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Motivation

= Access to real-world data is often limited due to privacy, security, and

legal barriers, hindering the training of Machine Learning (ML) models
across domains.

properties of real-world data without containing any actual records.

A synthetic dataset is artificially generated data that enjoys the statistical

= High-quality synthetic data must go beyond statistics by adhering to
domain-specific constraints that ensure real-world feasibility.

Problem Setup

Goal: Given a dataset including real power flow data points, we aim to

synthesize (1) statistically representative and (2) high fidelity power flow
data points:
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A high-level view of the problem setup.

Diffusion Models

* Forward diffusion process gradually adds noise to input:
Xt = vVagxg+ V1 — arer,, e ~N(0,1),t € (0,T].
= Reverse diffusion process learns to generate data by denoising:
X1 = (X, t) + over, e ~N(0,1),t € (T,0].

* Training: The loss function to train the denoiser neural network:
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= Sampling:
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Diffusion Guidance based on Power Flow Constraints

= |n practice, a diffusion model may generate power flow data points
that are infeasible due to learning and sampling errors.
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— Power flow constraints
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= Active and reactive power balance constraints:
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How can we enforce power flow constraints in generated samples?

= Our goal is to minimize the data consistency loss R4(x) on the clean
data manifold M:

min  Rq(x),
xeM M)

where H(-) encodes the equality constraints and
Ry(x) = |H(x)||5.

= We take one step of Riemannian gradient descent on M:
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= Under affine subspace assumption of clean data manifold M, we can
prove:
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Sampling steps can be characterized as transitions from M, to M;_1:

= (1) we do a denoising step based on x; and estimate the clean data %y,

= (2) add the gradient guidance term,

= (3) add noise w.r.t. the corresponding noise schedule and obtain x;_1.
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Test System: PJM 5-BUS System
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= Histograms of violation magnitude for active power balance constraints
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Conclusion

= Synthesized power flow data points effectively capture the pattern,
domain, and modes of underlying distributions of the real data.

= The proposed gradient guidance approach successfully enforces power

flow constraints during sampling, ensuring the feasibility of the
generated data.
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