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Background Mir

Map of U.S. i and i natural gas pipelil

» Large physical infrastructure
» Diversity of gas supply
» Complex physics of gas flows

» Large emission footprint

—— interstate pipelines

—— intrastate pipelines

Source: U.S. Energy Information Administration, About U.S. Natural Gas Pipelines
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Emission-constrained optimal gas flow problem

» Minimize the cost of gas injections ¥
» Satisfying nodal gas demands §

» and non-convex Weymouth equation,
which couples flows ¢ and pressures 7
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Emission-constrained optimal gas flow problem i

. T
minimize ¢ 9

» Minimize the cost of gas injections ¥ 0,0, mEF
» Satisfying nodal gas demands § subject to Ap =19 — 0§
» and non-convex Weymouth equation, polp| = diag[w]ATﬂ

which couples flows ¢ and pressures 7

Two options to control emission footprint
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Emission-constrained optimal gas flow problem

minimize ¢ 'Y+t ¥

» Minimize the cost of gas injections ¥ 0,0, mEF
» Satisfying nodal gas demands § subject to Ap =19 — 0§
» and non-convex Weymouth equation, polp| = diag[w]ATﬂ

which couples flows ¢ and pressures 7

Two options to control emission footprint

emission tax

» Soft penalty for emission intensity

» Local optimality guarantee
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Emission-constrained optimal gas flow problem v

. T
minimize ¢ 9

» Minimize the cost of gas injections ¥ 0,0, mEF
» Satisfying nodal gas demands § subject to Ap =19 — 0§
» and non-convex Weymouth equation, polp| = diag[w]ATﬂ

which couples flows ¢ and pressures 7 T
e 9<e

Two options to control emission footprint

emission tax emission cap
» Soft penalty for emission intensity » Hard constraint on emissions
» Local optimality guarantee » Sensitive to initialization point
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Emission-constrained optimal gas flow problem v

. T
minimize ¢ 9

» Minimize the cost of gas injections ¥ 0,0, mEF
» Satisfying nodal gas demands § subject to Ap =19 — 0§
» and non-convex Weymouth equation, polp| = diag[w]ATﬂ

which couples flows ¢ and pressures 7 T
e 9<e

Two options for deep learning applications

end-to-end learning learning-aided optimization
» Replaces optimization per se » Only assist OGF optimization
» Directly predicts OGF solution » Predicts the non-convex part only
» May face mistrust in industry » Less barriers for implementation
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Aiding short-term planning with input-convex neural networks v

Optimal gas flow problem

f(e) -
minimize (V) Y
Y, 0, mEF _..3::
. . —1 T LT
subject to  diag[w] “polp| = A w -
non-convex function f(¢) .-yfso' - ¥
S
3.
R
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Aiding short-term planning with input-convex neural networks v

Optimal gas flow problem
f(e)

minimize ¢(?9)
9,0, TEF

subject to diag[w]flcp olpl = Al
D —

non-convex function f(¢)

W
Fp)+f(p)=ATn
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Aiding short-term planning with input-convex neural networks v

Optimal gas flow problem
f(¥)

minimize (V)
,p,mEF

subject to diag[w]flcp olpl = Al
D —

non-convex function f(¢)

W
Fp)+f(p)=ATn

Input-convex neural network

minimize loss || (p) — AT 7|

@ SRR )
subject to: (i) is convex in ¢
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Aiding short-term planning with input-convex neural networks v

Optimal gas flow problem
f(¥)

minimize ¢(?9)
9,0, TEF

subject to diag[w]flcp olpl = Al
D —

non-convex function f(¢)

W
Fp)+f(p)=ATn

Input-convex neural network A LP from the trained NN

minimize loss || (p) — AT 7| . .
f(p) := minimize z
z1,...,zk>0
) s : () subject to  z' > W% + b°
2 S Wiz 4 b

. Jp . .
subject to: () is convex in W and b are optimized weights and biases
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From non-convex to equivalent bilevel optimization i

Non-convex optimization

minimize ()
9,0, TEF

subject to ey <e
Ap=19-9§
diag[w]_1<p olg| = Aln
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From non-convex to equivalent bilevel optimization i

Non-convex optimization Equivalent bilevel optimization
T <) T <)
subject to ey <e subject to ey <e
Ap=9v -0 Ap=9 -0
diag[w] Tpolo|=ATn ff4+f =A"r

f* € input-convex LP(y)
f~ € input-concave LP(y)
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Aiding network design planning with neural networks v

