Stochastic Control and Market Design for Natural Gas Networks

Vladimir Dvorkin, Anubhav Ratha, Jalal Kazempour, Pierre Pinson

Massachusetts Institute of Technology Technical University of Denmark

dvorkin@mit.edu

MIT Group Meeting, August 2022

Why Stochastic?

- Uncertainty of gas extractions arises from:
 - Imperfect forecasts
 - Imbalances in power grid
 - Renewable gas supply
- Risks are induced by uncertainty:
 - Operational risks (operations at (or beyond) the limits)
 - Market risks (contract violations, variable returns, etc.)
- 2014 North American cold wave is an excellent example
 - Sudden peak in natural gas demand
 - Congestions in the natural gas network
 - Record-high spot prices from Jan 1 to Feb 18
 - Network expansion is prohibitive.
- From deterministic to stochastic control & market practices

Towards stochastic control polices

- Stochastic control policy:
 - Mathematically strict rule (function)
 - Optimized ahead of real-time operations
 - To produce control inputs in real-time
- We develop control policies that internalize
 - Gas extraction uncertainty
 - Operational and market risk criteria
 - Intra-day variability of network variables
- Stochastic control policies enable
 - Distinguish network assets contributions into uncertainty control
 - Distinguish gas extraction contributions into overall uncertainty
 - Price uncertainty and variability (variance) of network operations

Outline

Modeling Gas Network Operations

Gas Network Control Under Uncertainty

Stochastic Market Design for Gas Networks

Numerical Experiments

Conclusions

Outline

Modeling Gas Network Operations

Gas Network Control Under Uncertainty

Stochastic Market Design for Gas Networks

Numerical Experiments

Conclusions

Natural gas network equations

- Network as a graph $\Gamma(\mathcal{N}, \mathcal{E})$
 - Set of nodes $\mathcal{N} = \{1, \ldots, N\}$
 - Set of edges $\mathcal{E} = \{1, \ldots, E\}$
- Gas network variables
 - $\vartheta \in \mathbb{R}^N$ gas injection rates
 $\delta \in \mathbb{R}^N$ gas extraction rates
 $\varphi \in \mathbb{R}^E$ gas flow rates

 - $\pi \in \mathbb{R}^N$ squared gas pressures $\kappa \in \mathbb{R}^E$ squared pressure regulation
- Gas conservation law

$$A\varphi = \vartheta - B\kappa - \delta \in \mathbb{R}^N$$

Weymouth equation

$$\varphi \circ |\varphi| = \operatorname{diag}[w](A^{\top}\pi + \kappa) \in \mathbb{R}^{E}$$
$$\varphi_{\ell} \ge 0, \ \forall \ell \in \mathcal{E}_{a}.$$

$$\begin{split} \min_{\vartheta,\kappa,\varphi,\pi} & c_1^\top \vartheta + \vartheta^\top \mathsf{diag}[c_2]\vartheta\\ \text{s.t.} & A\varphi = \vartheta - B\kappa - \delta,\\ & \varphi \circ |\varphi| = \mathsf{diag}[w](A^\top \pi + \kappa),\\ & \frac{\pi}{\leqslant} \pi \leqslant \overline{\pi}, \ \underline{\vartheta} \leqslant \vartheta \leqslant \overline{\vartheta},\\ & \underline{\kappa} \leqslant \kappa \leqslant \overline{\kappa}, \ \varphi_\ell \geqslant 0, \ \forall \ell \in \mathcal{E}_{\mathfrak{a}}. \end{split}$$

Gas injection costs Gas conservation law Weymouth equation Network limits

$$\begin{split} \min_{\vartheta,\kappa,\varphi,\pi} & c_1^\top \vartheta + \vartheta^\top \mathsf{diag}[c_2]\vartheta\\ \text{s.t.} & A\varphi = \vartheta - B\kappa - \delta,\\ & \varphi \circ |\varphi| = \mathsf{diag}[w](A^\top \pi + \kappa),\\ & \underline{\pi} \leqslant \pi \leqslant \overline{\pi}, \ \underline{\vartheta} \leqslant \vartheta \leqslant \overline{\vartheta},\\ & \underline{\kappa} \leqslant \kappa \leqslant \overline{\kappa}, \ \varphi_\ell \ge 0, \ \forall \ell \in \mathcal{E}_a. \end{split}$$

Gas injection costs Gas conservation law Weymouth equation Network limits

- Non-convex problem
- Solvable when parameters are know
- When parameters are uncertain:
 - Network response is unknown
 - Difficult feasibility guarantees
 - Simplifications or relaxations

$$\begin{split} \min_{\vartheta,\kappa,\varphi,\pi} & c_1^\top \vartheta + \vartheta^\top \mathsf{diag}[c_2]\vartheta\\ \text{s.t.} & A\varphi = \vartheta - B\kappa - \delta,\\ & \varphi \circ |\varphi| = \mathsf{diag}[w](A^\top \pi + \kappa),\\ & \underline{\pi} \leqslant \pi \leqslant \overline{\pi}, \ \underline{\vartheta} \leqslant \vartheta \leqslant \overline{\vartheta},\\ & \underline{\kappa} \leqslant \kappa \leqslant \overline{\kappa}, \ \varphi_\ell \geqslant 0, \ \forall \ell \in \mathcal{E}_a. \end{split}$$

Gas injection costs Gas conservation law Weymouth equation Network limits

- Non-convex problem
- Solvable when parameters are know
- When parameters are uncertain:
 - Network response is unknown
 - Difficult feasibility guarantees
 - Simplifications or relaxations

Linearization of the Weymouth equation

$$egin{aligned} \mathcal{W}(arphi,\pi,\kappa) pprox \mathcal{J}(\mathring{\pi})(\pi-\mathring{\pi}) + \mathcal{J}(\mathring{arphi})(arphi-\mathring{arphi}) \ &+ \mathcal{J}(\mathring{\kappa})(\kappa-\mathring{\kappa}) = \mathbb{0} \end{aligned}$$

around stationary point $(\dot{\varphi}, \dot{\pi}, \dot{\kappa})$

Linearized Weymouth equation:

$$\varphi = \varsigma_1(\mathring{\varphi}, \mathring{\pi}, \mathring{\kappa}) + \varsigma_2(\mathring{\varphi}, \mathring{\pi})\pi + \varsigma_3(\mathring{\varphi}, \mathring{\kappa})\kappa$$
$$\pi_r = \mathring{\pi}_r$$

where $\varsigma_1, \varsigma_2, \varsigma_3$ denote linear sensitivities

$$\begin{split} \min_{\vartheta,\kappa,\varphi,\pi} & c_1^\top \vartheta + \vartheta^\top \mathsf{diag}[c_2] \vartheta \\ \text{s.t.} & A\varphi = \vartheta - B\kappa - \delta, \\ \varphi &= \varsigma_1 + \varsigma_2 \pi + \varsigma_3 \kappa, \ \pi_r = \mathring{\pi}_r, \\ & \underline{\pi} \leqslant \pi \leqslant \overline{\pi}, \ \underline{\vartheta} \leqslant \vartheta \leqslant \overline{\vartheta}, \\ & \underline{\kappa} \leqslant \kappa \leqslant \overline{\kappa}, \ \varphi_\ell \geqslant 0, \ \forall \ell \in \mathcal{E}_a. \end{split}$$

