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Motivation

Access to real-world data is often limited due to privacy, security, and

legal barriers, hindering the training of Machine Learning (ML) models

across domains.

A synthetic dataset is artificially generated data that enjoys the statistical

properties of real-world data without containing any actual records.

High-quality synthetic data must go beyond statistics by adhering to

domain-specific constraints that ensure real-world feasibility.

Problem Setup

Goal: Given a dataset including real power flow data points, we aim to

synthesize (1) statistically representative and (2) high fidelity power flow

data points:

A high-level view of the problem setup.

Diffusion Models

Forward diffusion process gradually adds noise to input:
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√

1 − ᾱtεt, , εt ∼ N (0, I), t ∈ (0, T ].
Reverse diffusion process learns to generate data by denoising:

xt−1 = µθ(xt, t) + σtεt, εt ∼ N (0, I), t ∈ (T, 0].
Training: The loss function to train the denoiser neural network:

Ldiff = Ex0,ε,t

[
‖ε − εθ(xt, t)‖2

]
.

Sampling:
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1 − ᾱt
x̂0 + σtz, z ∼ N (0, I), t ∈ [T, 0).

Diffusion Guidance based on Power Flow Constraints

In practice, a diffusion model may generate power flow data points

that are infeasible due to learning and sampling errors.

Active and reactive power balance constraints:
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How can we enforce power flow constraints in generated samples?

Our goal is to minimize the data consistency loss RH(x) on the clean

data manifold M:

min
x∈M

RH(x),

where H(·) encodes the equality constraints and
RH(x) = ‖H(x)‖2

2.

We take one step of Riemannian gradient descent on M:

x̂′
0|t = x̂0|t − τt grad RH(x̂0|t),

where

grad RH(x̂0|t) = PTx̂0|t
M

(
∇xtRH(x̂0|t)

)
.

Under affine subspace assumption of clean data manifold M, we can

prove:

PTx̂0|t
M

(
∇xtRH(x̂0|t)

)
≈ ∇xtRH(x̂0|t).

x̂′
0|t = x̂0|t − λt ∇xtRH(x̂0|t).

Sampling steps can be characterized as transitions from Mi to Mi−1:

(1) we do a denoising step based on xt and estimate the clean data x̂0,

(2) add the gradient guidance term,

(3) add noise w.r.t. the corresponding noise schedule and obtain xt−1.

Geometry of sampling with guidance.

Results

Test System: PJM 5-BUS System

Distribution Matching: joint distribution

Histograms of violation magnitude for active power balance constraints

Conclusion

Synthesized power flow data points effectively capture the pattern,

domain, and modes of underlying distributions of the real data.

The proposed gradient guidance approach successfully enforces power

flow constraints during sampling, ensuring the feasibility of the

generated data.
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