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Uncertainty and risks in natural gas networks

▶ Uncertainty in natural gas networks arises from:

▶ Imperfect forecasts

▶ Imbalances in power grid

▶ Renewable gas supply

▶ Extreme weather events

▶ Risks in natural gas networks include:
▶ Operational risks (operations at (or beyond) the limits)

▶ Market risks (contract violations, variable returns, etc.)

▶ Operations in power systems produce risks in natural gas systems, and vice versa

Electricity
system

Natural gas
System

Flexibility

Risk propagation

Renewables

Gas-fired power plant Linepack
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Scheduling under uncertainty meets stochastic control

gas injection

schedule
reserve

system state

optimization

scheduling

gas demand uncertainty

▶ Look-ahead scheduling problems under uncertainty:

▶ Optimal nominal set-points for gas injections

▶ Optimal reserve margins to hedge against uncertainty

▶ Scheduling does not answer how to control the system state as uncertainty gradually realizes

▶ Hence, it is often assumed that there will be some real-time re-optimization to control the system state

▶ Contribution in a nutshell: We extended the scheduling under uncertainty to include stochastic control
component within operational planning of natural gas systems
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Scheduling under uncertainty meets stochastic control

gas injection

schedule
reserve

system state

optimization

scheduling

gas demand uncertainty

Contributions
#1 Multi-stage stochastic control policies to guide natural gas networks

▶ Optimized ahead of time using linear decision rules (LDRs)
▶ Produce real-time control inputs

#2 Multi-stage chance-constrained optimization
▶ Distributionally robust LDR optimization
▶ Scalable conic formulation

#3 Three stochastic control applications
▶ Linepack as a sole flexibility resource
▶ Variability&Variance-aware optimization
▶ Network topology optimization
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Natural gas network equations under uncertainty

φℓ

δn ϑn

ϱn

κ
ℓ

▶ At any stage t, network operations are perturbed by renewable power forecast
errors ζt = (ζ1, . . . , ζt). Stochastic gas extraction δt = δt(ζ

t).

▶ Conservation of natural gas mass under uncertainty

Aφt(ζ
t)

gas flow

= ϑt(ζ
t)

gas injection

−Bκt(ζ
t)− δt(ζ

t)

gas extraction

▶ From non-convex stochastic Weymouth equation of gas flow

φℓ(ζ
t)|φℓ(ζ

t)| = wℓ

(
(ϱn(ζ

t) + κℓ(ζ
t)

compression

)2 − ϱm(ζ
t)2

)
quadratic pressure drop

... to its linearized counterpart φt(ζ
t) = w0t +W1tϱt(ζ

t) +W2tκt(ζ
t)
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N Set of nodes.

Parameters

δ Vector of nominal gas extraction rates.
γ, γ̂, γ̆, γ̀ Linearization coefficients (and their transforma-

tions) associated with the Weymouth equation.
c̀2 Factorization of the second-order cost coefficients.
R(·) Revenue associated with network agent (·).
ψπ Vector of pressure variance penalty factors.
ψϕ Vector of flow variance penalty factors.
Σ, F Forecast errors covariance matrix and its factoriza-

tion.
κ,κ Vectors of minimum and maximum squared regula-

tion limits.
π,π Vectors of minimum and maximum squared pres-

sure limits.
ρ, ρ Vectors of minimum and maximum pressure limits.
ϑ,ϑ Vectors of minimum and maximum gas injection

limits.
ε, ε̂ Joint and individual constraint violation parameters.
A Node-edge incidence matrix.
B Sending node-active pipeline incidence matrix.
b Vector of gas mass-pressure conversion factors.
c1, c2 Vectors of the first- and second-order cost coeffi-

cients.
p Probability of violating performance guarantee.
S Sample complexity in out-of-sample analysis.
v Confidence level of performance guarantee.
w Vector of pipeline friction coefficients.
zε̂ Safety parameter in chance constraint reformula-

tion.
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α Matrix of gas injection recourse decisions.
β Matrix of pressure regulation recourse decisions.
κ Vector of pressure regulation rates.
λ, u Vectors and matrices of dual variables.
π Vector of nodal pressures.
ϕ Vector of gas flows.
ϑ Vector of nodal gas injections.
cϑ, cα Vectors of second-order nominal and recourse costs.
sπ Vector of pressure standard deviations.
sϕ Vector of flow standard deviations.
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Natural gas network equations under uncertainty

φℓ

δn ϑn
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κ
ℓ

▶ At any stage t, network operations are perturbed by renewable power forecast
errors ζt = (ζ1, . . . , ζt). Stochastic gas extraction δt = δt(ζ

t).

