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Why Stochastic?

» Uncertainty of gas extractions arises from:
P Imperfect forecasts

» Imbalances in power grid

» Renewable gas supply

» Risks are induced by uncertainty:
» Operational risks (operations at (or beyond) the limits)

P Market risks (contract violations, variable returns, etc.)

» 2014 North American cold wave is an excellent example
» Sudden peak in natural gas demand

» Congestions in the natural gas network
» Record-high spot prices from Jan 1 to Feb 18

» Network expansion is prohibitive.

» From deterministic to stochastic control & market practices
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Towards stochastic control polices

» Stochastic control policy:
» Mathematically strict rule (function)

» Optimized ahead of real-time operations

» To produce control inputs in real-time

> We develop control policies that internalize
P Gas extraction uncertainty

» Operational and market risk criteria

» Intra-day variability of network variables

» Stochastic control policies enable
» Distinguish network assets contributions into uncertainty control

» Distinguish gas extraction contributions into overall uncertainty

P Price uncertainty and variability (variance) of network operations
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Modeling Gas Network Operations



Natural gas network equations

» Network as a graph [(N, €)
» Set of nodes N' = {1,...,N}

» Set of edges £ = {1,...,E}
5 » Gas network variables
© ! Un » 9 € RV— gas injection rates
£ \ / > s c RV~ gas extraction rates
> € RE— gas flow rates
> reRV— squared gas pressures
> ke RE— squared pressure regulation

» Gas conservation law

—_—
Ry

Ap=9—Br—96 e RN
> Weymouth equation

polp| = diagw](ATm + ) €RF
pe =0, Vleé&,.
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Optimization of natural gas networks

mrfgi:;m e 9 + 97 diag[e]9 Gas injection costs
st. Ap=19— Bk -9, Gas conservation law
@ o |p| = diag[w](AT 7 + k), Weymouth equation
T<r <7, 9<Y <D, Network limits
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Optimization of natural gas networks

mrfgi(?m e 9 + 97 diag[e]9 Gas injection costs
st. Ap=19— Bk -9, Gas conservation law
@ o |p| = diag[w](AT 7 + k), Weymouth equation
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» Non-convex problem
» Solvable when parameters are know

» When parameters are uncertain:
P Network response is unknown
P Difficult feasibility guarantees

P Simplifications or relaxations
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Optimization of natural gas networks

19,rfgisgﬂr e 9 + 97 diag[e]¥ Gas injection costs
st. Ap=19— Bk -9, Gas conservation law
@ o |p| = diag[w](AT 7 + k), Weymouth equation
T <7, 9<Y <D, Network limits

» Non-convex problem P Linearization of the Weymouth equation
» Solvable when parameters are know W(p,m,k) =T (F) (1 — &) + T (@) (e — @)
» When parameters are uncertain: +I(R)(s—R) =0

» Network response is unknown around stationary point (3, 7, &)

P Difficult feasibility guarantees > Linearized Weymouth equation:

» Simplifications or relaxations
Y= §1(¢7 7?1-7 "%) + §2(¢7 7?‘-)71- + §3(¢a k)’{

T = Ty

where ¢1, 2, ¢3 denote linear sensitivities

>> Modeling Gas Network Operations 4/13



Optimization of natural gas networks

ﬁ,T,i;l,w o 9 + 9 diag[e]¥ Gas injection costs
st. Ap=19— Bk -, Gas conservation law
©® =61+ QT+ 3K, T = Ty, Lin. Weymouth equation
r<t<T 9<9<LY, Network limits
ESKLER, 20, VE&,.

» Non-convex problem P Linearization of the Weymouth equation

» Solvable when parameters are know W(p,m,k) =T (F) (1 — &) + T (@) (e — @)

» When parameters are uncertain: +I(R)(s—R) =0

» Network response is unknown around stationary point (3, 7, &)

> Difficult feasibility guarantees > Linearized Weymouth equation:
» Simplifications or relaxations
w = §1(¢7 ﬁ-v "%) + §2(¢7 7?‘-)71- + §3(¢a ’n{)’{

T = Ty

where ¢1, 2, ¢3 denote linear sensitivities
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Chance-constrained gas network optimization
» Stochastic gas extraction rates:

Se)=05+¢

£— 0-mean with know covariance
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Chance-constrained gas network optimization

