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↭ Two-stage electricity markets to manage uncertainty of renewables:
↭ Day-ahead market: minimize the cost of power supply w.r.t. forecast

↭ Real-time market: least-cost re-dispatch to accommodate forecast errors

↭ As renewable penetration increases, the cost of real-time re-dispatch also increases

How to make renewable power generation less expensive for the system?
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Two-stage electricity markets (continued)

min dispatch cost

s.t. grid limits (ŵ)

min re-dispatch cost

s.t. grid limits (!ŵ)

day-ahead market real-time market

fixed dispatch

To improve cost e!ciency across day-ahead and real-time markets:

↭ Stochastic electricity market design [PZP10, M+12, Dvo19]:

+ Co-optimization of dispatch and re-dispatch decisions

+ Least-cost solution in expectation

→ Market properties only hold in expectation

min dispatch cost + EP!ŵ [re-dispatch cost]

s.t. grid limits (ŵ ,!ŵ) for all !ŵ → P!ŵ

↭ Tuning deterministic market parameters to approximate stochastic e”ciency:

↭ Improved scheduling of renewbales [M+14]

↭ Cost-aware reserve requirements and transmission
allocation [DDM18, MP24, JKP17, DP19]

↭ This paper proves that markets incentivize tuning private forecasts to minimize total system costs, yielding a
socially optimal regression equilibrium.
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s.t. grid limits (ŵ ,!ŵ) for all !ŵ → P!ŵ
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Revenue-optimal wind power forecasting in two-stage markets

Baseline approach to wind power forecasting:

↭ Collect a training dataset D = {(ω1,w1), . . . ,ωn,wn)}
↭ Machine learning model Wω : F →↑ W with parameter ε

↭ Learn optimal parameter εω by minimizing a prediction loss

min
→ω→1↭ε

L(ε |D) =
1
n

n∑

i=1

↓Wω(ωi )↔ wi↓22

Revenue-optimal forecasting [PCK07, CK19, WSC23]:

1. Day-ahead stage: LMP ϑ1 pricing the forecast of wind power

2. Real-time stage: LMP ϑ2 pricing any forecast deviation

max
→ω→1↭ε

RW (ε |D,ϑ1,ϑ2) =
1
n

n∑

i=1

(
ϑ1iWω(ωi )︸ ︷︷ ︸

day-ahead revenue

+ϑ2i (wi ↔Wω(ωi ))︸ ︷︷ ︸
real-time revenue

)
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Regression equilibrium in two-stage electricity markets [Dvo24]

Optimization of wind power producers

max
→ωj→↭ωj

RW (ωj |Dj ,ε1,ε2)↑ ω · L(ωj |Dj)

for all producers j → 1, . . . , b

Optimization of controllable generators

max
pi ,ri→G

RG (pi , ri | ε1i ,ε2i )↑ c (pi , ri )

for all training samples i → D1:b

Market-clearing conditions at the 1st and 2nd stages

0 ↭ ε1i ↓ pi +
b∑

j=1

Wωj (ϑi )↑ d ↫ 0, 0 ↭ ε2i ↓ ri +
b∑

j=1

wji ↑
b∑

j=1

Wωj (ϑi ) ↫ 0

for all training samples i → D1:b

How to compute equilibrium regression !ε?
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Connection to variational inequalities theory [S+10]

Equilibrium
problem

Variational
inequalities

Equivalent
optimization

↭ Equilibrium problem: stacks many private optimization problems

↭ Variational inequalities (VI): analyzes the interaction between private optimization problems

↭ In some special cases (like ours), VI connects equilibrium to a centralized optimization

For more details visit Appenix A in: https://arxiv.org/pdf/2405.17753
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Computing regression equilibrium: centralized optimization

↭ By the Symmetry Principle Theorem [FP03], there exists an equivalent opt solving the equilibrium
↭ ... which happens to minimizes the expected generation and regulation costs
↭ ... thus enhancing the temporal coordination of day-ahead and real-time markets

min
!,p,r

1
n

n∑

i=1

c (pi , ri ) + ω →!ωi ↑ wi→22 regularized expected cost

s.t. 1→(pi +!ωi ↑ d) = 0, day-ahead power balance

1→(ri ↑!ωi + wi ) = 0, real-time power balance

|F(pi +!ωi ↑ d)| ↫ f, day-ahead power flow limit

|F(pi +!ωi ↑ d)

+ F(ri ↑!ωi + wi )| ↫ f, real-time power flow limit

p ↫ pi + ri ↫ p, generation limit

|ri | ↫ r, ↓i = 1, . . . , n, regulation limit

|!| ↫ ε equilibrium feature selection

↭ For more details visit Appenix A in: https://arxiv.org/pdf/2405.17753
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Experiments on a modified IEEE 24-Bus RTS
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↭ 6 with farms with identical data and features

↭ Cover 38.4% of load at peak generation

↭ Kernel regression with 30 transformed features

↭ 5, 000 training and 10, 000 testing samples

↭ Although data is the same, how do equilibrium forecasts
depend on the wind farm location in the grid?

↭ What are the equilibrium benefits in terms profits (any
incentives to deviate?) and cost of electricity?
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Baseline versus Equilibrium forecasts

↭ Baseline: minimizes a prediction error

↭ Equilibrium: maximizes wind farm profits

Systematic over- or under-prediction depending
on the wind farm’s location in the grid
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Wind farm profits and incentives to deviate

↭ Equilibrium regression yields larger profits for all wind farms

↭ There are large profit incentives to unilaterally deviate from the baseline regression

↭ And (almost) no incentives to deviate from the equilibrium regression
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Impact of regression equilibrium on dispatch costs

Regression RMSE, MWh
Average dispatch cost, $ Total dispatch cost error, $

total day-ahead real-time average CVaR10%

Oracle ——– 37, 246 37, 246 ——– ——– ——–
Equilibrium 395 38, 326 38, 154 172 1, 080 3, 555
Baseline 88 39, 223 37, 459 1, 764 1, 977 8, 626

↭ Baseline regression: minimal forecast error, yet results in large real-time cost

↭ Equilibrium regression: large forecast errors, withholds cheap generation from the day-ahead
market; yet, results in very cheap real-time re-dispatch

↭ Saving of 2.4% on average, and 13.6% on average across 10% of the worst-case scenarios
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Concluding remarks

↭ Network coupling of private ML models (ripple e!ect on the entire electricity market)

↭ Nash regression equilibrium syncs private models and yields maximum profits

↭ It implicitly minimizes the cost across day-ahead and real-time markets ...

↭ ...thus delivering the benefits of stochastic market design in the existing deterministic markets

Regression Equilibrium in Electricity Markets
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What is next? AI equilibrium in systems governed by optimization programs
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↫ Many systems governed by optimization (pricing, scheduling, social planning, optimal control,...)
↫ Arbitrary AI models (regression, deep learning, reinforcement learning, trees)
↫ From Nash to Generalized Nash Equilibrium: more insights, algorithms, etc.
↫ Does the design of the governing optimization steer AI models to operational and economic equilibrium?
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