow equations
Iy ~ ~ ~ -
g\ @ AB(€) = T(6) — BR(E) - 50
B(&) = a + @ (&) + k()
and a joint chance constraint
) _
[¥ r <O <T <O < .
ESE(E)<E w(ﬁ) 20, W €&,
where € is a small prescribed parameter
§~P(0,%)
» Chance constraint reformulation » Nodal pressure variability ...

Plin(¢) ST >1-¢ 1FRa(a = G3 — diag[1])], || < 57
is equivalent to ... is penalized by a factor of 1/, >0

ze ||F&(a — &B — diag[1])]) || < 7 — 70

pressure standard deviation

>> Stochastic control and pricing for energy networks
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» SOCP duality to price uncertainty&variability
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Numerical experiments: Case of 48-node

48-node natural gas network
22 stochastic gas extractions m
8 comp. B and 2 valves X

11 gas injections ©

=
=
=

network

i

&~ N(0,0), 0 — 10% of &

vV v v v v Vv

Violation probability e = 1%

>> Stochastic control and pricing for energy networks
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Numerical experiments: Case of 48-node network =
o . Ui Deterministic Chance-constrained control policies
arameter n control policy ~ Variance-
agnostic
Expected cost $1000 80.9 82.5 (100%)
Pressure variance  MPa? 217.5 63.4 (100%)
Flow variance BMSCFD? 26.1 58.0 (100%)
Compression kPa 1939 3914
Valve regulation  kPa 0 0
Infeas. (¢ =1%) % 53.7 0.04
>> Stochastic control and pricing for energy networks 11 / 22
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Numerical experiments: Case of 48-node network =
o . Ui Deterministic Chance-constrained control policies
arameter n control policy Variance- Pressure variance-aware, 1™ Flow variance-aware, ¢¥
agnostic 103 10-2 10-1
Expected cost $1000 80.9 825 (100%) 100.5% 105.6% 113.8%
Pressure variance  MPa? 217.5 63.4 (100%) 44.2% 18.9% 12.8%
Flow variance BMSCFD? 26.1 58.0 (100%)
Compression kPa 1939 3914 3570 3734 3661
Valve regulation  kPa 0 0 0 150 576
Infeas. (¢ =1%) % 53.7 0.04 0.02 0.02 0.02
11 /22
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Numerical experiments: Case of 48-node network

Chance-constrained control policies
Flow variance-aware, ¢¥

. Deterministic
Parameter Unit control policy Variance-
agnostic 30-3 302 10! 1 10! 102

100.5% 105.6% 113.8% 100.1% 102.5% 112.6%

Pressure variance-aware, 1™

Expected cost $1000 80.9 82.5 (100%)
Pressure variance  MPa? 217.5 63.4 (100%) 44.2% 18.9% 12.8%
Flow variance BMSCFD? 26.1 58.0 (100%) 93.4% 44.8% 25.9%
Compression kPa 1939 3914 3570 3734 3661 3914 4030 3888
Valve regulation  kPa 0 0 0 150 576 0 1 500
Infeas. (¢ =1%) % 53.7 0.04 0.02 0.02 0.02 0.03 0.02 0.03

11 / 22
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Numerical experiments: Case of 48-node network =
o . Ui Deterministic Chance-constrained control policies
arameter n control policy ~ Variance- Pressure variance-aware, 1™ Flow variance-aware, ¢%
agnostic o5 192 1gt 1 10! 10?
Expected cost $1000 80.9 82.5 (100%) 100.5% 105.6% 113.8% 100.1% 102.5% 112.6%
Pressure variance  MPa? 217.5 63.4 (100%) 44.2% 18.9% 12.8%
Flow variance BMSCFD? 26.1 58.0 (100%) 93.4% 44.8%  25.9%
Compression kPa 1939 3914 3570 3734 3661 3914 4030 3888
Valve regulation  kPa 0 0 0 150 576 0 1 500
Infeas. (¢ =1%) % 53.7 0.04 0.02 0.02 0.02 0.03 0.02 0.03
Variance-agnostic policy Variance-aware policy
o Injection
O Extraction
[ Compressor
X Valve

1500

3600

2700

1800

900

Pressure variance

6 oul6) 3 % oy m W w4

YT =0, ¥ =0 YT =01, v¥ =10
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Stochastic optimization of energy systems:

A V. Dvorkin, A. Ratha, P. Pinson. and J. Kazempour. “Stochastic control and pricing for
natural gas networks.” Conditionally accepted for publication in the IEEE Transactions on
Control of Network Systems, 2020.