» Stochastic gas extraction rates:
3(¢)=6+¢

£— 0-mean with know covariance

> Chance-constrained network optimization:
smin EP¢ [ 9(¢) + 9(¢) T diag[ea]9(€)]
subject to
AB(€) = 9(€) — BR(E) — 3(8),
Pe | 3(8) = a1 + @27 (€) + 3R(€), | 21

(€)=
b T <H(E) KT 9L IE) LD, -
> — €
Sk <R(E) <FE $u(6) >0, VEEE,

» Infinite-dimensional problem

>> Gas Network Control Under Uncertainty
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Chance-constrained gas network optimization

» Stochastic gas extraction rates: » Affine control policies resolve tractability
og)=0+¢ » Controls for injections and pressure regulations:
&£— 0-mean with know covariance 5(5) =9+ at
R(§) =k + B¢

» Chance-constrained network optimization:
(¥, k)— nominal (average) control input

_min E%[e) 9(¢) + 9(¢) " diaglea] I(€)] (e, B)— variable recourse (adjustment)

9, R, P, 7
subject to
AB(¢) = T(€) — BR(E) — 8(¢),
Pe | 3(8) = a1 + @27 (€) + 3R(€), | 21

(€)=
b T <H(E) KT 9L IE) LD, -
> — €
Sk <R(E) <FE $u(6) >0, VEEE,

» Infinite-dimensional problem
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Chance-constrained gas network optimization

» Stochastic gas extraction rates:
3(¢)=6+¢

£— 0-mean with know covariance

» Chance-constrained network optimization:

5 min  E¢[e] 9(¢) + F(¢) T diag[ea]F(€)]
JR, @,
subject to

AB(€) = (&) — BR(€) - 4(¢),
Pe | (&) = a1 + 227(€) + s3R(E),

e(€) = v

» Infinite-dimensional problem

>> Gas Network Control Under Uncertainty

» Affine control policies resolve tractability

» Controls for injections and pressure regulations:

() =0 + at
R(&) =k + B¢

(¥, k)— nominal (average) control input
(e, B)— variable recourse (adjustment)

(Core result:  State variable response ... \

.. is affine in control inputs

#(€) =+ SH(a — &B — diag[l1])€
B(€) = ¢ + (2« — diag[1]) — &36)¢

with nominal & recourse components

! We can thus control & predict the uncertain
network states, i.e., ¥(§), R(€), 7(§), #(&)
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Uncertainty- and variance-aware control polices

» Joint feasibility guarantee through individual chance constraints:

» Example for pressure chance constraints:

P [#n(€) <Tal >1-&, Vn=1,... N

is equivalent to

ze ||F[&2(e — &8 — diag[)]y || <7p—m, Yn=1,...

pressure standard deviation

zz,— safety parameter. z;; = 0 — deterministic solution
F— decomposition of X, i.e., ¥ = FF

>> Gas Network Control Under Uncertainty
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Uncertainty- and variance-aware control polices

» Joint feasibility guarantee through individual chance constraints:

» Example for pressure chance constraints:

P [#n(€) <Tal >1-&, Vn=1,... N

is equivalent to

z [IFlé(a — &6 — diaglIDIT || <Fn—mn, Vn=1,...,N

pressure standard deviation

zz,— safety parameter. z;; = 0 — deterministic solution
F— decomposition of X, i.e., ¥ = FF

» Minimization of pressure variance
. . ~ . T
min u7sy st |[FRa(e— 58— diaglID]] | <57, Vn=1,...
n
s — pressure standard deviation, 1] — variance penalty.

» We can thus optimize both uncertainty- and variance-aware control policies
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Uncertainty- and variance-aware optimization

» Control polices and network response are optimized using the SOCP problem

mﬁn G O+1Tc? +1Tc™ 4yl s™ +1p s?
s.t. Ap =9 — Bk — 9,
(o~ B5)T
® =61+ QT + Gk, T = fir,
IFl(a — &6 — diagli])], || < s7
[IFe2(ex — diag[1]) — s8]/ || < 57
ze|| F[2(a — & — diag[1])], || < Tn — 7
ze||F[&(o — &8 — diag[1])]7 || < 7a —
ze||Flsz(a — diag[1]) — 381/ || < w2

+ constraints on injection and pressure regulation ...