▶ Conservation of natural gas mass under uncertainty

Aφt(ζ
t)

gas flow

= ϑt(ζ
t)

gas injection

−Bκt(ζ
t)− δt(ζ

t)

gas extraction

▶ Linepack (gas storage) equations under uncertaintya

ψt(ζ
t) = 1

2
dg[s]

(
κt(ζ

t) + |A|⊤ϱt(ζt)
)
− linepack ∝ to gas pressures

ψt(ζ
t) = ψt91(ζ

t91) + φ
+

t (ζ
t)− φ9

t (ζ
t)− dynamic state of charge

φℓ(ζ
t)

ψℓ(ζ
t)

•ϱn(ζ
t)

φ+

ℓ(ζ
t)

•ϱm(ζt)
φ9

ℓ(ζ
t)

arefer to [SOKP19] for original, deterministic equations
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Chance-constrained gas network optimization in linear decision rules

min
φt ,ϱt

E
[∑T

t=1

(
c⊤1 ϑt(ζ

t) + ϑt(ζ
t)⊤C2ϑt(ζ

t)
)]

expected quadratic cost

s.to Aϑ
t ϑt(ζ

t) + Aϱ
t ϱt(ζ

t) = Aδ
t δt(ζ

t), gas network equations

Pζt

[
ϑ ⩽ ϑt(ζ

t) ⩽ ϑ

ϱ ⩽ ϱt(ζ
t) ⩽ ϱ

]
⩾ 1− ε

reliability
level

, ∀t
chance constraint on

control and state var.
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’t≠1

•
•

•

•
•

•

• •

•
•

•

•

•

•
•

•
•
• •

•

’t

Ët(’t)

scenario approx. LDR

o 1 / 1

▶ Scenario approximation is computationally hard

▶ Linear decision rule approximation [KWG11]:

ϑt(ζ
t) = Θtζ

t , ϱt(ζ
t) = Ptζ

t

with matrices Θt and Pt to be optimized

▶ Refer to [DMB22] for optimality gurantees of LDR
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Distributionally robust reformulation of chance constraints

A chance constraint on nodal pressure limits

Pζt

[
ϱ
n
⩽ ϱnt(ζ

t) ⩽ ϱn

]
⩾ 1− ε

reformulates into 1 conic and 4 linear ineq. [XA17]:

−2
√
ε

∥∥∥∥F̂ [PtSt ]
⊤
n

yϱ
tn

∥∥∥∥ ⩽ 1
2

(
ϱn − ϱ

n

)
− xϱ

tn∣∣∣[PtSt ]nµ̂− 1
2

(
ϱn − ϱ

n

)∣∣∣ ⩽ yϱ
tn + xϱ

tn

1
2

(
ϱn − ϱ

n

)
⩾ xϱ

tn ⩾ 0, yϱ
tn ⩾ 0

using mean µ̂ and covariance F̂ of forecast errors

Key features:

▶ Fits any distribution with given mean and covariance

▶ Pareto-dominates single-sided chance constraints

gas pressure %n(ζt)
%n %n

•

1 − ε

ε

•

ε

•

≫ 1 / 1

Pressure LDR is optimized to stay within

technical limits with probability (1− ε)
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Application 1: Linepack as a sole flexibility resource

▶ Real-time supply corrections are costly

▶ How accommodate uncertainty otherwise?

▶ Actively deploy linepack by regulating pressure!

