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1. Motivation and Background
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Optimization over trained neural networks

minimize ¢(x)
xeX

subject to g(x) <0

e Usually, we know all elements (¢, g, X') of an optimization problem.
¢ What should we do if the constraint function g is unknown?

® |n practice, we can approximate the function g from the data.
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Optimization over trained neural networks

minimize ¢(x) minimize ¢(x)
xXEX xXEX
subject to  g(x) <0 subject to NN(x) <0

Usually, we know all elements (c, g, X’) of an optimization problem.

What should we do if the constraint function g is unknown?

® |n practice, we can approximate the function g from the data.

Consider an approximation by a neural network NN : X — R

The problem becomes an optimization over trained neural network.
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Embedding trained neural networks into optimization

A neural network mapping d to A\ is mathematically represented as
A =Wp 1RelLU(...ReLU(W1d + by)...) + byy

with fixed weights and biases W and b, and variable input d and output A

[Turner et al., 2024]
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Embedding trained neural networks into optimization

A neural network mapping d to A\ is mathematically represented as
A =Wp 1RelLU(...ReLU(W1d + by)...) + byy
with fixed weights and biases W and b, and variable input d and output A

We can write the ReLU activation function using complementarity logic:
a input variable
y=a+v y output variable
y =RelU(a) = 0<yLlv>0 v auxiliary variable

1 complementarity

[Turner et al., 2024]
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Embedding trained neural networks into optimization

A neural network mapping d to A\ is mathematically represented as
A =Wp 1RelLU(...ReLU(W1d + by)...) + byy
with fixed weights and biases W and b, and variable input d and output A

We can write the ReLU activation function using complementarity logic:

a input variable
y=a+v y output variable
0<yLlv>0 v auxiliary variable

1 complementarity

y =ReLU(a) =

Extremely difficult problem to solve in practice due to large computational burden

[Turner et al., 2024]
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State of the art approaches on complementarity constraint M

State of the art approaches
® Mix-integer constraint[Tjeng et al., 2017, Grimstad and Andersson, 2019]

® Big-M reformulation of ReLU-numerical issue
[Tjeng et al., 2017, Grimstad and Andersson, 2019]

SOS1 reformulation with decision trees[Turner et al., 2024]
Semidefinite relaxation of ReLU [Dathathri et al., 2020, Fazlyab et al., 2020]
Bound propagation [Wang et al., 2021]
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Contribution M

Our contribution
e Use difference of convex approach to optimize over trained neural network.
® Relax the RelLU constraints by penalizing them in the objective function.
e Avoid the computational complexity of standard MIP formulations.
® Formulate an algorithm to compute the hyperparameter to achieve fast convergence.

® Demonstrate in the data center load allocation example.
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Embedding trained neural networks into optimization

minimize c(X) convex function
deD,y,X

subject to y; = ReLU(W1d + by),
yi = ReLU(W,y;_1 + b)),
Vi=2,....N
A=Wpniyn + by,
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Embedding trained neural networks into optimization

minimize c(\)

o _ deD,y v,
n(}IEnZIDrj;,Iie c(A) convex function subject to y; = Wyd + by + vy,
subject to y; = ReLU(W;d + by), yi =W,y;_1+b; +v;,
yi = ReLUWiy;_1 + b)), Vi=2,...,N,
Vi=2,...,N 0<y, Lvi>0,
A =Wpyi1yn + by, Vi=1,...,N,

A=Wpniiyny + by,
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Complementarity Condition Computation Bottleneck

¢ Problem: NP hard.
® Solution: Introduce the complementarity condition as a bilinear penalty term in the
objective function.

N
minimize c(A\) + Tv;
(d,y,v,)\)E(’) ( ) pﬁY[ !

subject to y; = Wid + by + v,
yi=Wyyi1+bij+v, Vi=2... N
A =Wpyi1yn + by,

® Non-negative condition on y;,v; > 0, Vi=1,..., N isincluded in set O

® Problem: Non-convex problem.

e Solution: Reformulate the objective function into the difference of two convex functions
and solve iteratively using the Difference of Convex Approach!
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Difference of Convex Approach M

N N
N p 2 p 2
cN)+ 7D llyitvilla— 7> llyi —villz
) +p) yivi = 4,; 4,;

i=1

fi(y,v),convex function f2(y,v),convex function

[Jara-Moroni et al., 2018]
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Difference of Convex Approach M