Gas injection costs Gas conservation law Lin. Weymouth equation Network limits

- Non-convex problem
- Solvable when parameters are know
- When parameters are uncertain:
 - Network response is unknown
 - Difficult feasibility guarantees
 - Simplifications or relaxations

Linearization of the Weymouth equation

$$egin{aligned} \mathcal{W}(arphi,\pi,\kappa) pprox \mathcal{J}(\mathring{\pi})(\pi-\mathring{\pi}) + \mathcal{J}(\mathring{arphi})(arphi-\mathring{arphi}) \ &+ \mathcal{J}(\mathring{\kappa})(\kappa-\mathring{\kappa}) = \mathbb{0} \end{aligned}$$

around stationary point $(\dot{\varphi}, \dot{\pi}, \dot{\kappa})$

Linearized Weymouth equation:

$$\varphi = \varsigma_1(\dot{\varphi}, \ddot{\pi}, \dot{\kappa}) + \varsigma_2(\dot{\varphi}, \ddot{\pi})\pi + \varsigma_3(\dot{\varphi}, \dot{\kappa})\kappa$$
$$\pi_r = \mathring{\pi}_r$$

where $\varsigma_1, \varsigma_2, \varsigma_3$ denote linear sensitivities

Outline

Modeling Gas Network Operations

Gas Network Control Under Uncertainty

Stochastic Market Design for Gas Networks

Numerical Experiments

Conclusions

Stochastic gas extraction rates:

 $ilde{\delta}(\xi) = \delta + \xi$

- $\xi-$ 0-mean with know covariance Σ
- Chance-constrained network optimization:

 $\begin{array}{l} \min_{\tilde{\vartheta},\tilde{\kappa},\tilde{\varphi},\tilde{\pi}} & \mathbb{E}^{\mathbb{P}\xi}[c_1^{\top}\tilde{\vartheta}(\xi) + \tilde{\vartheta}(\xi)^{\top} \operatorname{diag}[c_2]\tilde{\vartheta}(\xi)] \\ \text{subject to} \end{array}$

$$\begin{split} \mathbb{P}_{\xi} \begin{bmatrix} A \tilde{\varphi}(\xi) = \tilde{\vartheta}(\xi) - B \tilde{\kappa}(\xi) - \tilde{\delta}(\xi), \\ \tilde{\varphi}(\xi) = \varsigma_1 + \varsigma_2 \tilde{\pi}(\xi) + \varsigma_3 \tilde{\kappa}(\xi), \\ \tilde{\pi}_r(\xi) = \tilde{\pi}_r \end{bmatrix} \stackrel{\text{a.s.}}{=} 1 \\ \mathbb{P}_{\xi} \begin{bmatrix} \underline{\pi} \leq \tilde{\pi}(\xi) \leq \overline{\pi}, \ \underline{\vartheta} \leq \tilde{\vartheta}(\xi) \leq \overline{\vartheta}, \\ \underline{\kappa} \leq \tilde{\kappa}(\xi) \leq \overline{\kappa}, \ \tilde{\varphi}_{\ell}(\xi) \geq 0, \ \forall \ell \in \mathcal{E}_a \end{bmatrix} \geqslant 1 - \varepsilon \end{split}$$

Infinite-dimensional problem

- Affine control policies resolve tractability
- Controls for injections and pressure regulations:

 $\begin{aligned} \tilde{\vartheta}(\xi) = \vartheta + \alpha \xi \\ \tilde{\kappa}(\xi) = \kappa + \beta \xi \end{aligned}$

 $(\vartheta,\kappa)-$ nominal (average) control input (lpha,eta)- variable recourse (adjustment)

Core result: State variable response is affine in control inputs $\tilde{\pi}(\xi) = \pi + \check{\varsigma}_2(\alpha - \hat{\varsigma}_3\beta - \text{diag}[1])\xi$ $\tilde{\varphi}(\xi) = \varphi + (\check{\varsigma}_2(\alpha - \text{diag}[1]) - \check{\varsigma}_3\beta)\xi$ with nominal & recourse components

Stochastic gas extraction rates:

 $\tilde{\delta}(\xi) = \delta + \xi$

- $\xi-$ 0-mean with know covariance Σ
- Chance-constrained network optimization:

 $\min_{\tilde{\vartheta},\tilde{\kappa},\tilde{\varphi},\tilde{\pi}} \quad \mathbb{E}^{\mathbb{P}_{\xi}}[c_{1}^{\top}\tilde{\vartheta}(\xi) + \tilde{\vartheta}(\xi)^{\top} \operatorname{diag}[c_{2}]\tilde{\vartheta}(\xi)]$

subject to

$$\begin{split} & \mathbb{P}_{\xi} \begin{bmatrix} A \tilde{\varphi}(\xi) = \tilde{\vartheta}(\xi) - B \tilde{\kappa}(\xi) - \tilde{\delta}(\xi), \\ \tilde{\varphi}(\xi) = \varsigma_1 + \varsigma_2 \tilde{\pi}(\xi) + \varsigma_3 \tilde{\kappa}(\xi), \\ \tilde{\pi}_r(\xi) = \tilde{\pi}_r \end{bmatrix} \stackrel{\text{a.s.}}{=} 1 \\ & \mathbb{P}_{\xi} \begin{bmatrix} \underline{\pi} \leqslant \tilde{\pi}(\xi) \leqslant \overline{\pi}, & \underline{\vartheta} \leqslant \tilde{\vartheta}(\xi) \leqslant \overline{\vartheta}, \\ \underline{\kappa} \leqslant \tilde{\kappa}(\xi) \leqslant \overline{\kappa}, & \tilde{\varphi}_{\ell}(\xi) \geqslant 0, & \forall \ell \in \mathcal{E}_{\mathfrak{a}} \end{bmatrix} \geqslant 1 - \varepsilon \end{split}$$

Infinite-dimensional problem

- Affine control policies resolve tractability
- Controls for injections and pressure regulations:

$$\begin{split} \tilde{\vartheta}(\xi) = \vartheta + \alpha \xi \\ \tilde{\kappa}(\xi) = \kappa + \beta \xi \end{split}$$

 $(artheta,\kappa)-$ nominal (average) control input (lpha,eta)- variable recourse (adjustment)

with nominal & recourse components

Stochastic gas extraction rates:

 $\tilde{\delta}(\xi) = \delta + \xi$

- $\xi-$ 0-mean with know covariance Σ
- Chance-constrained network optimization:

