Regression Equilibrium in Electricity Markets

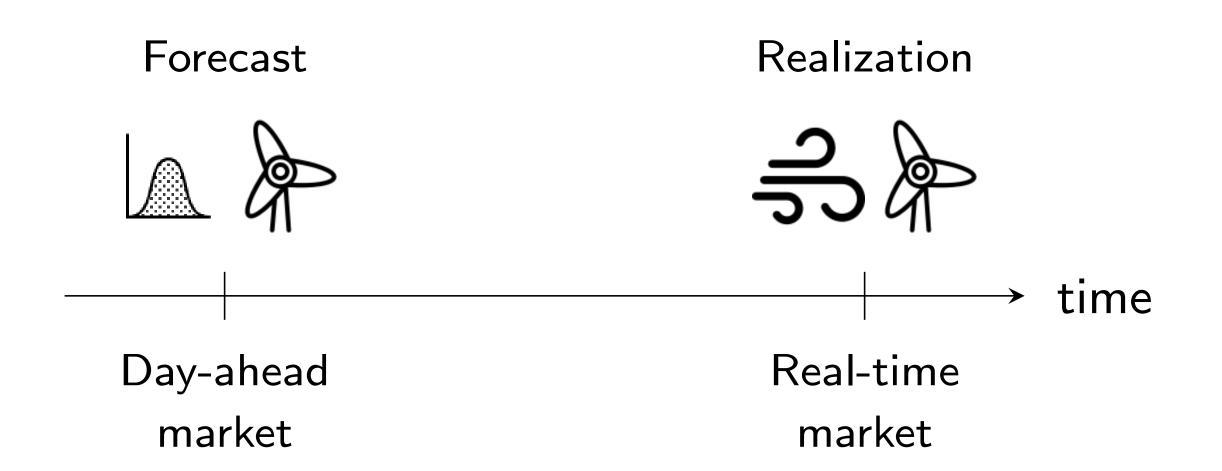
Vladimir Dvorkin

Department of Electrical Engineering and Computer Science
University of Michigan

ENRE Early Career Best Paper Award 2025 INFORMS Annual Meeting — Atlanta

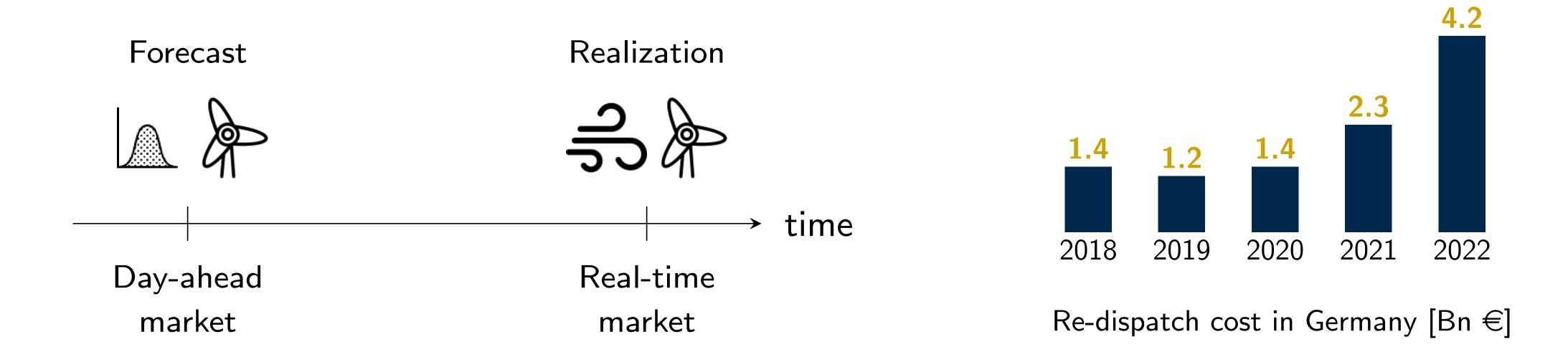
October 27, 2025

Two-stage electricity markets



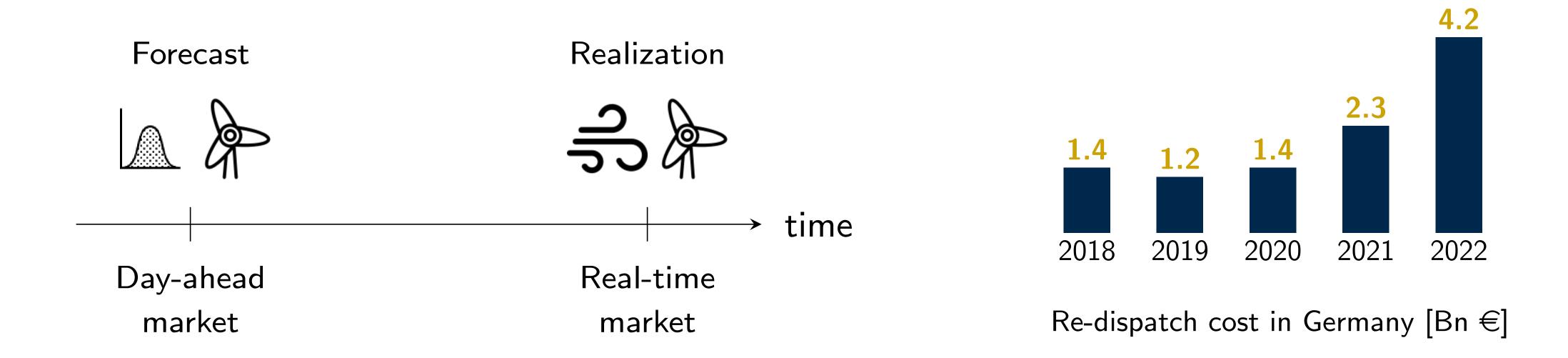
- Two-stage electricity markets to manage uncertainty of renewables:
 - Day-ahead market: minimize the cost of power supply w.r.t. forecast
 - ► Real-time market: least-cost re-dispatch to accommodate forecast errors
- As renewable penetration increases, the cost of real-time re-dispatch also increases

Two-stage electricity markets



- Two-stage electricity markets to manage uncertainty of renewables:
 - Day-ahead market: minimize the cost of power supply w.r.t. forecast
 - ► Real-time market: least-cost re-dispatch to accommodate forecast errors
- As renewable penetration increases, the cost of real-time re-dispatch also increases

Two-stage electricity markets



- Two-stage electricity markets to manage uncertainty of renewables:
 - Day-ahead market: minimize the cost of power supply w.r.t. forecast
 - ► Real-time market: least-cost re-dispatch to accommodate forecast errors
- As renewable penetration increases, the cost of real-time re-dispatch also increases

How to make renewable power generation less expensive for the system?



