Differentially Private Distributed Optimal Power Flow

Vladimir Dvorkin^{†‡}, Pascal Van Hentenryck[‡], Jalal Kazempour[†], Pierre Pinson[†]

> [†]Technical University of Denmark [‡]Georgia Institute of Technology

> > vladvo@elektro.dtu.dk

59th IEEE Conference on Decision and Control December 2020

Background

Growing digitalization of modern power systems boost the efficiency of operations

- Operations are guided by the solution of the Optimal Power Flow (OPF) problem
- System operators collect large amounts of power system data ...
- ... and produce efficient generator set points
- OPF input datasets contains private information:
 - Power network parameters
 - Load profiles of network users
 - Generation and market parameters
- Distributed OPF computations to limit information exchange and preserve privacy [Molzahn et al., 2017]

Optimal power flow (OPF) problem

- Optimizes power systems at minimum cost while respecting system constraints
- We consider DC approximation of power flows

$\min_{p, \theta}$	c(p)	generation cost
s.t.	$B\theta = p - d,$	nodal power balance
	$\theta \in \mathcal{F}, p \in \mathcal{P},$	flow & generation limit

- Central optimization requires all agents to share their data
- Solution? Distribute OPF computation [Conejo and Aguado, 1998, Biskas et al., 2005]

Decompose network per node(s) ...
 ... by duplicating voltage angles
 ... and enforce consensus constraints

$$\begin{array}{l} \min_{p,\theta} \quad c(p) \\ \text{s.t.} \quad B\theta = p - d \\ \quad \theta \in \mathcal{F}, p \in \mathcal{P} \end{array}$$

Decompose network per node(s) ...

... by duplicating voltage angles

... and enforce consensus constraints

$$\begin{split} \min_{p,\theta} & \sum_{i=1}^{N} c_i(p_i) \\ \text{s.t.} & B_i^\top \theta_i = p_i - d_i, \quad \forall i = \{1, \dots, N\} \\ & \theta_i \in \mathcal{F}_i, p_i \in \mathcal{P}_i, \quad \forall i = \{1, \dots, N\} \end{split}$$

- Decompose network per node(s) ...
- ... by duplicating voltage angles
- ... and enforce consensus constraints

$$\begin{split} \min_{p,\theta,\overline{\theta}} & \sum_{i=1}^{N} c_i(p_i) \\ \text{s.t.} & B_i^{\top} \theta_i = p_i - d_i, \quad \forall i = \{1, \dots, N\} \\ & \theta_i \in \mathcal{F}_i, p_i \in \mathcal{P}_i, \quad \forall i = \{1, \dots, N\} \\ & \theta_i = \overline{\theta} : \mu_i, \quad \forall i = \{1, \dots, N\} \end{split}$$

- Decompose network per node(s) …
- ... by duplicating voltage angles
- ... and enforce consensus constraints

- Decompose network per node(s) …
- ... by duplicating voltage angles
- ... and enforce consensus constraints

$$\begin{split} \max_{\mu_{i}} \min_{p,\theta,\overline{\theta}} \quad & \underbrace{\sum_{i=1}^{N} \mathcal{L}(p_{i},\theta_{i},\overline{\theta},\mu_{i})}_{\text{Maximum field Lagrangian: } \sum_{i=1}^{N} \mathcal{L}(p_{i},\theta_{i},\overline{\theta},\mu_{i})}_{\text{Maximum field Lagrangian: } \sum_{i=1}^{N} \mathcal{L}(p_{i},\theta_{i},\overline{\theta},\mu_{i})} \\ & \sum_{i=1}^{N} c_{i}(p_{i}) + \underbrace{\sum_{i=1}^{N} \mu_{i}^{\top}(\theta_{i}-\overline{\theta})}_{\text{dualized consensus}} + \underbrace{\sum_{i=1}^{N} \frac{\rho}{2} \|\theta_{i}-\overline{\theta}\|_{2}^{2}}_{\text{regularization term}} \\ & \text{s.t. } \quad B_{i}^{\top}\theta_{i} = p_{i} - d_{i}, \quad \forall i = \{1, \dots, N\} \\ & \theta_{i} \in \mathcal{F}_{i}, p_{i} \in \mathcal{P}_{i}, \quad \forall i = \{1, \dots, N\} \end{split}$$

