Grid-Aware AI: Operational and Market Strategies for Large-Scale Data Centers

Vladimir Dvorkin

- Department of Electrical Engineering and Computer Science
 - University of Michigan Ann Arbor

- "Data Center and Power Grid Interactions: Challenges and Opportunities"
 - Focused Research Program Symposium
 - Boston University
 - May 19, 2025

What makes data centers (Le, such a special load:

Disruptive electricity consumption

Space-time flexibility of workloads

>>> V. Dvorkin

Demand engineering opportunities

Grid integration of DC at different timescales

- Load forecasting and operating reserve sizing
- Day-ahead operational planning and market-clearing
- Near real-time operational coordination
- Real-time control

>>> V. Dvorkin

Diminishing cord. benefits

coord.

Optimal sizing, siting and timing of data centers in the power grid

Grid integration of DC at different timescales

- Day-ahead operational planning and market-clearing
- Near real-time operational coordination
- Real-time control

>>> V. Dvorkin

Diminishing coord. benefits

Optimal sizing, siting and timing of data centers in the power grid

- **1.** Hierarchical optimization models for coordinating spatial DC flexibility 2. Market-based incentives to invoke spatial DC flexibility
- **3.** Distribution-level energy storage solutions to smooth DC loads

Hierarchical optimization models for coordinating spatial DC flexibility

>>> V. Dvorkin

Power grid optimization problem:

minimize $c_{pwr}(p)$ \triangleright Dispatch cost р subject to $p \in \mathcal{P}_{pwr}(\vartheta)$ ▷ Grid feasibility

>>> V. Dvorkin

Power grid optimization problem:

minimize $c_{pwr}(p)$ \triangleright Dispatch cost subject to $p \in \mathcal{P}_{pwr}(\vartheta)$ ▷ Grid feasibility

Data centers optimization problem:

minimize $c_{net-dc}(\vartheta)$ ▷ Latency loss subject to $\vartheta \in \mathcal{W}_{\mathsf{net-dc}}(\varphi)$ ▷ NetDC feasibility

>>> V. Dvorkin

Power grid optimization problem:

minimize $c_{pwr}(p)$ \triangleright Dispatch cost subject to $p \in \mathcal{P}_{pwr}(\vartheta)$ ▷ Grid feasibility

Data centers optimization problem:

minimize $c_{net-dc}(\vartheta)$ ▷ Latency loss subject to $\vartheta \in \mathcal{W}_{\mathsf{net-dc}}(\varphi)$ ▷ NetDC feasibility

>>> V. Dvorkin

Power Grid–NetDC coordination problem:

$$\begin{array}{lll} \underset{\varphi,\rho}{\text{pinimize}} & c_{\text{pwr}}(\rho) & \triangleright \text{ Dispatch cost} \\ \text{bject to} & p \in \mathcal{P}_{\text{pwr}}(\vartheta^{\star}) \overset{\text{el. demand}}{\longleftarrow} & \triangleright \text{ Grid feasibili} \\ \vartheta^{\star} \in \operatorname*{argmin}_{\vartheta} & c_{\text{net-dc}}(\vartheta) & \triangleright \text{ Latency loss} \\ & \text{subject to} & \vartheta \in \mathcal{W}_{\text{net-dc}}(\varphi) & \triangleright \text{ NetDC feasibili} \\ \end{array}$$

Grid optimization is constrained by NetDC optimization Every task shift request φ receives demand feedback ϑ • The optimal φ^* minimizes the dispatch cost and satisfies both power grid and data center operational constraints

