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What makes data centers (DC) such a special load?

Disruptive electricity consumption Space-time flexibility of workloads Demand engineering opportunities
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we use nvidia-smi to con�gure frequency locking and power
capping within a subset of the support GPU SM frequencies
(1.1–1.4GHz) and power caps (300–400W). Finally, for cluster
pro�ling, we use the row manager to obtain aggregate row
power draw every 2 seconds.

Minimizing overheads. Since DCGM repeatedly queries
GPU counters, it can introduce power and performance over-
heads. We �nd that that enabling DCGM consistently in-
creases the IPMI server power usage by about 5–10W. Since
this is relatively tiny, we directly report DCGM power num-
bers in our results. For performance, DCGM may cause sig-
ni�cant degradation and variability under certain con�gu-
rations. We mitigate this by getting accurate performance
measurements in a separate run without DCGM pro�ling.

Training. Our LLM training setup uses a combination of dis-
tributed data, tensor, and/or pipeline parallelism [25, 35, 63].
Because we have limited GPU resources to train LLMs, we
actually pro�le LLM �ne-tuning at the server level instead of
full-scale LLM training. We train each model on a dedicated
server for at least 5 minutes (100+ iterations) across all 8
GPUs, and con�gure the training batch sizes to use at least
85% of the GPU memory. To ensure that our takeaways from
LLM �ne-tuning are consistent with LLM training at scale,
we validate our server-level pro�ling results with cluster-
level production data in Section 4.3.

Inference. We pro�le LLM inference using tensor paral-
lelism and emulate the worst-case scenario for power utiliza-
tion by running a constant stream of inference requests.

Warm-up. LLM inference frameworks (e.g., FasterTransformer
andDeepSpeed-Inference) typically allocateworkspacemem-
orywhen serving the �rst inference request (after loading the
model). This memory region is then reused for subsequent
requests. Thus, the �rst inference executes much slower than
in the steady state, which also impacts power usage patterns.
To avoid this, we warm-up the LLM serving framework with
at least three requests before taking measurements.

Identifying prompt and token phases.We modify LLM infer-
ence frameworks to output performance information for
prompt and token phases by adding appropriate timestamps
and GPU synchronization. In cases where synchronization
overhead is unacceptable, we pro�le prompt phases by gen-
erating only a single output token, and token phases by
generating multiple output tokens with a medium-sized in-
put prompt. When monitoring GPU performance counters
for the prompt and token phases, we observe that certain
counters are instantaneous (e.g., power), whereas others are
updated on an interval basis (e.g., SM activity, tensor core
utilization, etc.). Hence, the timeseries data of these perfor-
mance counters typically has a lag. We use counter value
peaks to identify such lag and align them appropriately.
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Figure 4. Power usage time-series for training workloads
under no cap, power cap, and frequency cap.
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(a) Frequency locking.
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(b) Power capping.

Figure 5. Peak power vs. performance reduction for training.

4 LLM Power Characterization
Using our methodology, we extensively characterize LLM
power usage patterns at the server and cluster levels, fo-
cusing on the intrinsic di�erences between training and
inference workloads, between prompt and token phases, and
their behaviors under GPU power management techniques.

4.1 LLM Training Characterization

Peak power. Figure 4 (blue) shows the GPU power usage
time series updated every 100ms for 5 iterations of training
per model. The peak power during the training iterations
goes up to the TDP of the GPUs, and beyond for GPT-NeoX
and Flan-T5. On the other hand, RoBERTa, a smaller encoder-
only model does not reach the TDP. Note that di�erent types
of data sharding, batching, and parallelism techniques could
slightly change this behavior.
Insight 1: The peak power draw across GPUs in LLM train-
ing iterations often reaches or exceeds their TDP. For cluster
power design, this means that LLM training clusters need to
overprovision GPU power to ensure power safety.
Power swings. Figure 4 (blue) also shows that there are
big swings in power draw across GPUs each iteration. For
example, in RoBERTa, an iteration lasts for ⇠1 second. Each
iteration has a small dip in power around the 0.5 second
mark, and a big dip in power at the end. The smaller dip
is caused between the forward and backward phases, since
threads working on the same data synchronize and the GPU
utilization decreases. On the other hand, the larger dip is
caused at the end of the iteration when all the GPUs synchro-
nize before the next iteration starts. Thus, the power swings
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Grid integration of DC at di!erent timescales

