

Motivation

- There is an increasing demand for large-scale and high-quality datasets for machine learning and data analysis tasks in power systems.
- Challenges in Data Availability: privacy and security concerns, data sparsity, etc.

A synthetic dataset is artificially generated data that mirrors the statistical properties of real-world data without containing any actual records.

Synthetic datasets are essential for developing and benchmarking trustworthy ML-based optimal power flow (OPF) solvers.

Problem setup

Goal: Given a dataset including real power flow data points, we aim to synthesize (1) statistically representative and (2) high fidelity power flow data points:

 $\operatorname{dist}(p_{\operatorname{syn}} || p_{\operatorname{real}}) \leq \epsilon \rightarrow$ "statistically representative"

$$\begin{cases} \mathcal{G}(\mathbf{p}'_i, \mathbf{q}'_i, \mathbf{v}'_i, \boldsymbol{\theta}'_i) \leq 0, & \forall i = 1, \dots, M \\ \mathcal{H}(\mathbf{p}'_i, \mathbf{q}'_i, \mathbf{v}'_i, \boldsymbol{\theta}'_i) = 0, & \forall i = 1, \dots, M \end{cases} \to \text{``high fice}$$

where $\mathcal{G}(\cdot)$ and $\mathcal{H}(\cdot)$ are OPF inequality and equality constraints.

A high-level view of the problem setup.

Diffusion Models

- Forward diffusion process that gradually adds noise to input
- $\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 \bar{\alpha}_t} \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, \mathbb{I}), \quad t \in (0, T].$ • **Reverse** denoising process that learns to generate data by denoising $\mathbf{x}_{t-1} = \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{x}_t, t) + \sigma_t \boldsymbol{\epsilon}_t, \quad \boldsymbol{\epsilon}_t \sim \mathcal{N}(0, \mathbb{I}), \quad t \in (T, 0].$
- **Training:** The loss function to train the denoiser neural network ϵ_{θ} is

$$\mathcal{L}_{\text{diff}} = \mathbb{E}_{\mathbf{x}_0,\epsilon,t} \left[\| \epsilon - \epsilon_{\theta}(\mathbf{x}_t,t) \|^2 \right].$$

Sampling:

$$\mathbf{x}_{t-1} = \frac{\sqrt{\alpha_t (1 - \bar{\alpha}_{t-1})}}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1} \beta_t}}{1 - \bar{\alpha}_t} \mathbf{\hat{x}}_0 + \sigma_t z, \quad z \sim \mathcal{N}(0, \mathbb{I})$$

IES Energy Symposium 2025-Poster Session

Synthesizing Power Flow Datasets via Constrained Diffusion Models

Milad Hoseinpour, Prof. Vladimir Dvorkin

Department of Electrical and Computer Engineering, University of Michigan

Diffusion Guidance based on Power Flow Constraints

- \star Real sample
- Synthesized sample (feasible)
- Synthesized sample (infeasible)
- \mathcal{M} Power flow manifold
- Power flow constraints

Power Flow Equality Constraints

delity'

• Active and reactive power balance constraints can be represented as follows:

$$p_b - \sum_{l \in \mathcal{L}: i=b} f_{l,i \to j}^p - \sum_{l \in \mathcal{L}: j=b} f_{l,j \to i}^p = 0, \quad \forall b \in \mathcal{B},$$
$$q_b - \sum_{l \in \mathcal{L}: i=b} f_{l,i \to j}^q - \sum_{l \in \mathcal{L}: j=b} f_{l,j \to i}^q = 0, \quad \forall b \in \mathcal{B}.$$

How can we enforce power flow constraints in generated samples?

• Our goal is to minimize the data consistency loss $R_{\mathcal{H}}(\mathbf{x})$ on the clean data manifold \mathcal{M} :

$$\min_{\mathbf{x}\in\mathcal{M}} R_{\mathcal{H}}(\mathbf{x}),$$

where $\mathcal{H}(\cdot)$ encodes the equality constraints and $R_{\mathcal{H}}(\mathbf{x}) = \|\mathcal{H}(\mathbf{x})\|_2^2.$ • We take one step of Riemannian gradient descent on \mathcal{M} : $\hat{\mathbf{x}}_{0|t}' = \hat{\mathbf{x}}_{0|t} - \tau_t \text{ grad } R_{\mathcal{H}}(\hat{\mathbf{x}}_{0|t}),$

where

grad
$$R_{\mathcal{H}}(\hat{\mathbf{x}}_{0|t}) = \mathcal{P}_{T_{\hat{\mathbf{x}}_{0|t}}\mathcal{M}}$$

• Affine subspace assumption of clean data manifold \mathcal{M} : $\mathcal{P}_{T_{\hat{\mathbf{x}}_{0|t}}\mathcal{M}}\left(\nabla_{\hat{\mathbf{x}}_{0|t}}R_{\mathcal{H}}(\hat{\mathbf{x}}_{0|t})\right) \approx \nabla_{\hat{\mathbf{x}}_{0|t}}R_{\mathcal{H}}(\hat{\mathbf{x}}_{0|t}).$

 $\hat{\mathbf{x}}_{0|t}' = \hat{\mathbf{x}}_{0|t} - \lambda_t \, \nabla_{\hat{\mathbf{x}}_{0|t}} R_{\mathcal{H}}(\hat{\mathbf{x}}_{0|t}).$

), $t \in [T,0)$.

- **Theoretically**, a diffusion model trained on a dataset of **feasible** power flow data points should satisfy the power flow constraints.
- In practice, a diffusion model may generate power flow data points that are **infeasible** due to learning and sampling errors.

- (1) we do a denoising step based on \mathbf{x}_t and estimate the clean data $\hat{\mathbf{x}}_0$, • (2) add the gradient guidance term,
- (3) add noise w.r.t. the corresponding noise schedule and obtain \mathbf{x}_{t-1} .

Geometry of sampling with guidance.

 $\left(\nabla_{\hat{\mathbf{x}}_{0|t}} R_{\mathcal{H}}(\hat{\mathbf{x}}_{0|t})\right).$

Test System: PJM 5-BUS System

Distribution Matching: joint distribution

Sampling steps can be characterized as transitions from \mathcal{M}_i to \mathcal{M}_{i-1} :

Results

Histograms of violation magnitude for active power balance constraints

Conclusion

Synthesized power flow data points effectively capture the pattern, domain, and modes of underlying distributions of the real power flow data.

• The proposed gradient guidance approach successfully enforces power flow constraints during sampling, ensuring the feasibility of the generated data.