Distributed ADMM algorithm [Boyd et al., 2011]:

- 1. Update θ_i for fixed $\overline{\theta}$ and μ_i :
 - $\theta_i \leftarrow \operatorname*{argmin}_{p_i, \theta_i \in \mathcal{O}_i} \mathcal{L}(p_i, \theta_i, \overline{\theta}, \mu_i)$
- 2. Update $\overline{\theta}$ for fixed θ_i and μ_i
 - $\overline{\theta} \leftarrow \underset{\overline{\theta}}{\operatorname{argmin}} \mathcal{L}(\theta_i, \overline{\theta}, \mu_i)$
- 3. Update μ_i for fixed θ_i and $\overline{\theta}$

 $\mu_i \leftarrow \mu_i + \rho(\theta_i - \overline{\theta})$

Does ADMM always preserve privacy of local OPF datasets?

Privacy attack model for distributed OPF

$$\overrightarrow{\theta} \longrightarrow \begin{pmatrix} \text{OPF sub-problem} \\ & \\ \overrightarrow{\theta} \\ & \\ \mu_i \end{pmatrix} \overset{\text{op}}{\longrightarrow} \begin{pmatrix} \min_{p_i, \theta_i} & c_i(p_i) + \mu_i^{\top} \theta_i + \frac{\rho}{2} \| \theta_i - \overline{\theta} \|_2^2 \\ \text{s.t.} & B_i^{\top} \theta_i = p_i - d_i, \\ & \\ \theta_i \in \mathcal{F}_i, p_i \in \mathcal{P}_i \end{pmatrix} \longrightarrow \theta_i$$

- Coordination signals
- Optimization variables
- Side information
- Private data

Privacy attack model for distributed OPF

- The goal of privacy attack is to reconstruct the unknown data item
- Assume the side information and optimization structure are known
- Reconstruction of the unknown data item through optimization:

$$\min_{\substack{p_i, \theta_i, d_i \ge 0}} c_i(p_i) + \mu_i^\top \theta_i + \frac{\rho}{2} \|\theta_i - \overline{\theta}\|_2^2 + \underbrace{\Upsilon \|\theta_i - \theta_i\|_2^2}_{\text{penalty term}}$$
s.t. $B_i^\top \theta_i = p_i - d_i,$
 $\theta_i \in \mathcal{F}_i, p_i \in \mathcal{P}_i$

▶ Unknown d_i is optimized to replicate the OPF sub-problem response, i.e., ||θ_i - θ_i||²₂ = 0
 ▶ Refer to the extended arXiv paper for non-optimization models of privacy attacks

Formal privacy guarantees for distributed OPF

Differential privacy (definition)

- Q is a query computed on a dataset
- ξ is a carefully calibrated noise
 - θ and θ' are stat. indistinguishable
- By observing θ or θ', analyst can't tell if your data is included

ε-differential privacy [Dwork et al., 2014]

A randomized query $\hat{Q}: S \mapsto \mathcal{R}$ with domain S and range \mathcal{R} preserves ε -differential privacy if for any output $\Theta \in \mathcal{R}$ and all adjacent datasets $\mathcal{D} \in S$ and $\mathcal{D}' \in S$, it holds that

 $\mathbb{P}\big[\tilde{\mathcal{Q}}(\mathcal{D})\in\Theta\big]\leqslant\mathbb{P}\big[\tilde{\mathcal{Q}}(\mathcal{D}')\in\Theta\big]\,\exp(\varepsilon),$

where probability is taken over runs of $\tilde{\mathcal{Q}}$.