To improve cost efficiency across day-ahead and real-time markets:

- ► Stochastic electricity market design [PZP10, M⁺12, Dvo19]:
 - + Co-optimization of dispatch and re-dispatch decisions
 - Least-cost solution in *expectation*
 - Market properties only hold in expectation

min dispatch cost $+\mathbb{E}_{\mathbb{P}_{\Delta\widehat{w}}}$ [re-dispatch cost] s.t. grid limits $(\widehat{w}, \Delta\widehat{w})$ for all $\Delta\widehat{w} \sim \mathbb{P}_{\Delta\widehat{w}}$

To improve cost efficiency across day-ahead and real-time markets:

- ► Stochastic electricity market design [PZP10, M⁺12, Dvo19]:
 - + Co-optimization of dispatch and re-dispatch decisions
 - + Least-cost solution in expectation
 - Market properties only hold in expectation

min dispatch cost $+ \mathbb{E}_{\mathbb{P}_{\Delta\widehat{\boldsymbol{w}}}}$ [re-dispatch cost]

s.t. grid limits $(\widehat{w}, \Delta \widehat{w})$ for all $\Delta \widehat{w} \sim \mathbb{P}_{\Delta \widehat{w}}$

- ► Tuning deterministic market parameters to approximate stochastic efficiency:
 - ► Improved scheduling of renewbales [M+14]
 - Cost-aware reserve requirements and transmission allocation [DDM18, MP24, JKP17, DP19]

To improve cost efficiency across day-ahead and real-time markets:

- ► Stochastic electricity market design [PZP10, M⁺12, Dvo19]:
 - + Co-optimization of dispatch and re-dispatch decisions
 - + Least-cost solution in expectation
 - Market properties only hold in expectation

min dispatch cost $+ \mathbb{E}_{\mathbb{P}_{\Delta\widehat{\boldsymbol{w}}}}$ [re-dispatch cost]

s.t. grid limits $(\widehat{w}, \Delta \widehat{w})$ for all $\Delta \widehat{w} \sim \mathbb{P}_{\Delta \widehat{w}}$

- ► Tuning deterministic market parameters to approximate stochastic efficiency:
 - ► Improved scheduling of renewbales [M+14]
 - Cost-aware reserve requirements and transmission allocation [DDM18, MP24, JKP17, DP19]
- ► This paper proves that markets incentivize tuning private forecasts to minimize total system costs, yielding a socially optimal regression equilibrium.

Revenue-optimal wind power forecasting in two-stage markets

Baseline approach to wind power forecasting:

- ightharpoonup Collect a training dataset $\mathcal{D} = \{(\varphi_1, \mathbf{w}_1), \dots, \varphi_n, \mathbf{w}_n)\}$
- lackbox Machine learning model $\mathbb{W}_{m{ heta}}: \mathcal{F} \mapsto \mathcal{W}$ with parameter $m{ heta}$
- Learn optimal parameter θ^* by minimizing a prediction loss

$$\min_{\|\boldsymbol{\theta}\|_1 \leqslant \tau} \quad \mathcal{L}(\boldsymbol{\theta} \,|\, \mathcal{D}) = \frac{1}{n} \sum_{i=1}^n \|\mathbb{W}_{\boldsymbol{\theta}}(\boldsymbol{\varphi}_i) - \mathbf{w}_i\|_2^2$$

Revenue-optimal wind power forecasting in two-stage markets

Baseline approach to wind power forecasting:

- ightharpoonup Collect a training dataset $\mathcal{D} = \{(\varphi_1, \mathbf{w}_1), \dots, \varphi_n, \mathbf{w}_n)\}$
- $lackbox{lack}$ Machine learning model $\mathbb{W}_{m{ heta}}: \mathcal{F} \mapsto \mathcal{W}$ with parameter $m{ heta}$
- \triangleright Learn optimal parameter θ^* by minimizing a prediction loss

$$\min_{\|\boldsymbol{\theta}\|_1 \leqslant \tau} \quad \mathcal{L}(\boldsymbol{\theta} \,|\, \mathcal{D}) = \frac{1}{n} \sum_{i=1}^n \|\mathbb{W}_{\boldsymbol{\theta}}(\boldsymbol{\varphi}_i) - \mathbf{w}_i\|_2^2$$

Revenue-optimal forecasting [PCK07, CK19, WSC23]:

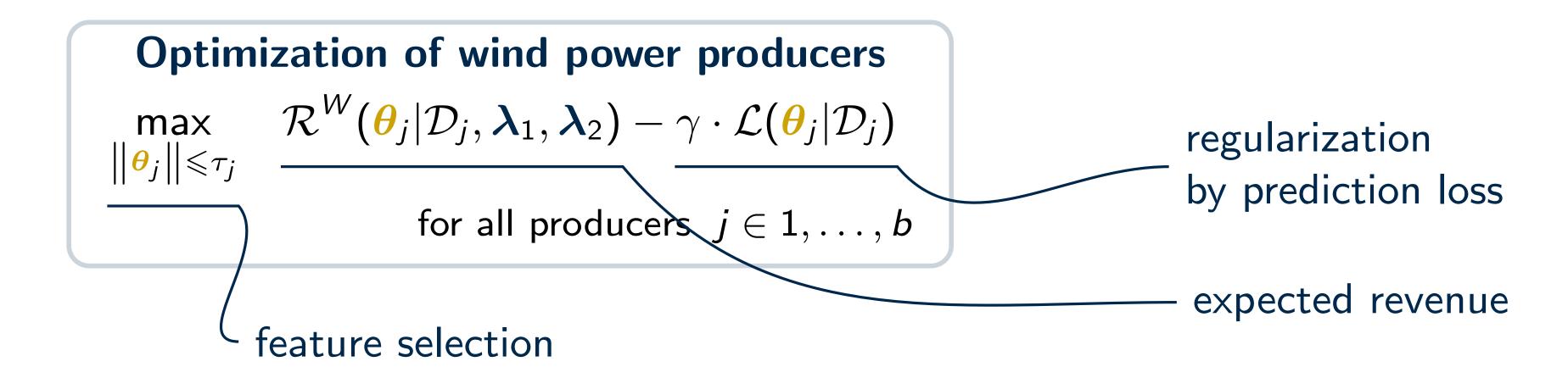
- 1. Day-ahead stage: LMP λ_1 pricing the forecast of wind power
- 2. Real-time stage: LMP λ_2 pricing any forecast deviation

