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Constrained Diffusion Models for Synthesizing
Representative Power Flow Datasets
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Abstract—High-quality power flow datasets are essential for
training machine learning models in power systems. However,
security and privacy concerns restrict access to real-world
data, making statistically accurate and physically consistent
synthetic datasets a viable alternative. We develop a diffusion
model for generating synthetic power flow datasets from real-
world power grids that both replicate the statistical properties
of the real-world data and ensure AC power flow feasibility.
To enforce the constraints, we incorporate gradient guidance
based on the power flow constraints to steer diffusion sampling
toward feasible samples. For computational efficiency, we further
leverage insights from the fast decoupled power flow method
and propose a variable decoupling strategy for the training
and sampling of the diffusion model. These solutions lead to a
physics-informed diffusion model, generating power flow datasets
that outperform those from the standard diffusion in terms of
feasibility and statistical similarity, as shown in experiments
across IEEE benchmark systems.

Index Terms—Diffusion model, generative AI in power systems,
physics-informed machine learning, power flow, synthetic data.

I. INTRODUCTION

POWER flow datasets [1]–[3] are essential for training
and benchmarking machine learning (ML) models for

optimal power flow (OPF) [4] and state estimation [5]. How-
ever, the real-world power flow datasets are rarely available
due to privacy, security, and legal barriers [6]–[10]. Recent
advances in generative AI, capable of producing synthetic data
with distributions similar to the original data [11]–[20], have
partially lifted these barriers, yet statistical consistency alone
cannot guarantee adherence to physical grid constraints [21].
Consequently, ML models trained on constraint-agnostic syn-
thetic datasets are likely to perform substantially worse than
those trained on original data. This paper introduces a data
generation framework to synthesize statistically consistent and
physically meaningful power flow datasets. To achieve this, we
develop a constrained diffusion model to learn the underlying
distribution of power flow data and generate synthetic samples
that are both statistically representative and feasible with
respect to the AC power flow constraints. This constrained
diffusion model can be trained internally by system operators
to publicly release high-quality synthetic power flow data to
support a wide range of downstream ML applications.

A. Related Work

The literature on generating synthetic datasets for power
systems broadly falls into two categories: generic random
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sampling and historical data-driven approaches.
The former focuses on power flow data generation through

iterative uniform sampling of loads followed by solving the
OPF problem [22], [23]. In [24], authors use a truncated Gaus-
sian distribution as another variation of sampling, which also
accounts for correlations between power injections at different
locations. However, the datasets based on generic sampling
only represent a small portion of the feasibility region. To
solve this, [6] uniformly samples loads from a convex set,
containing the feasible region, and iteratively refines this set
using infeasibility certificates. In [25], a bilevel optimization is
proposed to sample operating conditions close to the bound-
aries of the feasible region, which is more informative that
a random sampling. A basic requirement for ML-based OPF
solvers is robustness to grid topology variations, e.g., network
topology switching [26]. To meet this requirement, authors in
[27] incorporate topological perturbations in addition to load
perturbations in their synthetic data generation framework.

Although straightforward, random sampling comes with
certain limitations. The resulting datasets do not represent the
true underlying distribution of real-world operating conditions.
That is, the synthetic data points may fail to capture corre-
lations, patterns, or variability present in historical data. ML-
based OPF solvers trained on such data may generalize poorly,
leading to inaccurate predictions and erroneous uncertainty
quantification [28], [29]. Moreover, the required number of
random samples to cover the whole feasible region grows
exponentially in the size of the grid [30], [31].

The historical data-driven approaches, instead, learn the
underlying data distribution from real operational records. This
approach has been enabled by advances in generative models,
such as variational autoencoders (VAEs), generative adver-
sarial networks (GANs), and diffusion models. For instance,
the VAE from [13] generates synthetic electric vehicles load
profiles, and conditional VAE from [12] does the same for
snapshots of multi-area electricity demand. Reference [14]
presents conditional VAE for synthesizing load profiles of
industrial and commercial customers, conditioned on time
and typical power exchange with the grid. However, VAEs
may struggle with complex and high-dimensional datasets and
result in low quality samples [15]. Moreover, there is no
principled approach for VAEs to control the generated outputs,
making it difficult to enforce domain-specific constraints.
GANs have also been used to synthesize load patterns in power
systems [16]–[20]. For instance, [19] proposes a GAN model
to generate synthetic appliance-level load patterns and usage
habits. In [20], authors propose a GAN-based framework for
renewable energy scenario generation that effectively captures
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both temporal and spatial patterns across a large number
of correlated resources. Nonetheless, GANs also suffer from
issues such as training instability, mode collapse, and the lack
of principled means for controllability [32].

Addressing the limitations of GANs and VAEs, diffusion
models have emerged as the leading choice for generative
models [33]. A physics-informed diffusion model is proposed
in [11] for generating synthetic net load data, where the solar
PV system performance model is embedded into the diffusion
model. In [34], authors propose a conditional latent diffusion
model for short-term wind power scenario generation, which
uses weather conditions as inputs. Authors in [35] developed a
framework based on diffusion models to generate electric ve-
hicle charging demand time-series data, which is also capable
of capturing temporal correlation between charging stations.