Differential privacy (definition)

- Q is a query computed on a dataset
- ξ is a carefully calibrated noise
- θ and θ' are stat. indistinguishable
- By observing θ or θ', analyst can't tell if your data is included

ε-differential privacy [Dwork et al., 2014]

A randomized query $\tilde{Q}: S \mapsto \mathcal{R}$ with domain S and range \mathcal{R} preserves ε -differential privacy if for any output $\Theta \in \mathcal{R}$ and all adjacent datasets $\mathcal{D} \in S$ and $\mathcal{D}' \in S$, it holds that

 $\mathbb{P}\big[\tilde{\mathcal{Q}}(\mathcal{D})\in\Theta\big]\leqslant\mathbb{P}\big[\tilde{\mathcal{Q}}(\mathcal{D}')\in\Theta\big]\,\exp(\varepsilon),$

where probability is taken over runs of $\tilde{\mathcal{Q}}$.

Differentially private distributed OPF

We treat OPF sub-problems as queries

$$\mathcal{Q}_i: \mathcal{D}_i \mapsto \theta_i,$$

where

$$\mathcal{D}_{i} = \{\underbrace{c_{1i}, c_{2i}, B_{i}, \rho}_{\text{side info}}, \underbrace{\mu_{i}, \overline{\theta}_{i}}_{\text{sensitive}}, \underbrace{d_{i}}_{\text{sensitive}}\}$$

• Adjacent datasets \mathcal{D} and \mathcal{D}' :

 $\|\mathcal{D}_i - \mathcal{D}'_i\|_1 = \|\boldsymbol{d}_i - \boldsymbol{d}'_i\|_1 \leqslant \alpha$

Sensitivity of a query:

$$\Delta_{\mathcal{Q}_i} := \max_{\mathcal{D} \sim_{lpha} \mathcal{D}'} \| \mathcal{Q}(\mathcal{D}) - \mathcal{Q}(\mathcal{D}') \|_1$$

Two method to achieve differential privacy [Chaudhuri et al., 2011, Zhang and Zhu, 2016]

Output perturbation

Query perturbation

$$\tilde{\mathcal{Q}}_i(\mathcal{D}_i) = \mathcal{Q}_i(\mathcal{D}_i) + \xi_i = \tilde{\theta}_i$$

The output is purturbed by noise ξ_i

This presentation

$$\tilde{\mathcal{Q}}_i(\mathcal{D}_i;\xi_i) = \tilde{\theta}_i$$

The query is purturbed itself by noise ξ_i

Refer to arXiv extended paper

Differentially private distributed OPF

We treat OPF sub-problems as queries

$$\mathcal{Q}_i: \mathcal{D}_i \mapsto \theta_i,$$

where

$$\mathcal{D}_{i} = \{\underbrace{c_{1i}, c_{2i}, B_{i}, \rho}_{\text{side info}}, \underbrace{\mu_{i}, \overline{\theta}_{i}}_{\text{sensitive}}, \underbrace{d_{i}}_{\text{sensitive}}\}$$

• Adjacent datasets \mathcal{D} and \mathcal{D}' :

 $\|\mathcal{D}_i - \mathcal{D}'_i\|_1 = \|\mathbf{d}_i - \mathbf{d}'_i\|_1 \leq \alpha$

Sensitivity of a query:

$$\Delta_{\mathcal{Q}_i} := \max_{\mathcal{D}\sim_lpha \mathcal{D}'} \| \mathcal{Q}(\mathcal{D}) - \mathcal{Q}(\mathcal{D}') \|_1$$

Two method to achieve differential privacy [Chaudhuri et al., 2011, Zhang and Zhu, 2016]

Output perturbation

Query perturbation

$$\tilde{\mathcal{Q}}_i(\mathcal{D}_i) = \mathcal{Q}_i(\mathcal{D}_i) + \xi_i = \tilde{\theta}_i$$

