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Background

I Growing digitalization of modern power systems boost the efficiency of operations
I Operations are guided by the solution of the Optimal Power Flow (OPF) problem

I System operators collect large amounts of power system data ...

I ... and produce efficient generator set points

I OPF input datasets contains private information:
I Power network parameters

I Load profiles of network users

I Generation and market parameters

I Distributed OPF computations to limit information exchange and preserve privacy
[Molzahn et al., 2017]
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Optimal power flow (OPF) problem

I Optimizes power systems at minimum cost while
respecting system constraints

I We consider DC approximation of power flows

β
ij (θi − θj )

di pi

θi

θj

min
p,θ

c(p) generation cost

s.t. Bθ = p − d , nodal power balance

θ ∈ F , p ∈ P, flow & generation limit

I Central optimization requires all agents to share their data

I Solution? Distribute OPF computation [Conejo and Aguado, 1998, Biskas et al., 2005]
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Distributed OPF computations

I Decompose network per node(s) ...
I ... by duplicating voltage angles
I ... and enforce consensus constraints
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s.t. Bθ = p − d

θ ∈ F , p ∈ P
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p,θ,θ

N∑
i=1

ci (pi )

s.t. B>i θi = pi − di , ∀i = {1, . . . ,N}
θi ∈ Fi , pi ∈ Pi , ∀i = {1, . . . ,N}

θi = θ : µi , ∀i = {1, . . . ,N}
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min
p,θ,θ

Augmented Lagrangian:
∑N

i=1 L(pi ,θi ,θ,µi )︷ ︸︸ ︷
N∑
i=1

ci (pi ) +
N∑
i=1

µ>i (θi − θ)︸ ︷︷ ︸
dualized consensus

+
N∑
i=1

ρ

2
‖θi − θ‖2

2︸ ︷︷ ︸
regularization term

s.t. B>i θi = pi − di , ∀i = {1, . . . ,N}
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Distributed ADMM algorithm
[Boyd et al., 2011]:

1. Update θi for fixed θ and µi :

θi ← argmin
pi ,θi∈Oi

L(pi , θi , θ, µi )

2. Update θ for fixed θi and µi

θ ← argmin
θ

L(θi , θ, µi )

3. Update µi for fixed θi and θ

µi ← µi + ρ(θi − θ)

≫ 4 / 12



Does ADMM always preserve privacy

of local OPF datasets?



Privacy attack model for distributed OPF

min
pi ,θi

ci (pi ) + µi
>θi +

ρ

2
‖θi − θ‖2

2

s.t. B>i θi = pi − di ,

θi ∈ Fi , pi ∈ Pi

OPF sub-problem

µi

θ
θi

I Coordination signals

I Optimization variables

I Side information

I Private data
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min
pi ,θi

ci (pi ) + µi
>θi +

ρ

2
‖θi − θ‖2

2

s.t. B>i θi = pi − di ,

θi ∈ Fi , pi ∈ Pi

OPF sub-problem

µi

θ
θi

I Coordination signals

I Optimization variables

I Side information

I Private data

I The goal of privacy attack is to reconstruct the unknown data item

I Assume the side information and optimization structure are known

I Reconstruction of the unknown data item through optimization:

min
pi ,θi ,di>0

ci (pi ) + µi
>θi +

ρ

2
‖θi − θ‖2

2 + Υ‖θi − θi‖2
2︸ ︷︷ ︸

penalty term

s.t. B>i θi = pi − di ,

θi ∈ Fi , pi ∈ Pi

I Unknown di is optimized to replicate the OPF sub-problem response, i.e., ‖θi − θi‖2
2 = 0

I Refer to the extended arXiv paper for non-optimization models of privacy attacks
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Formal privacy guarantees

for distributed OPF



Differential privacy (definition)

g
Analyst D


Database

+

Ð
your data


Database

D′

query 1

query 2

Q(D) + ξ

result 1

Q(D′) + ξ

result 2

I Q is a query computed on a
dataset

I ξ is a carefully calibrated noise

I θ and θ′ are stat. indistinguishable

I By observing θ or θ′, analyst can’t
tell if your data is included

ε-differential privacy [Dwork et al., 2014]

A randomized query Q̃ : S 7→ R with domain S and range
R preserves ε−differential privacy if for any output Θ ∈ R

and all adjacent datasets D ∈ S and D′ ∈ S, it holds that

P
[
Q̃(D) ∈ Θ

]
6 P

[
Q̃(D′) ∈ Θ

]
exp(ε),

where probability is taken over runs of Q̃.

