Multi-Stage Linear Decision Rules for Stochastic Control of Natural Gas Networks with Linepack

Vladimir Dvorkin[‡], Dharik Mallapragada[‡], Audun Botterud[‡] Jalal Kazempour[§], Pierre Pinson[§]

[‡]Massachusetts Institute of Technology (Energy Initiative, LIDS)

[§]Technical University of Denmark (DTU Wind and Energy Systems, DTU Management)

{dvrokin,dharik,audunb}@mit.edu {seykaz,ppin}@dtu.dk

XXII Power Systems Computation Conference Porto, June 2022

Uncertainty and risks in natural gas networks

- Uncertainty in natural gas networks arises from:
 - Imperfect forecasts
 - Imbalances in power grid

- Renewable gas supply
- Extreme weather events

- Risks in natural gas networks include:
 - Operational risks (operations at (or beyond) the limits)
 - Market risks (contract violations, variable returns, etc.)
- Operations in power systems produce risks in natural gas systems, and vice versa

lliit

- Look-ahead scheduling problems under uncertainty:
 - Optimal nominal set-points for gas injections
 - Optimal reserve margins to hedge against uncertainty
- Scheduling does not answer how to control the system state as uncertainty gradually realizes
- ▶ Hence, it is often assumed that there will be some real-time re-optimization to control the system state
- Contribution in a nutshell: We extended the scheduling under uncertainty to include stochastic control component within operational planning of natural gas systems

$>\!\!>$ Motivation and contributions

- Look-ahead scheduling problems under uncertainty:
 - Optimal nominal set-points for gas injections
 - Optimal reserve margins to hedge against uncertainty
- Scheduling does not answer how to control the system state as uncertainty gradually realizes
- ▶ Hence, it is often assumed that there will be some real-time re-optimization to control the system state
- Contribution in a nutshell: We extended the scheduling under uncertainty to include stochastic control component within operational planning of natural gas systems

$>\!\!>$ Motivation and contributions

- Look-ahead scheduling problems under uncertainty:
 - Optimal nominal set-points for gas injections
 - Optimal reserve margins to hedge against uncertainty
- Scheduling does not answer how to control the system state as uncertainty gradually realizes
- ▶ Hence, it is often assumed that there will be some real-time re-optimization to control the system state
- Contribution in a nutshell: We extended the scheduling under uncertainty to include stochastic control component within operational planning of natural gas systems

\gg Motivation and contributions

Contributions

#1 Multi-stage stochastic control policies to guide natural gas networks

- Optimized ahead of time using linear decision rules (LDRs)
- Produce real-time control inputs

#2 Multi-stage chance-constrained optimization

- Distributionally robust LDR optimization
- Scalable conic formulation

#3 Three stochastic control applications

- Linepack as a sole flexibility resource
- Variability&Variance-aware optimization
- Network topology optimization

$>\!\!>$ Motivation and contributions

lliit

Outline

Pliī

Motivation and contributions

Modeling natural gas networks

LDR-based control policies for network assets

Network control applications

Numerical experiments

Conclusions

Natural gas network equations under uncertainty

- At any stage *t*, network operations are perturbed by renewable power forecast errors $\zeta^t = (\zeta_1, \dots, \zeta_t)$. Stochastic gas extraction $\delta_t = \delta_t(\zeta^t)$.
- Conservation of natural gas mass under uncertainty

From non-convex stochastic Weymouth equation of gas flow

$$arphi_\ell(oldsymbol{\zeta}^t)|arphi_\ell(oldsymbol{\zeta}^t)| = w_\ell\left((arrho_n(oldsymbol{\zeta}^t)+ \underbrace{\kappa_\ell(oldsymbol{\zeta}^t)}_{ ext{compression}})^2 - arrho_m(oldsymbol{\zeta}^t)^2
ight)$$

quadratic pressure drop

... to its linearized counterpart $\varphi_t(\boldsymbol{\zeta}^t) = w_{0t} + W_{1t}\varrho_t(\boldsymbol{\zeta}^t) + W_{2t}\kappa_t(\boldsymbol{\zeta}^t)$

