

 ϕ

i 🛈 –

 $-\phi$

QIPBQIdfifss

phonelies			
FEdowa	naninone-a-wan	are $\psi \psi^{arphi}$	
11	100^1	$10^{2}0^{2}$	
1 00 0.1.%%	1 02.3.% %	1 1121.896%	
9 2X &%	4 64.6.% %	242.47%	
9 93 .%%	4 4.8.% %	2 529% %	
3 99 44	406030	3888888	
00	11	505000	
0003	0.0202	0.0303	
0022	0.0404	0.0404	
00288	0.0404	0.0404	

—

-o--ó

e variance aware (right)) chance constrained control policies in terms of the state wariables exaciance

 $\tilde{\varrho}_{34}(\xi)$

15 🔘

26

37

25

for Electricity Markets

and Ferdinando Fioretto[‡] sachusetts Institute of Technology [‡]University of Virginia

NeurIPS Workshop on Tackling Climate Change with Machine Learning

What makes wind power commodity so special?

- ► As of 2022, the share of electricity generation from wind energy sources worldwide constitutes 7.3%.
- Electricity is priced at a forecast of variable and uncertain wind power generation, i.e., before the actual realization of wind power is known.
- As a result, forecast errors translate into price errors via electricity market-clearing optimization.
- Although a non-dominant generation resource, it exposes the entire electricity trading to errors

Forecast errors propagate into price errors

Forecast errors from a single wind power plant propagate into locational marginal price (LMP) errors across the IEEE 118-Bus RTS. Many buses demonstrate near zero errors, but electricity at certain buses is systematically over- or under-priced.

Electricity market-clearing optimization

$$\begin{array}{ll} \underset{\underline{p}\leqslant p\leqslant \overline{p}}{\operatorname{minimize}} & p^{\top}Cp + c^{\top}p\\ \text{subject to} & \mathbb{1}^{\top}(p + \widehat{w} - d) = 0 \ : \ \widehat{\lambda}_{b},\\ & |F(p + \widehat{w} - d)| \leqslant \overline{f} \ : \ \widehat{\lambda}_{\overline{f}}, \ \widehat{\lambda}_{\underline{f}}, \end{array}$$

Location marginal prices (LMPs) are derived from the dual solution:

$$\pi(\widehat{\boldsymbol{w}}) = \widehat{\lambda}_b \cdot \mathbb{1}$$

uniform price adjustment due to congestion

which are unique w.r.t forecast \widehat{w} under reasonable assumptions!

The **LMP error** is then defined as:

 $\delta \pi = \pi(\widehat{\mathbf{w}}) - \pi(\mathbf{w})$

i.e., the distance between LMPs induced on the forecast (\hat{w}) and actual realization (w) of wind power.

conventional generator dispatch cost

power balance condition

power flow limits

 $F^+(\lambda_{\overline{f}}-\widehat{\lambda}_{\underline{f}})$

Electricity market-clearing optimization

$$\begin{array}{ll} \underset{\underline{p}\leqslant p\leqslant \overline{p}}{\operatorname{minimize}} & p^{\top}Cp + c^{\top}p\\ \text{subject to} & \mathbb{1}^{\top}(p + \widehat{w} - d) = 0 \ : \ \widehat{\lambda}_{b},\\ & |F(p + \widehat{w} - d)| \leqslant \overline{f} \ : \ \widehat{\lambda}_{\overline{f}}, \ \widehat{\lambda}_{\underline{f}}, \end{array}$$

Location marginal prices (LMPs) are derived from the dual solution:

$$\pi(\widehat{\boldsymbol{w}}) = \widehat{\lambda}_b \cdot \mathbb{1}$$

uniform price adjustment due to congestion

which are unique w.r.t forecast \widehat{w} under reasonable assumptions!