 $\min_{\tilde{\vartheta},\tilde{\kappa},\tilde{\varphi},\tilde{\pi}} \quad \mathbb{E}^{\mathbb{P}_{\xi}}[c_{1}^{\top}\tilde{\vartheta}(\xi) + \tilde{\vartheta}(\xi)^{\top} \operatorname{diag}[c_{2}]\tilde{\vartheta}(\xi)]$

subject to

$$\begin{split} & \mathbb{P}_{\xi} \begin{bmatrix} A \tilde{\varphi}(\xi) = \tilde{\vartheta}(\xi) - B \tilde{\kappa}(\xi) - \tilde{\delta}(\xi), \\ \tilde{\varphi}(\xi) = \varsigma_1 + \varsigma_2 \tilde{\pi}(\xi) + \varsigma_3 \tilde{\kappa}(\xi), \\ \tilde{\pi}_r(\xi) = \tilde{\pi}_r \end{bmatrix} \stackrel{\text{a.s.}}{=} 1 \\ & \mathbb{P}_{\xi} \begin{bmatrix} \underline{\pi} \leqslant \tilde{\pi}(\xi) \leqslant \overline{\pi}, & \underline{\vartheta} \leqslant \tilde{\vartheta}(\xi) \leqslant \overline{\vartheta}, \\ \underline{\kappa} \leqslant \tilde{\kappa}(\xi) \leqslant \overline{\kappa}, & \tilde{\varphi}_{\ell}(\xi) \geqslant 0, & \forall \ell \in \mathcal{E}_{\mathfrak{a}} \end{bmatrix} \geqslant 1 - \varepsilon \end{split}$$

Infinite-dimensional problem

- Affine control policies resolve tractability
- Controls for injections and pressure regulations:

$$\begin{aligned} \tilde{\vartheta}(\xi) = \vartheta + \alpha \xi \\ \tilde{\kappa}(\xi) = \kappa + \beta \xi \end{aligned}$$

 (ϑ, κ) - nominal (average) control input (α, β) - variable recourse (adjustment)

Core result: State variable response is affine in control inputs $\tilde{\pi}(\xi) = \pi + \check{\varsigma}_2(\alpha - \hat{\varsigma}_3\beta - \text{diag}[1])\xi$ $\tilde{\varphi}(\xi) = \varphi + (\check{\varsigma}_2(\alpha - \text{diag}[1]) - \check{\varsigma}_3\beta)\xi$ with nominal & recourse components

Stochastic gas extraction rates:

 $\tilde{\delta}(\xi) = \delta + \xi$

- $\xi-$ 0-mean with know covariance Σ
- Chance-constrained network optimization:

 $\min_{\tilde{\vartheta},\tilde{\kappa},\tilde{\varphi},\tilde{\pi}} \quad \mathbb{E}^{\mathbb{P}_{\xi}}[c_{1}^{\top}\tilde{\vartheta}(\xi) + \tilde{\vartheta}(\xi)^{\top} \operatorname{diag}[c_{2}]\tilde{\vartheta}(\xi)]$

subject to

$$\begin{split} \mathbb{P}_{\xi} \begin{bmatrix} A \tilde{\varphi}(\xi) = \tilde{\vartheta}(\xi) - B \tilde{\kappa}(\xi) - \tilde{\delta}(\xi), \\ \tilde{\varphi}(\xi) = \varsigma_1 + \varsigma_2 \tilde{\pi}(\xi) + \varsigma_3 \tilde{\kappa}(\xi), \\ \tilde{\pi}_r(\xi) = \tilde{\pi}_r \end{bmatrix} \stackrel{\text{a.s.}}{=} 1 \\ \mathbb{P}_{\xi} \begin{bmatrix} \underline{\pi} \leq \tilde{\pi}(\xi) \leq \overline{\pi}, & \underline{\vartheta} \leq \tilde{\vartheta}(\xi) \leq \overline{\vartheta}, \\ \underline{\kappa} \leq \tilde{\kappa}(\xi) \leq \overline{\kappa}, & \tilde{\varphi}_{\ell}(\xi) \geq 0, \forall \ell \in \mathcal{E}_a \end{bmatrix} \geqslant 1 - \varepsilon \end{split}$$

Infinite-dimensional problem

- Affine control policies resolve tractability
- Controls for injections and pressure regulations:

$$\begin{aligned} \tilde{\vartheta}(\xi) = \vartheta + \alpha \xi \\ \tilde{\kappa}(\xi) = \kappa + \beta \xi \end{aligned}$$

 (ϑ, κ) - nominal (average) control input (α, β) - variable recourse (adjustment)

Core result: State variable response is affine in control inputs $\tilde{\pi}(\xi) = \pi + \check{\varsigma}_2(\alpha - \hat{\varsigma}_3\beta - \text{diag}[1])\xi$ $\tilde{\varphi}(\xi) = \varphi + (\hat{\varsigma}_2(\alpha - \text{diag}[1]) - \hat{\varsigma}_3\beta)\xi$ with nominal & recourse components

Uncertainty- and variance-aware control polices

- Joint feasibility guarantee through individual chance constraints:
- Example for pressure chance constraints:

$$\mathbb{P}_{\xi} \begin{bmatrix} \tilde{\pi}_n(\xi) \leqslant \overline{\pi}_n \end{bmatrix} \geqslant 1 - \hat{\varepsilon}, \quad \forall n = 1, \dots, N$$

is equivalent to
$$z_{\hat{\varepsilon}} \underbrace{\|F[\check{\varsigma}_2(\alpha - \hat{\varsigma}_3\beta - \mathsf{diag}[1])]_n^\top\|}_{} \leqslant \overline{\pi}_n - \pi_n, \quad \forall n = 1, \dots$$

pressure standard deviation

 $z_{\hat{\varepsilon}_i}$ - safety parameter. $z_{\hat{\varepsilon}_i} = 0 \rightarrow$ deterministic solution F - decomposition of Σ , i.e., $\Sigma = FF^{\top}$

Minimization of pressure variance

 $\min_{s_n^{\pi}} \quad \psi_n^{\pi} s_n^{\pi} \quad \text{s.t.} \quad \|F[\check{\varsigma}_2(\alpha - \hat{\varsigma}_3\beta - \text{diag}[\mathbb{1}])]_n^{\top}\| \leqslant s_n^{\pi}, \quad \forall n = 1, \dots, N$

 s_n^{π} – pressure standard deviation, ψ_n^{π} – variance penalty.

We can thus optimize both uncertainty- and variance-aware control policies

>>>> Gas Network Control Under Uncertainty

, N

Uncertainty- and variance-aware control polices

- Joint feasibility guarantee through individual chance constraints:
- Example for pressure chance constraints:

$$\begin{split} \mathbb{P}_{\xi} \left[\tilde{\pi}_{n}(\xi) \leqslant \overline{\pi}_{n} \right] &\geq 1 - \hat{\varepsilon}, \quad \forall n = 1, \dots, N \\ &\text{ is equivalent to } \\ z_{\hat{\varepsilon}} \underbrace{\| F[\breve{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\top} \|}_{\text{ pressure standard deviation }} &\leqslant \overline{\pi}_{n} - \pi_{n}, \quad \forall n = 1, \dots, N \end{split}$$

 $z_{\hat{\varepsilon}_i}$ - safety parameter. $z_{\hat{\varepsilon}_i} = 0 \rightarrow \text{deterministic solution}$ F - decomposition of Σ , i.e., $\Sigma = FF^{\top}$

Minimization of pressure variance

$$\min_{s_n^{\pi}} \quad \psi_n^{\pi} s_n^{\pi} \quad \text{s.t.} \quad \|F[\check{\varsigma}_2(\alpha - \hat{\varsigma}_3\beta - \mathsf{diag}[\mathbb{1}])]_n^{\top}\| \leqslant s_n^{\pi}, \quad \forall n = 1, \dots, N$$

 $s_n^{\pi}-$ pressure standard deviation, $\psi_n^{\pi}-$ variance penalty.