While this line of work advocates for diffusion models to
generate power systems data, it primarily focuses on statistical
consistency. To the best of our knowledge, no prior work has
explored the integration of domain constraints such as the AC
power flow constraints directly into the diffusion process.

B. Summary of Contributions
The main contribution of this paper is a generative AI

framework that leverages power systems operational data to
synthesize credible power flow datasets for ML applications.
Specific contributions are summarized as follows:

1) We develop a diffusion model capable of generating
high-quality power flow datasets that inherit the sta-
tistical properties of the actual power flow records.
Unlike random sampling in [6], [22]–[27], the model
does not require any distributional assumptions; rather,
as a generative model, it learns the distribution of power
flow data directly from historical records. Yet, unlike the
existing generative models in [11]–[20], it controls the
output to ensure compliance of synthetic samples with
the grid physics. Our model focuses on synthesizing
power injections and voltage variables—the data to
support OPF, state estimation, and other applications of
ML to power systems optimization and control.

2) We introduce a guidance term within the sampling phase
to ensure that the synthesized data points are feasible
with respect to the AC power flow constraints. The
guidance term corresponds to a single iteration of Rie-
mannian gradient descent on the clean data manifold—
the space of all physically valid power flow states. We
formally prove that this approach improves physical
consistency without pushing samples off the learned
distribution. As a result, the generated power flow data
points are both feasible and statistically representative.

3) We leverage power systems domain knowledge for im-
plementing the diffusion model. Inspired by the classical
fast decoupled power flow method, we decouple the
full variable vector and use two smaller denoiser neural
networks to improve scalability. We then propose a
custom normalization of the AC power flow equations
for stabilizing the sampling of power flow variables.

The remainder is organized as follows. The problem state-
ment is presented in Sec. II, followed by Sec. III with
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Fig. 1. A high-level view of the diffusion model for synthesizing power
flow datasets: The training phase (left) uses the actual power flow data D
to learn the real data distribution preal using a neural network; the sampling
phase (right) uses the trained neural network to generate synthetic power flow
samples D̃; the integration of the power flow constraints (bottom) within the
sampling phase ensures that generated samples are physically meaningful.

preliminaries on diffusion models and power flows. Section
IV introduces the proposed manifold-constrained guidance for
enforcing the power flow constraints in diffusion sampling.
Then, Sec. V provides implementation insights tailored to
power systems: variable decoupling and normalization for
scale-consistent gradient guidance. Section VI provides nu-
merical results on the standard IEEE test cases. Section VII
concludes.

II. PROBLEM STATEMENT

Consider a power grid characterized by vectors of active
power injections p, reactive power injections q, voltage mag-
nitudes v, and phase angles θ. Given a historical dataset
D = {(pi,qi,vi,θi)}Ni=1 with N power flow records, our goal
is to generate a synthetic dataset D̃ = {(p̃i, q̃i, ṽi, θ̃i)}Mi=1

with M records, which are statistically representative of the
given dataset D and are feasible with respect to the power flow
constraints, i.e., data should satisfy the following conditions:

mindist (psyn || preal) , (1a)

G(p̃i, q̃i, ṽi, θ̃i) ≤ 0, ∀i = 1, . . . ,M, (1b)

H(p̃i, q̃i, ṽi, θ̃i) = 0, ∀i = 1, . . . ,M. (1c)

where the first condition (1a) requires minimizing the statis-
tical distance between the real preal and synthetic psyn proba-
bility distributions, measured by dist(·||·) (e.g., Wasserstein
distance). The second condition (1b) requires the synthetic
records to satisfy the inequality constraints G, including the
injection and voltage limits. The last condition (1c) requires
satisfaction of the power flow equality constraints H.

Figure 1 gives a high-level view of the problem setup. We
first train a diffusion model based on D to learn the underlying
probability distribution preal. Then, we sample from the learned
distribution psyn to build a synthetic dataset D̃. To ensure the
feasibility of the synthetic samples, we guide the sampling
process using the power flow constraints.

III. PRELIMINARIES

This section presents preliminaries on diffusion models and
power flow modeling; readers familiar with both topics are
invited to proceed to the next section.
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A. Diffusion Models
Diffusion models are generative models that synthesize

new data through a two-stage process: forward and reverse.
Consider x0 = (p,q,v,θ) as a real power flow data point
from the underlying distribution of the real data preal = q0.
The forward process is a Markov chain that incrementally adds
Gaussian noise to a real data point x0 ∼ q0 and transforms
it into pure Gaussian noise through a fixed sequence of steps.
For each time step {t}Tt=1, the diffusion transition kernel is

q(xt | xt−1) = N (xt;
√
1− βt xt−1, βtI), (2)

where βt is a small positive constant controlling the amount
of noise added at each step [36]. From (2), we directly obtain
xt from x0 using

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (3)

where αt = 1− βt and ᾱt =
∏t

s=1 αs.
The reverse process aims to recover the underlying data

distribution q0 from the tractable noise distribution qT . It is
modeled as a parameterized Markov chain:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (4)

with the mean µθ(·, t) and covariance Σθ(·, t) functions
learned using neural networks parametrized by θ [36].