N N
N p 2 p 2
cN)+ 7D llyitvilla— 7> llyi —villz
) +p) yivi = 4,; 4,;

i=1

fi(y,v),convex function f2(y,v),convex function

Algorithm 1 DCA for solving the bilinear problem

input: feasible guess d®,y%, v0, A%, tolerance e > 0
output: optimized NN input d*
repeat
set k + k+1.
get d¥t1 ykt1 ykt1 AK+1 by solving DCA subproblem
until f(yX, vk) — F(yFTL vkt < ey
return d* « d**!
f(yk,vk) = fi(y*,vk) — f(y¥,vk). Here, we write d,y, v, X to represent d;,y;,vi, \;¥i = 1,..., N

[Jara-Moroni et al., 2018]
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Difference of Convex Approach Solution M
N P N
=2 lyi =il Fp yi — Vi)
i=1 i1

—f(y,v),concave function —f(y,v) Linear overestimation of the concave part
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Difference of Convex Approach Solution

(S

N N
—p k K\T
—4Z\Wi—ViH§ TZ(Y; —vi) (yi —vi)
i=1 — i=1

—f(y,v),concave function —f(y,v) Linear overestimation of the concave part

DCA subproblem

N
. . . p 2
minimize c(\) + = v
(d,y,v,\)eO (A) 42”3" ill2

N
Z(y,k —vi) T (yi — ) Linear overestimation of the concave part

subject to y; = W1id + by + vy,
yi=Wyi_1+bj+v, Vi=2 ... N

A=Wpyiiyn +byys,
> >4.Jal_rﬂ]Moron| et al., 2018]
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Sensitivity to penalty parameter p M

The solution is extremely sensitive to p
® Too Large: Convergence slow
® Too Small: Violate complimetarity condition
Need to find the smallest p that satisfies the complimentarity condition.

General compact formulation Bilinear compact formulation

mig’imize cTy migiﬂize cTy + pyTv

subject to Ad > f, subjectto Ad>f : A,
Vd +Wy + b =v, - Vd+Wy+b=v :pu,
0<y Lv;, >0, yi,vi =0,
Vi=1,...,N, Vi=1,...,N

Part of the derivation draw inspiration from Prop.16 in[Jara-Moroni et al., 2018]
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Sensitivity to penalty parameter p

Strongly stationary point seeking relaxation

Let (a, ¥,V) be some feasible point for the general compact formulation
minimize c'y
dyv
subjectto Ad>f : A,

Vd =Wy b = v, T,(5,9) 2 {i|5i=0< @},

y,'_O ./LI VIEI(? )7 Iv(y,\”,):{/|y,->0:v,-}
iz 0 pp VieL(), To(§,9) 2 {i | i =0 =0}
vi=0 :p® VieZ,(y,V),
vi=z0 pt VieI,(y,V),

Vi, Vi = 0, Vi e Io(N )
The solution (d,y, V) is the strongly stationary point of the general compact formulation if
y;, Lv; Vi=1,..., N, where the strongly stationary point is the point that satisfies the KKTs of
the original non-convex optimization.
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Connections between the three cases M

Strongly stationary point
of the general compact formulation

Solution to

the strongly stationary point seeking relaxation
with empty set Zg

~

DCA solution to
the bilinear compact formulation for p > p
if y L v is satisfied
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Obtain feasible point (d,y, V)
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Obtain feasible point (d,y, V)

o d .
[Feaable input spaceHTrained Neural NetworkJ—> (d,y,v)

Feasibility insight of trained neural network

{ 10(97‘7):(2) Hyi#\7i7Vi:1a"'7N}—{Wiyi—l+bi#0nVi:1)"'7N

e Often true

® If not, we can losslessly reduce NN size — no more zero neuron!
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Computing p from stationary point

® (d,y,V): From strongly stationary point seeking relaxation

e Obtain p: From partial Karush—Kuhn—Tucker conditions of the strongly stationary point
seeking relaxation formulation and the bilinear compact formulation

e Combine lagrangian multipliers ¥ = [T 7|7, p¥ = [wo " w77

Relaxation partial KKT Bilinear partial KKT

ATA+VTp =0,
WY+ =c,

AT A+V'y=0,
OgyL—WTu+c+pv>0,

0<ALAd—f>0 0<ALAd—f>0,
y ' =0, v p’ =0, 0<vLlpy+up=>0.
p >0, VieI,(y,V)
W0, Vie,(y,¥)
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Computation for p

We substitute p" from relation partial KKT into o from bilinear partial KKT. Through some
algebraic manipulation, we retrieve the following condition on p

Lower bound for p
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Computation for DCA penalty term p algorithm

Sample feasible input space

/S
wm
—+
Y]
=
—t
o
e
=
=2

_ lYes
(d,y,v) _ T
A subset of relevant KKTs K Relaxation &— (d,y,V)
e )
Compute p 3 Fine tune p > p —)[ End J
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Data center workload allocation in power grids M

e Consider a network of spatially distributed data centers.
e QOperators allocate workloads to minimize the cost of electricity consumption.