▶ Chance-constrained optimization of compressor
and valve LDR policies, additionally subject to∥∥∥F̂ [Θt ]nSt

∥∥∥
std of gas injection

⩽ αϑ [Θt ]nSt µ̂

mean gas injection

, ∀n ∈ N ,

where αϑ is a control parameter, e.g., αϑ → 0
offsets any supply adjustment

Numerical Experiments
Setup

• 48-node natural gas network
• 22 stochastic gas extractions
• 6 comp. and 2 valves
• 11 gas injections
• ⇠ ⇠ N(0,�), � ! 10% of �
• Violation probability " = 1%

• Ipopt + JuMP ! sensitivities
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6 compressors, 2 valves and 51 pipeline (storage units)
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Application 2: Variance- and variability-aware operations

▶ Variable and uncertain renewable generation translates into variable and uncertain network state

▶ LDRs provide the measure of variability and variance of network state variables

▶ Pressure variability and uncertainty is penalized by minimizing the following term:

EPζ

[
αϱ

T∑
t=2

∥∥Ptζ − Pt−1ζ
∥∥]

= αϱ
T∑
t=2

Tr
[
(Pt − Pt−1) Σ̂ (Pt − Pt−1)

⊤
]

where Pt and Pt−1 are pressure LDR matrices at two subsequent stages, and Σ̂ is the forecast error covariance

▶ By varying penalty factor αϱ, we more intensively penalize pressure variability and variance

≫ Network control applications 7 / 12



Application 3: Network topology optimization

▶ We use LDRs to optimize topology to decouple network parts and reduce uncertainty propagation:

1

• 2•

9 •

11 •
12

•
13

•
17

•
18

•

20•
19

•
14

•

16 •

15 •

•

10 •

8•

7•

6

•
4

•

3
•

5

•

•

21•

•

48•

25

•
26

•
37

•

28•

22

•
23

•
24

•
46

•

45 •
47

•

44•
33

•
32

•
31

•30 •

29 •
34

•
35

•
36

• 43•

42•

38

•
39

•
40

•
41

•

•
27

•

C2

C1

1

• 2•

9 •

11 •
12

•
13

•
17

•
18

•

20•
19

•
14

•

16 •

15 •

•

10 •

8•

7•

6

•
4

•

3
•

5

•

•

21•

•

48•

25

•
26

•
37

•

28•

22

•
23

•
24

•
46

•

45 •
47

•

44•
33

•
32

•
31

•30 •

29 •
34

•
35

•
36

• 43•

42•

38

•
39

•
40

•
41

•

•
27

•

C2
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switching off

one pipeline

Color density displays nodal pressure variance. Topology switching is an additional flexibility resource [DRPK21]

▶ Given V binary valves, we have a set 1, . . . , 2V of possible network topologies
▶ Binary variable vc = 1 if topology c is selected, and vc = 0 otherwise
▶ Then, the following binary logic is used for topology selection:

ϕtc(ζ
t) = w0tc +W1tcϱt(ζ

t) +W2tcκt(ζ
t)

Linearized Weymouth equation for each topology c

, ∀c = 1, . . . , 2V

φt(ζ
t) =

∑2V

c=1 vcϕtc(ζ
t),

∑2V

c=1 vc = 1.

Select gas flows from one topology only

≫ Network control applications 8 / 12
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Color density displays nodal pressure variance. Topology switching is an additional flexibility resource [DRPK21]

▶ Given V binary valves, we have a set 1, . . . , 2V of possible network topologies
▶ Binary variable vc = 1 if topology c is selected, and vc = 0 otherwise
▶ Then, the following binary logic is used for topology selection:

ϕtc(ζ
t) = w0tc +W1tcϱt(ζ

t) +W2tcκt(ζ
t)

Linearized Weymouth equation for each topology c

, ∀c = 1, . . . , 2V

φt(ζ
t) =

∑2V

c=1 vcϕtc(ζ
t),

∑2V

c=1 vc = 1.