GW-scale GW/MW-scale GW/MW-scale

10-100MW-scale MW/kW-scale

↭ Optimal sizing, siting and timing of data centers in the power grid

↭ Load forecasting and operating reserve sizing

↭ Day-ahead operational planning and market-clearing

↭ Near real-time operational coordination

↭ Real-time control
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Agenda

1. Hierarchical optimization models for coordinating spatial DC flexibility

2. Market-based incentives to invoke spatial DC flexibility

3. Distribution-level energy storage solutions to smooth DC loads
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Hierarchical optimization models for coordinating spatial DC flexibility



Hierarchical coordination of networked DC (NetDC) and power grids
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Power grid optimization problem:

. minimize
p

cpwr(p) ω Dispatch cost

subject to p → Ppwr(ω) ω Grid feasibility

Data centers optimization problem:

minimize
ε

cnet-dc(ω) ω Latency loss

subject to ω → Wnet-dc(ω) ω NetDC feasibility
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Power Grid–NetDC coordination problem:

. minimize
ω,p

cpwr(p) ω Dispatch cost

subject to p → Ppwr(ω
ε) ω Grid feasibility

εε → argmin
ε

cnet-dc(ε) ω Latency loss

subject to ε → Wnet-dc(ω) ω NetDC feasibility

↭ Grid optimization is constrained by NetDC optimization

↭ Every task shift request ω receives demand feedback ε

↭ The optimal ωε minimizes the dispatch cost and satisfies both
power grid and data center operational constraints
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From optimization to regression for Power-NetDC coordination

↭ Consider a set of features {x1, . . . , xq}, each specific to a particular coordination scenario

↭ Contextual feature xi = {nodal prices, loads, generation statistics, ...}

↭ Goal: train the coordination policy to map contextual features into the optimal task shifts

ω(x) = ε0 + ε1x

where ε = (ε0,ε1) are regression weights

Grid- and NetDC-Informed policy optimization

. minimize
ω,ωi ,...,ωq ,pi ,...,pq

1
q

q∑

i=1

cpwr(pi ) ε Average dispatch cost

subject to pi → Ppwr(ω
ϑ
i ), ↑i = 1, . . . , q ε Grid equations for each scenario

εi = ε0 + ε1xi , ↓ε↓1 ↫ ϑ, ↑i = 1, . . . , q ε Coupling contextual regression

ωϑ
i → argmin

εi

cnet-dc(ωi ) ε Latency loss

subject to ωi → Wnet-dc(εi ), ↑i = 1, . . . , q ε NetDC feasibility

V. Dvorkin. Agent coordination via contextual regression (AgentConcur) for data center flexibility. 2025
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NYISO case study

1. WEST

2. GENESE

3. CENTRAL

4. NORTH

5. MHK VL 6. CAPITL

7. HUD VL

8. MILLWD

9. DUNWOD

10. NYC
11. LONGIL

! !

!

!

!

! Data center

New York ISO

Data inputs:

↭ 11-zone aggregation of the New York ISO

↭ Network of 5 data centers (10 virtual links)

↭ Varying demand from 5% to 30% of the peak load

We study two coordination settings:

↭ Ideal day-ahead coordination with optimization

↭ Real-time coordination with contextual regression
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NYISO: Ideal coordination at the day-ahead stage

1. WEST

2. GENESE

3. CENTRAL

4. NORTH
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!
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!
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!
+852 MWh

!
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!
-1302 MWh

-1302 MWh

! Data center

Ideal coordination

New York ISO

Example of task shifts across the network of data centers

Relaxation of latency constraints → greater generation cost savings

Unit commitment constraints prevent unlocking the whole NetDC flexibility

The flat (in red) loading profile is re-distributed in space and time
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NYISO: Regression for real-time coordination
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Ideal coordination versus the AgentCONCUR solution

Contextual features from NYISO website

↭ Zonal real-time electricity demand (d);

↭ Zonal electricity prices (ω);

↭ Zonal renewable power generation (r);

↭ Power flows between aggregation zones (f ).