>> Gas Network Control Under Uncertainty

Exp. cost + variance penalty

Gas conservation law

Recourse balance

Lin. Weymouth equation
Pressure Std

Flow Std

Max pressure limit

Min pressure limit

Flow limit for compressors and valves
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Uncertainty- and variance-aware optimization

» Control polices and network response are optimized using the SOCP problem
min ¢ 19+1]Tc19+1]Tc°‘+1/1Ts7‘+1p s? Ex| 1 /
in ¢ p. cost + variance penalty

s.t. Ap =9 — Bk — 6, Gas conservation law

(a—BB)T

¢ =1+ @m+ Gk, T =T,

[IFl&(e — &8 — diag[1])], || < s7

I Fls2( o — diag[1]) — <381/ || < sf
ze||F[$ (o — &8 — diag[1])], || < 7 — 7
ze||F[&(o — 38 — diag[1])]) || < o — 1,
2z || Flé2(a — diag[1]) — &B1/ || < e

+ constraints on injection and pressure regulation ...
» Which optimizes the network response ...

I(E) =0 +af, R(E)=r+pE
7(§) = m + &(a — B — diag[1])¢
B(8) = ¢ + (s2(a — diag[1]) — $358)¢

>> Gas Network Control Under Uncertainty

Recourse balance

Lin. Weymouth equation
Pressure Std

Flow Std

Max pressure limit

Min pressure limit

Flow limit for compressors and valves

control actions
pressure response

flow response

.. to meet the risk (zz) and variance (¢)™, %) criteria of the network operator
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Deterministic versus Stochastic Market Design

» Deterministic markets are ignorant to the contributions of network assets to uncertainty management
> ... and to the contributions of stochastic extractions to the network uncertainty and variability

» The proposed polices extend the deterministic payments to price uncertainty and variability

> Stochastic Market Design for Gas Networks 8/13



Deterministic versus Stochastic Market Design

> .

» Deterministic markets are ignorant to the contributions of network assets to uncertainty management

and to the contributions of stochastic extractions to the network uncertainty and variability

» The proposed polices extend the deterministic payments to price uncertainty and variability

Network equilibrium conditions:

» Stochastic gas flow equations » Chance-constrained limits

A Ap =19 — Bk — 4,

A7t 22| Fle(e — 338 — diag[1])], | < 7o — mn
Ni(e=BB) 1 =1, Ti 2| Fléa(a — &8 — diag[1])], | < w0 — m,
Ao =61 + @ + GK, T = fy, Nt ze| | Flea (e — diag[1]) — 381/ || < e

> Pricing based on the combination of linear and conic duality
» Unlike linear, conic constraints are not separable

where AT, uT,

> Stochastic Market Design for Gas Networks

» Variance constraints

A7+ IFRa(a — 838 — diagli)] || < s7
A IIF (e — diaglt]) — <381/ || < s

» SOCP duality distinguishes the effort of network assets w.r.t.
each component of forecast errors in F € RNXN eg.,

7 < gl uy € RY,

.., uly, are prices for max. press. control
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Deterministic versus Stochastic Market Design

» Deterministic markets are ignorant to the contributions of network assets to uncertainty management

> ... and to the contributions of stochastic extractions to the network uncertainty and variability

» The proposed polices extend the deterministic payments to price uncertainty and variability

Network equilibrium conditions:

» Stochastic gas flow equations » Chance-constrained limits » Variance constraints
A Ap =19 — Bk — 4,
N (a—BB) 1 =1,

A =61+ @ + gk, T = Fr,

Apze

|Flo (o — 38 — diag[1])], || <
ze||Fla(a — B8 — diagli)], || <
At ze|| Flea(er — diag{1]) — 3817 || <

Th — Tn

A7t IF (e — &8 — diagli])]; 1| < s,
Th — T

X5 m, A IFa(e — diagl1]) — 381/ || < sf

™
n
©

» SOCP duality distinguishes the effort of network assets w.r.t.