The output is purturbed by noise ξ_i

This presentation

$$\tilde{\mathcal{Q}}_i(\mathcal{D}_i;\xi_i) = \tilde{\theta}_i$$

The query is purturbed itself by noise ξ_i

Refer to arXiv extended paper

Differentially private distributed OPF

We treat OPF sub-problems as queries

$$\mathcal{Q}_i: \mathcal{D}_i \mapsto \theta_i,$$

where

$$\mathcal{D}_{i} = \{\underbrace{c_{1i}, c_{2i}, B_{i}, \rho}_{\text{side info}}, \underbrace{\mu_{i}, \overline{\theta}_{i}}_{\text{sensitive}}, \underbrace{d_{i}}_{\text{sensitive}}\}$$

• Adjacent datasets \mathcal{D} and \mathcal{D}' :

 $\|\mathcal{D}_i - \mathcal{D}'_i\|_1 = \|\mathbf{d}_i - \mathbf{d}'_i\|_1 \leq \alpha$

Sensitivity of a query:

$$\Delta_{\mathcal{Q}_i} := \max_{\mathcal{D}\sim_lpha \mathcal{D}'} \lVert \mathcal{Q}(\mathcal{D}) - \mathcal{Q}(\mathcal{D}')
Vert_1$$

Two method to achieve differential privacy [Chaudhuri et al., 2011, Zhang and Zhu, 2016]

Output perturbation

Query perturbation

$$\tilde{\mathcal{Q}}_i(\mathcal{D}_i) = \mathcal{Q}_i(\mathcal{D}_i) + \xi_i = \tilde{\theta}_i$$

The output is purturbed by noise ξ_i

This presentation

$$\tilde{\mathcal{Q}}_i(\mathcal{D}_i;\xi_i) = \tilde{\theta}_i$$

The query is purturbed itself by noise ξ_i

Refer to arXiv extended paper

Output perturbation

$$\mathcal{Q}_i(\mathcal{D}_i) + \xi_i \sim rac{arepsilon}{2\Delta_{\mathcal{Q}_i}} \exp{\left(-arepsilon rac{|\xi_i - heta_i|}{\Delta_{\mathcal{Q}_i}}
ight)},$$

where Δ_{Q_i} is the output sensitivity to the value of load (adjusted by α)

Randomized ADMM for distributed OPF

1. Update
$$\theta_i \leftarrow \operatorname{argmin}_{p_i,\theta_i} \mathcal{L}(p_i,\theta_i,\overline{\theta},\mu_i)$$

- 2. Output perturbation: $\tilde{\theta}_i(\boldsymbol{\xi_i}) \leftarrow \theta_i + \boldsymbol{\xi_i}$
- 3. Update $\overline{\theta} \leftarrow \operatorname{argmin}_{\overline{\theta}} \mathcal{L}(\widetilde{\theta}_i(\boldsymbol{\xi}_i), \overline{\theta}, \mu_i)$
- 4. Update $\mu_i \leftarrow \mu_i + \rho(\tilde{\theta}_i(\boldsymbol{\xi}_i) \overline{\theta})$
- 5. Terminate if $\|\tilde{\theta}_i(\boldsymbol{\xi_i}) \overline{\theta}\|_2 \leq \eta$

 $\begin{array}{l} \text{Main result} \\ \mathbb{P}[\mathcal{Q}_i(\mathfrak{D}_i) + \xi_i \in \tilde{\theta}_i] \\ \leqslant \mathbb{P}[\mathcal{Q}_i(\mathfrak{D}_i^{'}) + \xi_i \in \tilde{\theta}_i] \text{exp}(\epsilon) \end{array}$

- Static or dynamic random perturbations
- Global or local query sensitivity
- Privacy preservation across iterations

Output perturbation

$$\mathcal{Q}_i(\mathcal{D}_i) + \xi_i \sim rac{arepsilon}{2\Delta_{\mathcal{Q}_i}} \exp\left(-arepsilon rac{|\xi_i - heta_i|}{\Delta_{\mathcal{Q}_i}}
ight),$$

where Δ_{Q_i} is the output sensitivity to the value of load (adjusted by α)