To train the neural network, we select the loss function as
a mean-squared error between the actual noise ϵ added during
the forward process and the noise ϵθ(·, t) predicted by the
neural network:

Ldiff = Ex0,ϵ,t

∥∥ϵ− ϵθ(
√
ᾱt x0 +

√
1− ᾱt ϵ, t)

∥∥2 , (5)

with ϵ ∼ N (0, I) and ᾱt as defined before. Algorithm 1
summarizes the implementation of the training process [36].

Once the neural network is trained, new data points are
generated using the predicted clean sample x̂0 at each step t
via Tweedie’s formula:

x̂0(xt, t) =
1√
ᾱt

(
xt −

√
1− ᾱt ϵθ(xt, t)

)
, (6)

and then

xt−1 =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x̂0 + σtz, (7)

where z ∼ N (0, I), σt = βt (1− ᾱt−1) / (1− ᾱt), and t
ranges from T (starting with the pure Gaussian noise) to 1
(generated sample). Algorithm 2 summarizes the implementa-
tion of the sampling process [36], which returns the synthetic
sample x̃0 statistically consistent with the original sample x0.

B. Power Flow Constraints
Figure 2 illustrates the grid topology and notation used

throughout this section. Let B = {1, · · · , B} denote the set of
buses and L = {1, · · · , L} denote the set of transmission lines
in a power grid. Moreover, let elements of power injection
vectors p and q be indexed as pb and qb, and let elements of
voltage vectors v and θ be indexed as vb and θb, ∀b ∈ B. In
the interest of presentation, we omit shunt admittances in the
formulation, though they are included in our numerical results.

Algorithm 1 : Training the diffusion model
Inputs: initialized neural network ϵθ, noise schedule {αt}Tt=1,
dataset of x0’s sampled from q0
Outputs: trained neural network ϵθ

1: repeat
2: x0 ∼ q0(x0)
3: t ∼ Uniform({1, . . . , T})
4: ϵ ∼ N (0, I)
5: Take gradient descent step on

∇θ

∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2
6: until converged

Algorithm 2 : Sampling new data points
Inputs: trained neural network ϵθ, noise schedule {αt}Tt=1,
noise scale σt

Outputs: new data point x̃0

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: x̂0 ← 1√

ᾱt

(
xt −

√
1− ᾱtϵθ(xt, t)

)
4: z ∼ N (0, I) if t > 1, else z = 0

5: xt−1 ←
√
αt(1−ᾱt−1)

1−ᾱt
xt +

√
ᾱt−1βt

1−ᾱt
x̂0 + σtz

6: return x̃0

1) Power Flow Equality Constraints: For each bus b ∈ B,
power flow equality constraints can be represented as

pb −
∑

l∈L:i=b

fp
l,i→j −

∑
l∈L:j=b

fp
l,j→i = 0, (8a)

qb −
∑

l∈L:i=b

fq
l,i→j −

∑
l∈L:j=b

fq
l,j→i = 0, (8b)

where constraints (8a) and (8b) enforce the active and reac-
tive nodal power balance. The explicit expression for active
power flows fp

l,i→j and reactive power flows fq
l,i→j on each

transmission line l ∈ L from node i to node j are given by:

fp
l,i→j = vivj

[
gl cos(θi − θj) + bl sin(θi − θj)

]
, (9a)

fq
l,i→j = vivj

[
gl sin(θi − θj)− bl cos(θi − θj)

]
, (9b)

where gl = Gij and bl = Bij are the real and imaginary parts
of the grid admittance matrix Y = G+ jB. Note that due to
line power losses, fp

l,i→j ̸= fp
l,j→i and fq

l,i→j ̸= fq
l,j→i [37].

vi∠θi
pi

gl, bl

fp
l,i→j fp

l,j→i

vj∠θj
pj

Fig. 2. Schematic diagram of the power grid.
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(b) Sampling with manifold-constrained gradient guidance.

Fig. 3. Schematic overview of the geometry of sampling (a) without guidance and (b) with manifold-constrained gradient guidance. In sampling without
guidance (a), at each step t, we have a 2-stage reverse diffusion step: (1) we do a denoising step based on xt and estimate the clean data x̂0|t, and (2) by
adding noise with respect to the corresponding noise schedule, we obtain xt−1. In sampling with guidance (b), we have a 3-stage reverse diffusion step: (1)
we do a denoising step based on xt and estimate the clean data x̂0|t, (2) we add the guidance term based on the gradient of the constraints residual function
RH(x̂0|t) and obtain x̂′

0|t , and (3) by adding noise with respect to the corresponding noise schedule, we obtain xt−1.

2) Power Flow Inequality Constraints: Power flow inequal-
ity constraints can be represented as follows:

pmin
b ≤ pb ≤ pmax

b , ∀b ∈ B, (10a)

qmin
b ≤ qb ≤ qmax

b , ∀b ∈ B, (10b)

vmin
b ≤ vb ≤ vmax

b , ∀b ∈ B, (10c)

(fp
l,i→j)

2 + (fq
l,i→j)

2 ≤ (smax
l )2, ∀l ∈ L. (10d)

where constraints (10a) and (10b) impose limits on the active
and reactive power injections, and constraints (10c) and (10d)
do the same for nodal voltages and apparent power flows.