We can thus optimize both uncertainty- and variance-aware control policies

Uncertainty- and variance-aware optimization

Control polices and network response are optimized using the SOCP problem

$$\begin{split} \min_{\mathcal{P}} & c_{1}^{\top} \vartheta + 1^{\top} c^{\vartheta} + 1^{\top} c^{\alpha} + \psi_{\pi}^{\top} s^{\pi} + \psi_{\varphi}^{\top} s^{\varphi} \\ \text{s.t. } A\varphi &= \vartheta - B\kappa - \delta, \\ & (\alpha - B\beta)^{\top} 1 = 1, \\ \varphi &= \varsigma_{1} + \varsigma_{2}\pi + \varsigma_{3}\kappa, \ \pi_{r} = \mathring{\pi}_{r}, \\ & \|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\top}\| \leqslant s_{n}^{\pi} \\ & \|F[\check{\varsigma}_{2}(\alpha - \text{diag}[1]) - \check{\varsigma}_{3}\beta]_{\ell}^{\top}\| \leqslant s_{\ell}^{\varphi} \\ & z_{\ell}\|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\top}\| \leqslant \pi_{n} - \pi_{n} \\ & z_{\ell}\|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\top}\| \leqslant \pi_{n} - \underline{\pi}_{n} \\ & z_{\ell}\|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\top}\| \leqslant \varphi_{\ell} \\ & + \ constraints \ on \ injection \ and \ pressure \ regulation \ \ldots \end{split}$$

Exp. cost + variance penalty Gas conservation law Recourse balance Lin. Weymouth equation Pressure Std Flow Std Max pressure limit Min pressure limit Flow limit for compressors and valves

Which optimizes the network response ...

$$\begin{split} \bar{\vartheta}(\xi) &= \vartheta + \alpha \xi, \quad \tilde{\kappa}(\xi) = \kappa + \beta \xi \\ \tilde{\pi}(\xi) &= \pi + \check{\varsigma}_2(\alpha - \hat{\varsigma}_3\beta - \text{diag}[1])\xi \\ \tilde{\varphi}(\xi) &= \varphi + (\check{\varsigma}_2(\alpha - \text{diag}[1]) - \check{\varsigma}_3\beta)\xi \end{split}$$

control actions pressure response flow response

• ... to meet the risk $(z_{\hat{\varepsilon}})$ and variance $(\psi^{\pi}, \psi^{\varphi})$ criteria of the network operator

>>>> Gas Network Control Under Uncertainty

Uncertainty- and variance-aware optimization

Control polices and network response are optimized using the SOCP problem

$$\begin{split} \min_{\mathcal{P}} & \mathbf{c}_{1}^{\top} \vartheta + \mathbf{1}^{\top} \mathbf{c}^{\vartheta} + \mathbf{1}^{\top} \mathbf{c}^{\alpha} + \psi_{\pi}^{\top} \mathbf{s}^{\pi} + \psi_{\varphi}^{\top} \mathbf{s}^{\varphi} \\ & \text{s.t. } A\varphi = \vartheta - B\kappa - \delta, \\ & (\alpha - B\beta)^{\top} \mathbf{1} = \mathbf{1}, \\ & \varphi = \varsigma_{1} + \varsigma_{2}\pi + \varsigma_{3}\kappa, \ \pi_{r} = \mathring{\pi}_{r}, \\ & \|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[\mathbf{1}])]_{n}^{\top}\| \leqslant \mathbf{s}_{n}^{\pi} \\ & \|F[\check{\varsigma}_{2}(\alpha - \text{diag}[\mathbf{1}]) - \check{\varsigma}_{3}\beta]_{\ell}^{\top}\| \leqslant \mathbf{s}_{\ell}^{\varphi} \\ & z_{\ell}\|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[\mathbf{1}])]_{n}^{\top}\| \leqslant \pi_{n} - \pi_{n} \\ & z_{\ell}\|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[\mathbf{1}])]_{n}^{\top}\| \leqslant \pi_{n} - \underline{\pi}_{n} \\ & z_{\ell}\|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[\mathbf{1}]) - \check{\varsigma}_{3}\beta]_{\ell}^{\top}\| \leqslant \varphi_{\ell} \\ & + \ constraints \ on \ injection \ and \ pressure \ regulation \ \ldots \end{split}$$

Exp. cost + variance penalty Gas conservation law Recourse balance Lin. Weymouth equation Pressure Std Flow Std Max pressure limit Min pressure limit Flow limit for compressors and valves

Which optimizes the network response ...

$$\begin{split} \tilde{\vartheta}(\xi) &= \vartheta + \alpha \xi, \quad \tilde{\kappa}(\xi) = \kappa + \beta \xi & \text{control actions} \\ \tilde{\pi}(\xi) &= \pi + \xi_2 (\alpha - \xi_3 \beta - \text{diag}[1]) \xi & \text{pressure response} \\ \tilde{\varphi}(\xi) &= \varphi + (\xi_2 (\alpha - \text{diag}[1]) - \xi_3 \beta) \xi & \text{flow response} \end{split}$$

• ... to meet the risk $(z_{\hat{\varepsilon}})$ and variance $(\psi^{\pi}, \psi^{\varphi})$ criteria of the network operator

>>>> Gas Network Control Under Uncertainty

Outline

Modeling Gas Network Operations

Gas Network Control Under Uncertainty

Stochastic Market Design for Gas Networks

Numerical Experiments

Conclusions

- Deterministic markets are ignorant to the contributions of network assets to uncertainty management
- ... and to the contributions of stochastic extractions to the network uncertainty and variability
- > The proposed polices extend the deterministic payments to price uncertainty and variability

Network equilibrium conditions:

