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What makes data centers (DC) such a special load?
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Grid integration of DC at different timescales
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Grid integration of DC at different timescales
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» Day-ahead operational planning and market-clearing
» Near real-time operational coordination

» Real-time control
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1. Hierarchical optimization models for coordinating spatial DC flexibility

2. Market-based incentives to invoke spatial DC flexibility

3. Distribution-level energy storage solutions to smooth DC loads
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Hierarchical optimization models for coordinating spatial DC flexibility
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Hierarchical coordination of networked DC (NetDC) and power grids

() power
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Power grid optimization problem:
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Hierarchical coordination of networked DC (NetDC) and power grids
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Hierarchical coordination of networked DC (NetDC) and power grids
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From optimization to regression for Power-NetDC coordination

» Consider a set of features {xi,...,x,}, each specific to a particular coordination scenario
» Contextual feature x; = {nodal prices, loads, generation statistics, ...}

» Goal: train the coordination policy to map contextual features into the optimal task shifts

¢(x) = Bo + Bix

where 8 = (Bo, 51) are regression weights

>> V. Dvorkin / 18



From optimization to regression for Power-NetDC coordination

» Consider a set of features {xi, ..

» Contextual feature x; = {nodal prices, loads, generation statistics, ...

» Goal: train the coordination policy to map contextual features into the optimal task shifts
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From optimization to regression for Power-NetDC coordination

» Consider a set of features {xi,...,x,}, each specific to a particular coordination scenario
» Contextual feature x; = {nodal prices, loads, generation statistics, ...}

» Goal: train the coordination policy to map contextual features into the optimal task shifts

¢(x) = Bo + Bix

where 8 = (Bo, 51) are regression weights

Grid- and NetDC-Informed policy optimization

I — BO BlXi, Hﬁ”l < &, Vi = ].7 oo d > Coupling contextual regression

>> V. Dvorkin V. Dvorkin. Agent coordination via contextual regression (AgentConcur) for data center flexibility. 2025 / 18



From optimization to regression for Power-NetDC coordination

» Consider a set of features {xi,...,x,}, each specific to a particular coordination scenario

» Contextual feature x; = {nodal prices, loads, generation statistics, ...}

» Goal: train the coordination policy to map contextual features into the optimal task shifts

P(x) = Bo + Pix

where 8 = (Bo, 51) are regression weights

Grid- and NetDC-Informed policy optimization
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NYISO case study

Data center
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NYISO: Ideal coordination at the day-ahead stage

Data center
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NYISO: Ideal coordination at the day-ahead stage M
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NYISO: Ideal coordination at the day-ahead stage M
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NYISO: Regression for real-time coordination

Data center +852 Muh Contextual features from NYISO website

+795 MWh

—> Ideal coordination

-->» AgentCONCUR

» Zonal real-time electricity demand (d);

> Zonal electricity prices (\);

> GENESE — » Zonal renewable power generation (r);
\\_‘ 1 _
WE?" wmt » Power flows between aggregation zones (f).
+168 MW 11 MWh
+191 —|—945 MWh

_=) sz Coordination policy to be optimized offline:

-1302 MWh
8. MILLWD p— dl — — Al - — rl — — f;l —
’% bEBo+ BT | | B | B | B
Pt di1_ A1 i f12
-629 MWh

|deal coordination versus the AgentCONCUR solution

>> V. Dvorkin / 18



NYISO: Cost-savings under regression approach

Average peak-hour NYISO dispatch cost [$1000]
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>> V. Dvorkin

» Non-coordinated solution = quadratic cost growth

» ldeal coordination = more linear cost growth

» Baseline regression is agnostic to grid and NetDC constraints

» Informed regression guarantees feasibility = efficient
approximation of the ideal coordination
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NYISO: Cost-savings under regression approach
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NYISO: Coordination feature selection for regression

300 - non-coordinated solution
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NYISO: Coordination feature selection for regression
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NYISO: Coordination feature selection for regression
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Market-based incentives to invoke spatial DC flexibility

6-0.0:0 [ Electricity
: - market clearing




Market-clearing optimization and electriicty prices

Electricity market is cleared by solving the Optimal Power Flow (OPF) problem:

minimize pTCp + ch generator dispatch cost
P<PP
subjectto 1'(p—d)=0: A, power balance condition
| < f

A
L AR, Af, power flow limits
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Market-clearing optimization and electriicty prices

Electricity market is cleared by solving the Optimal Power Flow (OPF) problem:

minimize pTCp + ch generator dispatch cost
P<PP
subjectto 1'(p—d)=0: A, power balance condition
| < f