IV. DIFFUSION GUIDANCE
BASED ON POWER FLOW CONSTRAINTS

In theory, a diffusion model trained on feasible power flow
data should satisfy constraints (8)–(10), as they are implicitly
encoded in the training dataset. However, in practice, the
training and sampling errors may lead to a different outcome
[38], [39]. Although these errors enables the generative power
of diffusion models to synthesize new yet statistically con-
sistent samples, the generated power flow samples may not
be feasible. In this section, we propose a guidance term for
diffusion sampling that preserves the statistical properties of
the learned distribution while steering the sampling trajectory
toward physically meaningful power flow samples.

Figure 3a illustrates the geometry of standard sampling in a
diffusion model. This geometry is characterized by a sequence
of manifolds {Mi}Ti=0. At the bottom, there exists a clean
data manifold M = M0 surrounded by noisier manifolds
according to the noise schedule, where the noisy data resides.
Furthermore, let H(x) = 0 represent the power flow equations
(8), where their intersection with the clean data manifold M
is the ideal sample x⋆

0. Accordingly, reverse diffusion steps
can be characterized as mere transitions from manifold Mi

to Mi−1. At each step t, we have a 2-stage reverse diffusion
step. First, we do a denoising step based on xt and estimate the
clean data x̂0|t. Due to the geometric interpretation of diffusion
models, a single denoising step at t from manifold Mt can
be viewed as an orthogonal projection onto the clean data

manifold M [40]. Then, by adding noise with respect to the
corresponding noise schedule, we obtain xt−1. As shown in
Fig. 3a, the standard sampling process is oblivious to the power
flow constraints H(x) = 0. That is, no information about these
constraints is incorporated into the sampling process.

To address this issue, we propose to incorporate a guidance
term during the sampling process to encourage constraint sat-
isfaction. The proposed guidance term, inspired by manifold-
constrained gradients, incorporates the constraint information.
Specifically, we define a data consistency loss function as a
residual of power flow constraints H(x):

RH(x) = ∥H(x)∥22, (11)

and aim to minimize this loss over the clean data manifold
M, which is implicitly learned by the diffusion model:

min
x∈M

RH(x). (12)

To guide sampling trajectories at each denoising step, we apply
a Riemannian gradient descent with respect to (12):

x̂′
0|t = x̂0|t − λt grad RH(x̂0|t), (13)

where grad RH(x̂0|t) denotes the Riemannian gradient of RH
at x̂0|t, defined as the projection of the Euclidean gradient onto
the tangent space of the manifoldM at x̂0|t, i.e., Tx̂0|tM [41]:

grad RH(x̂0|t) = PTx̂0|tM
(
∇xtRH(x̂0|t)

)
. (14)

However, since the clean data manifold M is not known
explicitly, this makes it intractable to compute the projection
operator PTx̂0|tM directly. Fortunately, under a local linearity
assumption [40], it can be shown that the Euclidean gradient of
RH at x̂0|t is already aligned with the tangent space of M at
x̂0|t, making the projection step unnecessary. Leveraging the
main theorem from [40] on manifold-constrained gradients,
we formalize this insight in the following theorem.

Theorem 1. Let M denote the clean data manifold, and
assume that in a local neighborhood of x̂0|t, M is well
approximated by an affine subspace. Then, the gradient of the
residual function RH(x̂0|t) is tangential to M, i.e.,

PTx̂0|tM
(
∇xt

RH(x̂0|t)
)
= ∇xt

RH(x̂0|t). (15)



5

Proof. Let xt denote a noisy sample at diffusion step t, and
let Q : R4B → R4B denote the function that maps xt to its
corresponding clean estimate x̂0|t:

x̂0|t = Q(xt) =
1√
ᾱt

(
xt −

√
1− ᾱt ϵθ(xt, t)

)
. (16)

Recall the data consistency loss function

RH(Q(xt)) = ∥H(Q(xt))∥22 , (17)

which evaluates the violation of the constraint function H on
the clean estimate x̂0|t = Q(xt).

We are interested in computing the gradient of (17) with
respect to the noisy input xt, i.e., ∇xtRH(Q(xt)). Applying
the chain rule yields:

∇xt
RH(Q(xt)) = ∇xt

∥H(Q(xt))∥22
= ∇xt

(
H(Q(xt))

⊤H(Q(xt))
)

= 2 (∇xt
H(Q(xt)))

⊤H(Q(xt))

= 2 (JH(Q(xt)) JQ(xt))
⊤H(Q(xt))

= 2JQ(xt)
⊤JH(Q(xt))

⊤H(Q(xt)), (18)

where JQ(xt) is the Jacobian of the map Q and JH(Q(xt))
is the Jacobian of the constraint function H evaluated at the
clean data estimate x̂0|t = Q(xt).