Stochastic Control and Pricing for Natural Gas Networks Vadrie Duckin[®], Mendee IEEE Andrey Raha[®], Stader Mender, IEEE, Perer Prince, Feller, IEEE on Jain Kasangero[®], Sener Mender, IEEE

Performance guarantees of linearization [DRPK21

\mathcal{P}_{ℓ}

3 / 12

>>> Modeling natural gas networks

Natural gas network equations under uncertainty

- At any stage *t*, network operations are perturbed by renewable power forecast errors $\zeta^t = (\zeta_1, \dots, \zeta_t)$. Stochastic gas extraction $\delta_t = \delta_t(\zeta^t)$.
- Conservation of natural gas mass under uncertainty

From non-convex stochastic Weymouth equation of gas flow

$$arphi_\ell(oldsymbol{\zeta}^t)|arphi_\ell(oldsymbol{\zeta}^t)| = extsf{w}_\ell\left((arrho_n(oldsymbol{\zeta}^t)+arkappa_\ell(oldsymbol{\zeta}^t))^2 - arrho_m(oldsymbol{\zeta}^t)^2
ight) \ extsf{compression}$$

quadratic pressure drop

... to its linearized counterpart $\varphi_t(\boldsymbol{\zeta}^t) = w_{0t} + W_{1t}\varrho_t(\boldsymbol{\zeta}^t) + W_{2t}\kappa_t(\boldsymbol{\zeta}^t)$

Stochastic Control and Pricing for Natural Gas Networks Vladimir Overkin[®], Member, IEEE, Anubhav Raha[®], Student Member, IEEE,

Pierre Pinson, Fellow, IEEE, and Jalal Kazempour 9, Senior Member, IEEE

Performance guarantees of linearization [DRPK21]

Шiī

Natural gas network equations under uncertainty

- At any stage *t*, network operations are perturbed by renewable power forecast errors $\zeta^t = (\zeta_1, \ldots, \zeta_t)$. Stochastic gas extraction $\delta_t = \delta_t(\zeta^t)$.
- Conservation of natural gas mass under uncertainty

Linepack (gas storage) equations under uncertainty^a

$$\begin{split} \psi_t(\boldsymbol{\zeta}^t) &= \frac{1}{2} dg[s] \left(\kappa_t(\boldsymbol{\zeta}^t) + |\boldsymbol{A}|^\top \varrho_t(\boldsymbol{\zeta}^t) \right) - \text{linepack} \propto \text{to gas pressures} \\ \psi_t(\boldsymbol{\zeta}^t) &= \psi_{t-1}(\boldsymbol{\zeta}^{t-1}) + \varphi_t^+(\boldsymbol{\zeta}^t) - \varphi_t^-(\boldsymbol{\zeta}^t) - \text{dynamic state of charge} \end{split}$$

^arefer to [SOKP19] for original, deterministic equations

>>> Modeling natural gas networks

 ϑ_n

Шiī

Outline

Pliī

Motivation and contributions

Modeling natural gas networks

LDR-based control policies for network assets

Network control applications

Numerical experiments

Conclusions

Chance-constrained gas network optimization in linear decision rules

$$\begin{split} \min_{\varphi_{t},\varrho_{t}} & \mathbb{E} \Big[\sum_{t=1}^{T} \left(c_{1}^{\top} \vartheta_{t}(\boldsymbol{\zeta}^{t}) + \vartheta_{t}(\boldsymbol{\zeta}^{t})^{\top} C_{2} \vartheta_{t}(\boldsymbol{\zeta}^{t}) \right) \Big] & \text{expected quadratic cost} \\ \text{s.to} & A_{t}^{\vartheta} \vartheta_{t}(\boldsymbol{\zeta}^{t}) + A_{t}^{\varrho} \varrho_{t}(\boldsymbol{\zeta}^{t}) = A_{t}^{\delta} \delta_{t}(\boldsymbol{\zeta}^{t}), & \text{gas network equations} \\ & \mathbb{P}_{\boldsymbol{\zeta}^{t}} \left[\frac{\vartheta \leq \vartheta_{t}(\boldsymbol{\zeta}^{t}) \leq \overline{\vartheta}}{\varrho \leq \varrho_{t}(\boldsymbol{\zeta}^{t}) \leq \overline{\varrho}} \right] \geq \underbrace{1 - \varepsilon}_{reliability}, \forall t & \text{control and state var.} \\ & \mathbb{P}_{\boldsymbol{\zeta}^{t}} \left[\frac{\vartheta \leq \vartheta_{t}(\boldsymbol{\zeta}^{t}) \leq \overline{\vartheta}}{\varrho \leq \varrho_{t}(\boldsymbol{\zeta}^{t}) \leq \overline{\varrho}} \right] \geq \underbrace{1 - \varepsilon}_{level}, \forall t & \text{control and state var.} \end{split}$$