A
L AR, Af, power flow limits

Location marginal prices (LMPs) are derived from the dual solution:

w(d)= Ap-1 —  F'(\—X)
N—— \ v

uniform price adjustment due to congestion
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Market-clearing optimization and electriicty prices

Electricity market is cleared by solving the Optimal Power Flow (OPF) problem:

mirlin<1i_ze pTCp + ch generator dispatch cost
P<P<P

subjectto 1'(p—d) =0

LA, power balance condition
F(p—d)| <f : Ag, Ay, power flow limits

Location marginal prices (LMPs) are derived from the dual solution:

w(d)= Ap-1 —  F'(\—X)
N—— \ y

uniform price adjustment due to congestion

By duality theory, the electricity cost of power consumption is proportional to grid dispatch costs:
p*TCp* _I_ C_l_p* X 7T( )_l_

financial incentives for DCs to allocate electricity demands in the least-cost way for the power grid

>»> V. Dvorkin
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Landscape of electricity prices in IEEE 118-Bus system
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» Standard IEEE 118-Bus test system
» 10 DCs with 1GW of peak demand

» | MPs significantly vary across the grid
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Clear incentives to shift DC loads from costly to cheaper nodes
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Strategic participation of DCs in electricity markets

Bilevel optimization formulation:

Coe . T
minimize 7 d
d

subjectto d <d < d
1'd=A
7 € dual sol. of OPF

Price

Existing literature: Bilevel optimization of DC demand payment

» Requires the full knowledge of OPF (market) optimization
» The actual market engine can be more complicated then that

50 100 150 200
[Cacciarelli et al. 25]

X Liu, V Dvorkin. Optimization over trained neural networks: Difference-of-convex algorithm and application to data center scheduling. 2025
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Strategic participation of DCs in electricity markets

Bilevel optimization formulation: Neural network approximation:
Ce . T .. .
mmldmlze w d mlnldmlze
subjectto d <d < d subject to d < d < d

7t € dual sol. of OPF

Existing literature: Bilevel optimization of DC demand payment
» Requires the full knowledge of OPF (market) optimization
» The actual market engine can be more complicated then that

Approximate the payment function using neural network
» Optimization over trained neural network NN : DC loads — Demand charges

» Efficient difference-of-convex algorithm to solve the problem
» All necessary data is readily available from ISO dashboards and modern analytics startups

X Liu, V Dvorkin. Optimization over trained neural networks: Difference-of-convex algorithm and application to data center scheduling. 2025

>> V. Dvorkin / 18



Reducing congestion in IEEE 118-Bus system
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» The difference of LMPs in the baseline and strategic solutions

» |LMPs were significantly reduced at the data center nodes.
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Cost savings in IEEE 118-Bus system
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Distribution-level energy storage solutions to smooth DC loads
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Disruptive DC loads lead to voltage issues in distribution systems
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Disruptive DC loads lead to voltage issues in distribution systems
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Smoothing DC loads with energy storage

Storage » Goal: Smooth the power profile observed by the gird /substation
» Drop-control strategy acting solely on measurements
S n
Data | substation P Feedback optimization strategy acting on measurements and the
center ) q s / Grid intensity of constraint violations (mixed-saddle flow)

>> V. Dvorkin / 18



Smoothing DC loads with energy storage
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Storage » Goal: Smooth the power profile observed by the gird /substation
» Drop-control strategy acting solely on measurements
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Smoothing DC loads with energy storage

Storage » Goal: Smooth the power profile observed by the gird /substation
T » Drop-control strategy acting solely on measurements
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Summary

Hierarchical optimization models for coordinating spatial DC flexibility
» DC optimization i1s embed into grid optimization to coordinate demand shifts
» Can efficiently be approximated by contextual regression ensuring cost-optimality and feasibility

Market-based incentives to invoke spatial DC flexibility
» Difference of LMPs provide natural incentives for spatial demand redistribution
» Enabling technology: optimization over trained neural networks approximating the price/revenue function
» Depending on the grid loading, cost-savings are up to 50% for DCs and the power grid

Distribution-level energy storage solutions to smooth DC loads
» Re-purposing classic droop control to smooth smooth DC loads by energy storage
» Gradient-flow algorithms acting on measurements and constraint violations for better performance

References:
1. V. Dvorkin. Agent coordination via contextual regression (AgentConcur) for data center flexibility. 2025
2. X Liu, V Dvorkin. Optimization over trained neural networks: Difference-of-convex algorithm and application
to data center scheduling. 2025
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