Now, according to Proposition 2 in [40], the map Q be-
haves locally as an orthogonal projection onto the clean data
manifold M:

Q(xt) ∈M, (19)

JQ(xt) = JQ(xt)
⊤ = JQ(xt)

2, (20)

which implies that JQ(xt) is an orthogonal projection that
projects onto the tangent space TQ(xt)M at Q(xt). As a result,
the gradient

∇xt
RH(Q(xt)) = JQ(xt)

⊤v, (21)

where v = 2JH(Q(xt))
⊤H(Q(xt)) due to (18), is already in

the tangent space TQ(xt)M. Therefore, projecting it onto the
tangent space does not change it:

PTQ(xt)
M (∇xt

RH(Q(xt))) = ∇xt
RH(Q(xt)). (22)

Hence, the gradient of the constraint residual function
RH(Q(xt)) with respect to the noisy sample xt lies in the
tangent space of the clean data manifold M at x̂0|t; thus, no
projection is needed.

Substituting the result from Theorem 1 in (13) yields the
following practical correction rule for gradient guidance:

x̂′
0|t = x̂0|t − λt ∇xt

RH(x̂0|t), (23)

where λt is a hyperparameter controlling the strength of the
guidance at step t. Although a moderate λt encourages the
generation of feasible samples, excessively large values can
distort the sampling trajectory, pushing samples off the data
manifold or even causing instability. This occurs because
large values of λt violate the affine subspace assumption in
Theorem 1, thereby undermining the validity of the guidance
direction. Conversely, small λt results in samples that violate

Algorithm 3 : Sampling with gradient guidance
Inputs: trained neural network ϵθ, noise schedule {αt}Tt=1,
noise scale σt, guidance scale λt

Outputs: new data point x̃0

1: xT ∼ N (0, I4B)
2: for t = T − 1 to 0 do
3: x̂0 ← 1√

ᾱt

(
xt −

√
1− ᾱtϵθ(xt, t)

)
4: x̂′

0 ← x̂0 − λt (∇xt
RH(x̂0) +∇xt

RG(x̂0))
5: z ∼ N (0, I4B)

6: xt−1 ←
√
αt(1−ᾱt−1)

1−ᾱt
xt +

√
ᾱt−1βt

1−ᾱt
x̂′
0 + σtz

7: return x̃0

the constraints. Hence, λt should be carefully tuned in practice
to balance constraint satisfaction and statistical representation.

Figure 3b illustrates the geometry of sampling with the
manifold-constrained gradient guidance. Unlike standard sam-
pling, an additional step is incorporated based on the gradient
of the constraint residual function RH(x̂0|t). The guidance
term steers the sampling trajectory toward the intersection x⋆

0

of the constraint H(x) = 0 and the clean data manifold M.
Since the guidance term is tangential to the clean data manifold
M, x̂′

0|t remains on the clean data manifoldM, ensuring that
the final sample is both feasible and statistically representative.

To enforce inequality constraints (10), we implement a
similar approach. Consider the following inequality constraints

G(x) ≤ 0, (24)

for which the residual function RG(·) is defined as

RG(x) = ∥max(G(x), 0)∥22. (25)

The correction rule is similar to (23), with the gradient
guidance term defined as

−∇xt
RG(x̂0|t) = −∇xt

∥max(G(x̂0|t), 0)∥22. (26)

The gradient guidance terms are incorporated into the sam-
pling process as shown in Algorithm 3. The full expressions of
the guidance terms, specific to the AC power flow constraints,
are provided in the e-companion of this paper [42]. Due to
Step 4, the guidance terms modify the sampling path at each
reverse diffusion step. We also omit the subscript t from the
estimated clean data x̂0|t and denote it by x̂0.

V. PRACTICAL IMPLEMENTATION VIA VARIABLE
DECOUPLING AND NORMALIZATION

We present two practical techniques that leverage domain
knowledge in power systems to improve (i) computational
efficiency of the proposed constrained diffusion model and (ii)
scale consistency of the gradient guidance during sampling.

A. Variable Decoupling for Computational Efficiency

In high-voltage transmission systems, active power injection
p highly correlates with θ and less so with voltage magnitude
v, while reactive power injection q primarily correlates with
v and weakly correlates with phase angle θ [43], [44]. This
observation underlies the classical fast decoupled power flow
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Algorithm 4 : Training the diffusion model under variable
decoupling
Inputs: initialized neural networks ϵθ1 and ϵθ2 , noise schedule
{αt}Tt=1, dataset of x0’s sampled from q0
Outputs: trained neural networks ϵθ1 and ϵθ2

1: repeat
2: x0 ∼ q0(x0)

3: x
(1)
0 ,x

(2)
0 ← x0 ▷ split vector

4: t ∼ Uniform({1, . . . , T})
5: ϵ1, ϵ2 ∼ N (0, I2B)
6: Take gradient descent step on

E
x
(1)
0 ,ϵ1,t

∥∥∥ϵ1 − ϵθ1(
√
ᾱt x

(1)
0 +

√
1− ᾱt ϵ1, t)

∥∥∥2 +
E
x
(2)
0 ,ϵ2,t

∥∥∥ϵ2 − ϵθ2(
√
ᾱt x

(2)
0 +

√
1− ᾱt ϵ2, t)

∥∥∥2
7: until converged

method and motivates our variable decoupling strategy. We
split the full vector x0 = (p,q,v,θ) ∈ R4B into two lower-
dimensional vectors x(1)

0 = (p,θ) ∈ R2B and x
(2)
0 = (q,v) ∈

R2B . The diffusion loss Ldiff in (5) is thus split between two
denoiser neural networks:

Ldiff = L(1)
diff + L

(2)
diff, (27)

where L(1)
diff and L(2)

diff correspond to x
(1)
0 and x

(2)
0 , respectively.