H NxN
> Pricing based on the combination of linear and conic duality each component of forecast errors in £ € R P &En

» Unlike linear, conic constraints are not separable

A7 < llugll, uy € &Y,

where AT, uT,, ..., uT are prices for max. press. control

N Chance-constrained
Revenue Deterministic
Uncertainty Variance
Nominal balance  Regulation balance Network limits State variance
Injection R =
Comp/valve Rt =
Consumer R =

> Stochastic Market Design for Gas Networks
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Deterministic versus Stochastic Market Design

» Deterministic markets are ignorant to the contributions of network assets to uncertainty management

> ... and to the contributions of stochastic extractions to the network uncertainty and variability

» The proposed polices extend the deterministic payments to price uncertainty and variability
Network equilibrium conditions:

» Stochastic gas flow equations » Chance-constrained limits » Variance constraints

A Ap =19 — Bk — 4, PYETA
Ni(a—BB)T1=1, A

A =61+ @ + gk, T = Fr,

|Fla(c — 338 — diag[1])]] |

Nt ze|| Flea(ox — diag[1]) — ¢sB1/ |

» SOCP duality distinguishes the effort of network assets w.r.t.

H NxN
> Pricing based on the combination of linear and conic duality each component of forecast errors in £ € R P &En
N . . AT < |||, uT e RN
» Unlike linear, conic constraints are not separable n S loglls uy € ’
where AT, uT,, ..., uT are prices for max. press. control
N Chance-constrained
Revenue Deterministic
Uncertainty Variance
Nominal balance  Regulation balance Network limits State variance
Injection RN = +f(\, ) +F(UT, U, U o)
Comp/valve Rt = +f()\, Be) (U0
Consumer R = (A, 1) (U™, ™, U [Fla)
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| <

™
n
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Deterministic versus Stochastic Market Design

» Deterministic markets are ignorant to the contributions of network assets to uncertainty management
> ... and to the contributions of stochastic extractions to the network uncertainty and variability

» The proposed polices extend the deterministic payments to price uncertainty and variability

Network equilibrium conditions:

» Stochastic gas flow equations » Chance-constrained limits » Variance constraints
A Ap =19 — Bk — 4, Ao ze|[Fléa(e — &8 — diag[ID]y | <7 —mn A]: ||F[a( — &3 — diag[I])]y || < s7
Ni(a-BE)T1=1, Nis ze|[Floa(e = &8 — diag[D]y | S —m, A7 [|Fl(e - diag1]) — B8]/ || < sf
Ve =aten bR m=An 07 z| Flao(a — disgll]) - A1 || < v

» SOCP duality distinguishes the effort of network assets w.r.t.

H NxN
> Pricing based on the combination of linear and conic duality each component of forecast errors in £ € R P &En
- . : A< uf ||, uf € RV
» Unlike linear, conic constraints are not separable n S loglls uy € ’
where AT, uT,, ..., uT are prices for max. press. control
N Chance-constrained
Revenue Deterministic
Uncertainty Variance
Nominal balance  Regulation balance Network limits State variance
Injection R,';"j = +f(\, an) +F(UT, U, U o) +f(u™, u?, an)
Comp/valve R;Ct = +f(\, Be) +f(uT, e +f(u™, u?, Be)
Consumer RSo" = (A, 1) HF(UT, U U2 [Fl) (0T, 0P, [Fa)
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Experiments setup

» 48-node natural gas network
» 22 stochastic gas extractions @
» 6 comp. [3 and 2 valves X

» 11 gas injections O

> &~ N(0,0), 0 — 10% of 6

» Violation probability £ = 1%

» Ipopt + JuMP — sensitivities
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Experiment goals

» We compare the optimized network response under
» Deterministic polices (uncertainty- and variance-agnostic)

P Chance-constrained polices (uncertainty-aware but variance-agnostic)

» Chance-constrained variance-aware polices

» ... in terms of operational costs and state variance

» ... in terms of feasibility:
P count violations of network limits

» compute the real-time re-dispatch effort by computing the projection

non-convex feasible space 9,

,. min [19(&) = 05l + 1R (Es) — ksl
s Ks:Ps,Ts

st. Aps =95 — Brs — ds — &s,
5 0 lips] = diaglw](AT 7 + i)

of control inputs onto the non-convex gas equations for s = 1...1000 samples of forecast errors.

» ... and in terms of revenues/charges of network components.