- ► Stochastic gas flow equations $\lambda^{c}: A\varphi = \vartheta - B\kappa - \delta, \qquad \lambda_{n}^{\overline{n}}: z_{\ell} \| F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \operatorname{diag}[1])]_{n}^{\overline{n}} \| \leqslant \overline{\pi}_{n} - \pi_{n} \qquad \lambda_{n}^{\overline{n}}: \| F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \operatorname{diag}[1])]_{n}^{\overline{n}} \| \leqslant \overline{\pi}_{n} - \pi_{n} \qquad \lambda_{n}^{\overline{n}}: \| F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \operatorname{diag}[1])]_{n}^{\overline{n}} \| \leqslant \pi_{n} - \pi_{n} \qquad \lambda_{\ell}^{\overline{n}}: \| F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \operatorname{diag}[1])]_{n}^{\overline{n}} \| \leqslant \overline{\pi}_{n} - \pi_{n} \qquad \lambda_{\ell}^{\overline{n}}: \| F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \operatorname{diag}[1])]_{n}^{\overline{n}} \| \leqslant \pi_{n} - \underline{\pi}_{n} \qquad \lambda_{\ell}^{\overline{n}}: \| F[\check{\varsigma}_{2}(\alpha - \operatorname{diag}[1]) - \check{\varsigma}_{3}\beta]_{\ell}^{\overline{1}} \| \leqslant s_{\ell}^{\pi} \qquad \lambda_{\ell}^{\overline{n}}: \| F[\check{\varsigma}_{2}(\alpha - \operatorname{diag}[1]) - \check{\varsigma}_{3}\beta]_{\ell}^{\overline{1}} \| \leqslant s_{\ell}^{\pi} \qquad \lambda_{\ell}^{\overline{n}}: \| F[\check{\varsigma}_{2}(\alpha - \operatorname{diag}[1]) - \check{\varsigma}_{3}\beta]_{\ell}^{\overline{1}} \| \leqslant s_{\ell}^{\pi} \qquad \lambda_{\ell}^{\overline{n}}: \| F[\check{\varsigma}_{2}(\alpha - \operatorname{diag}[1]) - \check{\varsigma}_{3}\beta]_{\ell}^{\overline{1}} \| \leqslant s_{\ell}^{\pi} \qquad \lambda_{\ell}^{\overline{n}}: \| F[\check{\varsigma}_{2}(\alpha - \operatorname{diag}[1]) - \check{\varsigma}_{3}\beta]_{\ell}^{\overline{1}} \| \leqslant s_{\ell}^{\pi} \qquad \lambda_{\ell}^{\overline{n}}: \| F[\check{\varsigma}_{2}(\alpha - \operatorname{diag}[1]) - \check{\varsigma}_{3}\beta]_{\ell}^{\overline{1}} \| \leqslant s_{\ell}^{\pi} \qquad \lambda_{\ell}^{\overline{n}}: \| F[\check{\varsigma}_{2}(\alpha - \operatorname{diag}[1]) - \check{\varsigma}_{3}\beta]_{\ell}^{\overline{1}} \| \leqslant s_{\ell}^{\pi} \qquad \lambda_{\ell}^{\overline{n}}: \| F[\check{\varsigma}_{2}(\alpha - \operatorname{diag}[1]) - \check{\varsigma}_{3}\beta]_{\ell}^{\overline{1}} \| \leqslant s_{\ell}^{\pi} \qquad \lambda_{\ell}^{\overline{n}}: \| F[\check{\varsigma}_{2}(\alpha - \operatorname{diag}[1]) - \check{\varsigma}_{3}\beta]_{\ell}^{\overline{1}} \| \leqslant s_{\ell}^{\pi} \qquad \lambda_{\ell}^{\overline{n}}: \| F[\check{\varsigma}_{2}(\alpha - \operatorname{diag}[1]) - \check{\varsigma}_{3}\beta]_{\ell}^{\overline{1}} \| \leqslant s_{\ell}^{\pi} \qquad \lambda_{\ell}^{\overline{n}}: \| F[\check{\varsigma}_{2}(\alpha - \operatorname{diag}[1]) - \check{\varsigma}_{3}\beta]_{\ell}^{\overline{1}} \| \leqslant s_{\ell}^{\pi} \qquad \lambda_{\ell}^{\overline{n}}: \| F[\check{\varsigma}_{2}(\alpha - \operatorname{diag}[1]) - \check{\varsigma}_{3}\beta]_{\ell}^{\overline{1}} \| \leqslant s_{\ell}^{\pi} \land s_{\ell}^{$
- Pricing based on the combination of linear and conic duality
- Unlike linear, conic constraints are not separable

SOCP duality distinguishes the effort of network assets w.r.t. each component of forecast errors in F ∈ ℝ^{N×N}, e.g.,

$$\lambda_n^{\overline{\pi}} \leqslant \|u_n^{\overline{\pi}}\|, \ u_n^{\overline{\pi}} \in \mathbb{R}^N,$$

where $\lambda_n^{\overline{n}}, u_{n1}^{\overline{n}}, \dots, u_{nN}^{\overline{n}}$ are prices for max. press. control

>>>> Stochastic Market Design for Gas Networks

- Deterministic markets are ignorant to the contributions of network assets to uncertainty management
- ... and to the contributions of stochastic extractions to the network uncertainty and variability
- > The proposed polices extend the deterministic payments to price uncertainty and variability

Network equilibrium conditions:

- ► Stochastic gas flow equations $\lambda^{c}: A\varphi = \vartheta - B\kappa - \delta, \qquad \lambda_{n}^{\pi}: z_{\ell} \|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\top}\| \leq \overline{\pi}_{n} - \pi_{n} \qquad \lambda_{n}^{\pi}: \|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\top}\| \leq s_{n}^{\pi}, \lambda^{\pi}: (\alpha - B\beta)^{\top} 1 = 1, \qquad \lambda_{n}^{\pi}: z_{\ell} \|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\top}\| \leq \pi_{n} - \pi_{n} \qquad \lambda_{\ell}^{\pi}: \|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\top}\| \leq \varepsilon_{\ell}^{\pi}, \lambda^{\psi}: \varphi = \varsigma_{1} + \varsigma_{2}\pi + \varsigma_{3}\kappa, \ \pi_{r} = \check{\pi}_{r}, \qquad \lambda_{\ell}^{\psi}: \|F[\check{\varsigma}_{2}(\alpha - \text{diag}[1]) - \check{\varsigma}_{3}\beta]_{\ell}^{\top}\| \leq \varepsilon_{\ell}^{\psi}$
- Pricing based on the combination of linear and conic duality
- Unlike linear, conic constraints are not separable

SOCP duality distinguishes the effort of network assets w.r.t. each component of forecast errors in F ∈ ℝ^{N×N}, e.g.,

$$\lambda_n^{\overline{\pi}} \leq ||u_n^{\overline{\pi}}||, \ u_n^{\overline{\pi}} \in \mathbb{R}^N,$$

where $\lambda_n^{\overline{n}}, u_{n1}^{\overline{n}}, \ldots, u_{nN}^{\overline{n}}$ are prices for max. press. control

>>>> Stochastic Market Design for Gas Networks

- Deterministic markets are ignorant to the contributions of network assets to uncertainty management
- ... and to the contributions of stochastic extractions to the network uncertainty and variability
- > The proposed polices extend the deterministic payments to price uncertainty and variability

Network equilibrium conditions:

- ► Stochastic gas flow equations $\lambda^{c}: A\varphi = \vartheta - B\kappa - \delta, \qquad \lambda_{n}^{\pi}: z_{\ell} \|F[\zeta_{2}(\alpha - \zeta_{3}\beta - \operatorname{diag}[1])]_{n}^{\top}\| \leq \overline{\pi}_{n} - \pi_{n} \qquad \lambda_{n}^{\pi}: \|F[\zeta_{2}(\alpha - \zeta_{3}\beta - \operatorname{diag}[1])]_{n}^{\top}\| \leq s_{n}^{\pi}, \lambda^{\pi}: |F[\zeta_{2}(\alpha - \zeta_{3}\beta - \operatorname{diag}[1])]_{n}^{\top}\| \leq \pi_{n} - \pi_{n} \qquad \lambda_{\ell}^{\pi}: \|F[\zeta_{2}(\alpha - \zeta_{3}\beta - \operatorname{diag}[1])]_{n}^{\top}\| \leq s_{\ell}^{\pi}, \lambda^{\psi}: \varphi = \varsigma_{1} + \varsigma_{2}\pi + \varsigma_{3}\kappa, \pi_{r} = \overline{\pi}_{r}, \qquad \lambda_{\ell}^{\psi}: \|F[\zeta_{2}(\alpha - \operatorname{diag}[1]) - \zeta_{3}\beta]_{\ell}^{\top}\| \leq \varphi_{\ell}$
- Pricing based on the combination of linear and conic duality
- Unlike linear, conic constraints are not separable