Due to (5), L(1)
diff is defined as

L(1)
diff = E

x
(1)
0 ,ϵ1,t

∥∥∥ϵ1 − ϵθ1(
√
ᾱt x

(1)
0 +

√
1− ᾱt ϵ1, t)

∥∥∥2 ,
(28)

where ϵ1 and ϵθ1 are the actual and predicted noise at time
step t of the forward process. Similarly, L(2)

diff is defined as

L(2)
diff = E

x
(2)
0 ,ϵ2,t

∥∥∥ϵ2 − ϵθ2(
√
ᾱt x

(2)
0 +

√
1− ᾱt ϵ2, t)

∥∥∥2 ,
(29)

where ϵ2 and ϵθ2 are the actual and predicted noise. Algo-
rithm 4 demonstrates the training of the diffusion model under
variable decoupling. Similarly, to generate new data points,
Algorithm 2 can be adapted based on the variable decoupling
approach, resulting in Algorithm 5.

B. Normalization for Scale-Consistent Gradient Guidance

Normalization in power systems is traditionally achieved via
p.u. transformation [45], bringing all variables to a common
basis. However, p.u. transformation alone is insufficient for
diffusion, as it does not normalize the variables to a unified
numerical range. In fact, the power flow variables x0 =
(p,q,v,θ) in p.u. still have different numerical ranges and
scales. Hence, when computing the gradient guidance term, the
difference in scales becomes problematic. Specifically, the ele-
ments of the resulting guidance vector inherit the magnitudes
of the corresponding variables. As a result, a single scalar
guidance scale λ may have inconsistent effects, hindering both
the convergence and constraint satisfaction during sampling.

To address this issue, we propose a new normalization of the
power flow variables to ensure that the guidance vector has a

Algorithm 5 : Sampling with gradient guidance under variable
decoupling
Inputs: trained neural networks ϵθ1 and ϵθ2 , noise schedule
{αt}Tt=1, noise scale σt, guidance scale λt

Outputs: new data point x̃0

1: xT ∼ N (0, I4B)

2: x
(1)
T ,x

(2)
T ← xT ▷ split vector

3: for t = T − 1 to 0 do
4: x̂

(1)
0 ← 1√

ᾱt

(
x
(1)
t −

√
1− ᾱtϵθ1(x

(1)
t , t)

)
5: x̂

(2)
0 ← 1√

ᾱt

(
x
(2)
t −

√
1− ᾱtϵθ2(x

(2)
t , t)

)
6: x̂0 ← x̂

(1)
0 ∥ x̂

(2)
0 ▷ concatenate vectors

7: x̂′
0 ← x̂0 − λt (∇xt

RH(x̂0) +∇xt
RG(x̂0))

8: z ∼ N (0, I4B)

9: xt−1 ←
√
αt(1−ᾱt−1)

1−ᾱt
xt +

√
ᾱt−1βt

1−ᾱt
x̂′
0 + σtz

10: x
(1)
t−1,x

(2)
t−1 ← xt−1 ▷ split vector

11: return x̃0

comparable scale across all the variable types. First, we apply
the min-max normalization to the real data prior to training
the denoiser, ensuring that all the power flow variables are
mapped to the range [−1, 1]. Specifically, for each data point
x0, its i-th variable x0,i is transformed as

xnorm
0,i = 2

x0,i − xmin
0,i

xmax
0,i − xmin

0,i

− 1, ∀i = 1, · · · , 4B, (30)

where xmin
0,i and xmax

0,i denote the minimum and maximum
values of the i-th variable in the dataset. The denoiser is then
trained using this normalized dataset. Consequently, the entire
sampling process is carried out in the normalized space.

To compute the gradient guidance term, we first denormalize
the current estimate of the clean sample x̂0 using the denor-
malization function fde(·):

fde(x̂
norm
0,i ) =

(
x̂norm
0,i + 1

2

)(
xmax
0,i − xmin

0,i

)
+ xmin

0,i . (31)

The residuals are then evaluated based on actual values. Yet,
the derivative in the gradient guidance term is taken with
respect to normalized values. By chain rule, we thus have

∇x̂norm
0

RH(x̂norm
0 ) =

∂RH(fde(x̂
norm
0 ))

∂fde(x̂norm
0 )

∂fde(x̂
norm
0 )

∂x̂norm
0

. (32)

This approach ensures numerical stability during sampling,
while enabling scale-consistent guidance.

