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Vladimir Dvorkin


What makes wind power commodity so special? HIT

» As of 2022, the share of electricity generation from wind energy sources worldwide constitutes 7.3%.

» Electricity is priced at a forecast of variable and uncertain wind power generation, i.e., before the actual
realization of wind power is known.

» As a result, forecast errors translate into price errors via electricity market-clearing optimization.

» Although a non-dominant generation resource, it exposes the entire electricity trading to errors
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Forecast errors propagate into price errors I
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DeepWP

Forecast errors from a single wind power plant propagate into locational marginal price (LMP) errors across the IEEE 118-Bus
RTS. Many buses demonstrate near zero errors, but electricity at certain buses is systematically over- or under-priced.
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Electricity market-clearing optimization I

mig in<1i_ze pT Cp + ch conventional generator dispatch cost

PXxPxP

subject to HT(p +w—d)=0: /):b, power balance condition
F(p+w—d)| <f ; /):7, Ar, power flow limits
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Electricity market-clearing optimization

mig in<1i_ze pT Cp + ch conventional generator dispatch cost
PXxPxP

subject to HT(p +w—d)=0: Xb, power balance condition

F(p+w—d)| <f /):7, Xb power flow limits

Location marginal prices (LMPs) are derived from the dual solution:

P AN —|— AN AN
m(w)= Ap-1T — F' (As— Af)
uniform price adjustment due to congestion

which are unique w.r.t forecast w under reasonable assumptions!
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Electricity market-clearing optimization I

mig in<1i_ze pT Cp + ch conventional generator dispatch cost

PXxPxP

subject to HT(p +w—d)=0: Xb, power balance condition
F(p+w—d)| <f ; /):7, Ar, power flow limits

Location marginal prices (LMPs) are derived from the dual solution:

a(W)= Xo-1 —  F (A= Af)
~— N —

uniform price adjustment due to congestion

which are unique w.r.t forecast w under reasonable assumptions!

The LMP error is then defined as:

5’/( — (W) — 7T(W)

i.e., the distance between LMPs induced on the forecast (w) and actual realization (w) of wind power.
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Disparities of LMP errors

DeepWP
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Disparities of LMP errors

DeepWP
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Two properties of LMP errors (informally):

Property #1: Spatial disparity of LMP errors due to congestion

Property #2: Reference bus has the smallest error in the network
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Disparities of LMP errors
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Two properties of LMP errors (informally):

Property #1: Spatial disparity of LMP errors due to congestion

Property #2: Reference bus has the smallest error in the network

Notion of a«—fairness:
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Price-awareness for wind power forecast I

» Dataset {(p1,w1),...,(©m, Wn)} of wind power records, with features ¢ and measurements w
» Two deep learning architectures DeepWP and DeepWP+ for wind power forecasting:

loss function: ||w — w||
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Price-awareness for wind power forecast I

» Dataset {(p1,w1),...,(©m, Wn)} of wind power records, with features ¢ and measurements w
» Two deep learning architectures DeepWP and DeepWP+ for wind power forecasting:

loss function: | ||w — w|| + [|[7(w) — w(w)]
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» DeepWP+ informs wind power predictions about the downstream pricing errors
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Market clearing as an optimization layer 1"

Market-clearing optimization

Coe . T T
minimize p Cp+c p
PSPKP

subjectto 1'(p+w —d) =0

large constrained optimization
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Market clearing as an optimization layer 1"

Market-clearing optimization — Equivalent primal form
Coe . T T Coe T T
minimize Cp+ c minimize Cp+ c
PSPKP P P P PSPKP p=P P
subjectto 1'(p+w —d) =0 subject to  Ap > b(w) : A

F(p+ w — d)] <f

large constrained optimization only inequality constraints
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Market clearing as an optimization layer 1"

Market-clearing optimization — Equivalent primal form — Equivalent dual form
minimize p Cp+c p minimize p Cp+c p maximize (AC_lc + b(ﬂ/))T A
p<p<Pp PSP<P A>0
subjectto 1'(p+w —d) =0 subject to  Ap > b(w) : A ~ A ACTTA" N