 \gg V. Dvorkin

- Consider a set of features $\{x_1, \ldots, x_q\}$, each specific to a particular coordination scenario
- Contextual feature $x_i = \{ nodal prices, loads, generation statistics, ... \}$
- **Goal:** train the coordination policy to map contextual features into the optimal task shifts $\phi(x) = \beta_0 + \beta_1 x$

where $\beta = (\beta_0, \beta_1)$ are regression weights

- Consider a set of features $\{x_1, \ldots, x_q\}$, each specific to a particular coordination scenario
- \triangleright Contextual feature $x_i = \{ nodal prices, loads, generation statistics, ... \}$
- Goal: train the coordination policy to map contextual features into the optimal task shifts

where $\beta = (\beta_0, \beta_1)$ are regression weights

- \triangleright Consider a set of features $\{x_1, \ldots, x_q\}$, each specific to a particular coordination scenario
- \blacktriangleright Contextual feature $x_i = \{ nodal prices, loads, generation statistics, ... \}$
- Goal: train the coordination policy to map contextual features into the optimal task shifts $\phi(\mathbf{x}) = \beta_0 + \beta_1 \mathbf{x}$

where $\beta = (\beta_0, \beta_1)$ are regression weights

Grid- and NetDC-Informed policy optimization

 $\underset{\beta,\varphi_{i},\ldots,\varphi_{q},p_{i},\ldots,p_{q}}{\text{minimize}} \qquad \frac{1}{q} \sum_{i=1}^{q} c_{pwr}(p_{i})$ subject to $p_i \in \mathcal{P}_{pwr}(\vartheta_i^*), \quad \forall i = 1, ..., q$ $\varphi_i = \beta_0 + \beta_1 x_i, \|\beta\|_1 \leq \varepsilon, \quad \forall i = 1, \dots, q$ $\boldsymbol{\vartheta}_i^\star \in \operatorname{argmin} \ \boldsymbol{c}_{\operatorname{net-dc}}(\boldsymbol{\vartheta}_i)$

 \gg V. Dvorkin V. Dvorkin. Agent coordination via contextual regression (AgentConcur) for data center flexibility. 2025

- \triangleright Consider a set of features $\{x_1, \ldots, x_q\}$, each specific to a particular coordination scenario
- Contextual feature $x_i = \{ nodal prices, loads, generation statistics, ... \}$
- Goal: train the coordination policy to map contextual features into the optimal task shifts $\phi(\mathbf{x}) = \beta_0 + \beta_1 \mathbf{x}$

where $\beta = (\beta_0, \beta_1)$ are regression weights

Grid- and NetDC-Informed policy optimization

$$\begin{array}{ll} \underset{\beta, \varphi_{i}, \dots, \varphi_{q}, p_{i}, \dots, p_{q}}{\text{minimize}} & \frac{1}{q} \sum_{i=1}^{q} c_{\mathsf{pwr}}(p_{i}) \\ \text{subject to} & p_{i} \in \mathcal{P}_{\mathsf{pwr}}(\vartheta_{i}^{\star}), \quad \forall i = 1, \dots \\ \varphi_{i} = \beta_{0} + \beta_{1} x_{i}, \ \|\beta\|_{1} \leqslant \varepsilon, \\ \vartheta_{i}^{\star} \in \operatorname*{argmin}_{\vartheta_{i}} \quad c_{\mathsf{net-dc}}(\vartheta_{i}) \\ \vartheta_{i} \in \mathcal{W}_{\mathsf{net-dc}} \end{array}$$

 \gg V. Dvorkin V. Dvorkin. Agent coordination via contextual regression (AgentConcur) for data center flexibility. 2025

- \triangleright Average dispatch cost
- \cdot, q ▷ Grid equations for each scenario
 - $\forall i = 1, \ldots, a$ ▷ Coupling contextual regression
 - \triangleright Latency loss

 $_{c}(arphi_{i}), \quad \forall i=1,\ldots,q \quad imes$ NetDC feasibility

NYISO case study

>>> V. Dvorkin

Data inputs:

- 11-zone aggregation of the New York ISO
- Network of 5 data centers (10 virtual links)
- ► Varying demand from 5% to 30% of the peak load

We study two coordination settings:

- Ideal day-ahead coordination with optimization
- Real-time coordination with contextual regression