Coordination policy to be optimized o!ine:
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NYISO: Cost-savings under regression approach

400
600
800

1000
1200

Average peak-hour NYISO dispatch cost [$1000]

maximum latency loss α = 25%

400
600
800

1000
1200

maximum latency loss α = 100%

penetration level of NetDC [% of the system peak load]
5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

400
600
800

1000
1200

maximum latency loss α = 200%

No coordination
BaseRegression

AgentCONCUR
Ideal coordination

↭ Non-coordinated solution → quadratic cost growth

↭ Ideal coordination → more linear cost growth

↭ Baseline regression is agnostic to grid and NetDC constraints

↭ Informed regression guarantees feasibility → e!cient
approximation of the ideal coordination
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NYISO: Coordination feature selection for regression

less features    ⟵   regularization parameter ε    ⟶    more features
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↭ Feature selection by means of ω1→regularization

↭ ω1→regularization also ensures coordination robustness

↭ Can we organize coordination using just one feature?
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8

I Base regression: NetDC demand is shifted according to
the base regression policy optimized in (9);

I AgentCONCUR: NetDC demand is shifted according to
the regression policy optimized in (10).

Our results reveal that the New York ISO system benefits
from coordinating spatial tasks shifts in amount of ⇡ 1.9
GWh from the densely populated South towards the Central,
Northern, and Western parts of the state, as shown in Fig.
2. Noticeably, the ideal coordination consistently uses the
same 4 out of 10 virtual links, while the AgentCONCUR
coordination policy enjoys more active links. This difference
is due to less flexible, affine policy structure, which results in
more used links to ensure feasibility across the entire training
dataset simultaneously, as opposed to per-scenario feasibility
satisfaction provided by the ideal coordination.

Figure 5 illustrates the discrepancies in dispatch costs in all
four cases. As the penetration of NetDC increases, the non-
coordinated solution demonstrates rapid, quadratic growth of
dispatch costs in the New York ISO dominated by conven-
tional generation. On the other hand, the ideal coordination
demonstrates a rather linear growth (e.g., see the bottom
plot) of dispatch costs thanks to the cost-aware allocation
of computing tasks. However, the extent of cost reduction
significantly depends on the maximum allowable latency loss
↵, specified by the NetDC operator. For a small loss of 25%,
users are likely to observe no difference in the quality of
service. However, this enables savings of up to 24.5% of
dispatch costs in the ideal coordination case, depending on
the penetration level. The cost-saving potential increases to
49.0% and 56.7% in the case of double and tripled latency loss,
respectively, when users experience more noticeable delays
during peak-hour operations of the power system.

This cost-saving potential is exploited by both base re-
gression and AgentCONCUR coordination policies. However,
the base regression policy, which ignores power system and
NetDC operational constraints, often results in substantively
higher dispatch costs, which tend to stay closer to the non-
coordinated solution than to the ideal one. On the other hand,
the AgentCONCUR policy, which is aware of constraints
of both systems, efficiently approximates the ideal solution,
i.e., staying relatively close to the ideal solution in many
cases depicted in Fig. 5. However, it tends to show a larger
approximation gap with the allowable latency loss and NetDC
penetration increase.

Fig. 5. Average NYISO dispatch cost across the testing dataset under different
coordination models for the varying NetDC penetration level and maximum
allowable latency loss. The area between the dashed lines defines the cost-
saving potential for regression-based coordination.

