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Optimization over trained neural networks

minimize
x∈X

c(x)

subject to g(x) ⩽ 0

=⇒
minimize

x∈X
c(x)

subject to NN(x) ⩽ 0

• Usually, we know all elements (c, g ,X ) of an optimization problem.

• What should we do if the constraint function g is unknown?

• In practice, we can approximate the function g from the data.

• Consider an approximation by a neural network NN : X 7→ R
• The problem becomes an optimization over trained neural network.
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Embedding trained neural networks into optimization

A neural network mapping d to λ is mathematically represented as

λ = WN+1ReLU(. . .ReLU(W1d+ b1) . . . ) + bN+1

with fixed weights and biases W and b, and variable input d and output λ

We can write the ReLU activation function using complementarity logic:

y = ReLU(a) =⇒
y = a+ v

0 ⩽ y ⊥ v ⩾ 0

a input variable

y output variable

v auxiliary variable

⊥ complementarity

Extremely difficult problem to solve in practice due to large computational burden

[Turner et al., 2024]
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State of the art approaches on complementarity constraint

State of the art approaches

• Mix-integer constraint[Tjeng et al., 2017, Grimstad and Andersson, 2019]

• Big-M reformulation of ReLU–numerical issue
[Tjeng et al., 2017, Grimstad and Andersson, 2019]

• SOS1 reformulation with decision trees[Turner et al., 2024]

• Semidefinite relaxation of ReLU [Dathathri et al., 2020, Fazlyab et al., 2020]

• Bound propagation [Wang et al., 2021]
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Contribution

Our contribution

• Use difference of convex approach to optimize over trained neural network.

• Relax the ReLU constraints by penalizing them in the objective function.

• Avoid the computational complexity of standard MIP formulations.

• Formulate an algorithm to compute the hyperparameter to achieve fast convergence.

• Demonstrate in the data center load allocation example.
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Embedding trained neural networks into optimization

minimize
d∈D,y,λ

c(λ) convex function

subject to y1 = ReLU(W1d+ b1),

yi = ReLU(Wiyi−1 + bi ),

∀i = 2, . . . ,N

λ = WN+1yN + bN+1,

=⇒

minimize
d∈D,y,v,λ

c(λ)

subject to y1 = W1d+ b1 + v1,

yi = Wiyi−1 + bi + vi ,

∀i = 2, . . . ,N,

0 ⩽yi ⊥ vi⩾ 0,

∀i = 1, . . . ,N,

λ = WN+1yN + bN+1,
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Complementarity Condition Computation Bottleneck

• Problem: NP hard.
• Solution: Introduce the complementarity condition as a bilinear penalty term in the
objective function.

minimize
(d,y,v,λ)∈O

c(λ) + ρ

N∑
i=1

y⊤i vi

subject to y1 = W1d+ b1 + v1,

yi = Wiyi−1 + bi + vi , ∀i = 2, . . . ,N

λ = WN+1yN + bN+1,

• Non-negative condition on yi , vi ⩾ 0, ∀i = 1, ...,N is included in set O
• Problem: Non-convex problem.
• Solution: Reformulate the objective function into the difference of two convex functions
and solve iteratively using the Difference of Convex Approach!
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Difference of Convex Approach

c(λ) + ρ

N∑
i=1

y⊤i vi
=⇒ c(λ) +

ρ

4

N∑
i=1

∥yi + vi∥22︸ ︷︷ ︸
f1(y,v),convex function

− ρ

4

N∑
i=1

∥yi − vi∥22︸ ︷︷ ︸
f2(y,v),convex function

Algorithm 1 DCA for solving the bilinear problem

input: feasible guess d0, y0, v0,λ0, tolerance εtol > 0
output: optimized NN input d⋆

repeat
set k ← k + 1.
get dk+1, yk+1, vk+1,λk+1 by solving DCA subproblem

until f (yk , vk)− f (yk+1, vk+1) ≤ εtol
return d⋆ ← dk+1

f (yk , vk) = f1(yk , vk)− f2(yk , vk). Here, we write d, y, v,λ to represent di , yi , vi ,λi∀i = 1, ...,N

[Jara-Moroni et al., 2018]
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Difference of Convex Approach Solution