SOCP duality distinguishes the effort of network assets w.r.t. each component of forecast errors in F ∈ ℝ^{N×N}, e.g.,

$$\lambda_n^{\overline{\pi}} \leq ||u_n^{\overline{\pi}}||, \ u_n^{\overline{\pi}} \in \mathbb{R}^N,$$

where $\lambda_n^{\overline{n}}, u_{n1}^{\overline{n}}, \ldots, u_{nN}^{\overline{n}}$ are prices for max. press. control

Revenue		Deterministic	Chance-constrained					
		Deterministic	Unce	ertainty	Variance			
		Nominal balance	Regulation balance	Network limits	State variance			
Injection	$R_n^{inj} =$	$f(\lambda_n^c, \vartheta_n)$	$+f(\lambda^r,\alpha_n)$	$+f(u^{\overline{\pi}}, u^{\underline{\pi}}, u^{\underline{\varphi}}, \alpha_n)$	$+f(u^{\pi}, u^{\varphi}, \alpha_n)$			
Comp/valve	$R_{\ell}^{act} =$	$f(\lambda_{s(\ell)}^c, \lambda_{\ell}^w, \kappa_{\ell})$						
Consumer	$R_n^{con} =$	$f(\lambda_n^c, \delta_n)$						

>>> Stochastic Market Design for Gas Networks

- Deterministic markets are ignorant to the contributions of network assets to uncertainty management
- ... and to the contributions of stochastic extractions to the network uncertainty and variability
- > The proposed polices extend the deterministic payments to price uncertainty and variability

Network equilibrium conditions:

- ► Stochastic gas flow equations $\lambda^{c}: A\varphi = \vartheta - B\kappa - \delta, \qquad \lambda_{n}^{\overline{\pi}}: z_{\ell} \|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\overline{\pi}}\| \leq \overline{\pi}_{n} - \pi_{n} \qquad \lambda_{n}^{\pi}: \|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\overline{\pi}}\| \leq \pi_{n} - \pi_{n} \qquad \lambda_{n}^{\pi}: \|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\overline{\pi}}\| \leq \pi_{n} - \pi_{n} \qquad \lambda_{n}^{\pi}: \|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\overline{\pi}}\| \leq \pi_{n} - \pi_{n} \qquad \lambda_{\ell}^{\pi}: \|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\overline{\pi}}\| \leq \pi_{n} - \pi_{n} \qquad \lambda_{\ell}^{\pi}: \|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\overline{\pi}}\| \leq \varphi_{\ell}$
- Pricing based on the combination of linear and conic duality
- Unlike linear, conic constraints are not separable

SOCP duality distinguishes the effort of network assets w.r.t. each component of forecast errors in F ∈ ℝ^{N×N}, e.g.,

$$\lambda_n^{\overline{\pi}} \leq ||u_n^{\overline{\pi}}||, \ u_n^{\overline{\pi}} \in \mathbb{R}^N,$$

where $\lambda_n^{\overline{n}}, u_{n1}^{\overline{n}}, \ldots, u_{nN}^{\overline{n}}$ are prices for max. press. control

Revenue		Deterministic	Chance-constrained					
			Unce	rtainty	Variance			
		Nominal balance	Regulation balance	State variance				
Injection	$R_n^{inj} =$	$f(\lambda_n^c, \vartheta_n)$	$+f(\lambda^r, \alpha_n)$	$+f(u^{\overline{n}}, u^{\underline{n}}, u^{\underline{\varphi}}, \alpha_n)$	$+f(u^{\pi}, u^{\varphi}, \alpha_n)$			
Comp/valve	$R_{\ell}^{act} =$	$f(\lambda_{s(\ell)}^{c}, \lambda_{\ell}^{w}, \kappa_{\ell})$	$+f(\lambda^r, \beta_\ell)$	$+f(u^{\overline{\pi}}, u^{\underline{\pi}}, u^{\underline{\varphi}}, \beta_{\ell})$				
Consumer	$R_n^{con} =$	$f(\lambda_n^c, \delta_n)$	$+f(\lambda_n^r, 1_n)$	$+f(u^{\overline{\pi}}, u^{\underline{\pi}}, u^{\underline{\varphi}}, [F]_n)$				

>>> Stochastic Market Design for Gas Networks

- Deterministic markets are ignorant to the contributions of network assets to uncertainty management
- ... and to the contributions of stochastic extractions to the network uncertainty and variability
- > The proposed polices extend the deterministic payments to price uncertainty and variability

Network equilibrium conditions:

- ► Stochastic gas flow equations $\lambda^{c}: A\varphi = \vartheta - B\kappa - \delta, \qquad \lambda_{n}^{\overline{\pi}}: z_{\ell} \|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\overline{\pi}}\| \leq \overline{\pi}_{n} - \pi_{n} \qquad \lambda_{n}^{\pi}: \|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\overline{\pi}}\| \leq \pi_{n} - \pi_{n} \qquad \lambda_{n}^{\pi}: \|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\overline{\pi}}\| \leq \pi_{n} - \pi_{n} \qquad \lambda_{n}^{\pi}: \|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\overline{\pi}}\| \leq \pi_{n} - \pi_{n} \qquad \lambda_{\ell}^{\pi}: \|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\overline{\pi}}\| \leq \pi_{n} - \pi_{n} \qquad \lambda_{\ell}^{\pi}: \|F[\check{\varsigma}_{2}(\alpha - \hat{\varsigma}_{3}\beta - \text{diag}[1])]_{n}^{\overline{\pi}}\| \leq \varphi_{\ell}$
- Pricing based on the combination of linear and conic duality
- Unlike linear, conic constraints are not separable

SOCP duality distinguishes the effort of network assets w.r.t. each component of forecast errors in F ∈ ℝ^{N×N}, e.g.,

$$\lambda_n^{\overline{\pi}} \leq ||u_n^{\overline{\pi}}||, \ u_n^{\overline{\pi}} \in \mathbb{R}^N,$$

where $\lambda_n^{\overline{n}}, u_{n1}^{\overline{n}}, \ldots, u_{nN}^{\overline{n}}$ are prices for max. press. control

Revenue		Deterministic	Chance-constrained					
		Deterministic	Unce	Variance				
		Nominal balance	Regulation balance	State variance				
Injection	$R_n^{inj} =$	$f(\lambda_n^c, \vartheta_n)$	$+f(\lambda^r, \alpha_n)$	$+f(u^{\overline{n}}, u^{\underline{n}}, u^{\underline{\varphi}}, \alpha_n)$	$+f(u^{\pi}, u^{\varphi}, \alpha_n)$			
Comp/valve	$R_{\ell}^{act} =$	$f(\lambda_{s(\ell)}^{c}, \lambda_{\ell}^{w}, \kappa_{\ell})$	$+f(\lambda^r, \beta_\ell)$	$+f(u^{\overline{\pi}}, u^{\underline{\pi}}, u^{\underline{\varphi}}, \beta_{\ell})$	$+f(u^{\pi}, u^{\varphi}, \beta_{\ell})$			
Consumer	$R_n^{con} =$	$f(\lambda_n^c, \delta_n)$	$+f(\lambda_n^r, 1_n)$	$+f(u^{\overline{\pi}}, u^{\underline{\pi}}, u^{\underline{\varphi}}, [F]_n)$	$+f(u^{\pi}, u^{\varphi}, [F]_n)$			