$$\max_{\|\boldsymbol{\theta}\|_1 \leqslant \tau} \quad \mathcal{R}^{W}(\boldsymbol{\theta} \mid \mathcal{D}, \boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2) = \frac{1}{n} \sum_{i=1}^{n} \left(\underbrace{\boldsymbol{\lambda}_{1i} \mathbb{W}_{\boldsymbol{\theta}}(\boldsymbol{\varphi}_i)}_{\text{day-ahead revenue}} + \underbrace{\boldsymbol{\lambda}_{2i}(\mathbf{w}_i - \mathbb{W}_{\boldsymbol{\theta}}(\boldsymbol{\varphi}_i))}_{\text{real-time revenue}} \right)$$

Optimization of wind power producers

$$\max_{\|\boldsymbol{\theta}_j\| \leqslant \tau_j} \mathcal{R}^W(\boldsymbol{\theta}_j | \mathcal{D}_j, \boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2) - \gamma \cdot \mathcal{L}(\boldsymbol{\theta}_j | \mathcal{D}_j)$$

for all producers $j \in 1, \ldots, b$



Optimization of wind power producers

$$\max_{\|\boldsymbol{\theta}_j\| \leqslant \tau_j} \mathcal{R}^W(\boldsymbol{\theta}_j | \mathcal{D}_j, \boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2) - \gamma \cdot \mathcal{L}(\boldsymbol{\theta}_j | \mathcal{D}_j)$$

for all producers $j \in 1, \ldots, b$

Optimization of controllable generators

$$\max_{\mathbf{p}_i,\mathbf{r}_i\in\mathcal{G}} \mathcal{R}^G(\mathbf{p}_i,\mathbf{r}_i \mid \boldsymbol{\lambda}_{1i},\boldsymbol{\lambda}_{2i}) - c(\mathbf{p}_i,\mathbf{r}_i)$$

for all training samples $i \in \mathcal{D}_{1:b}$

Optimization of wind power producers

$$\max_{\|\boldsymbol{\theta}_j\| \leqslant \tau_j} \mathcal{R}^W(\boldsymbol{\theta}_j | \mathcal{D}_j, \boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2) - \gamma \cdot \mathcal{L}(\boldsymbol{\theta}_j | \mathcal{D}_j)$$

for all producers $j \in 1, \ldots, b$

revenue from generation and regulation

Optimization of controllable generators

$$\max_{\mathbf{p}_{i},\mathbf{r}_{i}\in\mathcal{G}}\frac{\mathcal{R}^{G}(\mathbf{p}_{i},\mathbf{r}_{i}\mid\boldsymbol{\lambda}_{1i},\boldsymbol{\lambda}_{2i})-c\left(\mathbf{p}_{i},\mathbf{r}_{i}\right)}{\text{for all training samples }i\in\mathcal{D}_{1:b}}$$

generation and regulation cost

Optimization of wind power producers

$$\max_{\|\boldsymbol{\theta}_j\| \leqslant \tau_j} \mathcal{R}^W(\boldsymbol{\theta}_j | \mathcal{D}_j, \boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2) - \gamma \cdot \mathcal{L}(\boldsymbol{\theta}_j | \mathcal{D}_j)$$

for all producers $j \in 1, \ldots, b$

Optimization of controllable generators

$$\max_{\mathbf{p}_i,\mathbf{r}_i\in\mathcal{G}} \mathcal{R}^G(\mathbf{p}_i,\mathbf{r}_i \mid \boldsymbol{\lambda}_{1i},\boldsymbol{\lambda}_{2i}) - c(\mathbf{p}_i,\mathbf{r}_i)$$

for all training samples $i \in \mathcal{D}_{1:b}$

Market-clearing conditions at the 1st and 2nd stages

$$\mathbf{0}\leqslant oldsymbol{\lambda}_{1i}\perp \mathbf{p}_i+\sum_{j=1}^b\mathbb{W}_{oldsymbol{ heta}_j}(oldsymbol{arphi}_i)-\mathsf{d}\geqslant \mathbf{0},\quad \mathbf{0}\leqslant oldsymbol{\lambda}_{2i}\perp \mathbf{r}_i+\sum_{j=1}^b\mathbf{w}_{ji}-\sum_{j=1}^b\mathbb{W}_{oldsymbol{ heta}_j}(oldsymbol{arphi}_i)\geqslant \mathbf{0}$$

for all training samples $i \in \mathcal{D}_{1:b}$

Optimization of wind power producers

$$\max_{\|\boldsymbol{\theta}_j\| \leqslant \tau_j} \mathcal{R}^W(\boldsymbol{\theta}_j | \mathcal{D}_j, \boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2) - \gamma \cdot \mathcal{L}(\boldsymbol{\theta}_j | \mathcal{D}_j)$$

for all producers $j \in 1, \ldots, b$

Optimization of controllable generators

$$\max_{\mathbf{p}_i,\mathbf{r}_i\in\mathcal{G}} \mathcal{R}^{G}(\mathbf{p}_i,\mathbf{r}_i \mid \boldsymbol{\lambda}_{1i},\boldsymbol{\lambda}_{2i}) - c(\mathbf{p}_i,\mathbf{r}_i)$$

for all training samples $i \in \mathcal{D}_{1:b}$

Market-clearing conditions at the 1st and 2nd stages

$$\mathbf{0}\leqslant oldsymbol{\lambda}_{1i}\perp \mathbf{p}_i + \sum_{j=1}^b \mathbb{W}_{oldsymbol{ heta}_j}(oldsymbol{arphi}_i) - \mathbf{d}\geqslant \mathbf{0}, \quad \mathbf{0}\leqslant oldsymbol{\lambda}_{2i}\perp \mathbf{r}_i + \sum_{j=1}^b \mathbf{w}_{ji} - \sum_{j=1}^b \mathbb{W}_{oldsymbol{ heta}_j}(oldsymbol{arphi}_i)\geqslant \mathbf{0}$$

for all training samples $i \in \mathcal{D}_{1:b}$

Assumptions:

- ightharpoonup Class of ML models \mathbb{W}_{θ} is **convex** in θ , e.g., kernel regression
- Training datasets are such that $n\gg {\rm card}[m{arphi}]$ (unique regression solution)
- lacktriangle The intersection of private feasible regions is compact (at least one feasible dispatch $orall i\in\mathcal{D}_{1:b}$)

Main result: regression equilibrium exists and is unique!

Optimization of wind power producers

$$\max_{\|\boldsymbol{\theta}_j\| \leqslant \tau_j} \mathcal{R}^W(\boldsymbol{\theta}_j | \mathcal{D}_j, \boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2) - \gamma \cdot \mathcal{L}(\boldsymbol{\theta}_j | \mathcal{D}_j)$$

for all producers $j \in 1, \ldots, b$

Optimization of controllable generators

$$\max_{\mathbf{p}_i,\mathbf{r}_i\in\mathcal{G}} \mathcal{R}^G(\mathbf{p}_i,\mathbf{r}_i \mid \boldsymbol{\lambda}_{1i},\boldsymbol{\lambda}_{2i}) - c(\mathbf{p}_i,\mathbf{r}_i)$$

for all training samples $i \in \mathcal{D}_{1:b}$

Market-clearing conditions at the 1st and 2nd stages

$$\mathbf{0}\leqslant oldsymbol{\lambda}_{1i}\perp \mathbf{p}_i+\sum_{j=1}^b\mathbb{W}_{oldsymbol{ heta}_j}(oldsymbol{arphi}_i)-\mathsf{d}\geqslant \mathbf{0},\quad \mathbf{0}\leqslant oldsymbol{\lambda}_{2i}\perp \mathbf{r}_i+\sum_{j=1}^b\mathbf{w}_{ji}-\sum_{j=1}^b\mathbb{W}_{oldsymbol{ heta}_j}(oldsymbol{arphi}_i)\geqslant \mathbf{0}$$

for all training samples $i \in \mathcal{D}_{1:b}$

Optimization of wind power producers

$$\max_{\|\boldsymbol{\theta}_j\| \leqslant \tau_j} \mathcal{R}^W(\boldsymbol{\theta}_j | \mathcal{D}_j, \boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2) - \gamma \cdot \mathcal{L}(\boldsymbol{\theta}_j | \mathcal{D}_j)$$

for all producers $j \in 1, \ldots, b$

Optimization of controllable generators

$$\max_{\mathbf{p}_i,\mathbf{r}_i\in\mathcal{G}} \mathcal{R}^G(\mathbf{p}_i,\mathbf{r}_i \mid \boldsymbol{\lambda}_{1i},\boldsymbol{\lambda}_{2i}) - c(\mathbf{p}_i,\mathbf{r}_i)$$

for all training samples $i \in \mathcal{D}_{1:b}$

Market-clearing conditions at the 1st and 2nd stages

$$\mathbf{0}\leqslant oldsymbol{\lambda}_{1i}\perp \mathbf{p}_i+\sum_{j=1}^b\mathbb{W}_{oldsymbol{ heta}_j}(oldsymbol{arphi}_i)-\mathsf{d}\geqslant \mathbf{0},\quad \mathbf{0}\leqslant oldsymbol{\lambda}_{2i}\perp \mathbf{r}_i+\sum_{j=1}^b\mathbf{w}_{ji}-\sum_{j=1}^b\mathbb{W}_{oldsymbol{ heta}_j}(oldsymbol{arphi}_i)\geqslant \mathbf{0}$$

for all training samples $i \in \mathcal{D}_{1:b}$

Equilibrium regression profile $\Theta^* = (\theta_1^*, \dots, \theta_b^*)$, such that:

- ► Feasible operation of the power gird and markets
- Maximized wind power profits, with no incentives to deviate
- Minimized expected dispatch costs across the two markets

Optimization of wind power producers

$$\max_{\|\boldsymbol{\theta}_j\| \leqslant \tau_j} \mathcal{R}^W(\boldsymbol{\theta}_j | \mathcal{D}_j, \boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2) - \gamma \cdot \mathcal{L}(\boldsymbol{\theta}_j | \mathcal{D}_j)$$

for all producers $j \in 1, \ldots, b$

Optimization of controllable generators

$$\max_{\mathbf{p}_i,\mathbf{r}_i\in\mathcal{G}} \mathcal{R}^G(\mathbf{p}_i,\mathbf{r}_i \mid \boldsymbol{\lambda}_{1i},\boldsymbol{\lambda}_{2i}) - c(\mathbf{p}_i,\mathbf{r}_i)$$

for all training samples $i \in \mathcal{D}_{1:b}$

Market-clearing conditions at the 1st and 2nd stages

$$\mathbf{0}\leqslant oldsymbol{\lambda}_{1i}\perp \mathbf{p}_i + \sum_{j=1}^b \mathbb{W}_{oldsymbol{ heta}_j}(oldsymbol{arphi}_i) - \mathbf{d}\geqslant \mathbf{0}, \quad \mathbf{0}\leqslant oldsymbol{\lambda}_{2i}\perp \mathbf{r}_i + \sum_{j=1}^b \mathbf{w}_{ji} - \sum_{j=1}^b \mathbb{W}_{oldsymbol{ heta}_j}(oldsymbol{arphi}_i)\geqslant \mathbf{0}$$