Select gas flows from one topology only
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Experiments on 48-node natural gas network
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Fig. 1. Multi-stage natural gas network optimization: (a) Normalized total renewable power generation scenarios (top) and their conversion into normalized
total gas extraction (bottom) as explained in Section ??, (b) Density plot of the relative difference between the deterministic (ψ1i) and the base stochastic
(ψ̃1i(ζ

1)) first-stage linepack decisions for i = 1, . . . , E, (c) Normalized scenarios of total pressure regulation (top) and aggregated nodal pressures (bottom)
under the base stochastic (variability-agnostic) and stochastic variability-aware network control policies.

Uncertain renewable generation from the

IEEE 118-node network translates into

uncertain gas extraction by CCGTs
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Fig. 1. Multi-stage natural gas network optimization: (a) Normalized total renewable power generation scenarios (top) and their conversion into normalized
total gas extraction (bottom) as explained in Section ??, (b) Density plot of the relative difference between the deterministic (ψ1i) and the base stochastic
(ψ̃1i(ζ

1)) first-stage linepack decisions for i = 1, . . . , E, (c) Normalized scenarios of total pressure regulation (top) and aggregated nodal pressures (bottom)
under the base stochastic (variability-agnostic) and stochastic variability-aware network control policies.

Acting on the same uncertainty data,

variability-aware LDR solution produces

more stable pressure profiles
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Analyzing optimal network response

Parameter Unit
Determenistic
control policy

Stochastic control policy

Base
Linepack-
agnostic

Variability-aware

αϱ = 10 αϱ = 50 αϱ = 100

Expected gas injection cost $1000 644.8 (94.6%) 681.7 (100.0%) 752.1 (110.3%) 694.4 (101.9%) 701.2 (102.9%) 703.5 (103.2%)
Pressure variability MPa 072.01 (189.7%) 038.0 (100.0%) 066.0 (173.6%) 007.8 0(20.5%) 007.3 0(19.2%) 007.2 0(19.1%)

Expected / worst-case magnitude
of pressure constraint violations

MPa 77.42 / 147.76 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00

Expected / worst-case magnitude
of gas mass constraint violations

MMSCFD 26.86 / 146.91 0.01 / 0.02 0.13 / 0.13 0.01 / 0.02 0.02 / 0.02 0.02 / 0.02

First-stage gas injection MMSCFD 2924.8 3229.0 3203.8 3233.2 3219.5 3219.1

Expected compressor deployment kPa 7127.9 10225.3 10912.7 12464.8 12451.1 12459.8

Expected valve deployment kPa 0.0 714.8 1251.27 2281.0 2604.2 2647.6

Out-of-sample feasibility guaranteed at a small increase in expected cost by 5.4%

Linepack flexibility saves up to 10.3% of expected cost

With only 3.2% increase in expected cost, we achieve > 80% reduction in total pressure variability
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Variability-aware gas network topology optimization

6

TABLE I
EXPECTED COST, STATE VARIABILITY AND FEASIBILITY ACROSS THE 5-STAGE CONTROL HORIZON UNDER DETERMINISTIC AND STOCHASTIC CONTROL

Parameter Unit Determenistic
control policy

Stochastic control policy

Base Linepack-
agnostic

Variability-aware

↵% = 10 ↵% = 50 ↵% = 100

Expected gas injection cost $1000 644.8 (94.6%) 681.7 (100.0%) 752.1 (110.3%) 694.4 (101.9%) 701.2 (102.9%) 703.5 (103.2%)
Pressure variability term (9a)

↵%
MPa 072.01 (189.7%) 038.0 (100.0%) 066.0 (173.6%) 007.8 0(20.5%) 007.3 0(19.2%) 007.2 0(19.1%)

Expected / worst-case magnitude
of pressure constraint violations MPa 77.42 / 147.76 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00

Expected / worst-case magnitude
of gas mass constraint violations MMSCFD 26.86 / 146.91 0.01 / 0.02 0.13 / 0.13 0.01 / 0.02 0.02 / 0.02 0.02 / 0.02