Plii i

cost

Chance-constrained gas network optimization in linear decision rules

$$\begin{split} \min_{\varphi_{t},\varrho_{t}} & \mathbb{E}\Big[\sum_{t=1}^{T} \left(c_{1}^{\top}\vartheta_{t}(\boldsymbol{\zeta}^{t}) + \vartheta_{t}(\boldsymbol{\zeta}^{t})^{\top}C_{2}\vartheta_{t}(\boldsymbol{\zeta}^{t})\right)\Big] & \text{expected quadratic cost} \\ \text{s.to} & A_{t}^{\vartheta}\vartheta_{t}(\boldsymbol{\zeta}^{t}) + A_{t}^{\varrho}\varrho_{t}(\boldsymbol{\zeta}^{t}) = A_{t}^{\delta}\delta_{t}(\boldsymbol{\zeta}^{t}), \\ & \mathbb{P}_{\boldsymbol{\zeta}^{t}}\left[\frac{\vartheta}{\varrho} \leqslant \vartheta_{t}(\boldsymbol{\zeta}^{t}) \leqslant \overline{\vartheta}\right] \\ \mathbb{P}_{\boldsymbol{\zeta}^{t}}\left[\frac{\vartheta}{\varrho} \leqslant \varrho_{t}(\boldsymbol{\zeta}^{t}) \leqslant \overline{\varrho}\right] & \geqslant \underbrace{1-\varepsilon}_{reliability}, \forall t \\ & evel \end{split}$$

$$\vartheta_t(\boldsymbol{\zeta}^t) = \Theta_t \boldsymbol{\zeta}^t, \quad \varrho_t(\boldsymbol{\zeta}^t) = P_t \boldsymbol{\zeta}^t$$

var.

with matrices Θ_t and P_t to be optimized

▶ Refer to [DMB22] for optimality gurantees of LDR

$$\begin{array}{c}
\vartheta_t(\zeta^t) \\
\vdots \\
\zeta_t
\end{array}$$

LDR

• scenario approx.

LDR-based control policies for network assets \gg

Chance-constrained gas network optimization in linear decision rules

$$\begin{split} \min_{\varphi_{t},\varrho_{t}} & \mathbb{E}\Big[\sum_{t=1}^{T} \left(c_{1}^{\top}\vartheta_{t}(\boldsymbol{\zeta}^{t}) + \vartheta_{t}(\boldsymbol{\zeta}^{t})^{\top}C_{2}\vartheta_{t}(\boldsymbol{\zeta}^{t})\right)\Big] & \text{expected quadratic cost} \\ \text{s.to} & A_{t}^{\vartheta}\vartheta_{t}(\boldsymbol{\zeta}^{t}) + A_{t}^{\varrho}\varrho_{t}(\boldsymbol{\zeta}^{t}) = A_{t}^{\delta}\delta_{t}(\boldsymbol{\zeta}^{t}), \\ & \mathbb{P}_{\boldsymbol{\zeta}^{t}}\left[\frac{\vartheta}{\varrho} \leqslant \vartheta_{t}(\boldsymbol{\zeta}^{t}) \leqslant \overline{\vartheta}\right] \\ \mathbb{P}_{\boldsymbol{\zeta}^{t}}\left[\frac{\vartheta}{\varrho} \leqslant \varrho_{t}(\boldsymbol{\zeta}^{t}) \leqslant \overline{\varrho}\right] & \geqslant \underbrace{1-\varepsilon}_{reliability}, \forall t \\ & evel \end{split}$$

$$\vartheta_t(\boldsymbol{\zeta}^t) = \Theta_t \boldsymbol{\zeta}^t, \quad \varrho_t(\boldsymbol{\zeta}^t) = P_t \boldsymbol{\zeta}^t$$

var.