Θ

query outcomes

D
D′
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Differentially private distributed OPF

I We treat OPF sub-problems as queries

Qi : Di 7→ θi ,

where

Di = {c1i , c2i ,Bi , ρ︸ ︷︷ ︸
side info

,

input︷ ︸︸ ︷
µi , θi , di︸︷︷︸

sensitive

}

I Adjacent datasets D and D′ :

‖Di −D′i‖1 = ‖di − d ′i ‖1 6 α

I Sensitivity of a query:

∆Qi
:= max

D∼αD′
‖Q(D)−Q(D′)‖1

Two method to achieve differential privacy
[Chaudhuri et al., 2011, Zhang and Zhu, 2016]

Output perturbation

Q̃i (Di ) = Qi (Di ) + ξi = θ̃i

The output is purturbed by noise ξi

This presentation

Query perturbation

Q̃i (Di ; ξi ) = θ̃i

The query is purturbed itself by noise ξi

Refer to arXiv extended paper
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Differentially private distributed OPF (cont’d)

Output perturbation

Qi (Di ) + ξi ∼
ε

2∆Qi

exp

(
−ε
|ξi − θi |

∆Qi

)
,

where ∆Qi
is the output sensitivity to the

value of load (adjusted by α)

Randomized ADMM for distributed OPF

1. Update θi ← argminpi ,θi
L(pi , θi , θ, µi )

2. Output perturbation: θ̃i (ξi )← θi + ξi

3. Update θ ← argminθ L(θ̃i (ξi ), θ, µi )

4. Update µi ← µi + ρ(θ̃i (ξi )− θ)

5. Terminate if ‖θ̃i (ξi )− θ‖2 6 η

θi

Main result

P[Qi (Di ) + ξi ∈ θ̃i ]

6 P[Qi (D
′
i ) + ξi ∈ θ̃i ]exp(ε)

Extensions include

I Static or dynamic random perturbations

I Global or local query sensitivity

I Privacy preservation across iterations
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Numerical experiments on 3-area IEEE 118-node RTS



Illustrations of privacy attacks

Experiment description:

I Privacy loss is fixed ε = 1

I Adjacency coefficient α varies

I Privacy of local OPF datasets improve in α

I Privacy adversary infers individual loads
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As α increases, adversarial load inference converges to random guessing
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Convergence and optimality trade-offs

I Poorer convergence due to noise

I Noisy computations involve optimality loss

I The two can be traded off by using static or
dynamically updated noise across iterations
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Privacy guarantee beyond one iteration

I Repeated computations on the same dataset accumulates privacy losses

I Attacker exploits all compromised iterations, e.g., last T iterations k − T , . . . ,K

I It thus offsets the effect of noise, i.e., Eξi
[(θi + ξi )] = θi

I To avoid these privacy risks, we use decomposition of differential privacy:
I We scale the noise by factor of T , i.e. ξi ∼ Lap(T × ∆Q/ε)

I and thus obtain ε−differential privacy after T iterations
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3.5. DIFFERENTIALLY PRIVATE CENTRALIZED OPTIMAL POWER FLOW OPTIMIZATION23

Table 3.1: Optimality loss induced by Á≠di↵erentially private ADMM algorithms with static and
dynamic perturbations (%)

Adjacency coe�cient –,% 1 2.5 5 7 10
Static perturbations 0.48 0.92 1.23 1.51 3.83
Dynamic perturbations 0.28 4.33 11.0 11.35 20.41
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Figure 3.8: Mean absolute inference error, i.e., mismatch between the actual and inferred loads in
MWh, across last T iterations with (right) and without (left) scaling the noise (Theorem 3) for 100
simulation runs.