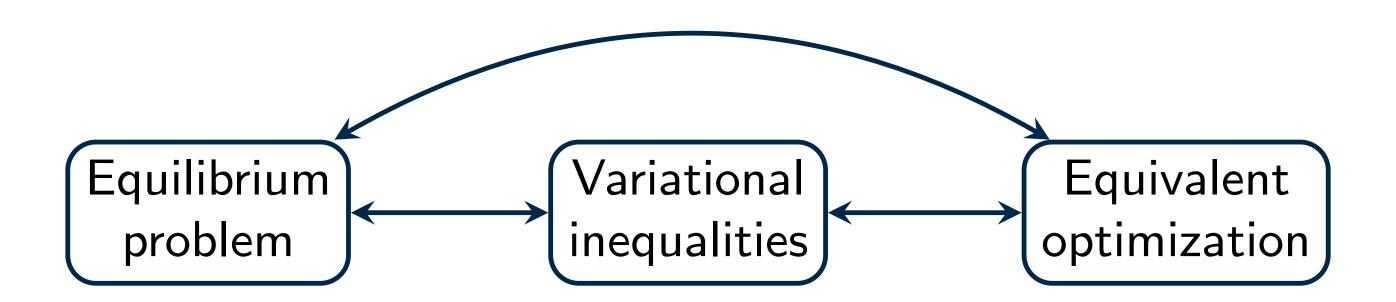
for all training samples $i \in \mathcal{D}_{1:b}$

Equilibrium regression profile $\Theta^* = (\theta_1^*, \dots, \theta_b^*)$, such that:

- ► Feasible operation of the power gird and markets
- Maximized wind power profits, with no incentives to deviate
- Minimized expected dispatch costs across the two markets

How to compute equilibrium regression ⊖^{*}?

Connection to variational inequalities theory [S+10]



- Equilibrium problem: stacks many private optimization problems
- Variational inequalities (VI): analyzes the interaction between private optimization problems
- In some special cases (like ours), VI connects equilibrium to a centralized optimization

For more details visit Appenix A in: https://arxiv.org/pdf/2405.17753

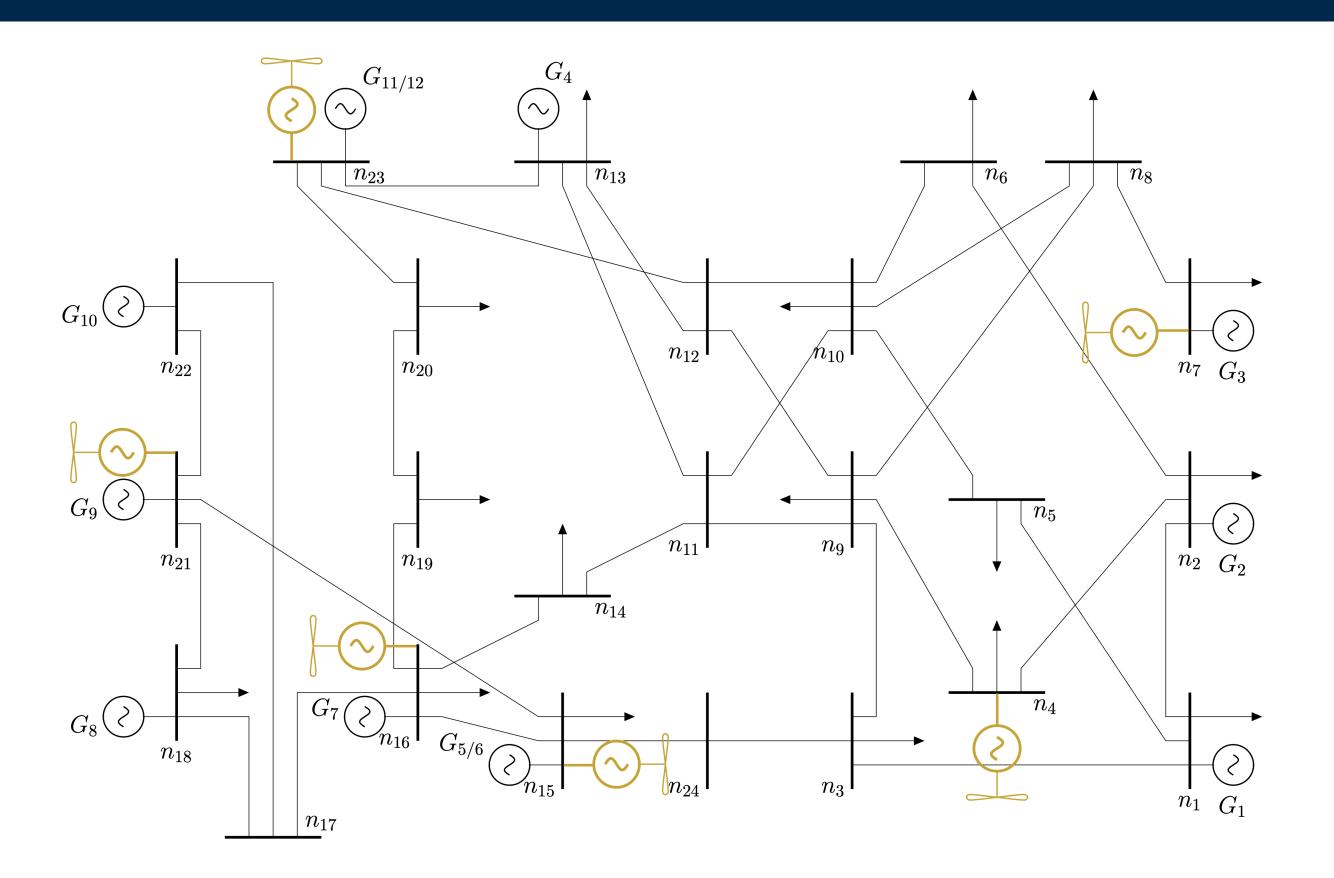
Computing regression equilibrium: centralized optimization