>>> Stochastic Market Design for Gas Networks

Outline

Modeling Gas Network Operations

Gas Network Control Under Uncertainty

Stochastic Market Design for Gas Networks

Numerical Experiments

Conclusions

Experiments setup

- 48-node natural gas network
- 22 stochastic gas extractions
- ▶ 11 gas injections ○
- $\xi \sim N(0,\sigma), \ \sigma \rightarrow 10\%$ of δ
- ▶ Violation probability $\varepsilon = 1\%$
- Ipopt + JuMP \rightarrow sensitivities

Experiment goals

- We compare the optimized network response under
 - Deterministic polices (uncertainty- and variance-agnostic)
 - Chance-constrained polices (uncertainty-aware but variance-agnostic)
 - Chance-constrained variance-aware polices
- ... in terms of operational costs and state variance
- ... in terms of feasibility:
 - count violations of network limits
 - compute the real-time re-dispatch effort by computing the projection

$$\begin{split} \min_{\substack{\vartheta_s, \kappa_s, \varphi_s, \pi_s}} & \|\tilde{\vartheta}(\xi_s) - \vartheta_s\| + \|\tilde{\kappa}(\xi_s) - \kappa_s\| \\ \text{s.t.} & A\varphi_s = \vartheta_s - B\kappa_s - \delta_s - \xi_s, \\ & \varphi_s \circ |\varphi_s| = \text{diag}[w](A^\top \pi_s + \kappa_s) \end{split}$$

of control inputs onto the non-convex gas equations for $s = 1 \dots 1000$ samples of forecast errors.

... and in terms of revenues/charges of network components.

>>> Numerical Experiments

Experiment goals

- We compare the optimized network response under
 - Deterministic polices (uncertainty- and variance-agnostic)
 - Chance-constrained polices (uncertainty-aware but variance-agnostic)
 - Chance-constrained variance-aware polices
- ... in terms of operational costs and state variance
- ... in terms of feasibility:
 - count violations of network limits
 - compute the real-time re-dispatch effort by computing the projection

$$\min_{\substack{\vartheta_s, \kappa_s, \varphi_s, \pi_s}} \|\tilde{\vartheta}(\xi_s) - \vartheta_s\| + \|\tilde{\kappa}(\xi_s) - \kappa_s\|$$
s.t. $A\varphi_s = \vartheta_s - B\kappa_s - \delta_s - \xi_s,$
 $\varphi_s \circ |\varphi_s| = \operatorname{diag}[w](A^\top \pi_s + \kappa_s)$

of control inputs onto the non-convex gas equations for $s = 1 \dots 1000$ samples of forecast errors.

non-convex feasible space ϑ_s

... and in terms of revenues/charges of network components.

>>> Numerical Experiments

Experiment goals

- We compare the optimized network response under
 - Deterministic polices (uncertainty- and variance-agnostic)
 - Chance-constrained polices (uncertainty-aware but variance-agnostic)
 - Chance-constrained variance-aware polices
- ... in terms of operational costs and state variance
- ... in terms of feasibility:
 - count violations of network limits
 - compute the real-time re-dispatch effort by computing the projection

$$\min_{\substack{\vartheta_s, \kappa_s, \varphi_s, \pi_s}} \|\tilde{\vartheta}(\xi_s) - \vartheta_s\| + \|\tilde{\kappa}(\xi_s) - \kappa_s\|$$
s.t. $A\varphi_s = \vartheta_s - B\kappa_s - \delta_s - \xi_s,$
 $\varphi_s \circ |\varphi_s| = \operatorname{diag}[w](A^\top \pi_s + \kappa_s)$

of control inputs onto the non-convex gas equations for $s = 1 \dots 1000$ samples of forecast errors.

... and in terms of revenues/charges of network components.

>>> Numerical Experiments

		Deterministic Chance-constrained control polic								
Parameter	Unit	control policy	Variance- agnostic	Pressure	variance-a	vare, ψ^{π}	Flow v			
Expected cost	\$1000	80.9	82.5 (100%)	100.5%	105.6%	113.8%	100.1%	102.5%	112.6%	
Pressure variance	MPa ²	217.5	63.4 (100%)	44.2%	18.9%	12.8%	92.8%	46.7%	24.7%	
Flow variance	BMSCFD ²	26.1	58.0 (100%)	83.4%	64.1%	59.2%	93.4%	44.8%	25.9%	
Compression	kPa	1939	3914	3570	3734	3661	3914	4030	3888	
Valve regulation	kPa	0	0	0	150	576	0	1	500	
Infeas. ($\varepsilon = 1\%$)	%	53.7	0.04	0.02	0.02	0.02	0.03	0.02	0.03	
Injection re-disp.	MMSCFD	960.91 (31.3%)	0.01	0.03	0.02	0.02	0.02	0.04	0.04	
Comp/valve re-disp.	kPa	121.68 (12.7%)	0.19	0.08	0.10	0.05	0.28	0.04	0.04	

		Deterministic	Chance-constrained control policies						
Parameter	Unit	control policy	Variance-	Pressure	variance-a	ware, ψ^{π}	Flow variance-aware, ψ^{arphi}		
			agnostic	10^{-3}	10^{-2}	10^{-1}	1	10^{1}	10^{2}
Expected cost	\$1000	80.9	82.5 (100%)	100.5%	105.6%	113.8%	100.1%	102.5%	112.6%
Pressure variance	MPa ²	217.5	63.4 (100%)	44.2%	18.9%	12.8%	92.8%	46.7%	24.7%
Flow variance	BMSCFD ²	26.1	58.0 (100%)	83.4%	64.1%	59.2%	93.4%	44.8%	25.9%
Compression	kPa	1939	3914	3570	3734	3661	3914	4030	3888
Valve regulation	kPa	0	0	0	150	576	0	1	500
Infeas. ($\varepsilon = 1\%$)	%	53.7	0.04	0.02	0.02	0.02	0.03	0.02	0.03
Injection re-disp.	MMSCFD	960.91 (31.3%)	0.01	0.03	0.02	0.02	0.02	0.04	0.04
Comp/valve re-disp.	kPa	121.68 (12.7%)	0.19	0.08	0.10	0.05	0.28	0.04	0.04