−ρ

4

N∑
i=1

∥yi − vi∥22︸ ︷︷ ︸
−f2(y,v),concave function

=⇒

−ρ
4

N∑
i=1

(yki − vki )
⊤(yi − vi )︸ ︷︷ ︸

−f2(y,v) Linear overestimation of the concave part

DCA subproblem

minimize
(d,y,v,λ)∈O

c(λ) +
ρ

4

N∑
i=1

∥yi + vi∥22

− ρ

2

N∑
i=1

(yki − vki )
⊤(yi − vi ) Linear overestimation of the concave part

subject to y1 = W1d+ b1 + v1,

yi = Wiyi−1 + bi + vi , ∀i = 2, . . . ,N

λ = WN+1yN + bN+1,

[Jara-Moroni et al., 2018]
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Sensitivity to penalty parameter ρ

The solution is extremely sensitive to ρ

• Too Large: Convergence slow

• Too Small: Violate complimetarity condition

Need to find the smallest ρ that satisfies the complimentarity condition.

General compact formulation

minimize
d,y,v

c⊤y

subject to Ad ⩾ f,

Vd+Wy + b = v,

0 ⩽ yi ⊥ vi ⩾ 0,

∀i = 1, . . . ,N,

=⇒

Bilinear compact formulation

minimize
d,y,v

c⊤y + ρy⊤v

subject to Ad ⩾ f : λ,

Vd+Wy + b = v : µ,

yi , vi ⩾ 0,

∀i = 1, . . . ,N

Part of the derivation draw inspiration from Prop.16 in[Jara-Moroni et al., 2018]
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Sensitivity to penalty parameter ρ

Strongly stationary point seeking relaxation

Let (d̃, ỹ, ṽ) be some feasible point for the general compact formulation

minimize
d,y,v

c⊤y

subject to Ad ⩾ f : λ,

Vd+Wy + b = v : µ,

yi = 0 : µy0
i ∀i ∈ Iy (ỹ, ṽ),

yi ⩾ 0 : µy+
i ∀i ∈ Iv (ỹ, ṽ),

vi = 0 : µv0
i ∀i ∈ Iv (ỹ, ṽ),

vi ⩾ 0 : µv+
i ∀i ∈ Iy (ỹ, ṽ),

yi , vi ⩾ 0, ∀i ∈ I0(ỹ, ṽ),

Iy (ỹ, ṽ) ≜ {i | ỹi = 0 < ṽi} ,
Iv (ỹ, ṽ) ≜ {i | ỹi > 0 = ṽi} ,
I0(ỹ, ṽ) ≜ {i | ỹi = 0 = ṽi} .

The solution (d, y, v) is the strongly stationary point of the general compact formulation if
yi ⊥ vi ∀i = 1, ...,N, where the strongly stationary point is the point that satisfies the KKTs of
the original non-convex optimization.
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Connections between the three cases

Strongly stationary point
of the general compact formulation

Solution to
the strongly stationary point seeking relaxation

with empty set I0

DCA solution to
the bilinear compact formulation for ρ > ρ

if y ⊥ v is satisfied
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Obtain feasible point (d̃, ỹ, ṽ)

Feasible input space Trained Neural Network (d̃, ỹ, ṽ)
d̃

Feasibility insight of trained neural network

I0(ỹ, ṽ) = ∅ ỹi ̸= ṽi , ∀i = 1, . . . ,N Wiyi−1 + bi ̸= 0, , ∀i = 1, . . . ,N

• Often true

• If not, we can losslessly reduce NN size —- no more zero neuron!
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Computing ρ from stationary point

• (d, y, v): From strongly stationary point seeking relaxation
• Obtain ρ: From partial Karush–Kuhn–Tucker conditions of the strongly stationary point
seeking relaxation formulation and the bilinear compact formulation
• Combine lagrangian multipliers µv = [µv0⊤µv+⊤]⊤, µy = [µy0⊤µy+⊤]⊤

Relaxation partial KKT

A⊤λ+ V⊤µv = 0,

W⊤µv + µy = c,

0 ⩽ λ ⊥ Ad− f ⩾ 0,

y⊤µy = 0, v⊤µv = 0,

µy
i ⩾ 0, ∀i ∈ Iv (ỹ, ṽ)

µv
i ⩾ 0, ∀i ∈ Iy (ỹ, ṽ)

Bilinear partial KKT

A⊤λ+ V⊤µ = 0,

0 ⩽ y ⊥ −W⊤µ+ c+ ρv ⩾ 0,

0 ⩽ λ ⊥ Ad− f ⩾ 0,

0 ⩽ v ⊥ ρy + µ ⩾ 0.