NYISO: Ideal coordination at the day-ahead stage

>>> V. Dvorkin

The flat (in red) loading profile is re-distributed in space and time

NYISO: Ideal coordination at the day-ahead stage

>>> V. Dvorkin

The flat (in red) loading profile is re-distributed in space and time

NYISO: Ideal coordination at the day-ahead stage

>>> V. Dvorkin

The flat (in red) loading profile is re-distributed in space and time

NYISO: Regression for real-time coordination

Ideal coordination versus the AgentCONCUR solution

>>> V. Dvorkin

Contextual features from NYISO website

- Zonal real-time electricity demand (d);
- Zonal electricity prices (λ) ;
- ▶ Zonal renewable power generation (r);
- Power flows between aggregation zones (f).

Coordination policy to be optimized offline:

$$\phi \triangleq \beta_0 + \beta_1^d \begin{bmatrix} d_1 \\ \vdots \\ d_{11} \end{bmatrix} + \beta_1^\lambda \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_{11} \end{bmatrix} + \beta_1^r \begin{bmatrix} r_1 \\ \vdots \\ r_{11} \end{bmatrix} + \beta_1^f$$

NYISO: Cost-savings under regression approach

- \blacktriangleright Non-coordinated solution \Rightarrow quadratic cost growth
- \blacktriangleright Ideal coordination \Rightarrow more linear cost growth
 - **Baseline regression** is agnostic to grid and NetDC constraints
- \blacktriangleright Informed regression guarantees feasibility \Rightarrow efficient approximation of the ideal coordination

NYISO: Cost-savings under regression approach

- **Non-coordinated solution** \Rightarrow quadratic cost growth

NYISO: Coordination feature selection for regression

- Feature selection by means of ℓ_1 -regularization
- \triangleright ℓ_1 -regularization also ensures coordination robustness
- Can we organize coordination using just one feature?

NYISO: Coordination feature selection for regression

E	# of		zonal electricity demand													power flow													zonal electricity price												zonal renewable power output									
_	features	$\left \begin{array}{c} \overline{d} \end{array} \right $	1 d	2 d	30	d_4	d_5	d_6	d_7	d_8	d_9	d_1	10 0	\bar{l}_{11}	f_1	f_2	f_3	f_4	f_5	f_6	λ_7	f_8	f_9	f_{10}) f_1	.1 J	f_{12}	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ_8	λ_9	λ_{10}	λ_{11}	r_1	r_2	r_3	r_4	r_5	r_6	r_7	r_8 (r_9 r_9	r_{10}	r_{11}	
1000.0	29	0				•	0	•	0	•		C	D	0		•	•	•	•		•	•	•		•	•	0		•	•	•	•	•	ullet	0	•		0	0	•	•	0	0	0	0	0	0	0	•	
100.0	28				Ð	•	ullet	•	0	ullet	ullet			0	ullet	ullet	•	•	ullet	ullet	ullet	ullet	0	•	С)	0	0	ullet	ullet	ullet	•	0	0	ullet	•	•	•	0	ullet	0	0	0	0	0	0	0	0	•	
10.0	24				D	•	0	ullet	ullet	ullet	ullet			ullet	ullet	•	ullet	ullet	0	ullet	ullet	ullet	ullet	•	С)	0	0	0	0	0	0	0	0	•	ullet	ullet	0	0	ullet	0	0	0	0	0	0	0	0	•	
5.0	20				C	•	•	ullet	ullet	ullet	ullet			ullet	ullet	ullet	•	0	ullet	0	ullet	ullet	ullet	0	С)	0	0	0	0	0	0	0	0	0	ullet	ullet	0	0	ullet	0	0	0	0	0	0	0	0	0	
2.5	13		C		D	0	0	ullet	ullet	ullet	ullet			0	ullet	ullet	0	0	0	ullet	0	0	ullet	0	С)	0	0	0	0	0	0	0	0	0	ullet	•	0	0	0	0	0	0	0	0	0	0	0	0	
1.0	6	•	C		D	0	0	0	0	0	0			0	ullet	ullet	0	0	0	0	0	0	0	ullet	С)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0.5	3		C		С	0	0	0	0	0	0			0	0	0	ullet	0	0	0	0	0	0	0	С)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0.1	1	0	C		C	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	С)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

>>> V. Dvorkin

Feature selection by means of ℓ_1 -regularization \triangleright ℓ_1 -regularization also ensures coordination robustness Can we organize coordination using just one feature?

