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Uncertainty and risks in natural gas networks I"lii

» Uncertainty in natural gas networks arises from:
» Imperfect forecasts » Renewable gas supply

» Imbalances in power grid P> Extreme weather events

» Risks in natural gas networks include:
> Operational risks (operations at (or beyond) the limits)

> Market risks (contract violations, variable returns, etc.)

» Operations in power systems produce risks in natural gas systems, and vice versa

Risk propagation
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Scheduling under uncertainty meets stochastic control I"lii

gas demand uncertainty gas injection

s el

» Look-ahead scheduling problems under uncertainty:

schedule

» Optimal nominal set-points for gas injections

> Optimal reserve margins to hedge against uncertainty
» Scheduling does not answer how to control the system state as uncertainty gradually realizes
» Hence, it is often assumed that there will be some real-time re-optimization to control the system state

» Contribution in a nutshell: We extended the scheduling under uncertainty to include stochastic control
component within operational planning of natural gas systems
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Scheduling under uncertainty meets stochastic control I"lii
gas demand uncertainty gas injection
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Contributions

#1 Multi-stage stochastic control policies to guide natural gas networks
» Optimized ahead of time using linear decision rules (LDRs)
» Produce real-time control inputs

#2 Multi-stage chance-constrained optimization
> Distributionally robust LDR optimization
> Scalable conic formulation

#3 Three stochastic control applications
> Linepack as a sole flexibility resource
» Variability&Variance-aware optimization
» Network topology optimization
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Modeling natural gas networks



Natural gas network equations under uncertainty I"lii

» At any stage t, network operations are perturbed by renewable power forecast
errors ¢' = ({1,...,C:). Stochastic gas extraction §; = 6:(C").

» Conservation of natural gas mass under uncertainty
Ape(Cf) = 9e(C)  —Bre(C") — 0e(C)

N
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» At any stage t, network operations are perturbed by renewable power forecast
errors ¢* = (1,...,C:). Stochastic gas extraction §; = 6:(C").

» Conservation of natural gas mass under uncertainty
Ape(Cf) = 9e(C)  —Bre(C") —0e(C)

— —
6n 9 gas flow gas injection gas extraction
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» From non-convex stochastic Weymouth equation of gas flow

ee(CNpe(C) = we ((n(C) + ke(C7) )? = om(¢7)?)

[
compression

e
Re

quadratic pressure drop

... to its linearized counterpart ¢:(¢") = wor + Waroe(CF) + Waerke(¢F)

Stochastic Control and Pricing for Natural
Gas Networks
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) Performance guarantees of linearization [DRPK21]
> Modeling natural gas networks 3/12



Natural gas network equations under uncertainty I'lii

» At any stage t, network operations are perturbed by renewable power forecast
errors (' = (1, ..., ). Stochastic gas extraction §; = 6:(C").

» Conservation of natural gas mass under uncertainty

Api(CT) = 9:(¢)  —Bre(C) = 6:(¢")

On 9, m gmn gas extraction
< 4 » Linepack (gas storage) equations under uncertainty?
¥e(¢") = 1dgls] (Ht(Ct) + |A|Tgt(ct)) — linepack o to gas pressures
T§ De(¢H) = Yea (¢ + i (¢F) — @i (¢") — dynamic state of charge

om(¢")

“refer to [SOKP19] for original, deterministic equations
> Modeling natural gas networks 3/12
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LDR-based control policies for network assets



Chance-constrained gas network optimization in linear decision rules I"lii

Pt,0t

sto AVD(CY) + A2or(¢h) = A2 (¢,

9 <0:(¢) <Y
Pgr ¢ _ Zl—E,Vt
o<o(¢)<e| ——

reliability
level

>> LDR-based control policies for network assets

min [E[Z;l (a 9:(¢) +9:(¢) T C219t(ct))] expected quadratic cost

gas network equations

chance constraint on

control and state var.
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» Scenario approximation is computationally hard

® scenario approx. ® LDR

>> LDR-based control policies for network assets

» Linear decision rule approximation [KWG11]:

19t(Ct) = etct, Qt(Ct) = PtCt

with matrices ©: and P;: to be optimized
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Chance-constrained gas network optimization in linear decision rules