Randomized ADMM for distributed OPF

1. Update
$$\theta_i \leftarrow \operatorname{argmin}_{p_i, \theta_i} \mathcal{L}(p_i, \theta_i, \overline{\theta}, \mu_i)$$

- 2. Output perturbation: $\tilde{\theta}_i(\boldsymbol{\xi}_i) \leftarrow \theta_i + \boldsymbol{\xi}_i$
- 3. Update $\overline{\theta} \leftarrow \operatorname{argmin}_{\overline{\theta}} \mathcal{L}(\tilde{\theta}_i(\boldsymbol{\xi_i}), \overline{\theta}, \mu_i)$
- 4. Update $\mu_i \leftarrow \mu_i + \rho(\tilde{\theta}_i(\boldsymbol{\xi_i}) \overline{\theta})$
- 5. Terminate if $\|\tilde{\theta}_i(\boldsymbol{\xi}_i) \overline{\theta}\|_2 \leq \eta$

 $\begin{array}{l} \text{Main result} \\ \mathbb{P}[\mathcal{Q}_i(\mathfrak{D}_i) + \xi_i \in \tilde{\theta}_i] \\ \leqslant \mathbb{P}[\mathcal{Q}_i(\mathfrak{D}_i^{'}) + \xi_i \in \tilde{\theta}_i] \text{exp}(\epsilon) \end{array}$

- Static or dynamic random perturbations
- Global or local query sensitivity
- Privacy preservation across iterations

Output perturbation

$$\mathcal{Q}_i(\mathcal{D}_i) + \xi_i \sim rac{arepsilon}{2\Delta_{\mathcal{Q}_i}} \exp\left(-arepsilon rac{|\xi_i - heta_i|}{\Delta_{\mathcal{Q}_i}}
ight),$$

where Δ_{Q_i} is the output sensitivity to the value of load (adjusted by α)

Randomized ADMM for distributed OPF

1. Update
$$\theta_i \leftarrow \operatorname{argmin}_{p_i, \theta_i} \mathcal{L}(p_i, \theta_i, \overline{\theta}, \mu_i)$$

- 2. Output perturbation: $\tilde{\theta}_i(\boldsymbol{\xi}_i) \leftarrow \theta_i + \boldsymbol{\xi}_i$
- 3. Update $\overline{\theta} \leftarrow \operatorname{argmin}_{\overline{\theta}} \mathcal{L}(\tilde{\theta}_i(\boldsymbol{\xi_i}), \overline{\theta}, \mu_i)$
- 4. Update $\mu_i \leftarrow \mu_i + \rho(\tilde{\theta}_i(\boldsymbol{\xi_i}) \overline{\theta})$
- 5. Terminate if $\|\tilde{\theta}_i(\boldsymbol{\xi}_i) \overline{\theta}\|_2 \leq \eta$

 $\begin{aligned} & \textbf{Main result} \\ \mathbb{P}[\mathcal{Q}_i(\mathcal{D}_i) + \xi_i \in \tilde{\theta}_i] \\ & \leqslant \mathbb{P}[\mathcal{Q}_i(\mathcal{D}'_i) + \xi_i \in \tilde{\theta}_i] \text{exp}(\epsilon) \end{aligned}$

- Static or dynamic random perturbations
- Global or local query sensitivity
- Privacy preservation across iterations

Output perturbation

$$\mathcal{Q}_i(\mathcal{D}_i) + \xi_i \sim rac{arepsilon}{2\Delta_{\mathcal{Q}_i}} \exp\left(-arepsilon rac{|\xi_i - heta_i|}{\Delta_{\mathcal{Q}_i}}
ight),$$

where Δ_{Q_i} is the output sensitivity to the value of load (adjusted by α)

Randomized ADMM for distributed OPF

1. Update
$$\theta_i \leftarrow \operatorname{argmin}_{p_i, \theta_i} \mathcal{L}(p_i, \theta_i, \overline{\theta}, \mu_i)$$