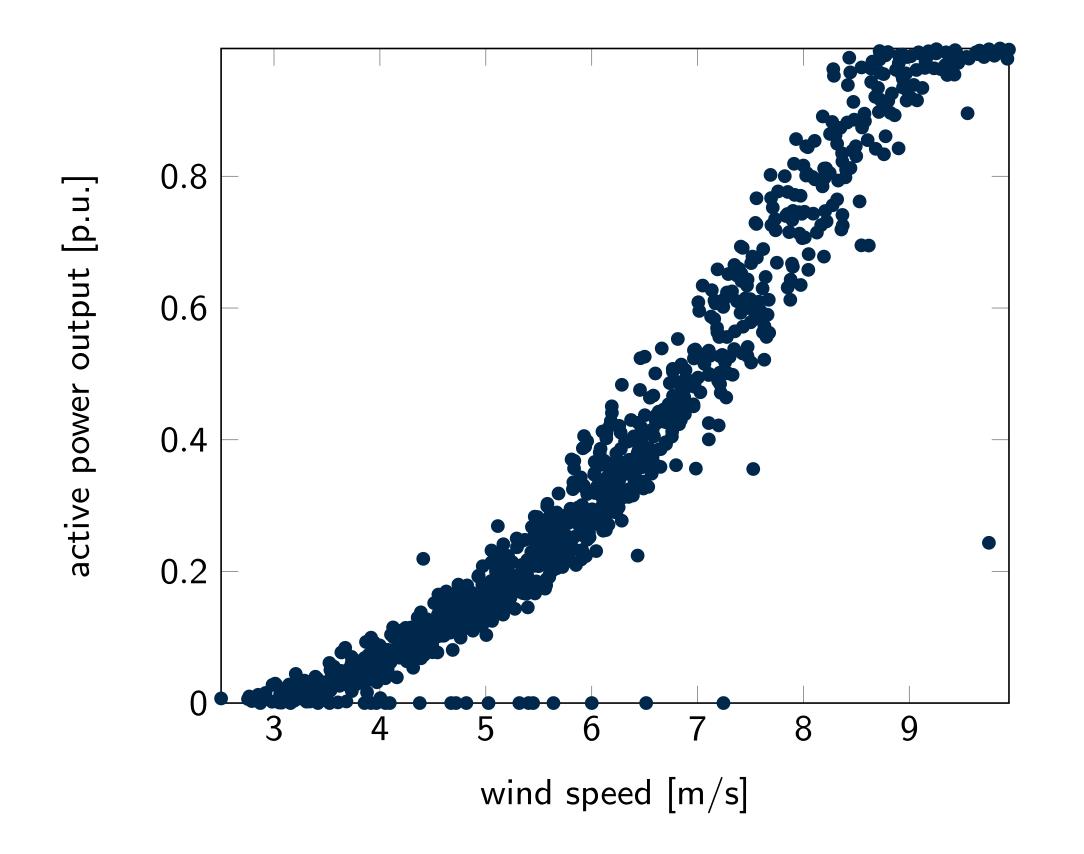
- ▶ By the Symmetry Principle Theorem [FP03], there exists an equivalent opt solving the equilibrium
- which happens to minimizes the expected generation and regulation costs
- thus enhancing the temporal coordination of day-ahead and real-time markets

$$\begin{aligned} & \min_{\Theta,\mathbf{p},\mathbf{r}} & \frac{1}{n} \sum_{i=1}^n c(\mathbf{p}_i,\mathbf{r}_i) + \gamma \left\| \Theta \varphi_i - \mathbf{w}_i \right\|_2^2 \\ & \text{s.t.} & \mathbf{1}^\top (\mathbf{p}_i + \Theta \varphi_i - \mathbf{d}) = 0, \\ & \mathbf{1}^\top (\mathbf{r}_i - \Theta \varphi_i + \mathbf{w}_i) = 0, \\ & |\mathbf{F}(\mathbf{p}_i + \Theta \varphi_i - \mathbf{d})| \leqslant \overline{\mathbf{f}}, \end{aligned} \qquad \text{day-ahead power balance} \\ & |\mathbf{F}(\mathbf{p}_i + \Theta \varphi_i - \mathbf{d})| \leqslant \overline{\mathbf{f}}, \end{aligned} \qquad \text{day-ahead power flow limit} \\ & |\mathbf{F}(\mathbf{p}_i + \Theta \varphi_i - \mathbf{d})| \leqslant \overline{\mathbf{f}}, \end{aligned} \qquad \text{real-time power flow limit} \\ & |\mathbf{F}(\mathbf{p}_i + \Theta \varphi_i - \mathbf{d})| \leqslant \overline{\mathbf{f}}, \end{aligned} \qquad \text{real-time power flow limit} \\ & |\mathbf{p} \leqslant \mathbf{p}_i + \mathbf{r}_i \leqslant \overline{\mathbf{p}}, \end{aligned} \qquad \text{generation limit} \\ & |\mathbf{r}_i| \leqslant \overline{\mathbf{r}}, \quad \forall i = 1, \dots, n, \end{aligned} \qquad \text{regulation limit}$$