>> LDR-based control policies for network assets

min [E[ZZ:1 (a 9:(¢) +9:(¢) T C219t(ct))] expected quadratic cost

Pt 0t
sto AVO(CH) + A2o:(¢) = A25i(¢h), gas network equations
9 < 9(¢) < chance constraint on
Pcr . | =z1-€, Vvt
o<o(¢)<p —_— control and state var.
reliability
level

» Scenario approximation is computationally hard
® scenario approx. ® LDR » Linear decision rule approximation [KWG11]:

: 9:(C*) = ©:¢",  0e(C) = PiCt

with matrices ©; and P; to be optimized
» Refer to [DMB22] for optimality gurantees of LDR

Multi-Stage Investment Decision Rules for Power
Systems with Performance Guarantees

Vladimir Dvorkin, Member, IEEE, Dharik Mallapragada and Audun Botterud

4/12



Distributionally robust reformulation of chance
A chance constraint on nodal pressure limits
P [0, <om(¢) <7, 21—
reformulates into 1 conic and 4 linear ineq. [XA17]:

o ||F[P:S:]T
Wi
ytn

<:(en-e)—xa
’[PrSr]nﬁ* 3 (@, fgn)‘ <y + x4
3@ —0)=2x6>0,y820

using mean & and covariance F of forecast errors

Key features:
» Fits any distribution with given mean and covariance

» Pareto-dominates single-sided chance constraints

>> LDR-based control policies for network assets

constraints I'lii

i gas pressure |

2, ©n
Pressure LDR is optimized to stay within
technical limits with probability (1 — €)
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Network control applications



Application 1: Linepack as a sole flexibility resource I"lii

» Real-time supply corrections are costly
» How accommodate uncertainty otherwise?

> Actively deploy linepack by regulating pressure!

6 compressors, 2 valves and 51 pipeline (storage units)

>> Network control applications 6 /12



Application 1: Linepack as a sole flexibility resource I"lii

v

Real-time supply corrections are costly
How accommodate uncertainty otherwise?

Actively deploy linepack by regulating pressure!

Chance-constrained optimization of compressor
and valve LDR policies, additionally subject to

H?[et]nst

[N
std of gas injection

< C(ﬂ [@t]nstﬂ 5 Vn e N,
-

mean gas injection

where o is a control parameter, e.g., o’ — 0

offsets any supply adjustment

>> Network control applications

6 compressors, 2 valves and 51 pipeline (storage units)
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Application 2: Variance- and variability-aware operations I"lii

» Variable and uncertain renewable generation translates into variable and uncertain network state
» LDRs provide the measure of variability and variance of network state variables

» Pressure variability and uncertainty is penalized by minimizing the following term:

)
o, {ae S (1P = Pesc]
t=2

:aé’iTr [(Pt— Pt—l)f(Pf_Pt_l)T}

t=2

where P; and P;_; are pressure LDR matrices at two subsequent stages, and X is the forecast error covariance

» By varying penalty factor a®, we more intensively penalize pressure variability and variance

>> Network control applications 7/12



Application 3: Network topology optimization

> We use LDRs to optimize topology to decouple network parts and reduce uncertainty propagation:

Color density displays nodal pressure variance. Topology switching is an additional flexibility resource [DRPK21]

>> Network control applications

switching off
—_—
one pipeline

8/ 12



Application 3: Network topology optimization I'lii

> We use LDRs to optimize topology to decouple network parts and reduce uncertainty propagation:

switching off
—_—
one pipeline

Color density displays nodal pressure variance. Topology switching is an additional flexibility resource [DRPK21]

> Given V binary valves, we have a set 1,...,2" of possible network topologies
» Binary variable v. = 1 if topology c is selected, and v. = 0 otherwise
» Then, the following binary logic is used for topology selection:
Dec(CF) = Wore + Waee0e(C*) + Warere(¢F), Ve =1,...,2"

Linearized Weymouth equation for each topology ¢

0(¢) =32 vedee(¢)), T2 ve=1.