>> Numerical Experiments 10 /13



Experiment goals
» We compare the optimized network response under
» Deterministic polices (uncertainty- and variance-agnostic)
P Chance-constrained polices (uncertainty-aware but variance-agnostic)
» Chance-constrained variance-aware polices
» ... in terms of operational costs and state variance

» ... in terms of feasibility:
P count violations of network limits

» compute the real-time re-dispatch effort by computing the projection

non-convex feasible space 9,

,. min [19(&) = 05l + 1R (Es) — ksl
s Ks:Ps,Ts

st. Aps =95 — Brs — ds — &s,
5 0 lips] = diaglw](AT 7 + i)
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Experiment goals
» We compare the optimized network response under
» Deterministic polices (uncertainty- and variance-agnostic)
P Chance-constrained polices (uncertainty-aware but variance-agnostic)

» Chance-constrained variance-aware polices

» ... in terms of operational costs and state variance

» ... in terms of feasibility:
P count violations of network limits

» compute the real-time re-dispatch effort by computing the projection

non-convex feasible space 9,

5. min [19(&) = 05l + 1R (Es) — ksl
s1Ks:Ps:Ts %)
st. Aps =95 — Brs — 0s — &s, .
e o pol = dinglwl(A" . + ) i)

of control inputs onto the non-convex gas equations for s = 1...1000 samples of forecast errors.

» ... and in terms of revenues/charges of network components.
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Analysis of the Optimized Network Response

N Chance-constrained control policies
Deterministic

Parameter Unit N -
control policy Variance-
agnostic
Expected cost $1000 80.9 82.5 (100%)
Pressure variance MPa? 217.5 63.4 (100%)
Flow variance BMSCFD? 26.1 58.0 (100%)
Compression kPa 1939 3914
Valve regulation kPa 0 0
Infeas. (e = 1%) % 53.7 0.04
Injection re-disp. MMSCFD  960.91 (31.3%) 0.01
Comp/valve re-disp.  kPa 121.68 (12.7%) 0.19
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Analysis of the Optimized Network Response

Deterministic

Chance-constrained control policies

Flow variance-aware, ¥¥

Parameter Unit control policy Variance- Pressure variance-aware, 1™
agnostic 10-3 10-2 10-1
Expected cost $1000 80.9 82.5 (100%) 100.5% 105.6% 113.8%
Pressure variance MPa? 217.5 63.4 (100%)  44.2% 18.9% 12.8%
Flow variance BMSCFD? 26.1 58.0 (100%)  83.4% 64.1% 59.2%
Compression kPa 1939 3914 3570 3734 3661
Valve regulation kPa 0 0 0 150 576
Infeas. (e = 1%) % 53.7 0.04 0.02 0.02 0.02
Injection re-disp. MMSCFD  960.91 (31.3%) 0.01 0.03 0.02 0.02
Comp/valve re-disp.  kPa 121.68 (12.7%) 0.19 0.08 0.10 0.05

>> Numerical Experiments
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Analysis of the Optimized Network Response

Deterministic

Chance-constrained control policies

Flow variance-aware, ¥¥

Parameter Unit control policy Variance- Pressure variance-aware, 1™

agnostic 103 102 10! 1 10! 102
Expected cost $1000 80.9 82.5 (100%) 100.5% 105.6% 113.8% 100.1% 102.5% 112.6%
Pressure variance MPa? 217.5 63.4 (100%)  44.2% 18.9% 12.8% 92.8% 46.7% 24.7%
Flow variance BMSCFD? 26.1 58.0 (100%)  83.4% 64.1% 59.2% 93.4% 44.8% 25.9%
Compression kPa 1939 3914 3570 3734 3661 3914 4030 3888
Valve regulation kPa 0 0 0 150 576 0 1 500
Infeas. (e = 1%) % 53.7 0.04 0.02 0.02 0.02 0.03 0.02 0.03
Injection re-disp. MMSCFD 960.91 (31.3%) 0.01 0.03 0.02 0.02 0.02 0.04 0.04
Comp/valve re-disp.  kPa 121.68 (12.7%) 0.19 0.08 0.10 0.05 0.28 0.04 0.04
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Analysis of the Optimized Network Response