B V. Dvorkin, S. Delikaraoglou and J. M. Morales. “Setting reserve requirements to
approximate the efficiency of the stochastic dispatch.” in /EEE Transactions on Power
Systems, 2019.

C V. Dvorkin, J. Kazempour and P. Pinson. “Electricity market equilibrium under information
asymmetry.” in Operations Research Letters, 2019.

Private optimization of energy systems:

D V. Dvorkin, P. Van Hentenryck, J. Kazempour and P. Pinson. "Differentially private
distributed optimal power flow.” in 59th Conference on Decision and Control, 2020.

E V. Dvorkin, F. Fioretto, P. Van Hentenryck, P. Pinson and J. Kazempour. “Differentially
private convex optimization with feasibility guarantees.” Preprint, 2020.

F V. Dvorkin, F. Fioretto, P. Van Hentenryck, P. Pinson and J. Kazempour. “Differentially
private optimal power flow for distribution grids.” in IEEE Transactions on Power Systems,
2020.



Private optimization of energy systems:

D V. Dvorkin, P. Van Hentenryck, J. Kazempour and P. Pinson. "Differentially private
distributed optimal power flow.” in 59th Conference on Decision and Control, 2020.
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Differential privacy (definition)

> Q(D) and Q(D’) can be

r - T » Query (function) Q:D+— ©
] Dat:l;ase ! )
i, 1+ I QD) +¢ » Random perturbation ¢
y 1 E : result 1
® I :

- your data
Analyst 1_ p- distinguished
™. TET o
xe) = 2008 > Q(D)+¢ and Q(D') + € are
| Database result 2 P .
--p = stat. indistinguishable
( (e,0)—differential privacy ) DA o

A random function @ : D — © with domain D and
range © is (&, 0)—differentially private if for some
6 € © and all neighboring datasets D, D’ € D,

[P’[Q(D) € ﬂ < P[Q(D/) € anp(s) query range ©
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Differential privacy (definition)

> Q(D) and Q(D’) can be

r - T » Query (function) Q:D+— ©
] Dat:l;ase ! )
i, 1+ I QD) +¢ » Random perturbation ¢
y 1 E : result 1
® I :

- your data
Analyst 1_ p- distinguished
™. TET o
xe) = 2008 > Q(D)+¢ and Q(D') + € are
| Database result 2 P .
--p = stat. indistinguishable
( (e, 0)—differential privacy ) DA D

A random function @ : D — © with domain D and
range © is (g, §)—differentially private if for some
6 € © and all neighboring datasets D, D’ € D,

P[O(D) € 8] <P[O(D') € bexp(e) + &

0
query range ©

>> Differentially private distributed optimization 12 / 22



=
=
=

i

Distributed optimization of energy networks

Centralized optimization Distributed optimization

» Solved by a central entity » Solved by distributed agents
» All data must be shared » Only voltage variables are shared
» Solved in a single run » Solved over iterations

>> Differentially private distributed optimization 13 / 22



Privacy breaches in distributed optimization
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» Voltage variables implicitly depend on data
» Local optimization as a single-valued mapping
0;
M:D— 0O x0, M(d,) = 0.
i
from load domain to voltage domain

» An adversary executes a privacy attack

A:©Ox0— D, A([g’]) = dp,
J
which is the opposite of M.
» Two privacy attack models proposed:

» Tracing attack (based on repeated observations)
> Reconstruction attack (optimization-based)

>> Differentially private distributed optimization 14 / 22
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Privacy guarantees for distributed optimization

i

» Load d, must be indistinguishable from any other
B—adjacent load d/, € [d, — 3, d, + 3] for some >0
in the release of voltage variables, i.e.,