Select gas flows from one topology only

>> Network control applications 8 /12



Outline i

Numerical experiments



Experiments on 48-node natural gas network
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Uncertain renewable generation from the
IEEE 118-node network translates into

uncertain gas extraction by CCGTs

>> Numerical experiments
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Analyzing optimal network response

Determenistic

Stochastic control policy

Parameter Unit trol poli

control policy Base
Expected gas injection cost $1000 644.8 (94.6%)  681.7 (100.0%)
Pressure variability MPa 72.01 (189.7%)  38.0 (100.0%)
Expected / worst-case magnitude 77.42 /14776 0.00 / 0.00
of pressure constraint violations
Expected / worst-case magnitude \\\1scpp 9686 /146,91 0.01/0.02
of gas mass constraint violations
First-stage gas injection MMSCFD 2924.8 3229.0
Expected compressor deployment  kPa 7127.9 10225.3
Expected valve deployment kPa 0.0 714.8

Out-of-sample feasibility guaranteed at a small increase in expected cost by 5.4%

>> Numerical experiments
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Analyzing optimal network response

Determenistic

Stochastic control policy

Parameter Unit . :

control policy Base Llnepac.k—

agnostic

Expected gas injection cost $1000 644.8 (94.6%)  681.7 (100.0%) 752.1 (110.3%)
Pressure variability MPa 72.01 (189.7%)  38.0 (100.0%)  66.0 (173.6%)
Expected / worst-case magnitude 77.42 / 147.76 0.00 / 0.00 0.00 / 0.00
of pressure constraint violations
Expected / worst-case magnitude \\\1cceny o6 g6 /146,01 0.01/0.02 0.13/0.13
of gas mass constraint violations
First-stage gas injection MMSCFD 2924.8 3229.0 3203.8
Expected compressor deployment ~ kPa 7127.9 10225.3 10912.7
Expected valve deployment kPa 0.0 714.8 1251.27

Out-of-sample feasibility guaranteed at a small increase in expected cost by 5.4%

>> Numerical experiments

Linepack flexibility saves up to 10.3% of expected cost
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Analyzing optimal network response

Determenistic

Stochastic control policy

Parameter Unit R - hils
control policy Base Variability-aware

a? =10 a? =50 a? =100
Expected gas injection cost $1000 644.8 (94.6%)  681.7 (100.0%) 694.4 (101.9%) 701.2 (102.9%) 703.5 (103.2%)
Pressure variability MPa 72.01 (189.7%)  38.0 (100.0%) 78 (20.5%) 73 (19.2%) 72 (19.1%)
Expected / worst-case magnitude 77.42 / 147.76 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
of pressure constraint violations
Expected / worst-case magnitude \\\1cceny o6 g6 /146,01 0.01/0.02 0.01/0.02 0.02 /0.02 0.02 /0.02
of gas mass constraint violations
First-stage gas injection MMSCFD 2924.8 3229.0 3233.2 3219.5 3219.1
Expected compressor deployment ~ kPa 7127.9 10225.3 12464.8 12451.1 12459.8
Expected valve deployment kPa 0.0 714.8 2281.0 2604.2 2647.6

Out-of-sample feasibility guaranteed at a small increase in expected cost by 5.4%

Linepack flexibility saves up to 10.3% of expected cost

With only 3.2% increase in expected cost, we achieve > 80% reduction in total pressure variability

>> Numerical experiments
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Variability-aware gas network topology optimization I"lii
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» Increasing penalty a®, we reduce pressure variability but incur additional cost
> It makes sense to switch topology (valves) to unlock better cost-variability trade-offs

> Here, we have 4 possible typologies. For a given a?, only one of them is optimal

>> Numerical experiments 11 /12



Conclusions & Outlook i

» Chance-constrained LDR-based polices manage uncertainty in gas networks:
» Internalize forecast and risk criteria of network operators
» Produce uncertainty- and variance-aware network control with guarantees
> Unlock linepack cost-saving potential of up to 10.3% of the expected cost
>

Identify variability- and variance-optimal gas network topology

» Future work:
» Remuneration of linepack flexibility

> Transient gas flow models

& Dvorkin, V., Mallapragada, D., Botterud, A., Kazempour, J., & Pinson, P.
Multi-Stage Linear Decision Rules for Stochastic Control of Natural Gas Networks with Linepack.
arXiv preprint arXiv:2110.02824.

© https://github.com/wdvorkin/LDR_for_gas_network_control
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Thank you for your atention!
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On the linearization of the Weymouth equation I"lii
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