First-stage gas injectionP
n2N #1n

MMSCFD 2924.8 3229.0 3203.8 3233.2 3219.5 3219.1

Expected compressor deploymentPt2T
`2Ec

EP⇣t [̃t`(⇣
t)] kPa 7127.9 10225.3 10912.7 12464.8 12451.1 12459.8

Expected valve deploymentPt2T
`2Ev

EP⇣t [̃t`(⇣
t)] kPa 0.0 714.8 1251.27 2281.0 2604.2 2647.6
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(c) Pressure scenarios
Fig. 2. Multi-stage natural gas network optimization: (a) Normalized total renewable power generation scenarios (top) and their conversion into normalized
total gas extraction (bottom) as explained in Section II-C, (b) Density plot of the relative difference between the deterministic ( 1i) and the base stochastic
( ̃1i(⇣

1)) first-stage linepack decisions for i = 1, . . . , E, (c) Normalized scenarios of total pressure regulation (top) and aggregated nodal pressures (bottom)
under the base stochastic (variability-agnostic) and stochastic variability-aware network control policies.

accommodate this stochastic process, we require the stochastic
network state trajectories to remain within network limits with
individual constraint satisfaction probability at least 99.5%
(i.e., 1 � "t = 0.995). Finally, we extract 103 uncertainty
samples from N(µ,⌃) for the out-of-sample analysis.

Next, we provide selected results for control applications
from Section III-B. Solution time does not exceed 1.2 sec for
the SOCP and 24.5 sec for the MISOCP programs on average
with the MOSEK solver on a standard laptop. All modeling
data and codes to replicate the results are available in [12].

B. Results

We first compare deterministic and stochastic control poli-
cies in Table I. The deterministic policy is obtained by solving
problem (7) when replacing chance constraints (7h)–(7r) with
their deterministic counterparts to constraint the nominal vari-
able components only. The base stochastic policy is optimized
following the application in Section III-B1: we set factor
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optimal
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increases

Fig. 3. Trade-offs between the expected cost and pressure variability under
four network topologies for varying penalty factor ↵%. The green/red color
indicates that the binary valve is activated/deactivated. The optimal frontier
(depicted in dashed blue) is obtained by solving the mixed-integer topology
optimization problem from Section III-B3 for various assignments ↵%. The
variance of renewable generation is increased in this experiment from 0.15 to
0.20 for more illustrative results.

▶ Increasing penalty αϱ, we reduce pressure variability but incur additional cost

▶ It makes sense to switch topology (valves) to unlock better cost-variability trade-offs

▶ Here, we have 4 possible typologies. For a given αϱ, only one of them is optimal
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Conclusions & Outlook

▶ Chance-constrained LDR-based polices manage uncertainty in gas networks:

▶ Internalize forecast and risk criteria of network operators

▶ Produce uncertainty- and variance-aware network control with guarantees

▶ Unlock linepack cost-saving potential of up to 10.3% of the expected cost

▶ Identify variability- and variance-optimal gas network topology

▶ Future work:

▶ Remuneration of linepack flexibility

▶ Transient gas flow models

� Dvorkin, V., Mallapragada, D., Botterud, A., Kazempour, J., & Pinson, P.
Multi-Stage Linear Decision Rules for Stochastic Control of Natural Gas Networks with Linepack.
arXiv preprint arXiv:2110.02824.

� https://github.com/wdvorkin/LDR for gas network control

Thank you for your atention!
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On the linearization of the Weymouth equation

⇠1

⇠2

⇡̃(⇠1, ⇠2)

•
(0, 0)

•

•
(b⇠1, b⇠2)

•

•

�
⇡̃

Figure 1: Visualization of the linearization errors: the linearized stochastic pressure equation
(7b) in red is tangent to the true and unknown stochastic pressure surface in blue at ⇠ = (0, 0).
The linearization error �⇡̃ is the projection from the linear plane to the non-convex surface at
⇠ = (b⇠1, b⇠2), which depends on the realization of forecast errors, whose probability density is
depicted in gray.
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Figure 2. The worst-case stochastic pressure approximation errors summa-
rized across 48 nodes, for p = v = 0.9 in Lemma 3, and for different
uncertainty penetration levels. The blue boxplots

s.t. t > k⇡̃n(b⇠s) � ⇡?n(b⇠s)k, 8s = 1, . . . , S, (4b)

where ⇡̃n(b⇠s) and ⇡?n(b⇠s) are parameters as in (2) estimated for each forecast error sample, and
t models the maximum distance (error). Then, by imposing the sample complexity requirement
(minimum number of samples S from P⇠), we statistically upper-bound the approximation error
associated with the stochastic pressure variables at node n. This requirement is inspired from the
robust optimization theory and is explicitly given by to the following result.