with matrices Θ_t and P_t to be optimized

Refer to [DMB22] for optimality gurantees of LDR

Multi-Stage Investment Decision Rules for Power Systems with Performance Guarantees

Vladimir Dvorkin, Member, IEEE, Dharik Mallapragada and Audun Botterud

• scenario approx. LDR

$$\vartheta_t(\zeta^t)$$

 ξ_t

>>>> LDR-based control policies for network assets

llii

Distributionally robust reformulation of chance constraints

A chance constraint on nodal pressure limits

$$\mathbb{P}_{\boldsymbol{\zeta}^t}\left[\underline{\varrho}_n \leqslant \varrho_{nt}(\boldsymbol{\zeta}^t) \leqslant \overline{\varrho}_n\right] \geqslant 1 - \epsilon$$

reformulates into 1 conic and 4 linear ineq. [XA17]:

$$\begin{split} & \stackrel{-\sqrt[]{2}}{\sim} \mathcal{E} \left\| \frac{\widehat{F}[P_{t}S_{t}]_{n}^{\top}}{y_{tn}^{\varrho}} \right\| \leq \frac{1}{2} \left(\overline{\varrho}_{n} - \underline{\varrho}_{n} \right) - x_{tn}^{\varrho} \\ & \left| [P_{t}S_{t}]_{n} \widehat{\mu} - \frac{1}{2} \left(\overline{\varrho}_{n} - \underline{\varrho}_{n} \right) \right| \leq y_{tn}^{\varrho} + x_{tn}^{\varrho} \\ & \frac{1}{2} \left(\overline{\varrho}_{n} - \underline{\varrho}_{n} \right) \geqslant x_{tn}^{\varrho} \geqslant 0, \quad y_{tn}^{\varrho} \geqslant 0 \end{split}$$

using mean $\widehat{\mu}$ and covariance $\widehat{\textit{F}}$ of forecast errors

Key features:

- Fits any distribution with given mean and covariance
- Pareto-dominates single-sided chance constraints

Pressure LDR is optimized to stay within technical limits with probability $(1 - \epsilon)$

Outline

Pliī

Motivation and contributions

Modeling natural gas networks

LDR-based control policies for network assets

Network control applications

Numerical experiments

Conclusions

Application 1: Linepack as a sole flexibility resource

- Real-time supply corrections are costly
- How accommodate uncertainty otherwise?
- Actively deploy linepack by regulating pressure!

 Chance-constrained optimization of compressor and valve LDR policies, additionally subject to

$$\underbrace{\left\|\widehat{F}[\Theta_{t}]_{n}S_{t}\right\|}_{\text{std of gas injection}} \leqslant \alpha^{\vartheta} \underbrace{[\Theta_{t}]_{n}S_{t}\widehat{\mu}}_{\text{mean gas injection}}, \ \forall n \in \mathcal{N}$$

where α^ϑ is a control parameter, e.g., $\alpha^\vartheta \to 0$ offsets any supply adjustment

6 compressors, 2 valves and 51 pipeline (storage units)

Application 1: Linepack as a sole flexibility resource

- Real-time supply corrections are costly
- How accommodate uncertainty otherwise?
- Actively deploy linepack by regulating pressure!