140

120

100

80

r 60

LMP [$/MWh]

40

r20

® |n practice, we do not have network data or other parameters.

° Lﬂse a neural network to map the workload allocation to the cost of electricity.
. Liu
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Bilevel optimization to solve data center load allocation

Goal: Allocate data center load to minimize the cost of electricity consumption.
Given: Forecast of total electricity demand A.

Data center allocation formulated as a bilevel optimization problem where d is the data
center loads with upper and lower bounds d and d. 7 is the price per demand.
Challenge: Unknown underlying physical model

minidmize n'd
subjectto d<d < d
1'd=A
T C
Unknown model
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Bilevel optimization to solve data center load allocation

Goal: Allocate data center load to minimize the cost of electricity consumption.

Given: Forecast of total electricity demand A.

Data center allocation formulated as a bilevel optimization problem where d is the data
center loads with upper and lower bounds d and d. 7 is the price per demand.
Challenge: Unknown underlying physical model

Solution: Replace by a neural network trained with a labeled dataset on historical record
{(d1, A1), ..., (dn, An)}

minimize 7 'd minimize NN(d)
d d
subjectto d<d<d subjectto d <d <d
1'd=A 1'd=A
T C

Unknown model
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Data generation for NN training M

® Method: Using locational marginal prices (LMPs) as 7 derived from the optimal power
flow (OPF) model. Use this data to train neural network.
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Data generation for NN training M

® Method: Using locational marginal prices (LMPs) as 7 derived from the optimal power
flow (OPF) model. Use this data to train neural network.

m'i)r<1ipn2iﬁze pTCp + ch ® p: generator dispatch
sul;j\ec; to 1T(p —2—d)=0 :\ * [p,p]: feasible range of dispatch
Fp—£—d)|<Ff :pp ® ¢: conventional loads

d: data center loads

® F: the matrix of power transfer distribution
factors, which maps net power injections
(p — £ — d) to power flows as F(p — £ — d)

f: line capacity

>> X. Liu / 38



Data generation for NN training M

® Method: Using locational marginal prices (LMPs) as 7 derived from the optimal power
flow (OPF) model. Use this data to train neural network.

m'i)rglipn;iﬁze pTCp—i-ch ® p: generator dispatch
sul;ject to 1T(p—£€—d)=0 :2\ * [p,p]: feasible range of dispatch
F(p—€—d)|<F 5 ® /: conventional loads
e d: data center loads
Locational Marginal Price(LMP) ® F: the matrix of power transfer distribution
factors, which maps net power injections
m=1\—F'@*+F p* (p — £ — d) to power flows as F(p — £ — d)

[Chatzivasileiadis, 2018] f: line capacity
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Experiment on PJM-5 bus system M

® 3 loads act as data centers with demand in the range of [0.8, 1] of the nominal value.
e NN with 2 hidden layers, 50 neurons each. 10,000 training samples
® Global solution is computed using SOS1 constraints and Gurobi solver.

El

Brighton |

Generation
Center

Limit=240MW D sundance

Load
Center

~P;k|A : BI1 > £I~;

Solitude

[Zhou, 2023]
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Experiment on PJM-5 bus system M

o 1.0015 7 ; . .
2
2 1.0010 -
© _——- * ® *:
£ 1.0005 [ [— Z 200 p*: fast convergence
o e ® p < p*: Does not satisfy
g 10000 || Zgsgna truth complementarity condition
@ — —0.85%p~
£ 0.9995 1 | Toaoxb: ® p > p*: Slow convergence
S 0.75%p+
€ 0.9990 '
10" 10° 10° 10* 10°

iteration
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Experiment on IEEE 118 bus system M

® NN training: NN with 5-hidden layer and 1,000 RelLUs, trained on 12,500 demand
samples in the range of [0,100] MWh.

e DCA solution: Computes a new demand allocation to improve the baseline.

e Samples: Randomly picked 50 baseline cases, of which DCA could successfully converge
and 47 of them roughly match the output of the OPF model.
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Experiment on IEEE 118 bus system M

<
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test case
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Experiment on IEEE 118 bus system M

<

s ; ;

gm e First 23 cases: The savings are

£ 5 small. Lightly congested with

E . little to no benefit from spatial

% load redistribution

g B e N e e E S N T T ®* Remaining cases: Significant
fest case improvement
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Experiment on IEEE 118 bus system M

<
a4 I baseline allocation . .
g 30 e First 23 cases: The savings are
© . -
5 2 small. Lightly congested with
5 little to no benefit from spatial
10 . . .
s load redistribution
5
8 0 Femnnoseoo e RoR aT e RS e eoT a0y ® Remaining cases: Significant
test case .
Improvement
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iteration
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Experiment on IEEE 118 bus system M

<

a4 I baseline allocation . .