For more details visit Appenix A in: https://arxiv.org/pdf/2405.17753

Experiments on a modified IEEE 24-Bus RTS

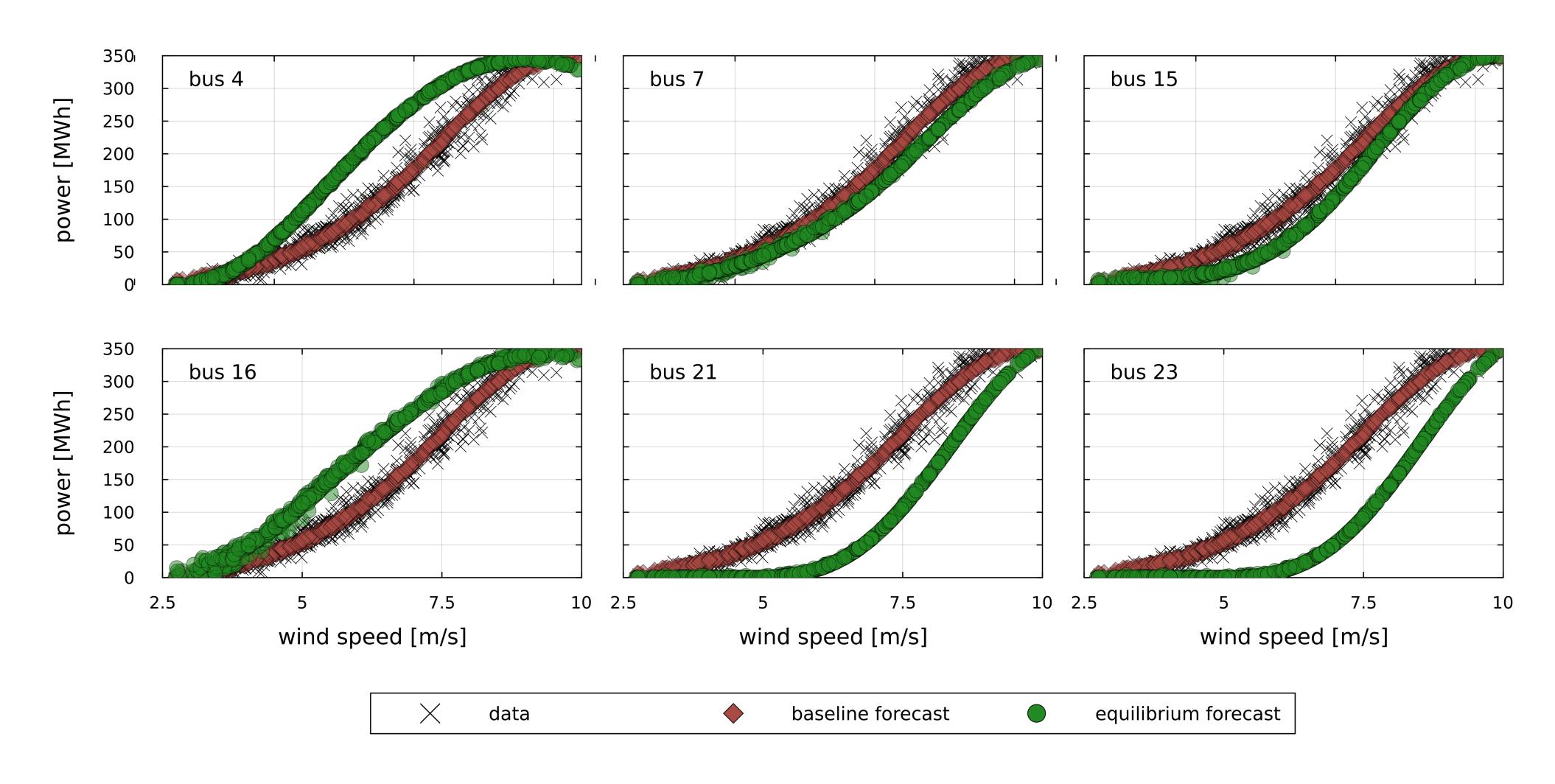




- 6 with farms with identical data and features
- Cover 38.4% of load at peak generation
- ► Kernel regression with 30 transformed features
- > 5,000 training and 10,000 testing samples

- ► Although data is the same, how do equilibrium forecasts depend on the wind farm location in the grid?
- ► What are the equilibrium benefits in terms profits (any incentives to deviate?) and cost of electricity?

Baseline versus Equilibrium forecasts

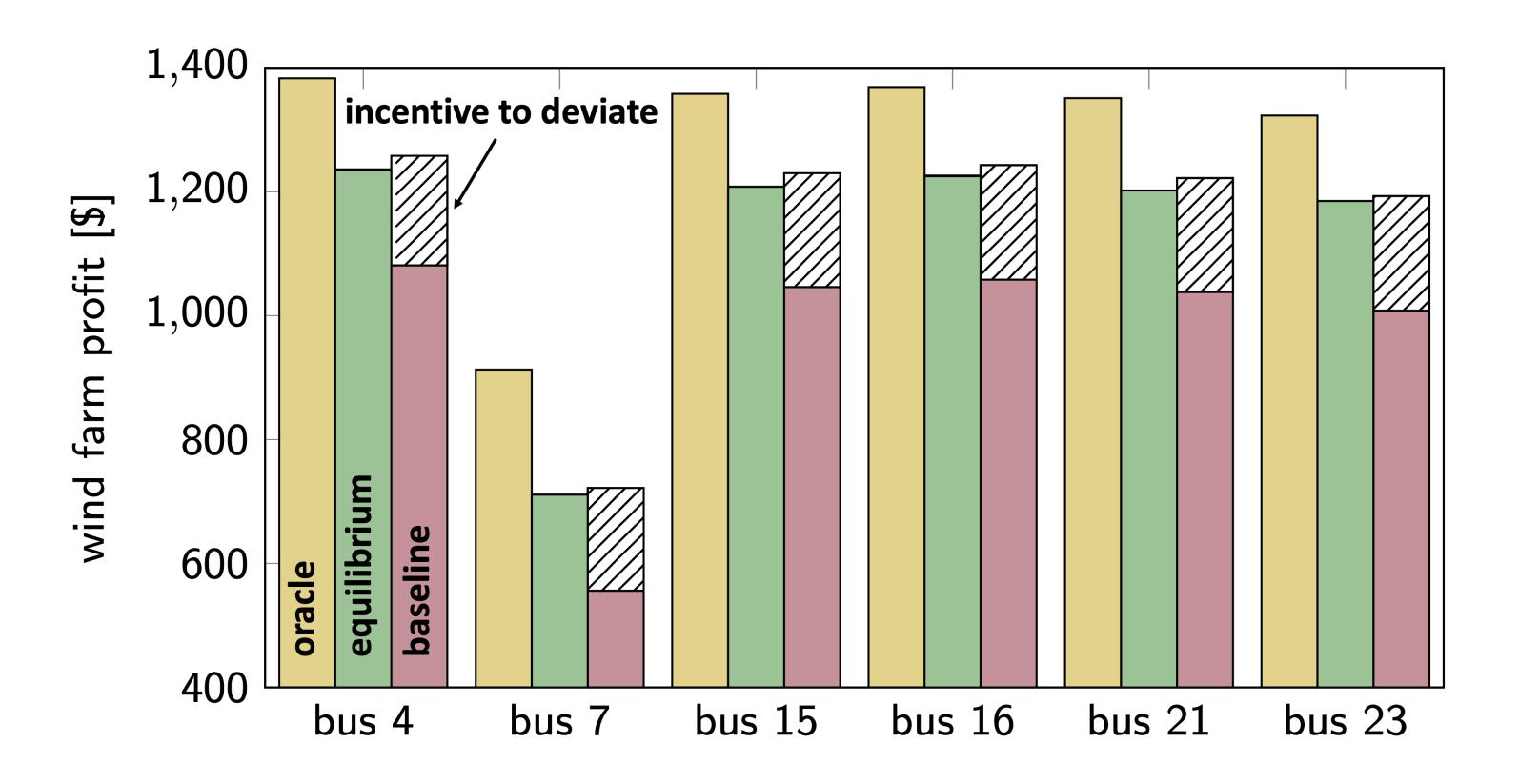


- **Baseline:** minimizes a prediction error
- **Equilibrium:** maximizes wind farm profits