- 2. Output perturbation: $\tilde{\theta}_i(\boldsymbol{\xi}_i) \leftarrow \theta_i + \boldsymbol{\xi}_i$
- 3. Update $\overline{\theta} \leftarrow \operatorname{argmin}_{\overline{\theta}} \mathcal{L}(\tilde{\theta}_i(\boldsymbol{\xi_i}), \overline{\theta}, \mu_i)$
- 4. Update $\mu_i \leftarrow \mu_i + \rho(\tilde{\theta}_i(\boldsymbol{\xi_i}) \overline{\theta})$
- 5. Terminate if $\|\tilde{\theta}_i(\boldsymbol{\xi}_i) \overline{\theta}\|_2 \leq \eta$

 $\begin{aligned} & \textbf{Main result} \\ \mathbb{P}[\mathcal{Q}_i(\mathcal{D}_i) + \xi_i \in \tilde{\theta}_i] \\ & \leqslant \mathbb{P}[\mathcal{Q}_i(\mathcal{D}_i^{'}) + \xi_i \in \tilde{\theta}_i] \text{exp}(\epsilon) \end{aligned}$

- Static or dynamic random perturbations
- Global or local query sensitivity
- Privacy preservation across iterations

Numerical experiments on 3-area IEEE 118-node RTS

Experiment description:

- Privacy loss is fixed $\varepsilon = 1$
- Adjacency coefficient α varies

- Privacy of local OPF datasets improve in α
- Privacy adversary infers individual loads

Experiment description:

- Privacy loss is fixed $\varepsilon = 1$
- Adjacency coefficient α varies

- Privacy of local OPF datasets improve in α
- Privacy adversary infers individual loads

Experiment description:

- Privacy loss is fixed $\varepsilon = 1$
- Adjacency coefficient α varies

- Privacy of local OPF datasets improve in α
- Privacy adversary infers individual loads

Experiment description:

- Privacy loss is fixed $\varepsilon = 1$
- Adjacency coefficient α varies

- Privacy of local OPF datasets improve in α
- Privacy adversary infers individual loads

Experiment description:

- Privacy loss is fixed $\varepsilon = 1$
- Adjacency coefficient α varies

- Privacy of local OPF datasets improve in α
- Privacy adversary infers individual loads

- Poorer convergence due to noise
- Noisy computations involve optimality loss
- The two can be traded off by using static or dynamically updated noise across iterations

- Poorer convergence due to noise
- Noisy computations involve optimality loss
- The two can be traded off by using static or dynamically updated noise across iterations

- Poorer convergence due to noise
- Noisy computations involve optimality loss
- The two can be traded off by using static or dynamically updated noise across iterations

- Poorer convergence due to noise
- Noisy computations involve optimality loss
- The two can be traded off by using static or dynamically updated noise across iterations

10 / 12

- Poorer convergence due to noise
- Noisy computations involve optimality loss
- The two can be traded off by using static or dynamically updated noise across iterations

>>>>

- Poorer convergence due to noise
- Noisy computations involve optimality loss
- The two can be traded off by using static or dynamically updated noise across iterations

 \gg

- Poorer convergence due to noise
- Noisy computations involve optimality loss
- The two can be traded off by using static or dynamically updated noise across iterations

Optimality loss [%]						
Adjacency coefficient α ,%	1	2.5	5	7	10	
Dynamic perturbations	0.48	0.92	1.23	1.51	3.83	
Static perturbations	0.28	4.33	11.0	11.35	20.41	

Privacy guarantee beyond one iteration

- Repeated computations on the same dataset accumulates privacy losses
- Attacker exploits all compromised iterations, e.g., last T iterations $k T, \ldots, K$
- ▶ It thus offsets the effect of noise, i.e., $\mathbb{E}_{\xi_i} [(\theta_i + \xi_i)] = \theta_i$
- ▶ To avoid these privacy risks, we use decomposition of differential privacy:
 - We scale the noise by factor of T, i.e. $\xi_i \sim \text{Lap}(T \times \Delta_Q / \varepsilon)$
 - ▶ and thus obtain ε -differential privacy after T iterations