 Chance-constrained optimization of compressor and valve LDR policies, additionally subject to

$$\underbrace{\left\|\widehat{F}[\Theta_{t}]_{n}S_{t}\right\|}_{\text{std of gas injection}} \leqslant \alpha^{\vartheta} \underbrace{[\Theta_{t}]_{n}S_{t}\widehat{\mu}}_{\text{mean gas injection}}, \ \forall n \in \mathcal{N},$$

where α^ϑ is a control parameter, e.g., $\alpha^\vartheta\to 0$ offsets any supply adjustment

6 compressors, 2 valves and 51 pipeline (storage units)

Application 2: Variance- and variability-aware operations

- Variable and uncertain renewable generation translates into variable and uncertain network state
- LDRs provide the measure of variability and variance of network state variables
- Pressure variability and uncertainty is penalized by minimizing the following term:

$$\mathbb{E}_{\mathbb{P}_{\boldsymbol{\zeta}}}\left[\alpha^{\varrho}\sum_{t=2}^{T}\left\|P_{t}\boldsymbol{\zeta}-P_{t-1}\boldsymbol{\zeta}\right\|\right]$$
$$=\alpha^{\varrho}\sum_{t=2}^{T}\mathsf{Tr}\left[(P_{t}-P_{t-1})\widehat{\boldsymbol{\Sigma}}\left(P_{t}-P_{t-1}\right)^{\mathsf{T}}\right]$$

where P_t and P_{t-1} are pressure LDR matrices at two subsequent stages, and $\widehat{\Sigma}$ is the forecast error covariance By varying penalty factor α^{ϱ} , we more intensively penalize pressure variability and variance

>>> Network control applications

Шiī

Application 3: Network topology optimization

We use LDRs to optimize topology to decouple network parts and reduce uncertainty propagation:

Color density displays nodal pressure variance. Topology switching is an additional flexibility resource [DRPK21]

- Given V binary valves, we have a set $1, \ldots, 2^V$ of possible network topologies
- Binary variable $v_c = 1$ if topology c is selected, and $v_c = 0$ otherwise
- Then, the following binary logic is used for topology selection:

$$\phi_{tc}(\boldsymbol{\zeta}^t) = w_{0tc} + W_{1tc}\varrho_t(\boldsymbol{\zeta}^t) + W_{2tc}\kappa_t(\boldsymbol{\zeta}^t) , \quad \forall c = 1, \dots, 2^V$$

Linearized Weymouth equation for each topology of

$$\varphi_t(\boldsymbol{\zeta}^t) = \sum_{c=1}^{2^V} v_c \phi_{tc}(\boldsymbol{\zeta}^t), \quad \sum_{c=1}^{2^V} v_c = 1.$$

Select gas flows from one topology only

>>> Network control applications

Шiī

Application 3: Network topology optimization

We use LDRs to optimize topology to decouple network parts and reduce uncertainty propagation:

Color density displays nodal pressure variance. Topology switching is an additional flexibility resource [DRPK21]

- Given V binary valves, we have a set $1, \ldots, 2^{V}$ of possible network topologies
- Binary variable $v_c = 1$ if topology c is selected, and $v_c = 0$ otherwise
- Then, the following binary logic is used for topology selection:

$$\phi_{tc}(\boldsymbol{\zeta}^{t}) = w_{0tc} + W_{1tc}\varrho_{t}(\boldsymbol{\zeta}^{t}) + W_{2tc}\kappa_{t}(\boldsymbol{\zeta}^{t}), \quad \forall c = 1, \dots, 2^{V}$$

Linearized Weymouth equation for each topology c

$$\varphi_t(\boldsymbol{\zeta}^t) = \sum_{c=1}^{2^V} v_c \phi_{tc}(\boldsymbol{\zeta}^t), \quad \sum_{c=1}^{2^V} v_c = 1.$$

Select gas flows from one topology only

>>> Network control applications

Outline

Pliī

Motivation and contributions

Modeling natural gas networks

LDR-based control policies for network assets

Network control applications

Numerical experiments

Conclusions

Experiments on 48-node natural gas network

-25 -10 _0

Uncertain renewable generation from the IEEE 118-node network translates into uncertain gas extraction by CCGTs