Lemma 1 (Sample complexity, adapted from [10]). For some parameters ↵ 2 [0, 1] and � 2 [0, 1],
if a sample complexity S is such that

S > 1

↵�
� 1,

then with probability (1�↵) and with confidence level (1��), the stochastic pressure approximation
error under linear law (7b) will not exceed the optimal solution t? of problem (4).
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provide the summary of the deterministic solution.
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Figure 1. Expected cost versus pressure variance for different assignments
of control polices to network assets. Pressure penalty �� � [10�3, 10�1].

network assets. The first condition in Corollary 1 is motivated
by the linearization of the Weymouth equation. If �1 �= 0,
there exists an extra revenue term �w��1. As consumers are
inelastic, this payment can be thus allocated to consumer
charges, however its distribution among the customers remains
an open question. Finally, the second condition in Corollary
1 allows pressures to be zero at network nodes, which is too
restrictive for practical purposes. In the next Section V we
show that the revenue adequacy holds in practice even when
this condition is not satisfied.

Our last result is to show that the cost recovery for network
assets is also conditioned on the network design.

Corollary 2 (Cost recovery): Let # = 0, � = 0, 8� 2 Ec,
and � = 0, 8� 2 Ev . Then, the payments of Theorem 1 ensure
cost recovery for suppliers and active pipelines, i.e., Ract

� >
0, 8� 2 Ea, and Rsup

n � c1n#n � c�n � c�n > 0, 8n 2 N .

V. NUMERICAL EXPERIMENTS

We run numerical experiments using a 48-node natural
gas network depicted in Fig. 2. The network parameters are
sourced from [28] with a few modifications: we homogenize
the pressure limits across network nodes, add two injections
in the demand area at nodes 32 and 37, and install two valves
in pipelines connecting nodes (28, 29) and (43, 44). The 22
gas extractions are modeled as �̃(⇠) = � + ⇠, where � is the
nominal extraction rate reported in [28] and ⇠ is the zero-mean
normally distributed forecast error. The safety parameter z�̂ is
thus the inverse CDF of the standard Gaussian distribution
at (1 � �̂)�quantile [19]. The standard deviation of each
gas extraction is set to 10% of the nominal rate. The joint

constraint violation probability � is set to 1% by default. To
retrieve the stationary point in (4), the non-convex problem (2)
is solved for the nominal gas extraction rates using the Ipopt
solver [18]. The repository [29] contains the input data and
code implementation in the JuMP package for Julia [30].

A. Analysis of the Optimized Network Response

We first study the optimized gas network response to
uncertainty under deterministic and chance-constrained control
policies (7). The deterministic policies are optimized by setting
the safety factor z�̂ in problem (12) to zero. The policies are
compared in terms of the expected cost (9a), the aggregated
variance of gas pressures and flow rates

�
n Var[�̃n(⇠)] and�

� Var['̃�(⇠)], respectively, and the total pressure regulation
by compressors

�
��Ec

�
� and valves

�
��Ev

�
�. Note, we

discuss the natural pressure quantities, not their squared coun-
terparts used in optimization.

The policies are also compared in terms of network con-
straints satisfaction. We first sample control inputs from (7)
for S = 1, 000 realizations of forecast errors and count the
violations of network limits (6c). Second, we assess the quality
of the control inputs (7a) for the non-convex gas equations,
by solving the projection problem

min
�s,�s,�s,�s

k#̃(⇠s) � #sk + k̃(⇠s) � sk (14a)

s.t. A's = #s � Bs � �s � ⇠s, (14b)
Constraints (2c) � (2e), (14c)

for all realizations ⇠s, 8s = 1, . . . , S. A control input is
considered feasible if (14a) is zero for a given realization. To
characterize this infeasibility numerically, consider the average
metrics Pinj =