8 30 e First 23 cases: The savings are

© . -

5 50 small. Lightly congested with

o . .

5 little to no benefit from spatial

10 . . .

3 load redistribution

©

2 O o e R N R TR RAREIS 28 ® Remaining cases: Significant
test .
estcase improvement

(] .

e ® The smaller p consistently leads

=

° to faster convergence.

2 . .

3 ® Each iteration takes =~ 0.37

5 seconds, allowing for convergence

s in around 1 hour on average.

iteration
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Experiment on IEEE 118 bus system M

—64

1S
oo
ALMP relative to baseline [$/MWh]

-112

® The difference between the LMPs induced at baseline and the DCA solutions.

® | MPs were significantly reduced at the data centers.
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Conclusions

® Developed a difference-of-convex algorithm to solve decision-making problems with
objectives or constraints represented by trained neural networks.

e Avoided the computational bottleneck of RelLU logical constraints through informed
penalization of such constraints in the objective function.

® Demonstrated on the data center load allocation application and showed significant
reduction in cost compared to baseline.
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Backup I: Derivation of LMP M

¢ Partial Lagrangian function (dualize the coupling constraints only):
L(p, A, 1, p) =c(p) — A17 (p — d)
+a (F(p—d) —F)+p'(~F(p—d) — )
® Group terms corresponding to dispatch p, demand d and line limits f :

L=LP+ %4 2f where

LP(p A\, ) = c(p) — (AN —F +F'p)Tp
LN, p) = (I —F m+Flp)'d
Li(p,p) = —(p+n0)'f

Power dispatch p and demand d share the same multiplier but with oposite signs

[Dvorkin, 2025]
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Backup I: Derivation of LMP M

ﬂ_*()\*’ﬁ*’u*) — 1\ — FT(ﬁ* _ H*) c RN
LA v LA

uniform .
congestion
e 77 is the cost of supplying the next unit of demand at node n
® in case of congestion (zt* > 0 or * > 0), electricity price varies across the grid

® price at the reference bus is \* (the ref. column of F is zero)

[Dvorkin, 2025]
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Backup Il: DC-OPF (PTDF formulation) M

® Use matrix F € REXN of power transfer distribution factors (PTDF)

® how the power flow in line e changes w.r.t. to the change of power injection at node n?
® obtained by manipulating the DC bus admittance matrix B

® Power flows f = F(p — d) (distribution of net injections across power lines)

minimize ¢(p) generation cost
subjel::t to 1"(p—d)=0 active power balance
F(p—d)| < f power flow limits
p<p<p min/max gen p-limits

[Dvorkin, 2025]
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Backup Ill: Big-M

Constraints:

Big-M reformulation:

uw < Mu
z< M(1—u)

where u € {0, 1} is an auxiliary binary variable, and M is a large enough constant

[Dvorkin, 2025]
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Backup IV: Semidefinate Programming

Xi+1 = RelLU (L,‘ (X,')) .
a b
xit1 2 0[Af], i1 2 Lj (X)) P‘i}
Xi+1 © (X,'+1 - L; (X,')) <0 [)\,C] , Xi © Xj — (f, + u,-) Oxi+liou <0 [/\ﬂ .
L(xi, xi41, i) = (—xie1) " A2+ (L (x;) = xis1) T AP
+ (xi41 @ (i1 — Li (00)) T A+ (xi © % — (6 + 1) © xi + £ 0 up) T A

= (Gou) N —xT A+ (L ()T AP = x AP — X ((e,- +uj) © )\?)

independent of x;,xj41

linear in xj,xjt1

+ x4 diag (X§) xi11 — x,-ll diag (\§)LL; (x;) + x; diag (A?) X .

Quad ratic in Xi Xi+1

>> XDhihathri et al., 2020] / 38



Backup V: Neuron split and bound propagation

® RelU relaxation: w' ReLU(v) > w Dv + b’ where D is a diagonal matrix containing free
variables 0 < a; < 1 only when u; > 0 > I; and w; > 0, while its rest values as well as
constant b’ are determined by I, u, w.

® mingee F(x) > mingee agROWN X + ccrown Where acrownand ccrowncan be computed
using W, b() 1) u() in polynomial time.
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Backup VI: Additional argument for p

Strongly stationary point
of the original problem

(y Lv)

Strongly stationary point 1
of the bilinear problem

Strongly stationary point 2
of the bilinear problem

® The fine tuning to make sure complementarity condition is satisfied is easy because
intuitively, if p works as a penalty parameter in one case, the penalty is penalize the bilinear
part enough to satisfy the complementarity condition.

® This result is also proven experimentally.
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