NYISO: Coordination feature selection for regression

>>> V. Dvorkin

E	# of features		zonal electricity demand																	p	OW	er f	lov	V					zonal electricity price											zonal renewable power output									
-		\overline{d}	10	l_2 (d_3	d_4	d_5	d_{6}	$_{5} dr$	$_7 d_8$	8 a	$l_9 a$	d_{10}	d_{11}		$_1 f$	2 J	- 3 J	4	f ₅ .	f ₆ .	λ_7	f_8	f_9	f_{10}	f_{11}	f_{12}	$_{2} \lambda_{1}$	λ_2	$_2 \lambda_3$	$_{3} \lambda_{4}$	$_4 \lambda_5$	λ_6	λ_7	λ_8	λ_9	λ_{10}	λ_{11}	r_1	r_2	r_3	r_4	r_5	r_6	r_7	$r_8 \imath$	r9 1	$r_{10} r_{1}$	- L1
1000.0	29	0			•	•	0	•	0			•	0	0	•			●	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	0	•	•	0	0	•	•	0	0	0	0	0	0	0	•
100.0	28	•	(•		ullet	•	0				•	0					•	•	•	•	ullet	0	ullet	0	0	0	•	•	•	•	0	0	ullet	ullet	ullet	ullet	0	ullet	0	0	0	0	0	0	0	0	
10.0) 24	•	(•	•	0	•	•					•	•				•	0	•	•	ullet	ullet	ullet	0	0	0	0	0	0	0	0	0	●	•	•	0	0	ullet	0	0	0	0	0	0	0	0	Þ
5.0	20	•	(0		•	•	•				•	ullet					0	•	0	•	ullet	ullet	0	0	0	0	0	0	0	0	0	0	0	ullet	•	0	0	ullet	0	0	0	0	0	0	0	0 0	С
2.5	5 13	•	(С	•	0	0		•					0				С	0	0	•	0	0		0	0	0	0	0	0	0	0	0	0	0	ullet	lacksquare	0	0	0	0	0	0	0	0	0	0	0 0	С
1.0	6	•	(С		0	0	0	0	С) (С		0				С	0	0	0	0	0	0	lacksquare	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	С
0.5	3	•	(С	0	0	0	0	0	С) (С	•	0	0				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	С
0.1	1	0	l	С	0	0	0	0	0	С		С	•	0	0			С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0)

Feature selection by means of ℓ_1 -regularization \triangleright ℓ_1 -regularization also ensures coordination robustness Can we organize coordination using just one feature?

peak electricity demand in New York City

Market-based incentives to invoke spatial DC flexibility

Market-clearing optimization and electriicty prices

Electricity market is cleared by solving the **Optimal Power Flow (OPF)** problem:

$$\begin{array}{ll} \underset{\underline{p} \leqslant p \leqslant \overline{p}}{\text{minimize}} & p^{\top} \mathbf{C} p + \mathbf{c}^{\top} p \\\\ \text{subject to} & \mathbf{1}^{\top} (\mathbf{p} - \mathbf{d}) = \mathbf{0} \, : \, \boldsymbol{\lambda}, \\\\ & |\mathbf{F} (\mathbf{p} - \mathbf{d})| \leqslant \overline{\mathbf{f}} \, : \, \boldsymbol{\lambda}_{\overline{\mathbf{f}}}, \boldsymbol{\lambda}_{\underline{\mathbf{f}}}, \end{array}$$