Percentage difference between 1st-stage deterministic and stochastic linepack

+3 +6 +10 +12

3 4

Time stage

5

Analyzing optimal network response

Parameter	Unit	Determenistic control policy	Stochastic control policy					
			Base	Linepack- agnostic	Variability-aware			
Expected gas injection cost Pressure variability	\$1000 MPa	644.8 (94.6%) 72.01 (189.7%)	681.7 (100.0%) 38.0 (100.0%)	752.1 (110.3%) 66.0 (173.6%)	694.4 (101.9%) 7.8 (20.5%)	701.2 (102.9%) 7.3 (19.2%)	703.5 (103.2%) 7.2 (19.1%)	
Expected / worst-case magnitude of pressure constraint violations	MPa	77.42 / 147.76	0.00 / 0.00	0.00 / 0.00	0.00 / 0.00	0.00 / 0.00	0.00 / 0.00	
Expected / worst-case magnitude of gas mass constraint violations	MMSCFD	26.86 / 146.91	0.01 / 0.02	0.13 / 0.13	0.01 / 0.02	0.02 / 0.02	0.02 / 0.02	
First-stage gas injection	MMSCFD	2924.8	3229.0	3203.8	3233.2	3219.5	3219.1	
Expected compressor deployment	kPa	7127.9	10225.3	10912.7	12464.8	12451.1	12459.8	
Expected valve deployment	kPa	0.0	714.8	1251.27	2281.0	2604.2	2647.6	

Out-of-sample feasibility guaranteed at a small increase in expected cost by 5.4%

Linepack flexibility saves up to 10.3% of expected cost

With only 3.2% increase in expected cost, we achieve > 80% reduction in total pressure variability

Analyzing optimal network response

	П	

Parameter	Unit	Determenistic control policy	Stochastic control policy				
			Base	Linepack- agnostic	Variability-aware		
Expected gas injection cost Pressure variability	\$1000 MPa	644.8 (94.6%) 72.01 (189.7%)	681.7 (100.0%) 38.0 (100.0%)	752.1 (110.3%) 66.0 (173.6%)	694.4 (101.9%) 7.8 (20.5%)	701.2 (102.9%) 7.3 (19.2%)	703.5 (103.2%) 7.2 (19.1%)
Expected / worst-case magnitude of pressure constraint violations	MPa	77.42 / 147.76	0.00 / 0.00	0.00 / 0.00	0.00 / 0.00	0.00 / 0.00	0.00 / 0.00
Expected / worst-case magnitude of gas mass constraint violations	MMSCFD	26.86 / 146.91	0.01 / 0.02	0.13 / 0.13			0.02 / 0.02
First-stage gas injection	MMSCFD	2924.8	3229.0	3203.8			
Expected compressor deployment	kPa	7127.9	10225.3	10912.7	12464.8	12451.1	12459.8
Expected valve deployment	kPa	0.0	714.8	1251.27	2281.0	2604.2	2647.6

Out-of-sample feasibility guaranteed at a small increase in expected cost by 5.4%

Linepack flexibility saves up to 10.3% of expected cost

With only 3.2% increase in expected cost, we achieve > 80% reduction in total pressure variability

Analyzing optimal network response

Parameter	Unit	Determenistic control policy	Stochastic control policy				
			Base	Linepack-	Variability-aware		
					$\alpha^{\varrho} = 10$	$\alpha^{\varrho} = 50$	$\alpha^{\varrho} = 100$
Expected gas injection cost Pressure variability	\$1000 MPa	644.8 (94.6%) 72.01 (189.7%)	681.7 (100.0%) 38.0 (100.0%)	752.1 (110.3%) 66.0 (173.6%)	694.4 (101.9%) 7.8 (20.5%)	701.2 (102.9%) 7.3 (19.2%)	703.5 (103.2%) 7.2 (19.1%)
Expected / worst-case magnitude of pressure constraint violations	MPa	77.42 / 147.76	0.00 / 0.00	0.00 / 0.00	0.00 / 0.00	0.00 / 0.00	0.00 / 0.00
Expected / worst-case magnitude of gas mass constraint violations	MMSCFD	26.86 / 146.91	0.01 / 0.02		0.01 / 0.02	0.02 / 0.02	0.02 / 0.02
First-stage gas injection	MMSCFD	2924.8	3229.0		3233.2	3219.5	3219.1
Expected compressor deployment	kPa	7127.9	10225.3	10912.7	12464.8	12451.1	12459.8
Expected valve deployment	kPa	0.0	714.8	1251.27	2281.0	2604.2	2647.6