iteration results in an additional privacy loss. The composition Theorem 3 states that the
Á≠di↵erential privacy guarantee of (any) Algorithm 2 for an input dataset D diminishes linearly
with the number of runs on D. For the OPF problem of interest, this is illustrated with the
right plot in Figure 3.8. The figure shows the inference error of an attack model 3.5 when an
adversary observes last K ≠ T, . . . ,K iterations of Algorithm 2 with parameters mech = Laplace,
pert = dynamic and sens = local. This error reduces with every additional iteration made
available to an adversary, which is consistent with the diminishing privacy guarantees. However,
by scaling the random perturbation with respect to the number of compromised iterations, the
Algorithm 2 preserve the Á≠di↵erential privacy guarantee. This is shown with the right plot in
Figure 3.8, where the inference error is never reduced with more information become available to
an adversary.

Limits of privacy reservation in distributed OPF computations Algorithm 2 has shown to
preserve the integrity of local datasets in the release of local voltage angle updates across ADMM
iterations. The algorithm, however, is characterized by several important limitations. First, it
does not provide a formal guarantee that the resulting OPF solution (consensus variable ◊

k
from

the last iteration) does not leak load datasets. Second, as the value of global sensitivity often
remains unknown to sub-problems, they estimate the local sensitivities based on their local dataset.
Thus, the magnitudes of local random perturbations already encode the information about load
magnitudes. Furthermore, repeated computations on the same datasets involve higher privacy
violation risks that can be avoided by substantially scaling the noise, thus leading to poorer
convergence statistics. Finally, the optimality loss induced by random perturbations is a random
variable while Algorithm 2 provides no means of controlling its realizations. These shortcomings
motivate an alternative approach to private OPF computations using a centralized architecture.
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Privacy guarantee beyond one iteration

I Repeated computations on the same dataset accumulates privacy losses

I Attacker exploits all compromised iterations, e.g., last T iterations k − T , . . . ,K

I It thus offsets the effect of noise, i.e., Eξi
[(θi + ξi )] = θi

I To avoid these privacy risks, we use decomposition of differential privacy:
I We scale the noise by factor of T , i.e. ξi ∼ Lap(T × ∆Q/ε)

I and thus obtain ε−differential privacy after T iterations

Inference RMSE without composition
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violation risks that can be avoided by substantially scaling the noise, thus leading to poorer
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pert = dynamic and sens = local. This error reduces with every additional iteration made
available to an adversary, which is consistent with the diminishing privacy guarantees. However,
by scaling the random perturbation with respect to the number of compromised iterations, the
Algorithm 2 preserve the Á≠di↵erential privacy guarantee. This is shown with the right plot in
Figure 3.8, where the inference error is never reduced with more information become available to
an adversary.

Limits of privacy reservation in distributed OPF computations Algorithm 2 has shown to
preserve the integrity of local datasets in the release of local voltage angle updates across ADMM
iterations. The algorithm, however, is characterized by several important limitations. First, it
does not provide a formal guarantee that the resulting OPF solution (consensus variable ◊
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the last iteration) does not leak load datasets. Second, as the value of global sensitivity often
remains unknown to sub-problems, they estimate the local sensitivities based on their local dataset.
Thus, the magnitudes of local random perturbations already encode the information about load
magnitudes. Furthermore, repeated computations on the same datasets involve higher privacy
violation risks that can be avoided by substantially scaling the noise, thus leading to poorer
convergence statistics. Finally, the optimality loss induced by random perturbations is a random
variable while Algorithm 2 provides no means of controlling its realizations. These shortcomings
motivate an alternative approach to private OPF computations using a centralized architecture.
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Conclusions

I We develop differentially private distributed OPF algorithms ...

I ... to provide formal privacy gurantees for local OPF datasets

I The algorithms are open source and available at

https://github.com/wdvorkin/DP D OPF

I Future research includes analyzing convergence rate as a function of privacy parameters

Thank you for your attention!
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