VI. NUMERICAL RESULTS

We evaluate the performance of the proposed constrained
diffusion model for synthesizing power flow datasets. We run
experiments on three benchmark systems: PJM 5-bus system,
IEEE 24-bus system, and IEEE 118-bus system [46]. The
effectiveness of our approach is evaluated through three anal-
yses: (i) comparing the statistical properties of the synthesized
data with those of the ground truth data (Sec. VI-B), (ii)
analyzing constraint satisfaction (Sec. VI-C), and (iii) eval-
uating the utility of the synthesized data in a ML application
(Sec. VI-D).
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Fig. 4. Histograms of the ground truth versus synthetic power flow data points for active power injections (first row), reactive power injections (second row),
voltage magnitudes (third row), and phase angles (forth row) at each bus in the PJM 5-bus system.

A. Experimental Setup

Since real-world power flow datasets are not publicly avail-
able, we generate the ground truth dataset by applying random
perturbations around the nominal load snom

b = (pnom
d,b , q

nom
d,b ) at

each bus b ∈ B of the benchmark systems. We uniformly
sample active and reactive power demands at each bus sb =
(pd,b, qd,b) ∼ Uniform (0.8 snom

b , snom
b ), and then solve the AC-

OPF problem to extract the feasible solutions p,q,v,θ. By
stacking them together into a single data point (pi,qi,vi,θi),
we obtain the ground truth dataset D = {(pi,qi,vi,θi)}Ni=1.

B. Statistical Similarity

The histograms of the ground truth and synthetic power
flow variables for the PJM 5-bus system are given in Fig. 4.
The synthesized variables capture the underlying distribution
of the ground truth data. For each class of variables, the
synthetic data not only aligns well with the support of the
ground truth data but also successfully captures the modes.
The proposed diffusion model also ensures similarity of the
joint probability distributions, as shown in Fig. 5a and Fig. 5b
depicting the joint distributions of the active and reactive
power injections, and voltage magnitude and phase angel,
respectively. If the ground truth data exhibits a multi-modal
structure, the synthetic data points successfully capture all
modes. Moreover, in regions where the ground truth data is
denser, the synthetic data points are also more concentrated,
whereas in regions where the density of the ground truth
data points decreases, the synthetic data points become more
sparse. Another important property is the coverage capability,

TABLE I
WASSERSTEIN DISTANCES BETWEEN THE GROUND TRUTH D AND

SYNTHETIC DATA D̃

Distance between... 5-Bus 24-Bus 118-Bus

...D and D̃ w/o guidance 0.442 0.607 0.622

...D and D̃ w/ guidance 0.382 0.585 0.597

as shown in Fig. 5a and Fig. 5b, where the synthesized data
points closely span the entire domain of the ground truth data.

To quantify the similarity of the ground truth and synthetic
datasets, we use the type-1 Wasserstein distance between these
datasets, defined as

W1(D, D̃) = min
γ∈Γ(D,D̃)

N∑
i=1

M∑
j=1

γij∥xi − x̃j∥2, (33)

where Γ(D, D̃) represents the set of all valid ways to assign
mass between the ground truth and synthetic samples [47].
The results for synthetic datasets obtained with and without
gradient guidance are summarized in Table I. Lower Wasser-
stein distances indicate closer alignment between synthetic
and ground truth distributions. Across all the test systems,
the distances remain low, showing that the synthesized power
flow data closely mirrors the ground truth data. Enforcing the
constraints during sampling further reduces the Wasserstein
distance consistently. Thus, we validate that constraint en-
forcement not only promotes feasibility but also enhances the
statistical similarity of the ground truth and synthetic datasets.
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Fig. 5. 2D scatter plots with density estimates of the active and reactive power injection (top row), and voltage magnitude and phase angle (bottom row) at
each bus in the PJM 5-bus system, comparing the joint distributions of the ground truth and constrained synthetic datasets. The plots highlight the ability of
the diffusion model to replicate the underlying pattern, domain, and multi-modal structure of the ground truth data.

C. Constraint Satisfaction

We evaluate constraint satisfaction of the synthetic datasets
generated with and without gradient guidance, specifically
focusing on the active and reactive power balance at each
bus. Figure 6 presents the histograms of violation magnitudes
in the PJM 5-bus system: without the guidance mechanism,
a significant portion of the generated samples exhibit non-
negligible violations at buses 1, 2, 3, and 5 for the active power
balance constraints. With guidance, the vast majority of the
samples show near-zero active power mismatch at all buses,
indicating strong constraint satisfaction. Similar observations
hold for the reactive power balance constraints.

For the IEEE 24-bus system, Table II reports the mean
and variance of the active and reactive power mismatches at
each bus. Similar to the PJM 5-bus system, gradient guidance
significantly reduces both the mean and variance of constraint
violations across most buses. For the IEEE 118-bus system,
the results are visualized in Fig. 7 comparing the mean and
variance of the power mismatches with and without guidance.
Guidance leads to a noticeable improvement for some buses,
particularly buses 4 and 5, where the baseline violation is
relatively large. For most other buses, the initial violation
magnitude is small, which limits the impact of the guidance
mechanism. Furthermore, for some buses, the mismatch mean
under the constrained sampling is slightly larger. However, this
does not contradict the overall effectiveness of the guidance
mechanism. We observe that variance plays a more critical
role than the mean in determining the quality of constraint
satisfaction. That is, a model with a low mismatch mean
but high variance may still generate many samples with
large constraint violations. The proposed guidance mechanism,
instead, ensures that most generated samples remain close to
the full satisfaction of the physical constraints.