The **LMP error** is then defined as:

 $\delta \pi = \pi(\widehat{\mathbf{w}}) - \pi(\mathbf{w})$

i.e., the distance between LMPs induced on the forecast (\hat{w}) and actual realization (w) of wind power.

conventional generator dispatch cost

power balance condition

power flow limits

$$- \underbrace{F^{\top}(\widehat{\lambda}_{\overline{f}} - \widehat{\lambda}_{\underline{f}})}_{F}$$

Electricity market-clearing optimization

$$\begin{array}{ll} \underset{\underline{p}\leqslant p\leqslant \overline{p}}{\operatorname{minimize}} & p^{\top}Cp + c^{\top}p\\ \text{subject to} & \mathbb{1}^{\top}(p + \widehat{w} - d) = 0 \ : \ \widehat{\lambda}_{b},\\ & |F(p + \widehat{w} - d)| \leqslant \overline{f} \ : \ \widehat{\lambda}_{\overline{f}}, \ \widehat{\lambda}_{\underline{f}}, \end{array}$$

Location marginal prices (LMPs) are derived from the dual solution:

$$\pi(\widehat{\boldsymbol{w}}) = \widehat{\lambda}_b \cdot \mathbb{1}$$

uniform price adjustment due to congestion

which are unique w.r.t forecast \hat{w} under reasonable assumptions!

The **LMP error** is then defined as:

 $\delta \pi = \pi(\widehat{\mathbf{w}}) - \pi(\mathbf{w})$

i.e., the distance between LMPs induced on the forecast (\hat{w}) and actual realization (w) of wind power.

conventional generator dispatch cost

power balance condition

power flow limits

$$- \underbrace{F^{\top}(\widehat{\lambda}_{\overline{f}} - \widehat{\lambda}_{\underline{f}})}_{F}$$

Disparities of LMP errors

Two properties of LMP errors (informally):

Property #1: Spatial disparity of LMP errors due to congestion **Property #2:** Reference bus has the smallest error in the network

Notion of α – fairness:

$$\alpha = \max_{i \in 1, \dots, n} \|\mathbb{E}[\|\delta \pi_i\|] - \mathbb{E}[\|\delta \pi_{\text{ref}}\|]\|$$

Disparities of LMP errors

Two properties of LMP errors (informally):

Property #1: Spatial disparity of LMP errors due to congestion **Property #2:** Reference bus has the smallest error in the network

Notion of α – fairness:

$$\alpha = \max_{i \in 1, \dots, n} \|\mathbb{E}[\|\delta \pi_i\|] - \mathbb{E}[\|\delta \pi_{\text{ref}}\|]\|$$

Disparities of LMP errors

Two properties of LMP errors (informally):

Property #1: Spatial disparity of LMP errors due to congestion **Property #2:** Reference bus has the smallest error in the network Notion of α -fairness:

$$\alpha = \max_{i \in 1, \dots, n} \|\mathbb{E}[\|\delta \pi_i\|] - \mathbb{E}[\|\delta \pi_{\mathsf{ref}}\|]\|$$

Price-awareness for wind power forecast

• Dataset $\{(\varphi_1, w_1), \ldots, (\varphi_m, w_m)\}$ of wind power records, with features φ and measurements w Two deep learning architectures DeepWP and DeepWP+ for wind power forecasting:

loss function:

 $\|\widehat{\mathbf{w}} - \mathbf{w}\|$

Price-awareness for wind power forecast

 \blacktriangleright Dataset $\{(\varphi_1, w_1), \ldots, (\varphi_m, w_m)\}$ of wind power records, with features φ and measurements w Two deep learning architectures DeepWP and DeepWP+ for wind power forecasting:

DeepWP+ informs wind power predictions about the downstream pricing errors

subject to $1^{\top}(p + \widehat{w} - d) = 0$ $|F(p + \widehat{w} - d)| \leq \overline{f}$

large constrained optimization

subject to $1^{\top}(p + \widehat{w} - d) = 0$ $|F(p + \widehat{w} - d)| \leq \overline{f}$

large constrained optimization

only inequality constraints

subject to $1^{\top}(p + \widehat{w} - d) = 0$ $|F(p + \widehat{w} - d)| \leq \overline{f}$