F(p+w—d)|<f

large constrained optimization only inequality constraints only non-negativity constraints
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Market clearing as an optimization layer 1"

Market-clearing optimization — Equivalent primal form — Equivalent dual form
minimize p Cp+c p minimize p Cp+c p maximize (AC_lc + b(vT/))T A
p<p<Pp PSP<P A>0
subjectto 1'(p+w —d) =0 subject to  Ap > b(w) : A = AL A

F(p+w—d)|<f

large constrained optimization only inequality constraints only non-negativity constraints
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Numerical experiments MIT

» Standard PowerModels. jl test cases

= 0.8

. . Q

» 1,000 wind power records from a real turbine: =
> Active power output s 06

» Wind speed and direction °

. )
» Blade pitch angle § 0.4

0

» DeepWP has 4 hidden layers with 30 neurons each. =
® 0.2

DeepWP+ additionally includes an opt. layer

» ADAM optimizer with varying learning rate 0

wind speed [m/s]
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IEEE 118-bus system

DeepWP | " DeepWP+
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DeepWP: Forecast error minimization yields 0w &

DeepWP+: Price error minimization yields
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Wind power forecasts
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DeepWP: Minimizes the average forecast deviation

DeepWP+: Intentionally over-predicts in certain range of wind speeds
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Bias of DeepWP+ model RIT
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» DeepWP+ training starts at iteration 500 using a pre-trained DeepWP model
» RMSE(w) and RMSE(7) are conflicting objectives which are kept in balance
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Underlying trade-offs between forecast errors, price errors, and fairness

DeepWP DeepWP+

Case RMSE(w) RMSE(w)

MWh MWh gain
14_jeee 0.35 0.35 +0.6%
57 _ieee 2.31 260 +11.2%
24 jeee 4.08 451 +9.6%
39_epri 5.94 6.43  +7.6%
73_ieee 4.02 551 +26.9%
118_ieee 2.29 260 +12.1%

» Worst-case improvement exceeds that of the average case

» Price error reduction and fairness improves with the size of the network
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Underlying trade-offs between forecast errors, price errors, and fairness

DeepWP DeepWP+
Case RMSE(7) RMSE(7)
$/MWh $/MWh gain

14_jeee 0.62 0.61 —0.6%
57 _ieee 11.03 10.72 —2.9%
24 jeee 8.62 8.33 —3.5%
39_epri 11.15 10.19  —9.4%
73 _ieee 5.12 424 —20.8%
118_ieee 3.59 288 —24.7%

» Worst-case improvement exceeds that of the average case

» Price error reduction and fairness improves with the size of the network
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Underlying trade-offs between forecast errors, price errors, and fairness

DeepWP DeepWP+
Case CVaR(7) CVaR(7)
$/MWh $/MWh gain

14 _ieee 1.52 1.50 —0.8%
57_ieee 34.64 33.59 —3.1%
24 jeee 37.70 36.35 —3.7%
39_epri 31.21 28.02 —11.4%
73_ieee 16.21 13.41 —20.9%
118_ieee 11.32 9.06 —25.0%

» Worst-case improvement exceeds that of the average case

» Price error reduction and fairness improves with the size of the network
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Underlying trade-offs between forecast errors, price errors, and fairness 1"

DeepWP DeepWP+
case a—value a—value
$/MWh $/MWh gain

14 _jeee 0 | | e 0 —
57_ieee 32.08 30.92 —3.8%
24 _leee 27.48 20.26 —4.6%
39_epri 17.53 1584 —10.7%
73_ieee 32.83 26.63 —23.3%
118_ieee 17.91 14.09 —27.2%

» Worst-case improvement exceeds that of the average case

» Price error reduction and fairness improves with the size of the network
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Conclusions Ui

» Erronouse nature of ML leads to decision errors and algorithmic unfairness
» No need to re-design pricing algorithms to improve fairness

» It is sufficient to provide informed inputs (e.g., forecast)
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Conclusions Ui

» Erronouse nature of ML leads to decision errors and algorithmic unfairness
» No need to re-design pricing algorithms to improve fairness

» It is sufficient to provide informed inputs (e.g., forecast)

Thank you for your attention!
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