>> Differentially private distributed optimization 15 / 22
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Privacy guarantees for distributed optimization

i

» Load d, must be indistinguishable from any other
B—adjacent load d/, € [d, — 3, d, + 3] for some >0
in the release of voltage variables, i.e.,

» To make d, indistinguishable from S—adjacent load d/,
let M(d,) = M(dy)+E=0+¢

be a randomized response with perturbation ¢ € R?
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Privacy guarantees for distributed optimization

i

» Load d, must be indistinguishable from any other
B—adjacent load d/, € [d, — 3, d, + 3] for some >0
in the release of voltage variables, i.e.,

» To make d, indistinguishable from S—adjacent load d/,
let M(d,) = M(dy)+E=0+¢

be a randomized response with perturbation ¢ € R?

( Key result: differential privacy of M(d,) 1

When ¢ ~ Lap(8/¢)?, M is e—differentially private on
[—adjacent load datasets, i.e.,

voltage domain ©

P[M(d,) € 8] < PIM(d;) € blexp(e)

>> Differentially private distributed optimization 15 / 22
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Private distributed optimization: case of IEEE
118-node network

» The network is split into three zones
» An adversary infers individual loads
» Privacy loss is fixed e =1

» Adjacency coefficient 3 varies

Adversarial load inference

=== 38~0%
600 ) i i
2z ' - !
% 400 1 1 1
c 1 1 1
3 200 1 1 !
0 . i . . ML , LY .
0 100 200 0 200 400 600 100 200 300
342 (959 3116
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Private distributed optimization: case of IEEE
118-node network

» The network is split into three zones
» An adversary infers individual loads
» Privacy loss is fixed e = 1

» Adjacency coefficient 3 varies

Adversarial load inference

——B=10%=-=-=- B8~ 0%
600 | i
> 1
g 400
3 200
0 100 200 0 200 400 600 100 200 300
842 dA5g dAllﬁ
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Private distributed optimization: case of IEEE =
118-node network
» The network is split into three zones
» An adversary infers individual loads
» Privacy loss is fixed e = 1
» Adjacency coefficient 3 varies
Adversarial load inference
—— B =10% B=30%---53~0%
600 1
2
= 400
g 200
0 100 200 0 200 400 600 100 200 300
842 dA5g dAllﬁ
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Private distributed optimization: case of IEEE =
118-node network
» The network is split into three zones
» An adversary infers individual loads
» Privacy loss is fixed e = 1
» Adjacency coefficient 3 varies
Adversarial load inference
—— B =10% B = 30% B=50%-== 53~ 0%
600 i 1 i
2
= 400
g 200 ﬂ %
0 n n :
0 100 200 200 400 600 100 200 300
daz dso die
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Stochastic optimization of energy systems:

A V. Dvorkin, A. Ratha, P. Pinson. and J. Kazempour. “Stochastic control and pricing for
natural gas networks.” Conditionally accepted for publication in the IEEE Transactions on
Control of Network Systems, 2020.

B V. Dvorkin, S. Delikaraoglou and J. M. Morales. “Setting reserve requirements to
approximate the efficiency of the stochastic dispatch.” in /EEE Transactions on Power
Systems, 2019.

C V. Dvorkin, J. Kazempour and P. Pinson. “Electricity market equilibrium under information
asymmetry.” in Operations Research Letters, 2019.

Private optimization of energy systems:

D V. Dvorkin, P. Van Hentenryck, J. Kazempour and P. Pinson. "Differentially private
distributed optimal power flow.” in 59th Conference on Decision and Control, 2020.

E V. Dvorkin, F. Fioretto, P. Van Hentenryck, P. Pinson and J. Kazempour. “Differentially
private convex optimization with feasibility guarantees.” Preprint, 2020.

F V. Dvorkin, F. Fioretto, P. Van Hentenryck, P. Pinson and J. Kazempour. “Differentially
private optimal power flow for distribution grids.” in IEEE Transactions on Power Systems,
2020.
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Private optimization of energy systems:

F V. Dvorkin, F. Fioretto, P. Van Hentenryck, P. Pinson and J. Kazempour. “Differentially
private optimal power flow for distribution grids.” in /EEE Transactions on Power Systems,
2020.