large constrained optimization

only inequality constraints

only non-negativity constraints

 $\begin{array}{ll} \text{minimize} & p^\top C p + c^\top p \\ \underline{p} \leqslant p \leqslant \overline{p} & \end{array}$ subject to $1^{\top}(p + \widehat{w} - d) = 0$ subject to $|F(p+\widehat{w}-d)|\leqslant \overline{f}$

large constrained optimization

only inequality constraints

$$Ap \ge b(\widehat{w}) : \lambda$$

 $-\lambda^{\top}AC^{-1}A^{\top}\lambda$

only non-negativity constraints

Numerical experiments

Standard PowerModels.jl test cases

- ▶ 1,000 wind power records from a real turbine:
 - Active power output
 - Wind speed and direction
 - Blade pitch angle
- DeepWP has 4 hidden layers with 30 neurons each. DeepWP+ additionally includes an opt. layer
- ADAM optimizer with varying learning rate

IEEE 118-bus system

DeepWP: Forecast error minimization yields $\delta \pi \in [-4, 1]$ \$/MWh **DeepWP+:** Price error minimization yields $\delta \pi \in [-1, 1]$ \$/MWh

Wind power forecasts

DeepWP: Minimizes the average forecast deviation
DeepWP+: Intentionally over-predicts in certain range of wind speeds

Bias of DeepWP+ model

DeepWP+ training starts at iteration 500 using a pre-trained DeepWP model RMSE(\hat{w}) and RMSE($\hat{\pi}$) are conflicting objectives which are kept in balance

		Deep	WP	DeepWP+										
case	$RMSE(\widehat{w})$	$RMSE(\widehat{\pi})$	$CVaR(\widehat{\pi})$	α -value	RM	$RMSE(\widehat{w})$		$RMSE(\widehat{w})$		$RMSE(\widehat{\pi})$		$aR(\widehat{\pi})$	α -value	
	MWh	\$/MWh	\$/MWh	\$/MWh	MWh	gain	\$/MWh	gain	\$/MWh	gain	\$/MWh	gain		
14_ieee	0.35	0.62	1.52	0	0.35	+0.6%	0.61	-0.6%	1.50	-0.8%	0			
57_ieee	2.31	11.03	34.64	32.08	2.60	+11.2%	10.72	-2.9%	33.59	-3.1%	30.92	-3.8%		
24_ieee	4.08	8.62	37.70	27.48	4.51	+9.6%	8.33	-3.5%	36.35	-3.7%	26.26	-4.6%		
39_epri	5.94	11.15	31.21	17.53	6.43	+7.6%	10.19	-9.4%	28.02	-11.4%	15.84	-10.7%		
73_ieee	4.02	5.12	16.21	32.83	5.51	+26.9%	4.24	-20.8%	13.41	-20.9%	26.63	-23.3%		
118_{ieee}	2.29	3.59	11.32	17.91	2.60	+12.1%	2.88	-24.7%	9.06	-25.0%	14.09	-27.2%		

Worst-case improvement exceeds that of the average case Price error reduction and fairness improves with the size of the network

	DeepWP					DeepWP+								
case	$RMSE(\widehat{w})$	$RMSE(\widehat{\pi})$	$CVaR(\widehat{\pi})$	α -value	$RMSE(\widehat{w})$		$RMSE(\widehat{\pi})$		$CVaR(\widehat{\pi})$		α -value			
	MWh	\$/MWh	\$/MWh	\$/MWh	MWh	gain	\$/MWh	gain	\$/MWh	gain	\$/MWh	gain		
14_ieee	0.35	0.62	1.52	0	0.35	+0.6%	0.61	-0.6%	1.50	-0.8%	0			
57_ieee	2.31	11.03	34.64	32.08	2.60	+11.2%	10.72	−2.9%	33.59	-3.1%	30.92	-3.8%		
24_ieee	4.08	8.62	37.70	27.48	4.51	+9.6%	8.33	-3.5%	36.35	-3.7%	26.26	-4.6%		
39_epri	5.94	11.15	31.21	17.53	6.43	+7.6%	10.19	-9.4%	28.02	-11.4%	15.84	-10.7%		
73_ieee	4.02	5.12	16.21	32.83	5.51	+26.9%	4.24	-20.8%	13.41	-20.9%	26.63	-23.3%		
118_{ieee}	2.29	3.59	11.32	17.91	2.60	+12.1%	2.88	-24.7%	9.06	-25.0%	14.09	-27.2%		