>>> X. Liu 15 / 38



Computation for ρ

We substitute µv from relation partial KKT into µ from bilinear partial KKT. Through some
algebraic manipulation, we retrieve the following condition on ρ

Lower bound for ρ

ρ̄ ≜ max

{
0,

{
−
µy
i

v̄i

∣∣∣∣ v̄i > 0

}
,

{
−
µv
i

ȳi

∣∣∣∣ ȳi > 0

}}
.
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Computation for DCA penalty term ρ algorithm

Start Sample feasible input space NN

ỹi ̸= ṽi?

(d̃, ỹ, ṽ)RelaxationA subset of relevant KKTs

Compute ρ Fine tune ρ > ρ End

d̃

ỹ, ṽ

Yes
(d, y, v)

(λ,µv ,µy )

No
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Data center workload allocation in power grids

• Consider a network of spatially distributed data centers.
• Operators allocate workloads to minimize the cost of electricity consumption.

• In practice, we do not have network data or other parameters.
• Use a neural network to map the workload allocation to the cost of electricity.
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Bilevel optimization to solve data center load allocation

• Goal: Allocate data center load to minimize the cost of electricity consumption.
• Given: Forecast of total electricity demand ∆.
• Data center allocation formulated as a bilevel optimization problem where d is the data
center loads with upper and lower bounds d and d. π is the price per demand.
• Challenge: Unknown underlying physical model

• Solution: Replace by a neural network trained with a labeled dataset on historical record
{(d1, λ1), . . . , (dn, λn)}.

minimize
d

π⊤d

subject to d ⩽ d ⩽ d

1⊤d = ∆

π ∈
Unknown model

=⇒
minimize

d
NN(d)

subject to d ⩽ d ⩽ d

1⊤d = ∆
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Data generation for NN training

• Method: Using locational marginal prices (LMPs) as π derived from the optimal power
flow (OPF) model. Use this data to train neural network.

minimize
p⩽p⩽p

p⊤Cp+ c⊤p

subject to 1⊤(p− ℓ− d) = 0 : λ

|F(p− ℓ− d)| ⩽ f : µ,µ

Locational Marginal Price(LMP)

π = 1λ⋆ − F⊤µ⋆ + F⊤µ⋆

[Chatzivasileiadis, 2018]

• p: generator dispatch

• [p,p]: feasible range of dispatch

• ℓ: conventional loads

• d: data center loads

• F: the matrix of power transfer distribution
factors, which maps net power injections
(p− ℓ− d) to power flows as F(p− ℓ− d)

• f: line capacity
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Experiment on PJM-5 bus system

• 3 loads act as data centers with demand in the range of [0.8, 1] of the nominal value.
• NN with 2 hidden layers, 50 neurons each. 10, 000 training samples
• Global solution is computed using SOS1 constraints and Gurobi solver.

[Zhou, 2023]
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Experiment on PJM-5 bus system

• ρ⋆: fast convergence

• ρ < ρ⋆: Does not satisfy
complementarity condition

• ρ > ρ⋆: Slow convergence
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Experiment on IEEE 118 bus system

• NN training: NN with 5-hidden layer and 1, 000 ReLUs, trained on 12, 500 demand
samples in the range of [0, 100] MWh.
• DCA solution: Computes a new demand allocation to improve the baseline.
• Samples: Randomly picked 50 baseline cases, of which DCA could successfully converge
and 47 of them roughly match the output of the OPF model.

>>> X. Liu 23 / 38



Experiment on IEEE 118 bus system

• First 23 cases: The savings are
small. Lightly congested with
little to no benefit from spatial
load redistribution

• Remaining cases: Significant
improvement

• The smaller ρ consistently leads
to faster convergence.

• Each iteration takes ≈ 0.37
seconds, allowing for convergence
in around 1 hour on average.
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Experiment on IEEE 118 bus system

• The difference between the LMPs induced at baseline and the DCA solutions.
• LMPs were significantly reduced at the data centers.
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Conclusions

• Developed a difference-of-convex algorithm to solve decision-making problems with
objectives or constraints represented by trained neural networks.

• Avoided the computational bottleneck of ReLU logical constraints through informed
penalization of such constraints in the objective function.

• Demonstrated on the data center load allocation application and showed significant
reduction in cost compared to baseline.
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Questions

Questions?