>>> V. Dvorkin

generator dispatch cost

power balance condition power flow limits

Market-clearing optimization and electriicty prices

>>> V. Dvorkin

Electricity market is cleared by solving the **Optimal Power Flow (OPF)** problem:

$$\begin{array}{ll} \underset{\underline{p} \leq p \leq \overline{p} \\ \text{subject to} \end{array} & \mathbf{p}^{\top} \mathbf{C} \mathbf{p} + \mathbf{c}^{\top} \mathbf{p} \\ \text{subject to} & \mathbf{1}^{\top} (\mathbf{p} - \mathbf{d}) = \mathbf{0} : \boldsymbol{\lambda}, \\ & |\mathbf{F} (\mathbf{p} - \mathbf{d})| \leqslant \overline{\mathbf{f}} : \boldsymbol{\lambda}_{\overline{\mathbf{f}}}, \boldsymbol{\lambda}_{\underline{\mathbf{f}}}, \end{array}$$

Location marginal prices (LMPs) are derived from the dual solution:

$$\pi(\mathsf{d}) = \lambda_b^\star \cdot \mathbf{1}$$

uniform price adjustment due to congestion

generator dispatch cost

power balance condition power flow limits

- $\mathbf{F}^{ op}(\lambda_{\overline{\mathbf{f}}}^{\star}-\lambda_{\underline{\mathbf{f}}}^{\star})$

Market-clearing optimization and electriicty prices

Electricity market is cleared by solving the **Optimal Power Flow (OPF)** problem:

$$\begin{array}{ll} \underset{\underline{p} \leqslant p \leqslant \overline{p}}{\min i ze} & p^{\top} \mathbf{C} p + \mathbf{c}^{\top} p \\ \text{subject to} & \mathbf{1}^{\top} (\mathbf{p} - \mathbf{d}) = \mathbf{0} \, : \, \boldsymbol{\lambda}, \\ & |\mathbf{F} (\mathbf{p} - \mathbf{d})| \leqslant \overline{\mathbf{f}} \, : \, \boldsymbol{\lambda}_{\overline{\mathbf{f}}}, \boldsymbol{\lambda}_{\underline{\mathbf{f}}}, \end{array}$$

Location marginal prices (LMPs) are derived from the dual solution: $\pi(\mathsf{d}) = \lambda_b^\star \cdot 1$ uniform price adjustment due to congestion

By duality theory, the electricity cost of power consumption is proportional to grid dispatch costs:

 $\mathbf{p}^{\star \top} \mathbf{C} \mathbf{p}^{\star} + \mathbf{c}^{\top} \mathbf{p}^{\star} \propto \pi(\mathbf{d})^{\top} \mathbf{d}$

financial incentives for DCs to allocate electricity demands in the least-cost way for the power grid >>> V. Dvorkin

generator dispatch cost

power balance condition power flow limits

$$- \underbrace{\mathsf{F}^{\top}(\lambda_{\overline{\mathrm{f}}}^{\star}-\lambda_{\underline{\mathrm{f}}}^{\star})}_{-}$$

Landscape of electricity prices in IEEE 118-Bus system

- Standard IEEE 118-Bus test system
- ► 10 DCs with 1GW of peak demand

>>> V. Dvorkin

LMPs significantly vary across the grid

Clear incentives to shift DC loads from costly to cheaper nodes

20

0

Strategic participation of DCs in electricity markets

Bilevel optimization formulation:

$$\begin{array}{ll} \underset{d}{\text{minimize}} & \boldsymbol{\pi}^{\top} \mathbf{d} \\\\ \text{subject to} & \underline{\mathbf{d}} \leqslant \mathbf{d} \leqslant \overline{\mathbf{d}} \\\\ & \mathbf{1}^{\top} \mathbf{d} = \Delta \\\\ & \boldsymbol{\pi} \in \text{dual sol. of OPF} \end{array}$$

Existing literature: Bilevel optimization of DC demand payment

- Requires the full knowledge of OPF (market) optimization
- The actual market engine can be more complicated then that