» Accommodating emission via network expansion

» Weymouth equation with variable pipeline diameter
diag[d] ¢ o || = diag[®]A 7

» A growing diameter increases the flow of gas mass and eases pressure congestion
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Aiding network design planning with neural networks i
» Accommodating emission via network expansion
» Weymouth equation with variable pipeline diameter
diag[d] ¢ o || = diag[®]A 7

» A growing diameter increases the flow of gas mass and eases pressure congestion

region of
convexity

1000

region of
concavity

Diameter d;

0.1 1o
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Allocation to the Belgium gas network v

We compare three methods:
» Interior point solver IPOPT

» A mixed-integer quadratic
programming (MIQP) relaxation

» Proposed ICNN-aided optimization
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Allocation to the Belgium gas network v

We compare three methods:
» Interior point solver IPOPT

» A mixed-integer quadratic
programming (MIQP) relaxation

» Proposed ICNN-aided optimization

NN
P

Results for emission-constrained short-term operational planning

Emission 1,000 random IPOPT initializations MIQP relaxation ICNN-aided solution
cap, kT . prob. of
min mean max .
failure
00 1,923.3 1,927.2 1,929.2 16.6%

100 2,225.1 2,235.1 2,256.2 16.0%
48.9 4,344.6 4,344.6 43446 39.0%
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Allocation to the Belgium gas network v

We compare three methods:
» Interior point solver IPOPT

» A mixed-integer quadratic
programming (MIQP) relaxation

» Proposed ICNN-aided optimization

NN
P

Results for emission-constrained short-term operational planning

Emission 1,000 random IPOPT initializations MIQP relaxation ICNN-aided solution
e KT min mean max prob. of optimal '™ start
failure P for TPOPT
00 1,923.3 1,927.2 1,929.2 16.6% 1,540.8 1,929.2

100 2,225.1 2,235.1 2,256.2 16.0% 2,137.2 2,2251
48.9 4,344.6 4,344.6 43446 39.0% 4,200.8 4,344.6
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Allocation to the Belgium gas network v

We compare three methods:
» Interior point solver IPOPT

» A mixed-integer quadratic
programming (MIQP) relaxation

» Proposed ICNN-aided optimization

NN
P

Results for emission-constrained short-term operational planning

Emission 1,000 random IPOPT initializations MIQP relaxation ICNN-aided solution
cap, kT . prob. of tima varm start timal varm start
mnooomean - mA ilure PU™MA for tpopr  OPM™® for TPOPT

00 1,923.3 1,927.2 1,929.2 16.6% 1,540.8 1,929.2 1,932.3 11,9233

100 2,225.1 2,235.1 2,256.2 16.0% 2,137.2 2,2251 2,241.3  2,225.1
48.9 4,344.6 4,344.6 43446 39.0% 4,200.8 4,344.6 4,290.1 4,291.2
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Allocation to the Belgium gas network v

We compare three methods:
» Interior point solver IPOPT

» A mixed-integer quadratic
programming (MIQP) relaxation

» Proposed ICNN-aided optimization

Results for emission-constrained long-term design planning

Emission 1,000 random IPOPT initializations ICNN-aided solution
cap, kT

prob. of
failure

00 2,671.7 2,701.8 2,829.5 28.6%

100 3,057.8 3,090.2 3,191.9 30.3%
48.9 5,079.1 5,138.7 52479 41.4%

min mean max
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Allocation to the Belgium gas network v

We compare three methods:
» Interior point solver IPOPT

» A mixed-integer quadratic
programming (MIQP) relaxation

» Proposed ICNN-aided optimization

Results for emission-constrained long-term design planning

Emission 1,000 random IPOPT initializations ICNN-aided solution
cap, kT

min mean max prob. of optimal '™ start
P for TPOPT

failure
o9 2,671.7 2,701.8 2,829.5 28.6% 2,666.4 2,671.6
100 3,057.8 3,090.2 3,191.9 30.3%  3,056.6 3,057.8
48.9 5079.1 5,138.7 52479 41.4% 5,079.9 5,079.1
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Conclusions ir

» New method for emission-constrained planning of natural gas networks
» Our neural network-based ICNN solver outperforms IPOPT and MIQP solvers
» Savings up to 1.2% of operating costs in short-term emission-constrained planning

» Savings up to 5.9% of emission-constrained investment planning costs in a long run

Thank you for your attention!

https://arxiv.org/pdf/2209.08645.pdf
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