Figure: Caption
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Backup I: Derivation of LMP

• Partial Lagrangian function (dualize the coupling constraints only):

L(p, λ,µ,µ) =c(p)− λ1⊤(p− d)

+ µ⊤(F(p− d)− f) + µ⊤(−F(p− d)− f)

• Group terms corresponding to dispatch p, demand d and line limits f :

L = Lp + Ld + Lf , where

Lp(p, λ,µ,µ) = c(p)− (1λ− F⊤µ+ F⊤µ)⊤p

Ld(λ,µ,µ) = (1λ− F⊤µ+ F⊤µ)⊤d

Lf(µ,µ) = −(µ+ µ)⊤f

Power dispatch p and demand d share the same multiplier but with oposite signs

[Dvorkin, 2025]
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Backup I: Derivation of LMP

π⋆(λ⋆,µ⋆,µ⋆) = 1λ⋆︸︷︷︸
uniform

−F⊤(µ⋆ − µ⋆)︸ ︷︷ ︸
congestion

∈ RN

• π⋆
n is the cost of supplying the next unit of demand at node n

• in case of congestion (µ⋆ > 0 or µ⋆ > 0), electricity price varies across the grid

• price at the reference bus is λ⋆ (the ref. column of F is zero)

[Dvorkin, 2025]
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Backup II: DC-OPF (PTDF formulation)

• Use matrix F ∈ RE×N of power transfer distribution factors (PTDF)
• how the power flow in line e changes w.r.t. to the change of power injection at node n?

• obtained by manipulating the DC bus admittance matrix B

• Power flows f = F(p− d) (distribution of net injections across power lines)
minimize

p
c(p) generation cost

subject to 1⊤(p− d) = 0 active power balance

|F(p− d)| ⩽ f power flow limits

p ⩽ p ⩽ p min/max gen p-limits

[Dvorkin, 2025]
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Backup III: Big-M

Constraints:

z ⩾ 0

µ ⩾ 0

zµ = 0

Big-M reformulation: {
µ ⩽ Mu
z ⩽ M(1− u)

where u ∈ {0, 1} is an auxiliary binary variable, and M is a large enough constant

[Dvorkin, 2025]
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Backup IV: Semidefinate Programming

xi+1 = ReLU (Li (xi )) .

xi+1 ⩾ 0 [λa
i ] , xi+1 ⩾ Li (xi )

[
λb
i

]
xi+1 ⊙ (xi+1 − Li (xi )) ⩽ 0 [λc

i ] , xi ⊙ xi − (ℓi + ui )⊙ xi + ℓi ⊙ ui ⩽ 0
[
λd
i

]
.

L (xi , xi+1, λi ) = (−xi+1)
⊤ λa

i + (Li (xi )− xi+1)
⊤ λb

i

+ (xi+1 ⊙ (xi+1 − Li (xi )))
⊤ λc

i + (xi ⊙ xi − (ℓi + ui )⊙ xi + ℓi ⊙ ui )
⊤ λd

i

= (ℓi ⊙ ui )
⊤ λd

i︸ ︷︷ ︸
independent of xi ,xi+1

− x⊤i+1λ
a
i + (Li (xi ))

⊤ λb
i − x⊤i+1λ

b
i − x⊤i

(
(ℓi + ui )⊙ λd

i

)
︸ ︷︷ ︸

linear in xi ,xi+1

+ x⊤i+1 diag (λ
c
i ) xi+1 − x⊤i+1 diag (λ

c
i )Li (xi ) + x⊤i diag

(
λd
i

)
xi︸ ︷︷ ︸

Quadratic in xi ,xi+1

.

[Dathathri et al., 2020]>>> X. Liu 36 / 38



Backup V: Neuron split and bound propagation

• ReLU relaxation: w⊤ ReLU(v) ≥ w⊤Dv + b′ where D is a diagonal matrix containing free
variables 0 ≤ αj ≤ 1 only when uj > 0 > lj and wj ≥ 0, while its rest values as well as
constant b′ are determined by l,u,w .

• minx∈C f (x) ≥ minx∈C a⊤
CROWN x + cCROWN where aCROWNand cCROWNcan be computed

using W(i),b(i), l(i),u(i) in polynomial time.

>>> X. Liu 37 / 38



Backup VI: Additional argument for ρ

Strongly stationary point
of the original problem

(y ⊥ v)

Strongly stationary point 1
of the bilinear problem

Strongly stationary point 2
of the bilinear problem

ρ = ρ

ρ > ρ s.t. y ⊥ v

• The fine tuning to make sure complementarity condition is satisfied is easy because
intuitively, if ρ works as a penalty parameter in one case, the penalty is penalize the bilinear
part enough to satisfy the complementarity condition.

• This result is also proven experimentally.
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