Worst-case improvement exceeds that of the average case Price error reduction and fairness improves with the size of the network

		Deep	WP	DeepWP+								
case	$RMSE(\widehat{w})$	$RMSE(\widehat{\pi})$	$CVaR(\widehat{\pi})$	α -value	$RMSE(\widehat{w})$		$RMSE(\widehat{\pi})$		$CVaR(\widehat{\pi})$		α -value	
	MWh	\$/MWh	\$/MWh	\$/MWh	MWh	gain	\$/MWh	gain	\$/MWh	gain	\$/MWh	gain
14_ieee	0.35	0.62	1.52	0	0.35	+0.6%	0.61	-0.6%	1.50	-0.8%	0	
57_ieee	2.31	11.03	34.64	32.08	2.60	+11.2%	10.72	-2.9%	33.59	-3.1%	30.92	-3.8%
24_ieee	4.08	8.62	37.70	27.48	4.51	+9.6%	8.33	-3.5%	36.35	-3.7%	26.26	-4.6%
39_epri	5.94	11.15	31.21	17.53	6.43	+7.6%	10.19	-9.4%	28.02	-11.4%	15.84	-10.7%
73_ieee	4.02	5.12	16.21	32.83	5.51	+26.9%	4.24	-20.8%	13.41	-20.9%	26.63	-23.3%
118_ieee	2.29	3.59	11.32	17.91	2.60	+12.1%	2.88	-24.7%	9.06	-25.0%	14.09	-27.2%

Worst-case improvement exceeds that of the average case Price error reduction and fairness improves with the size of the network

		Deep	WP	DeepWP+								
case	$RMSE(\widehat{w})$	$RMSE(\widehat{\pi})$	$CVaR(\widehat{\pi})$	$\alpha-value$	RM	$RMSE(\widehat{w})$		$SE(\widehat{\pi})$	$CVaR(\widehat{\pi})$		$\alpha-$	value
	MWh	\$/MWh	\$/MWh	\$/MWh	MWh	gain	\$/MWh	gain	\$/MWh	gain	\$/MWh	gain
14_ieee	0.35	0.62	1.52	0	0.35	+0.6%	0.61	-0.6%	1.50	-0.8%	0	
57_ieee	2.31	11.03	34.64	32.08	2.60	+11.2%	10.72	-2.9%	33.59	-3.1%	30.92	-3.8%
24_ieee	4.08	8.62	37.70	27.48	4.51	+9.6%	8.33	-3.5%	36.35	-3.7%	26.26	-4.6%
39_epri	5.94	11.15	31.21	17.53	6.43	+7.6%	10.19	-9.4%	28.02	-11.4%	15.84	-10.7%
73_ieee	4.02	5.12	16.21	32.83	5.51	+26.9%	4.24	-20.8%	13.41	-20.9%	26.63	-23.3%
118_{ieee}	2.29	3.59	11.32	17.91	2.60	+12.1%	2.88	-24.7%	9.06	-25.0%	14.09	-27.2%

Worst-case improvement exceeds that of the average case Price error reduction and fairness improves with the size of the network

Conclusions

Erronouse nature of ML leads to decision errors and algorithmic unfairness No need to re-design pricing algorithms to improve fairness It is sufficient to provide informed inputs (e.g., forecast)

Conclusions

- It is sufficient to provide informed inputs (e.g., forecast)

Thank you for your attention!

Vladimir Dvorkin Massachusetts Institute of Technology Cambridge, MA 02109 dvorkin@mit.edu

Erronouse nature of ML leads to decision errors and algorithmic unfairness No need to re-design pricing algorithms to improve fairness

Price-Aware Deep Learning for Electricity Markets

Ferdinando Fioretto University of Virginia Charlottesville, VA 22903 fioretto@virginia.edu