D. Utility of Synthetic Data in Downstream ML Task

As an additional measure of quality, we study how well
the synthesized power flow data performs in a downstream
learning task. Specifically, we examine whether constrained

TABLE II
MEAN AND STANDARD DEVIATION OF POWER MISMATCHES OF

SYNTHESIZED DATA POINTS FOR THE IEEE 24-BUS SYSTEM UNDER
CONSTRAINED AND UNCONSTRAINED SAMPLING (λ=10−4 VS λ=0).

Bus ∆p (MW) ∆q (MVar)

λ=0 λ=10−4 λ=0 λ=10−4

1 −12.50± 207.10 1.03± 4.80 −1.20± 59.80 −0.60± 5.50
2 10.10± 153.00 −1.50± 4.90 −2.56± 56.20 0.77± 5.40
3 0.24± 7.10 −0.15± 2.80 −0.06± 2.60 −0.08± 1.00
4 −0.30± 9.10 −0.03± 2.80 0.04± 1.40 −0.03± 1.00
5 0.53± 6.10 0.05± 4.00 −0.04± 2.80 −0.04± 1.40
6 0.04± 26.40 −0.85± 3.20 −0.19± 12.80 0.11± 1.00
7 −0.94± 17.80 −0.41± 3.50 0.30± 6.60 0.07± 1.40
8 1.00± 22.60 0.39± 4.60 −0.89± 24.80 −0.15± 1.70
9 0.33± 8.20 0.41± 3.90 −0.36± 8.30 −0.14± 1.00
10 0.85± 7.30 0.92± 4.90 −0.74± 17.50 −0.21± 1.00
11 −0.38± 7.30 −0.21± 2.60 0.01± 2.20 0.05± 1.40
12 −0.92± 24.80 −0.15± 2.20 −0.06± 5.00 −0.02± 1.00
13 0.02± 2.20 0.02± 1.40 0.01± 4.50 0.16± 2.60
14 −0.65± 19.0 −0.09± 3.50 0.02± 2.20 −0.17± 1.70
15 −0.28± 71.80 −0.34± 4.90 −0.42± 14.70 −0.11± 1.70
16 6.97± 189.00 0.22± 3.90 −1.84± 54.70 0.11± 1.70
17 −1.04± 19.60 −0.23± 4.40 −0.48± 19.40 0.07± 1.00
18 −1.35± 94.20 0.48± 3.00 −0.28± 3.60 −0.10± 0.00
19 −2.17± 78.00 −0.17± 4.80 −0.20± 5.70 0.05± 1.00
20 −3.14± 55.60 −0.55± 4.00 0.30± 3.70 0.03± 1.00
21 2.00± 85.80 0.16± 3.90 −0.64± 21.30 0.07± 1.00
22 −0.98± 26.90 −0.22± 3.30 −0.13± 4.00 0.00± 0.00
23 3.23± 68.60 0.51± 4.10 −0.52± 14.60 −0.04± 1.00
24 0.30± 7.80 0.06± 2.80 0.09± 4.70 0.04± 1.00

synthetic data better supports the learning of efficient warm-
start for the Newton–Raphson power flow solver [37]. We train
a neural network f : Rdk → Rdu that maps the known inputs
x ∈ Rdk (e.g., p, q, v, or θ, depending on bus types) to
the corresponding unknown outputs y ∈ Rdu . The dimensions
dk and du depend on the specific test case. We generate two
synthetic training datasets of equal size under constrained
and unconstrained sampling. Using each dataset, we train
a separate neural network to predict y from x. We use a
fully connected feedforward neural network architecture. More
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Fig. 6. Histograms of violation magnitudes for the active (top row) and reactive (bottom row) power balance constraints in the PJM 5-bus system, comparing
synthesized data points under constrained and unconstrained sampling (λ=10−2 vs λ=0).

Fig. 7. Comparison of per-bus (a) mean (MW) and (b) variance (MW2) of the active power mismatches, and (c) mean (MVar) and (d) variance (MVar2) of
the reactive power mismatches for the synthesized data on the IEEE 118-bus system under constrained and unconstrained sampling (λ=5× 10−4 vs λ=0).

advanced architectures could improve accuracy but would
not change the relative comparison between datasets. The
performance of the models is then evaluated on a common test
dataset. The results in Table III show that models trained on
constrained synthetic data consistently yield smaller active and
reactive power mismatches than those trained on unconstrained
data across all the test cases. Although the gap between syn-
thetic and ground-truth data remains, enforcing the power flow
constraints during data generation clearly leads to predictions
that better respect the underlying physics of power systems.

VII. CONCLUSION

This paper aims to generate statistically representative and
physically consistent synthetic power flow datasets. We de-
velop a diffusion model that integrates the AC power flow

constraints into the data generation process through manifold-
constrained gradient guidance. Numerical experiments on
IEEE benchmark systems show that the model produces syn-
thetic datasets with high statistical similarity to real data while
achieving high physical feasibility. The proposed method can
serve as a practical tool for system operators to generate high-
quality power flow data suitable for public release and capable
of supporting a wide range of downstream ML applications.
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