Deterministic

Chance-constrained control policies

Flow variance-aware, ¥¥

Parameter Unit control policy Variance- Pressure variance-aware, 1™
agnostic 103 102 10! 1 10! 102
Expected cost $1000 80.9 825 (100%) 100.5% 105.6% 113.8% 100.1% 102.5% 112.6%
Pressure variance MPa? 217.5 63.4 (100%)  44.2% 18.9% 12.8% 92.8% 46.7% 24.7%
Flow variance BMSCFD? 26.1 58.0 (100%) 83.4% 64.1% 59.2% 93.4% 44.8% 25.9%
Compression kPa 1939 3914 3570 3734 3661 3914 4030 3888
Valve regulation KPa [) 0 0 150 576 0 1 500
Infeas. (= = 1%) % 537 0.04 0.02 0.02 0.02 0.03 0.02 0.03
Injection re-disp. MMSCFD 960.91 (31.3%) 0.01 0.03 0.02 0.02 0.02 0.04 0.04
Comp/valve re-disp.  kPa 121.68 (12.7%) 0.19 0.08 0.10 0.05 0.28 0.04 0.04
Variance-agnostic policy
» M © Injection
O Extraction
[ Compressor
X Valve
1500
3600
2100
1500
a0
11 /13
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Analysis of the Optimized Network Response

N Chance-constrained control policies
Parameter Unit Deterministic N - N
control policy Variance- Pressure variance-aware, 9™ Flow variance-aware, ¥%
agnostic 103 102 10! 1 10! 102
Expected cost $1000 80.9 825 (100%) 100.5% 105.6% 113.8% 100.1% 102.5% 112.6%
Pressure variance MPa? 217.5 63.4 (100%)  44.2% 18.9% 12.8% 92.8% 46.7% 24.7%
Flow variance BMSCFD? 26.1 58.0 (100%)  83.4% 64.1% 59.2% 93.4% 44.8% 25.9%
Compression kPa 1939 3914 3570 3734 3661 3914 4030 3888
Valve regulation kPa 0 0 0 150 576 0 1 500
Infeas. (e = 1%) % 53.7 0.04 0.02 0.02 0.02 0.03 0.02 0.03
Injection re-disp. MMSCFD  960.91 (31.3%) 0.01 0.03 0.02 0.02 0.02 0.04 0.04
Comp/valve re-disp.  kPa 121.68 (12.7%) 0.19 0.08 0.10 0.05 0.28 0.04 0.04
Variance-agnostic policy Variance-aware policy
© Injection
O Extraction
[> Compressor
X Valve

>> Numerical Experiments
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YT =0.1, ¥¥ = 10

1/13



Revenue Analysis

N Chance-constrained
Deterministic

Revenue Uncertainty Variance
Nominal balance  Regulation balance Network limits State variance
Injection RV = (A5, 9n) +f(\, an) +f(u”, v, U7 o) +f(u™, u?, an)
Comp/valve R;Ct = f(/\i(/),X;V,K,[) +f (N, Be) +f(u™, U, U, By) +f(u™, u?, Be)
Consumer RS = (NS, 6n) +f(\,Th) +F(u" U uE [Fle) A+ F (07, P, [Fln)
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Revenue Analysis

Revenue

Deterministic

Chance-constrained

Uncertainty Variance
Nominal balance  Regulation balance Network limits State variance
Injection RV = £()\S,9,) +F(M, an) (T, 0 0 an)  F(UT, U, an)
Comp/valve R;Cf = f(/\i(’),ALA/H{[) +f(\", Be) +f(u™, U™, U, Be) +f(u™, u?, Br)
Consumer RS = f(\S,6n) +f(A,Tn) +f(u™ U e [Fle) A+ F (07, u?, [Fln)
. Network limits Nominal balance
. State variance Regulation balance
Deterministic Variance-agnostic Variance-aware
.105 .105 106
2 3 3
= 2 o 2
31
s 1 1
@ —
—
0 [ — 0
Ract  Rini  Reon Ract  Rini  Reon Ract  Rini  Reon

>> Numerical Experiments
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Conclusions & Outlook

» Chance-constrained polices allow for an explicit uncertainty management while:

P Internalizing probabilistic forecast and risk criteria of network operators
» Producing uncertainty- and variance-aware network controls with guarantees
P Offering the foundation for the stochastic gas market-clearing settlement
> Future extensions:
» Coordination of power and gas networks
» Contracts for TSO and NGO for the stochastic renewables, voltage control, etc.

P More controls to exploit and price the flexibility of natural gas extractions

» arXiv paper & GitHub © repository are coming soon

>> Conclusions 13 /13
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