		Deterministic	Chance-constrained control policies						
Parameter	Unit	control policy	Variance- agnostic	Pressure variance-aware, ψ^{π}			Flow variance-aware, ψ^{arphi}		
				10^-3	10^{-2}	10^{-1}	1	10 ¹	10 ²
Expected cost	\$1000	80.9	82.5 (100%)	100.5%	105.6%	113.8%	100.1%	102.5%	112.6%
Pressure variance	MPa ²	217.5	63.4 (100%)	44.2%	18.9%	12.8%	92.8%	46.7%	24.7%
Flow variance	BMSCFD ²	26.1	58.0 (100%)	83.4%	64.1%	59.2%	93.4%	44.8%	25.9%
Compression	kPa	1939	3914	3570	3734	3661	3914	4030	3888
Valve regulation	kPa	0	0	0	150	576	0	1	500
Infeas. ($\varepsilon = 1\%$)	%	53.7	0.04	0.02	0.02	0.02	0.03	0.02	0.03
Injection re-disp.	MMSCFD	960.91 (31.3%)	0.01	0.03	0.02	0.02	0.02	0.04	0.04
Comp/valve re-disp.	kPa	121.68 (12.7%)	0.19	0.08	0.10	0.05	0.28	0.04	0.04

		Deterministic	Chance-constrained control policies						
Parameter	Unit	control policy	Variance-	Pressure variance-aware, ψ^{π}			Flow variance-aware, ψ^{arphi}		
			agnostic	10-3	10^{-2}	10^{-1}	1	10 ¹	10 ²
Expected cost	\$1000	80.9	82.5 (100%)	100.5%	105.6%	113.8%	100.1%	102.5%	112.6%
Pressure variance	MPa ²	217.5	63.4 (100%)	44.2%	18.9%	12.8%	92.8%	46.7%	24.7%
Flow variance	BMSCFD ²	26.1	58.0 (100%)	83.4%	64.1%	59.2%	93.4%	44.8%	25.9%
Compression	kPa	1939	3914	3570	3734	3661	3914	4030	3888
Valve regulation	kPa	0	0	0	150	576	0	1	500
Infeas. ($\varepsilon = 1\%$)	%	53.7	0.04	0.02	0.02	0.02	0.03	0.02	0.03
Injection re-disp.	MMSCFD	960.91 (31.3%)	0.01	0.03	0.02	0.02	0.02	0.04	0.04
Comp/valve re-disp.	kPa	121.68 (12.7%)	0.19	0.08	0.10	0.05	0.28	0.04	0.04

Variance-agnostic policy

		Deterministic		Ch	ance-constr	ained contr	ol policies		
Parameter	Unit	control policy	Variance-	Pressure	variance-a	ware, ψ^π	Flow variance-aware, ψ^{arphi}		
			agnostic	10^-3	10^{-2}	10^{-1}	1	10 ¹	10 ²
Expected cost	\$1000	80.9	82.5 (100%)	100.5%	105.6%	113.8%	100.1%	102.5%	112.6%
Pressure variance	MPa ²	217.5	63.4 (100%)	44.2%	18.9%	12.8%	92.8%	46.7%	24.7%
Flow variance	BMSCFD ²	26.1	58.0 (100%)	83.4%	64.1%	59.2%	93.4%	44.8%	25.9%
Compression	kPa	1939	3914	3570	3734	3661	3914	4030	3888
Valve regulation	kPa	0	0	0	150	576	0	1	500
Infeas. ($\varepsilon = 1\%$)	%	53.7	0.04	0.02	0.02	0.02	0.03	0.02	0.03
Injection re-disp.	MMSCFD	960.91 (31.3%)	0.01	0.03	0.02	0.02	0.02	0.04	0.04
Comp/valve re-disp.	kPa	121.68 (12.7%)	0.19	0.08	0.10	0.05	0.28	0.04	0.04

Variance-agnostic policy

Injection
 Extraction
 Compressor
 Valve

Variance-aware policy

Revenue Analysis

Revenue		Deterministic	Chance-constrained					
		Deterministic	Unce	Variance				
		Nominal balance	Regulation balance	State variance				
Injection	$R_n^{inj} =$	$f(\lambda_n^c, \vartheta_n)$	$+f(\lambda^r, \alpha_n)$	$+f(u^{\overline{n}}, u^{\underline{\pi}}, u^{\underline{\varphi}}, \alpha_n)$	$+f(u^{\pi}, u^{\varphi}, \alpha_n)$			
Comp/valve	$R_{\ell}^{act} =$	$f(\lambda_{s(\ell)}^c, \lambda_{\ell}^w, \kappa_{\ell})$	$+f(\lambda^r, \beta_\ell)$	$+f(u^{\overline{\pi}}, u^{\underline{\pi}}, u^{\underline{\varphi}}, \beta_{\ell})$	$+f(u^{\pi}, u^{\varphi}, \beta_{\ell})$			
Consumer $R_n^{con} =$		$f(\lambda_n^c,\delta_n)$	$+f(\lambda_n^r, 1_n)$	$+f(u^{\overline{\pi}}, u^{\underline{\pi}}, u^{\underline{\varphi}}, [F]_n)$	$+f(u^{\pi}, u^{\varphi}, [F]_n)$			

Revenue Analysis

Revenue		Deterministic	Chance-constrained		
		Deterministic	Uncertainty		Variance
		Nominal balance	Regulation balance	Network limits	State variance
Injection Comp/valve Consumer	$egin{array}{l} R_n^{inj} = \ R_\ell^{act} = \ R_n^{con} = \end{array}$	$f(\lambda_n^c, \vartheta_n) f(\lambda_{s(\ell)}^c, \lambda_{\ell}^w, \kappa_{\ell}) f(\lambda_n^c, \delta_n)$	$+f(\lambda^{r}, \alpha_{n}) \\ +f(\lambda^{r}, \beta_{\ell}) \\ +f(\lambda^{r}_{n}, \mathbb{1}_{n})$	$ \begin{aligned} +f(u^{\overline{\pi}}, u^{\underline{\pi}}, u^{\underline{\varphi}}, \alpha_n) \\ +f(u^{\overline{\pi}}, u^{\underline{\pi}}, u^{\underline{\varphi}}, \beta_\ell) \\ +f(u^{\overline{\pi}}, u^{\underline{\pi}}, u^{\underline{\varphi}}, [F]_n) \end{aligned} $	$ \begin{array}{l} +f(u^{\pi}, u^{\varphi}, \alpha_n) \\ +f(u^{\pi}, u^{\varphi}, \beta_{\ell}) \\ +f(u^{\pi}, u^{\varphi}, [F]_n) \end{array} $
Network lim		nits nce	Nominal balance Regulation balance		
	Deterministic		Variance-agnost	ic Variance-aware	
Revenues [5]	·10 ⁵ 2 — — —		·10 ⁵ 3		
	<u>6</u> 201		2	2	
			1	1	-
	0 \mathcal{R}^{act}	\mathcal{R}^{inj} \mathcal{R}^{con}	$0 = \frac{1}{\mathcal{R}^{act} \mathcal{R}^{inj} \mathcal{R}}$	con $\mathcal{R}^{act} \mathcal{R}^{ir}$	j \mathcal{R}^{con}

Conclusions & Outlook

Chance-constrained polices allow for an explicit uncertainty management while:

- Internalizing probabilistic forecast and risk criteria of network operators
- Producing uncertainty- and variance-aware network controls with guarantees
- Offering the foundation for the stochastic gas market-clearing settlement
- Future extensions:
 - Coordination of power and gas networks
 - Contracts for TSO and NGO for the stochastic renewables, voltage control, etc.
 - More controls to exploit and price the flexibility of natural gas extractions
- arXiv paper & GitHub O repository are coming soon

Tak for i dag!