D. Feasibility of Regression-Based Coordination

The approximation gaps reported in Fig. 5 are due to
infeasible task shifts, i.e., the shifts that violate power system
constraints, NetDC constraints, or both. Whenever the task
shift is infeasible in real-time, the two operators resort to a
more expensive yet feasible non-coordinated solution. How-
ever, the feasibility of regression-based coordination improves
with a larger size of the training dataset, as illustrated in Fig.
6. The AgentCONCUR policy dominates the base one and
achieves zero violations of power system constraints (e.g.,
no load shedding) with sample size q > 150. Moreover,
for q > 150, it keeps infeasibility of NetDC operations
below 7%. The dominance of AgentCONCUR is consistent,
which is important when the size of the training dataset with
representative records is limited. We also observed similar

TABLE II
SELECTED REGRESSION FEATURES (BLACK DOTS) FOR AGENTCONCUR FOR DIFFERENT REGULARIZATION PARAMETER "

"
# of

features
zonal electricity demand power flow zonal electricity price zonal renewable power output

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 f1 f2 f3 f4 f5 f6 �7 f8 f9 f10 f11 f12 �1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11

1000.0 29 � • • • � • � • • � � • • • • • • • • • • • � • • • • • • • � • • � � • • � � � � � � � •
100.0 28 • • • • • • � • • • � • • • • • • • • � • � � � • • • • � � • • • • � • � � � � � � � � •
10.0 24 • • • • � • • • • • • • • • • � • • • • • � � � � � � � � � • • • � � • � � � � � � � � •
5.0 20 • • � • • • • • • • • • • • � • � • • • � � � � � � � � � � � • • � � • � � � � � � � � �
2.5 13 • � • � � • • • • • � • • � � � • � � • � � � � � � � � � � � • • � � � � � � � � � � � �
1.0 6 • � • � � � � � � • � • • � � � � � � � • � � � � � � � � � � � � � � � � � � � � � � � �
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NYISO: Coordination feature selection for regression
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↭ Feature selection by means of ω1→regularization

↭ ω1→regularization also ensures coordination robustness

↭ Can we organize coordination using just one feature?

8

I Base regression: NetDC demand is shifted according to
the base regression policy optimized in (9);

I AgentCONCUR: NetDC demand is shifted according to
the regression policy optimized in (10).

Our results reveal that the New York ISO system benefits
from coordinating spatial tasks shifts in amount of ⇡ 1.9
GWh from the densely populated South towards the Central,
Northern, and Western parts of the state, as shown in Fig.
2. Noticeably, the ideal coordination consistently uses the
same 4 out of 10 virtual links, while the AgentCONCUR
coordination policy enjoys more active links. This difference
is due to less flexible, affine policy structure, which results in
more used links to ensure feasibility across the entire training
dataset simultaneously, as opposed to per-scenario feasibility
satisfaction provided by the ideal coordination.

Figure 5 illustrates the discrepancies in dispatch costs in all
four cases. As the penetration of NetDC increases, the non-
coordinated solution demonstrates rapid, quadratic growth of
dispatch costs in the New York ISO dominated by conven-
tional generation. On the other hand, the ideal coordination
demonstrates a rather linear growth (e.g., see the bottom
plot) of dispatch costs thanks to the cost-aware allocation
of computing tasks. However, the extent of cost reduction
significantly depends on the maximum allowable latency loss
↵, specified by the NetDC operator. For a small loss of 25%,
users are likely to observe no difference in the quality of
service. However, this enables savings of up to 24.5% of
dispatch costs in the ideal coordination case, depending on
the penetration level. The cost-saving potential increases to
49.0% and 56.7% in the case of double and tripled latency loss,
respectively, when users experience more noticeable delays
during peak-hour operations of the power system.

This cost-saving potential is exploited by both base re-
gression and AgentCONCUR coordination policies. However,
the base regression policy, which ignores power system and
NetDC operational constraints, often results in substantively
higher dispatch costs, which tend to stay closer to the non-
coordinated solution than to the ideal one. On the other hand,
the AgentCONCUR policy, which is aware of constraints
of both systems, efficiently approximates the ideal solution,
i.e., staying relatively close to the ideal solution in many
cases depicted in Fig. 5. However, it tends to show a larger
approximation gap with the allowable latency loss and NetDC
penetration increase.