�
sk#̃(⇠s) � #sk/S for gas injections and

Pact =
�

sk̃(⇠s) � sk/S for active pipelines.
The results are reported in Table I. Disregarding uncertainty,

the deterministic policies optimize the network operation for
the nominal gas extraction rates and thus result in the mini-
mum of cost at the operational planning stage. However, the
produced control inputs are infeasible for most of the forecast
error realizations. The projections Pinj and Pact of deterministic
policies require the real-time correction of gas injections by
31.3% and the real-time correction of pressure regulation by
active pipelines by 12.7% of the nominal rates on average.

Figure 3. Expected cost versus pressure variance for different assignments
of control polices to network assets. Pressure penalty �� � [10�3, 10�1].
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we assess the quality of the control inputs (7a) for the non-
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for all realizations ⇠s, 8s = 1, . . . , S. A control input is
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the deterministic policies optimize the network operation for
the nominal gas extraction rates and thus result in the mini-
mum of cost at the operational planning stage. However, the
produced control inputs are infeasible for most of the forecast
error realizations. The projections Pinj and Pact of deterministic
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Figure 4. Expected cost versus pressure variance under three network
structures. Pressure penalty �� � [10�3, 10�1].

active pipelines by 12.7% of the nominal rates on average.
The chance-constrained policies, on the other hand, produce
the control inputs that remain feasible with a probability at
least 1� � = 99% and require a minimal effort to restore the
real-time gas flow feasibility. This real-time effort is non-zero
due to approximation errors induced by linear pressure and
flow equations of Lemma 1. Figure 2 illustrates the worst-case
stochastic pressure approximation errors obtained according to
the approach in Section III-F. The errors significantly depend
on the amount of uncertainty: with probability 90% and at high
confidence, the errors approach 0% for a small uncertainty
penetration level (� = 1%), and they will not exceed 5.8%
on average for the extremely large uncertainty penetration
(� = 10%). The errors under the deterministic solution, which
ignores gas extraction uncertainty, are larger by at least an
order of magnitude on average.

Table I further demonstrates that the variance-agnostic pol-
icy requires only a slight increase of the expected cost relative
to the deterministic solution by 1.6%, while the variance-
aware policies allow to trade-off the expected operational cost
for the smaller variations of pressures and flow rates. The
variance of gas pressures and flow rates can be reduced by
63.8% and 7.2%, respectively, without any substantial impact
on the expected cost. Observe that the subsequent variance
reduction is achieved also due to the activation of valves in
two active pipelines, that are not operating in the deterministic
and variance-agnostic solutions.

With the density plots in Fig. 1, we demonstrate the uncer-
tainty propagation through the network. The variance-agnostic
solution results in the large pressure variance in the eastern
part of the network with a large concentration of stochastic gas
extractions. This solution further allows the probability of the
gas flows reversal up to 11% for certain pipelines, thus making
the prediction of flow directions difficult. The variance-aware
solution with the joint penalization of pressures and flows
variance, in turn, drastically reduces the variation of the state
variables and localizes the most of the variation only at nodes
34 and 35. Failure to minimize the pressure variance at these
two nodes is due to relatively large approximation errors
compared to the rest of the nodes (see the top quantiles of
blue boxplots in Fig. 2). Although this variation remains large,
the pressures at these nodes are highly correlated. Thus, by
Weymouth equation (2c), the flow variance and the probability
of flow reversal in edge (34, 35) remain small.

Next, we analyze the contribution of network assets to the
variance control through the cost-variance trade-offs in Fig. 3.
The figure illustrates these trade-offs when the control policies
are assigned to gas injections only (↵ 2 free,� = 0), to gas
injections and compressors (↵,� 2 free, [�]�� = 0, 8� 2 Ev),
and to all network assets including valves (↵,� 2 free).
Observe that the variance reduction is achieved more rapidly
and at lower costs as more active pipelines are involved into
uncertainty and variance control. Hence, the stochastic control
becomes more available as the network operator deploys more
pressure regulation action by compressors and valves.