X Liu, V Dvorkin. Optimization over trained neural networks: Difference-of-convex algorithm and application to data center scheduling. 2025 >>> V. Dvorkin

Strategic participation of DCs in electricity markets

Bilevel optimization formulation:

$$\begin{array}{ll} \underset{d}{\text{minimize}} & \boldsymbol{\pi}^{\top} \mathbf{d} \\\\ \text{subject to} & \underline{\mathbf{d}} \leqslant \mathbf{d} \leqslant \overline{\mathbf{d}} \\\\ & \mathbf{1}^{\top} \mathbf{d} = \Delta \\\\ & \boldsymbol{\pi} \in \text{dual sol. of OPF} \end{array}$$

Existing literature: Bilevel optimization of DC demand payment

- Requires the full knowledge of OPF (market) optimization
- The actual market engine can be more complicated then that

Proposed solution: Approximate the payment function using neural network

- Optimization over trained neural network NN : DC loads

 Demand charges
- Efficient difference-of-convex algorithm to solve the problem
- All necessary data is readily available from ISO dashboards and modern analytics startups

X Liu, V Dvorkin. Optimization over trained neural networks: Difference-of-convex algorithm and application to data center scheduling. 2025 >>> V. Dvorkin

Neural network approximation:

minimize $\mathbb{NN}(\mathbf{d})$ subject to $\underline{\mathbf{d}} \leqslant \mathbf{d} \leqslant \overline{\mathbf{d}}$ $\mathbf{1}^{\top}\mathbf{d} = \mathbf{\Delta}$

Reducing congestion in IEEE 118-Bus system

The difference of LMPs in the baseline and strategic solutions LMPs were significantly reduced at the data center nodes. >>> V. Dvorkin

16 [4/MWh] 0 -16Je baselir -32 -48 t 0 -64relative -80 ΔLMP -96 -112

Cost savings in IEEE 118-Bus system

Distribution-level energy storage solutions to smooth DC loads

Disruptive DC loads lead to voltage issues in distribution systems

Growth of data centers in Virginia

» V. Dvorkin

Disruptive DC loads lead to voltage issues in distribution systems

» V. Dvorkin

Growth of data centers in Virginia

Smoothing DC loads with energy storage

- **Goal:** Smooth the power profile observed by the gird/substation
- Drop-control strategy acting solely on measurements
- **Feedback optimization strategy** acting on measurements **and** the intensity of constraint violations (mixed-saddle flow)

Smoothing DC loads with energy storage

- **Goal:** Smooth the power profile observed by the gird/substation **Drop-control strategy** acting solely on measurements
- **Feedback optimization strategy** acting on measurements **and** the intensity of constraint violations (mixed-saddle flow)

Timestamp [0.1s]

Smoothing DC loads with energy storage

>>> V. Dvorkin

- **Goal:** Smooth the power profile observed by the gird/substation **Drop-control strategy** acting solely on measurements
- **Feedback optimization strategy** acting on measurements **and** the intensity of constraint violations (mixed-saddle flow)

Timestamp [0.1s]

Summary

Hierarchical optimization models for coordinating spatial DC flexibility

- DC optimization is embed into grid optimization to coordinate demand shifts
- Can efficiently be approximated by contextual regression ensuring cost-optimality and feasibility

Market-based incentives to invoke spatial DC flexibility

- Difference of LMPs provide natural incentives for spatial demand redistribution
- Enabling technology: optimization over trained neural networks approximating the price/revenue function
- Depending on the grid loading, cost-savings are up to 50% for DCs and the power grid

Distribution-level energy storage solutions to smooth DC loads

- Re-purposing classic droop control to smooth smooth DC loads by energy storage
- Gradient-flow algorithms acting on measurements and constraint violations for better performance

References:

- to data center scheduling. 2025

>>> V. Dvorkin

1. V. Dvorkin. Agent coordination via contextual regression (AgentConcur) for data center flexibility. 2025 2. X Liu, V Dvorkin. Optimization over trained neural networks: Difference-of-convex algorithm and application