Fig. 5. Average NYISO dispatch cost across the testing dataset under different
coordination models for the varying NetDC penetration level and maximum
allowable latency loss. The area between the dashed lines defines the cost-
saving potential for regression-based coordination.

D. Feasibility of Regression-Based Coordination

The approximation gaps reported in Fig. 5 are due to
infeasible task shifts, i.e., the shifts that violate power system
constraints, NetDC constraints, or both. Whenever the task
shift is infeasible in real-time, the two operators resort to a
more expensive yet feasible non-coordinated solution. How-
ever, the feasibility of regression-based coordination improves
with a larger size of the training dataset, as illustrated in Fig.
6. The AgentCONCUR policy dominates the base one and
achieves zero violations of power system constraints (e.g.,
no load shedding) with sample size q > 150. Moreover,
for q > 150, it keeps infeasibility of NetDC operations
below 7%. The dominance of AgentCONCUR is consistent,
which is important when the size of the training dataset with
representative records is limited. We also observed similar

TABLE II
SELECTED REGRESSION FEATURES (BLACK DOTS) FOR AGENTCONCUR FOR DIFFERENT REGULARIZATION PARAMETER "

"
# of

features
zonal electricity demand power flow zonal electricity price zonal renewable power output

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 f1 f2 f3 f4 f5 f6 �7 f8 f9 f10 f11 f12 �1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11

1000.0 29 � • • • � • � • • � � • • • • • • • • • • • � • • • • • • • � • • � � • • � � � � � � � •
100.0 28 • • • • • • � • • • � • • • • • • • • � • � � � • • • • � � • • • • � • � � � � � � � � •
10.0 24 • • • • � • • • • • • • • • • � • • • • • � � � � � � � � � • • • � � • � � � � � � � � •
5.0 20 • • � • • • • • • • • • • • � • � • • • � � � � � � � � � � � • • � � • � � � � � � � � �
2.5 13 • � • � � • • • • • � • • � � � • � � • � � � � � � � � � � � • • � � � � � � � � � � � �
1.0 6 • � • � � � � � � • � • • � � � � � � � • � � � � � � � � � � � � � � � � � � � � � � � �
0.5 3 • � � � � � � � � • � � � • � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0.1 1 � � � � � � � � � • � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

>>> V. Dvorkin 10 / 18
peak electricity demand in New York City 



Market-based incentives to invoke spatial DC flexibility



Market-clearing optimization and electriicty prices

Electricity market is cleared by solving the Optimal Power Flow (OPF) problem:

minimize
p↭p↭p

p→Cp + c→p generator dispatch cost

subject to 1→(p → d) = 0 : ω, power balance condition

|F(p → d)| ↭ f : ωf ,ωf , power flow limits

Location marginal prices (LMPs) are derived from the dual solution:

ε(d) = ωω
b · 1︸ ︷︷ ︸

uniform price

→ F→(ωω
f → ωω

f )︸ ︷︷ ︸
adjustment due to congestion

By duality theory, the electricity cost of power consumption is proportional to grid dispatch costs:

pω→Cpω + c→pω ↑ ε(d)→d

=↓ financial incentives for DCs to allocate electricity demands in the least-cost way for the power grid
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Landscape of electricity prices in IEEE 118-Bus system

↭ Standard IEEE 118-Bus test system

↭ 10 DCs with 1GW of peak demand

↭ LMPs significantly vary across the grid

Clear incentives to shift DC loads from costly to cheaper nodes
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Strategic participation of DCs in electricity markets

Bilevel optimization formulation:

minimize
d

ω→d

subject to d ↭ d ↭ d

1→d = !

