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Motivation

There is an increasing demand for large-scale and high-quality datasets for

machine learning and data analysis tasks in power systems.

Challenges in Data Availability: privacy and security concerns, data sparsity, etc.

A synthetic dataset is artificially generated data that mirrors the statistical proper-

ties of real-world data without containing any actual records.

Synthetic datasets are essential for developing and benchmarking trustworthy

ML-based optimal power flow (OPF) solvers.

Problem setup

Goal: Given a dataset including real power flow data points, we aim to synthesize

(1) statistically representative and (2) high fidelity power flow data points:
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where G(·) and H(·) are OPF inequality and equality constraints.

A high-level view of the problem setup.

Diffusion Models

Forward diffusion process that gradually adds noise to input
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√

1 − ᾱtεt, , εt ∼ N (0, I), t ∈ (0, T ].
Reverse denoising process that learns to generate data by denoising

xt−1 = µθ(xt, t) + σtεt, εt ∼ N (0, I), t ∈ (T, 0].
Training: The loss function to train the denoiser neural network εθ is

Ldiff = Ex0,ε,t

[
‖ε − εθ(xt, t)‖2] .

Sampling:
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x̂0 + σtz, z ∼ N (0, I), t ∈ [T, 0).

Diffusion Guidance based on Power Flow Constraints

Theoretically, a diffusion model trained on a dataset of feasible power flow

data points should satisfy the power flow constraints.

In practice, a diffusion model may generate power flow data points that are

infeasible due to learning and sampling errors.

Power Flow Equality Constraints

Active and reactive power balance constraints can be represented as follows:

pb −
∑

l∈L:i=b

f p
l,i→j −

∑
l∈L:j=b

f p
l,j→i = 0, ∀b ∈ B,

qb −
∑

l∈L:i=b

f q
l,i→j −

∑
l∈L:j=b

f q
l,j→i = 0, ∀b ∈ B.

How can we enforce power flow constraints in generated samples?

Our goal is to minimize the data consistency loss RH(x) on the clean data

manifold M:

min
x∈M

RH(x),

where H(·) encodes the equality constraints and

RH(x) = ‖H(x)‖2
2.

We take one step of Riemannian gradient descent on M:

x̂′
0|t = x̂0|t − τt grad RH(x̂0|t),

where

grad RH(x̂0|t) = PTx̂0|tM
(
∇x̂0|tRH(x̂0|t)

)
.

Affine subspace assumption of clean data manifold M:

PTx̂0|tM
(
∇x̂0|tRH(x̂0|t)

)
≈ ∇x̂0|tRH(x̂0|t).

x̂′
0|t = x̂0|t − λt ∇x̂0|tRH(x̂0|t).

Sampling steps can be characterized as transitions from Mi to Mi−1:

(1) we do a denoising step based on xt and estimate the clean data x̂0,

(2) add the gradient guidance term,

(3) add noise w.r.t. the corresponding noise schedule and obtain xt−1.

Geometry of sampling with guidance.

Results

Test System: PJM 5-BUS System

Distribution Matching: joint distribution

Histograms of violation magnitude for active power balance constraints

Conclusion

Synthesized power flow data points effectively capture the pattern, domain,

and modes of underlying distributions of the real power flow data.

The proposed gradient guidance approach successfully enforces power flow

constraints during sampling, ensuring the feasibility of the generated data.
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