Last, we analyze structural network impacts on the cost-
variance trade-offs. We gradually brake cycles C1 (by remov-
ing edges (13, 14) and (14, 19)) and C2 (by removing edge

Figure 2: The worst-case stochastic pressure approximation errors due to linearization for dif-
ferent penetration of uncertainty. The blue boxplots

s.t. t > k⇡̃n(b⇠s) � ⇡?n(b⇠s)k, 8s = 1, . . . , S, (4b)

where ⇡̃n(b⇠s) and ⇡?n(b⇠s) are parameters as in (2) estimated for each forecast error sample, and
t models the maximum distance (error). Then, by imposing the sample complexity requirement
(minimum number of samples S from P⇠), we statistically upper-bound the approximation error
associated with the stochastic pressure variables at node n. This requirement is inspired from the
robust optimization theory and is explicitly given by to the following result.

Lemma 1 (Sample complexity, adapted from [10]). For some parameters ↵ 2 [0, 1] and � 2 [0, 1],
if a sample complexity S is such that

S > 1

↵�
� 1,

then with probability (1�↵) and with confidence level (1��), the stochastic pressure approximation
error under linear law (7b) will not exceed the optimal solution t? of problem (4).
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Abstract—We propose stochastic control policies to
cope with uncertain and variable gas extractions in natural
gas networks. Given historical gas extraction data, these
policies are optimized to produce the real-time control in-
puts for nodal gas injections and for pressure regulation
rates by compressors and valves. We describe the random
network state as a function of control inputs, which en-
ables a chance-constrained optimization of these policies
for arbitrary network topologies. This optimization ensures
the real-time gas flow feasibility and a minimal variation in
the network state up to specified feasibility and variance
criteria. Furthermore, the chance-constrained optimization
provides the foundation of a stochastic pricing scheme for
natural gas networks, which improves on a deterministic
market settlement by offering the compensations to net-
work assets for their contribution to uncertainty and vari-
ance control. We analyze the economic properties, includ-
ing efficiency, revenue adequacy, and cost recovery, of the
proposed pricing scheme and make them conditioned on
the network design.

Index Terms—Chance-constrained programming, conic
duality, gas pricing, natural gas network, uncertainty, vari-
ance.

NOMENCLATURE

Sets

E Set of pipelines.
Ea, Ec, Ev Set of active, compressor-, and valve-hosting

pipelines.
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N Set of nodes.

Parameters

δ Vector of nominal gas extraction rates.
γ, γ̂, γ̆, γ̀ Linearization coefficients (and their transforma-

tions) associated with the Weymouth equation.
c̀2 Factorization of the second-order cost coefficients.
R(·) Revenue associated with network agent (·).
ψπ Vector of pressure variance penalty factors.
ψϕ Vector of flow variance penalty factors.
Σ, F Forecast errors covariance matrix and its factoriza-

tion.
κ,κ Vectors of minimum and maximum squared regula-

tion limits.
π,π Vectors of minimum and maximum squared pres-

sure limits.
ρ, ρ Vectors of minimum and maximum pressure limits.
ϑ,ϑ Vectors of minimum and maximum gas injection

limits.
ε, ε̂ Joint and individual constraint violation parameters.
A Node-edge incidence matrix.
B Sending node-active pipeline incidence matrix.
b Vector of gas mass-pressure conversion factors.
c1, c2 Vectors of the first- and second-order cost coeffi-

cients.
p Probability of violating performance guarantee.
S Sample complexity in out-of-sample analysis.
v Confidence level of performance guarantee.
w Vector of pipeline friction coefficients.
zε̂ Safety parameter in chance constraint reformula-

tion.

Variables

α Matrix of gas injection recourse decisions.
β Matrix of pressure regulation recourse decisions.
κ Vector of pressure regulation rates.
λ, u Vectors and matrices of dual variables.
π Vector of nodal pressures.
ϕ Vector of gas flows.
ϑ Vector of nodal gas injections.
cϑ, cα Vectors of second-order nominal and recourse costs.
sπ Vector of pressure standard deviations.
sϕ Vector of flow standard deviations.
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