ω → dual sol. of OPF

Existing literature: Bilevel optimization of DC demand payment
↫ Requires the full knowledge of OPF (market) optimization
↫ The actual market engine can be more complicated then that

Proposed solution: Approximate the payment function using neural network

↫ Optimization over trained neural network NN : DC loads ↑↓ Demand charges
↫ E”cient di#erence-of-convex algorithm to solve the problem
↫ All necessary data is readily available from ISO dashboards and modern analytics startups

X Liu, V Dvorkin. Optimization over trained neural networks: Di!erence-of-convex algorithm and application to data center scheduling. 2025
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Reducing congestion in IEEE 118-Bus system

↭ The di!erence of LMPs in the baseline and strategic solutions
↭ LMPs were significantly reduced at the data center nodes.
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Cost savings in IEEE 118-Bus system
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Operating scenarios sorted by total system loading

Lightly-loaded scenarios Heavily congested cases 



Distribution-level energy storage solutions to smooth DC loads



Disruptive DC loads lead to voltage issues in distribution systems

Growth of data centers in Virginia
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Disruptive DC loads lead to voltage issues in distribution systems

Future research direction

• Data centers challenge the stability of grid operation and markets.

• Need new market designs to accommodate the drastic consumption patterns of data center.

Figure: Hourly data center power consumption averaged provided by the MIT super cloud dataset
[Samsi et al., 2021]
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Smoothing DC loads with energy storage

total power demand of a representative data center, when there are multiple server nodes within the same data
center, each node assigned with different tasks on different schedules. (2) up-scaling the dataset entries to align it
with the real-world data center power withdraw level – approximately 10 MW.

This processed profile is shown in Fig. 1. This curve is able to represent the varying power demand of a typical
data center within an hour, which is essential for evaluating the performance of our proposed control strategies
under realistic conditions. Furthermore, its open accessibility and usage in other studies ensures the reproducibility
and comparability of our research.

Fig. 1: Representative hour-long fluctuating demand profile for a data center.

2.2. Model Used

The model I chose for this study is a one data center – one storage system scenario, as is shown in Fig. 2.

Fig. 2: One data center – one storage system setup studied in this project.

In this scenario setup, a data center and a storage system are directly connected to the grid. d denotes the power
draw of the data center, s denotes the power draw of the storage system, and g denotes the total power demand of
the data center and the storage. The objective is to minimize the demand fluctuation on the grid side withdraw g.

In order to match the storage system with data center demand, the available capacity for load profile smoothing
is set to be able to cover 0.5-hour electricity usage of the center, which is 5 MWh in this case. The peak power of
the storage system is set to half of the capacity value, i.e. 2.5 MW. The efficiency of the storage converter is set to
85%.

3. Offline Optimization

Before implementing online real-time control, I first formulate an offline optimization problem to compute an op-
timal control policy under the full knowledge of the future load. This approach serves as a performance benchmark
of the best case my online control algorithm can achieve, and provides insight into the underlying load smoothing
potential of the single energy storage system. Although offline optimization is not feasible for real-time deploy-
ment, it provides a valuable reference curve.

3.1. Formulation

The objective of offline optimization is to minimize the variation in the power drawn from the grid, subject to
physical constraints including energy conservation, storage output power limits, state of charge (SOC) transition

↭ Goal: Smooth the power profile observed by the gird/substation

↭ Drop-control strategy acting solely on measurements

↭ Feedback optimization strategy acting on measurements and the
intensity of constraint violations (mixed-saddle flow)
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Summary

Hierarchical optimization models for coordinating spatial DC flexibility
↭ DC optimization is embed into grid optimization to coordinate demand shifts
↭ Can e!ciently be approximated by contextual regression ensuring cost-optimality and feasibility

Market-based incentives to invoke spatial DC flexibility
↭ Di”erence of LMPs provide natural incentives for spatial demand redistribution
↭ Enabling technology: optimization over trained neural networks approximating the price/revenue function
↭ Depending on the grid loading, cost-savings are up to 50% for DCs and the power grid

Distribution-level energy storage solutions to smooth DC loads
↭ Re-purposing classic droop control to smooth smooth DC loads by energy storage
↭ Gradient-flow algorithms acting on measurements and constraint violations for better performance
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