Private distribution OPF: Problem statement

» Distribution OPF problem as a mapping
M:D—F
from load domain D to flow domain F
» Any change of load d» is exposed

through the optimal solution £

>> Differentially private centralized optimization
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» Distribution OPF problem as a mapping ’f
9]

M:Dw— F 2
5
from load domain D to flow domain F ©
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through the optimal solution £
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Private distribution OPF: Problem

» Distribution OPF problem as a mapping
M:D—F
from load domain D to flow domain F
» Any change of load d» is exposed

through the optimal solution £

>> Differentially private centralized optimization

dispatch cost

statement
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f
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Private distribution OPF: Problem statement

i

dispatch cost

f

» Distribution OPF problem as a mapping

density of £,

M:D— F

from load domain D to flow domain F

» Any change of load d» is exposed
through the optimal solution £
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Private distribution OPF: Problem statement

dispatch cost

f

density of £,

» Distribution OPF problem as a mapping
M:D— F

from load domain D to flow domain F

» Any change of load d» is exposed
through the optimal solution £
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Private distribution OPF: Problem statement

i

dispatch cost

f

density of £,

» Distribution OPF problem as a mapping
M:D— F

from load domain D to flow domain F

» Any change of load d, is exposed

through the optimal solution £;* » How to find the nominal solution £7?

>> Differentially private centralized optimization 17 / 22



Private distribution OPF: perturbation strategy

>> Differentially private centralized optimization
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Private distribution OPF:

>> Differentially private centralized optimization

=
=
=

perturbation strategy

i

» Generator randomization policy:

[Tioai]€
~——

random component

Sap=1 Y ap=1WeL,

€Uy i€Dy

&)= & +
<~

nom.

» From AC power flow equations:

> Tioq;|

f(€)= fi +|Troar+
~ JEDy

nom.

random component
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Private distribution OPF: perturbation strategy

i

» Generator randomization policy:

1
83 — 3

(&)= g + [Tiowaé
~~ ——

random component

Sap=1 Y ap=1WeL,

€Uy i€Dy

nom.

» From AC power flow equations:

fi(€) = f/ +|Teoag+ > Tjoaj|é

D
nom. J€De

random component

Chance-constrained optimization of the random OPF solution

min EP [cTE(¢)] minimum of expected cost
&(£),f(£),4(8)

st. Pe[h(g(€), F(€),i(€)=d] =1 power balance holds with prob. 1
Pe[e(g(€), F(€),d(€)) <0] <1-n grid limits are satisfied with prob. 1 —7
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Private distribution OPF: Performance guarantees

Optimize — sample — implement

distribution N Random perturbation sample £

€~ N(0,%)

=
=
=

i

f

Chance-constrained OPF optimization Optimized CC-OPF solution
min  exp. cost solution 5O =g+ (Tioa)E output _
s.t. Pg[power balance] =1 ﬁ(g) —f [Tz cart Y Tioa £
Pe [grid limits] <1 -1 J€D,
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Private distribution OPF: Performance guarantees =
Optimize — sample — implement
distribution N Random perturbation sample EA
&~ N(O Z)

Chancg—constrained OPF optimization Optimized CC-OPF solution

min - exp. cost solution E,(E) =g+ (T" °© a,)g outeut fA'

st Pe [Power balance} =1 ﬁ(g) —f [Tz car+ Y Tjoaq; g

Pe [grid limits] <1 -1 J€D,

Privacy of 3—adjacent load vectors

(e, 0)—differential privacy

~ (]
Let & € N(0,07) and o; > Bi1/2In(1.25/5) /e, Vi € L. K S
Then, for B-adjacent load vectors d and d’ : b(\ o
< 2

Pe[f(d’) € F] < exp(e)Pe[F(d") € ]+,

for any flow value f
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Private distribution OPF: Case of 15-bus feeder

» 15-bus radial distribution network

» 14 customers with DERs, 1 substation

» Full grid observability

>> Differentially private centralized optimization
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Private distribution OPF: Case of 15-bus feeder

>> Differentially private centralized optimization

active power load dy

» Customer at node 7 with a load pattern

. 5 7 5 . 5 25 75
max{sm ﬁt,ﬁ}Jr ﬁsmﬁt +Wsm Wt
N———— N

large component .
g P medium component  small component

» The load must be indistinguishable from
any other 3—adjacent load

» Sampled private power flow trajectories:

Adjacency 7 = 0 MW

=
=
=

i

S
:
active power flow f;
N
~ I
; :

~
>
T

-
®
T

>
T

N
T
=
T

0 50 100 150 200 250 0 50 100 150 200
time period t time period t

250
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active power load dy

» Customer at node 7 with a load pattern

.5, 7 5 . 5 25 75
max{smﬁt,ﬁ}Jr ﬁsmﬁt +Wsmﬁt
N—— —— N

large component .
g P medium component  small component

» The load must be indistinguishable from

any other 3—adjacent load

» Sampled private power flow trajectories:

=
=
=

i

Adjacency 7 = 0.07 MW

N
o

~
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2
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=
2 E
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18] o
o
=
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Private distribution OPF: Case of 15-bus feeder

>> Differentially private centralized optimization

active power load d

» Customer at node 7 with a load pattern

.5, 7 5 . 25 75
max{smﬁt,ﬁ}Jr ﬁsmﬁt +Wsmﬁt
N—— —— N

large component .
€ P medium component  small component

» The load must be indistinguishable from

any other 3—adjacent load

» Sampled private power flow trajectories:

=
=
=
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Adjacency 7 = 0.3 MW

active power flow f;
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Private distribution OPF: Case of 15-bus feeder

>> Differentially private centralized optimization

active power load d

» Customer at node 7 with a load pattern

.5, 7 5 . 5 25 75
max{smﬁt,ﬁ}Jr ﬁsmﬁt +Wsmﬁt
N— ——— -

large component .
g P medium component  small component

» The load must be indistinguishable from

any other 3—adjacent load

» Sampled private power flow trajectories:

=
=
=

i

Adjacency 7 = 1.5 MW

~
=
T

m
:
active power flow f;
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Private distribution OPF: Case of 15-bus feeder

» Customer at node 7 with a load pattern

. 5 7 5 . 25 75
max{sm thﬁ}Jr 1—025|n1—02t +1—035|n 1—021“
N— —— —

large component medium component  small component

» The load must be indistinguishable from
any other 3—adjacent load

> (e, d)—differential privacy guarantees

(e,6) = (1,0.75) (e,6) = (1,0.07)

I‘”- Od; =2.35MW ”'h
‘ dy =205MW |
d7 = 2.65MW

0.0 2.0 4.0 -5.0 0.0 5.0

power flow 7 14-2 power flow 7 1o-2

=
=
=

i
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Private distribution OPF: Case of 15-bus feeder

» Customer at node 7 with a load pattern

. 5 7 5 . 25 75
max{sml—ozt,ﬁ}qL 1—025|n1—02t +Wsm1—02t
SN———— N———

lar, mponen .
arge component medium component  small component

» The load must be indistinguishable from
any other 3—adjacent load

> (e, d)—differential privacy guarantees

u (e,6) = (1,0.75) (s,6) = (1,0.07)
Od; = 2.35MwW
d; = 2.05MW \
d7 = 2.65MW ‘
0.99 0.99 0.99 0.99 1.00 1.00
voltage u7 voltage uz

=
=
=

i

>> Differentially private centralized optimization 20 / 22



Conclusions

Stochastic policies for uncertainty management in energy systems
» Secure real-time operations with guarantees

» Offering extensions to the stochastic energy pricing

Privacy guarantees for optimization datasets
» For distributed and centralized computations

» At the interface of stochastic programming and differential privacy

» Affine dependency of the solution on the perturbations enabled privacy and
feasibility guarantees, minimal variability and worst-case optimality loss

Resolved privacy concerns encourage
» OPF-based dispatch practices

» Engagement of privacy-cognizant energy users

> Safe market and operational transparency
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DTU
Current research

Multi-stage control policy optimization
» Intraday actuation of control policies
» More cost-variance trade-offs available

power [% of Pn]

40 45

5 20 25 3
look-ahead time [hours]
from pierrepinson.com

Convex private optimization
» From LP to SOCP and SDP

00 25 50 75 100 00 25 50 75
x1 x1
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