Privacy guarantee beyond one iteration

- Repeated computations on the same dataset accumulates privacy losses
- Attacker exploits all compromised iterations, e.g., last T iterations $k T, \ldots, K$
- lt thus offsets the effect of noise, i.e., $\mathbb{E}_{\xi_i} [(\theta_i + \xi_i)] = \theta_i$
- To avoid these privacy risks, we use decomposition of differential privacy:
 - We scale the noise by factor of *T*, i.e. ξ_i ~ Lap(*T* × Δ_Q/ε)
 - ▶ and thus obtain ε -differential privacy after T iterations

Inference RMSE without composition

Privacy guarantee beyond one iteration

- Repeated computations on the same dataset accumulates privacy losses
- Attacker exploits all compromised iterations, e.g., last T iterations $k T, \ldots, K$
- ▶ It thus offsets the effect of noise, i.e., $\mathbb{E}_{\xi_i} [(\theta_i + \xi_i)] = \theta_i$
- To avoid these privacy risks, we use decomposition of differential privacy:
 - We scale the noise by factor of T, i.e. $\xi_i \sim Lap(T \times \Delta_Q / \varepsilon)$
 - ▶ and thus obtain ε -differential privacy after T iterations

Inference RMSE without composition

	1.0	0.2	0.2	0.1	0.1	0.1
Adjacency α , %	2.5	0.7	0.5	0.4	0.4	0.4
	5.0	1.1	1	1	0.8	0.8
	7.0	2.1	1.9	1.3	1.2	1.1
	10.0	3.3	2.3	1.8	1.7	1.5
		1	2	5	10	15
	Attack budget T					

Inference RMSE with composition

	1.0	0.2	0.6	1.2	1.2	1.1	
Adjacency α , %	2.5	0.7	1.7	2.3	2.4	2.9	
	5.0	1.1	2.6	3.8	4.8	6.5	
	7.0	2.1	4.3	6	7.6	9.9	
	10.0	3.3	5.3	8.5	11.4	16.6	
		1	2	5	10	15	
		Attack budget T					

Conclusions

We develop differentially private distributed OPF algorithms ...

- ... to provide formal privacy gurantees for local OPF datasets
- The algorithms are open source and available at

https://github.com/wdvorkin/DP_D_OPF

Future research includes analyzing convergence rate as a function of privacy parameters

Thank you for your attention!

References I

Biskas, P. N., Bakirtzis, A. G., Macheras, N. I., and Pasialis, N. K. (2005). A decentralized implementation of DC optimal power flow on a network of computers. *IEEE Transactions on Power Systems*, 20(1):25–33.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers.

Foundations and Trends \mathbb{R} in Machine learning, 3(1):1-122.

Chaudhuri, K., Monteleoni, C., and Sarwate, A. D. (2011). Differentially private empirical risk minimization. *Journal of Machine Learning Research*, 12(Mar):1069–1109.

Conejo, A. J. and Aguado, J. A. (1998). Multi-area coordinated decentralized DC optimal power flow. *IEEE Transactions on Power Systems*, 13(4):1272–1278.

F

Dwork, C., Roth, A., et al. (2014). The algorithmic foundations of differential privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407.

Molzahn, D. K., Dörfler, F., Sandberg, H., Low, S. H., Chakrabarti, S., Baldick, R., and Lavaei, J. (2017).
A survey of distributed optimization and control algorithms for electric power systems. *IEEE Transactions on Smart Grid*, 8(6):2941–2962.

References II

Zhang, T. and Zhu, Q. (2016). Dynamic differential privacy for ADMM-based distributed classification learning. *IEEE Transactions on Information Forensics and Security*, 12(1):172–187.