Out-of-sample feasibility guaranteed at a small increase in expected cost by 5.4%

Linepack flexibility saves up to 10.3% of expected cost

With only 3.2% increase in expected cost, we achieve > 80% reduction in total pressure variability

Variability-aware gas network topology optimization

- \blacktriangleright Increasing penalty $\alpha^{\varrho},$ we reduce pressure variability but incur additional cost
- It makes sense to switch topology (valves) to unlock better cost-variability trade-offs
- ▶ Here, we have 4 possible typologies. For a given α^{ϱ} , only one of them is optimal

>>> Numerical experiments

Conclusions & Outlook

- Chance-constrained LDR-based polices manage uncertainty in gas networks:
 - Internalize forecast and risk criteria of network operators
 - Produce uncertainty- and variance-aware network control with guarantees
 - Unlock linepack cost-saving potential of up to 10.3% of the expected cost
 - Identify variability- and variance-optimal gas network topology
- Future work:
 - Remuneration of linepack flexibility
 - Transient gas flow models
- Dvorkin, V., Mallapragada, D., Botterud, A., Kazempour, J., & Pinson, P. Multi-Stage Linear Decision Rules for Stochastic Control of Natural Gas Networks with Linepack. arXiv preprint arXiv:2110.02824.
- O https://github.com/wdvorkin/LDR_for_gas_network_control

Thank you for your atention!

Conclusions & Outlook

- Chance-constrained LDR-based polices manage uncertainty in gas networks:
 - Internalize forecast and risk criteria of network operators
 - Produce uncertainty- and variance-aware network control with guarantees
 - Unlock linepack cost-saving potential of up to 10.3% of the expected cost
 - Identify variability- and variance-optimal gas network topology
- Future work:
 - Remuneration of linepack flexibility
 - Transient gas flow models
- Dvorkin, V., Mallapragada, D., Botterud, A., Kazempour, J., & Pinson, P. Multi-Stage Linear Decision Rules for Stochastic Control of Natural Gas Networks with Linepack. arXiv preprint arXiv:2110.02824.
- O https://github.com/wdvorkin/LDR_for_gas_network_control

Thank you for your atention!

On the linearization of the Weymouth equation

Pliī

Stochastic Control and Pricing for Natural Gas Networks

Vladimir Dvorkin⁽⁹⁾, Member, IEEE, Anubhav Ratha⁽⁹⁾, Student Member, IEEE, Pierre Pinson, Fellow, IEEE, and Jalal Kazempour⁽⁹⁾, Senior Member, IEEE

References I

- Vladimir Dvorkin, Dharik Mallapragada, and Audun Botterud. Multi-stage investment decision rules for power systems with performance guarantees. arXiv preprint arXiv:2206.01675, 2022.
- Vladimir Dvorkin, Anubhav Ratha, Pierre Pinson, and Jalal Kazempour. Stochastic control and pricing for natural gas networks. *IEEE Transactions on Control of Network Systems*, 9(1):450–462, 2021.
- Daniel Kuhn, Wolfram Wiesemann, and Angelos Georghiou. Primal and dual linear decision rules in stochastic and robust optimization. Mathematical Programming, 130(1):177–209, 2011.
- Anna Schwele, Christos Ordoudis, Jalal Kazempour, and Pierre Pinson. Coordination of power and natural gas systems: Convexification approaches for linepack modeling. In 2019 IEEE Milan PowerTech, pages 1–6. IEEE, 2019.

Weijun Xie and Shabbir Ahmed.

Distributionally robust chance constrained optimal power flow with renewables: A conic reformulation. *IEEE Trans. Power Syst.*, 33(2):1860–1867, 2017.