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Two-stage electricity markets
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» Two-stage electricity markets to manage uncertainty of renewables:
» Day-ahead market: minimize the cost of power supply w.r.t. forecast

» Real-time market: least-cost re-dispatch to accommodate forecast errors

» As renewable penetration increases, the cost of real-time re-dispatch also increases
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» Two-stage electricity markets to manage uncertainty of renewables:
» Day-ahead market: minimize the cost of power supply w.r.t. forecast

» Real-time market: least-cost re-dispatch to accommodate forecast errors

» As renewable penetration increases, the cost of real-time re-dispatch also increases

How to make renewable power generation less expensive for the system?
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Two-stage electricity markets (continued)

day-ahead market real-time market

min dispatch cost fixed dispatch min re-dispatch cost

s.t. grid limits (w) s.t. grid limits (A w)

>> V. Dvorkin / 14



Two-stage electricity markets (continued)

day-ahead market real-time market

min dispatch cost fixed dispatch min re-dispatch cost

s.t. grid limits (w) s.t. grid limits (A w)

To improve cost efficiency across day-ahead and real-time markets:

» Stochastic electricity market design | , , ]:

+ Co-optimization of dispatch and re-dispatch decisions

min dispatch cost + Ep,  [re-dispatch cost]

+ Least-cost solution in expectation

s.t. grid limits (w, ) for all ~ P

— Market properties only hold in expectation
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» Tuning deterministic market parameters to approximate stochastic efficiency:

» Improved scheduling of renewbales | ]

» Cost-aware reserve requirements and transmission
allocation | | , , ]
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Two-stage electricity markets (continued)

day-ahead market real-time market

min dispatch cost fixed dispatch min re-dispatch cost

s.t. grid limits (w) s.t. grid limits (A w)

To improve cost efficiency across day-ahead and real-time markets:

» Stochastic electricity market design | , , ]:

+ Co-optimization of dispatch and re-dispatch decisions

min dispatch cost + Ep,  [re-dispatch cost]

+ Least-cost solution in expectation

s.t. grid limits (w, ) for all ~ P

— Market properties only hold in expectation

» Tuning deterministic market parameters to approximate stochastic efficiency:

» Improved scheduling of renewbales | ]

» Cost-aware reserve requirements and transmission
allocation | | , , ]

» This paper proves that markets incentivize tuning private forecasts to minimize total system costs, yielding a
soclally optimal regression equilibrium.
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Revenue-optimal wind power forecasting in two-stage markets

Baseline approach to wind power forecasting:
» Collect a training dataset D = {(v1,W1),...,©n, Wp)}
» Machine learning model Wy : F — V¥V with parameter
» Learn optimal parameter ¢ by minimizing a prediction loss

. 1 —
min  L(0|D) = —ZHW (¢i) — will;
L =1

O]l <7
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Revenue-optimal forecasting | , , ]:
1. Day-ahead stage: LMP \; pricing the forecast of wind power
2. Real-time stage: LMP A; pricing any forecast deviation

max R (0D, A1, A2) = —Z( A1iWo(wi) + Xai(wi — W (‘P:»)
O] <7 n = | N— —

day-ahead revenue real-time revenue
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Regression equilibrium in two-stage electricity markets [Dvo24]

Optimization of wind power producers
max R (0,|Dj, A1, A2) — v - L(6;|D))

|5||<m

for all producers j€1,...,b
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Regression equilibrium in two-stage electricity markets [Dvo24]

Optimization of wind power producers
W
max R (0;|Dj, A1, A2) — v - L(0;|Dj) regularization

19j||< .
_ N — by prediction loss
2 for all produw b

expected revenue
feature selection

>> V. Dvorkin / 14



Regression equilibrium in two-stage electricity markets [Dvo24]

Optimization of wind power producers Optimization of controllable generators
G
| m|z|ax RY(0;|D;, A1, X2) — v - L(0;|D;) max_ R7(pi,ri | Ati, X2i) — c(pi,¥i)
for all producers j€1,...,b for all training samples 1 € D1,
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Regression equilibrium in two-stage electricity markets [Dvo24]

Optimization of wind power producers Optimization of controllable generators
G
| m|z|ax RY(0;|D;, A1, X2) — v - L(0;|D;) max_ R7(pi,ri | Ati, X2i) — c(pi,¥i)
for all producers j€1,...,b for all training samples 1 € Dy.p

revenue from gener-
ation and regulation

generation and
regulation cost
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Regression equilibrium in two-stage electricity markets [Dvo24]

Optimization of wind power producers Optimization of controllable generators
G
| m|z|ax RY(0;|D;, A1, X2) — v - L(0;|D;) _max_ R7(pi,ri | Ati, X2i) — c(pi,¥i)
j <TJ EAN
for all producers j€1,...,b for all training samples 1 € D1,

Market-clearing conditions at the 1% and 2" stages

b b b
0<A1ini+ZWj(<Pi)—d>0, 0<>\2ilri+zwﬁ—zw (wi) 20
j=1

Jj=1 Jj=1

for all training samples 1 € D1
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Regression equilibrium in two-stage electricity markets [Dvo24]

Optimization of wind power producers Optimization of controllable generators
G
| mﬁ:\x RY(0;|D;, A1, X2) — ~ - L(0;|D;) max_ R (pi,ri | A1i, A2i) — c(pi,ri)
j <TJ Pi,Y
for all producers j€1,...,b for all training samples 1 € Dy.p

Market-clearing conditions at the 1% and 2" stages

b b b
0<A1ini+ZWj(90i)—d>0, 0<>\2iJ-ri—|-ZWji—ZW (pi) =0
=1

for all training samples 1 € D1,

Assumptions:

» Class of ML models Wy is convex in ¢, e.g., kernel regression
» Training datasets are such that n > card|p] (unique regression solution)
» The intersection of private feasible regions is compact (at least one feasible dispatch Vi € Ds.;)

regression equilibrium exists and is unique!
>>> V. Dvorkin / 14
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Regression equilibrium in two-stage electricity markets [Dvo24]

Optimization of wind power producers Optimization of controllable generators
G
Hmﬁx R (6D, A1, A2) — v - L(6,|D;) max . R7(Pi, fi | Avi, Aai) — c(pi, 1i)
j <Tj Pt
for all producers j€1,...,b for all training samples 1 € D1

Market-clearing conditions at the 1% and 2" stages

b b b
0<A1ini—|-ZWj(90i)—d>0, 0<>\2iJ-ri—|—ZWji—ZW (wi) 20
j=1

for all training samples 1 € D1,

Equilibrium regression profile = (07,...,0,), such that:
» Feasible operation of the power gird and markets
» Maximized wind power profits, with no incentives to deviate
» Minimized expected dispatch costs across the two markets
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Optimization of wind power producers Optimization of controllable generators
G
Hmﬁx R (6D, A1, A2) — v - L(6,|D;) max . R7(Pi, fi | Avi, Aai) — c(pi, 1i)
j <Tj Pt
for all producers j€1,...,b for all training samples 1 € D1

Market-clearing conditions at the 1% and 2" stages

b b b
0<A1ini—|-ZWj(90i)—d>0, 0<>\2iJ-ri—|—ZWji—ZW (wi) 20
j=1

for all training samples 1 € D1,

Equilibrium regression profile = (07,...,0,), such that:
» Feasible operation of the power gird and markets
» Maximized wind power profits, with no incentives to deviate
» Minimized expected dispatch costs across the two markets

How to compute equilibrium regression ?
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Connection to variational inequalities theory [ST10]

Equilibrium Variational
problem inequalities

» Equilibrium problem: stacks many private optimization problems

Equivalent
optimization

» Variational inequalities (VI): analyzes the interaction between private optimization problems

» In some special cases (like ours), VI connects equilibrium to a centralized optimization

For more details visit Appenix A in: https://arxiv.org/pdf/2405.17753
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Computing regression equilibrium: centralized optimization

» By the Symmetry Principle Theorem | |, there exists an equivalent opt solving the equilibrium
» ... which happens to minimizes the expected generation and regulation costs
» ... thus enhancing the temporal coordination of day-ahead and real-time markets
min 1 z”: c(pi,ri) +v1|Op; — wil|3 regularized expected cost
pr AT
s.t. lT(p,- pi —d) =0, day-ahead power balance
1' (ri — Opi +w;) =0, real-time power balance
F(pi + ©Opi —d)| < f, day-ahead power flow limit
F(pi + O —d)
+ F(ri — ©Opi +w;)| < f, real-time power flow limit
P<pi+ri<p, generation limit
ri| <rv, Vi=1, ..., n, regulation limit
<7 equilibrium feature selection

» For more details visit Appenix A in: https://arxiv.org/pdf/2405.17753
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Experiments on a modified IEEE 24-Bus RTS
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> 6 with farms with identical data and features » Although data is the same, how do equilibrium forecasts
» Cover 38.4% of load at peak generation depend on the wind farm location in the grid?

» Kernel regression with 30 transformed features » What are the equilibrium benefits in terms profits (any
> 5 000 training and 10, 000 testing samples incentives to deviate?) and cost of electricity?
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Baseline versus Equilibrium forecasts
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» Baseline: minimizes a prediction error Systematic over- or under-prediction depending

e s . . . on the wind farm’s location in the grid
» Equilibrium: maximizes wind farm profits 5
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Wind farm profits and incentives to deviate
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» Equilibrium regression yields larger profits for all wind farms
» There are large profit incentives to unilaterally deviate from the baseline regression

» And (almost) no incentives to deviate from the equilibrium regression
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Impact of regression equilibrium on dispatch costs

Regression RMSE. MWh Average dispatch cost, $ Total dispatch cost error, $
total day-ahead real-time average CVaRqgy

Oracle 37,246 37,246

Baseline 38 39, 223 37,459 1,764 1,977 3,626

» Baseline regression: minimal forecast error, yet results in large real-time cost

» Equilibrium regression: large forecast errors, withholds cheap generation from the day-ahead
market; yet, results in very cheap real-time re-dispatch

» Saving of 2.4% on average, and 13.6% on average across 10% of the worst-case scenarios
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Concluding remarks

» Network coupling of private ML models (ripple effect on the entire electricity market)
» Nash regression equilibrium syncs private models and yields maximum profits
» |t implicitly minimizes the cost across day-ahead and real-time markets ...

» ...thus delivering the benefits of stochastic market design in the existing deterministic markets
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Regression Equilibrium in Electricity Markets
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What is next? Al equilibrium in systems governed by optimization programs
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» Many systems governed by optimization (pricing, scheduling, social planning, optimal control,...)

» Arbitrary Al models (regression, deep learning, reinforcement learning, trees)

» From Nash to Generalized Nash Equilibrium: more insights, algorithms, etc.

» Does the design of the governing optimization steer Al models to operational and economic equilibrium?
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» Many systems governed by optimization (pricing, scheduling, social planning, optimal control,...)

» Arbitrary Al models (regression, deep learning, reinforcement learning, trees)

» From Nash to Generalized Nash Equilibrium: more insights, algorithms, etc.

» Does the design of the governing optimization steer Al models to operational and economic equilibrium?
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