Systematic over- or under-prediction depending on the wind farm's location in the grid

>>> V. Dvorkin 8 / 14

Wind farm profits and incentives to deviate



- Equilibrium regression yields larger profits for all wind farms
- ► There are large profit incentives to unilaterally deviate from the baseline regression
- And (almost) no incentives to deviate from the equilibrium regression

>>> V. Dvorkin 9 / 14

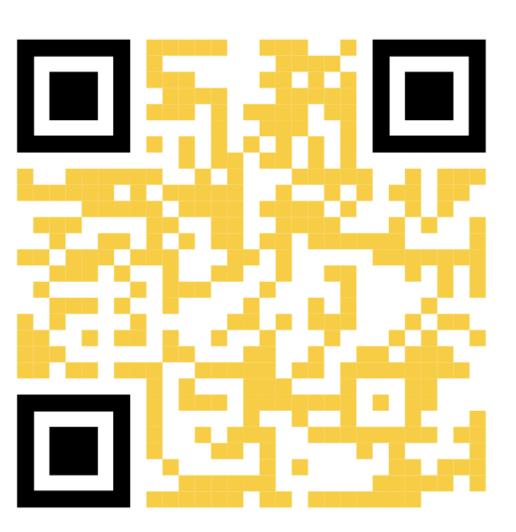
Impact of regression equilibrium on dispatch costs

Regression	RMSE, MWh	Average dispatch cost, \$			Total dispatch cost error, \$	
		total	day-ahead	real-time	average	CVaR ₁₀ %
Oracle		37, 246	37, 246			
Equilibrium	395	38, 326	38, 154	172	1,080	3,555
Baseline	88	39, 223	37, 459	1,764	1,977	8,626

- ► Baseline regression: minimal forecast error, yet results in large real-time cost
- Equilibrium regression: large forecast errors, withholds cheap generation from the day-ahead market; yet, results in very cheap real-time re-dispatch
- ightharpoonup Saving of 2.4% on average, and 13.6% on average across 10% of the worst-case scenarios

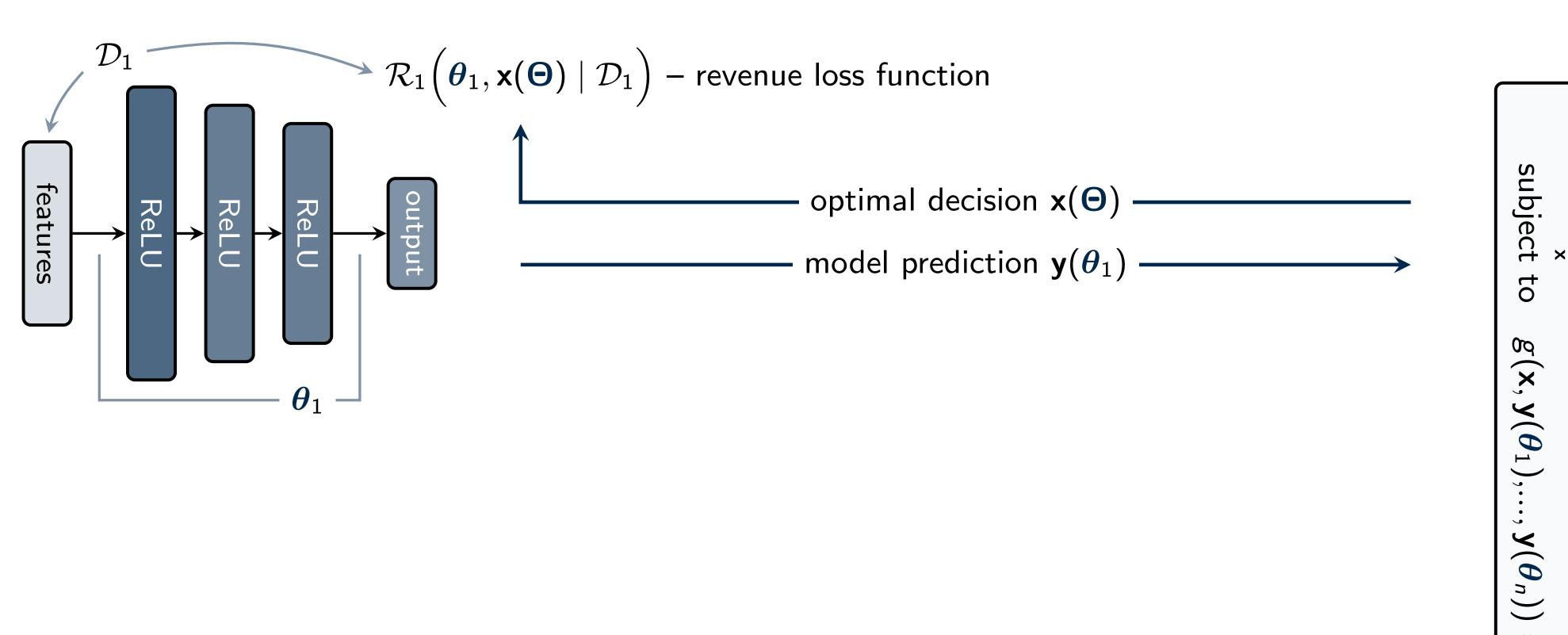
Concluding remarks

- Network coupling of private ML models (ripple effect on the entire electricity market)
- Nash regression equilibrium syncs private models and yields maximum profits
- ▶ It implicitly minimizes the cost across day-ahead and real-time markets ...
- Lithus delivering the benefits of stochastic market design in the existing deterministic markets



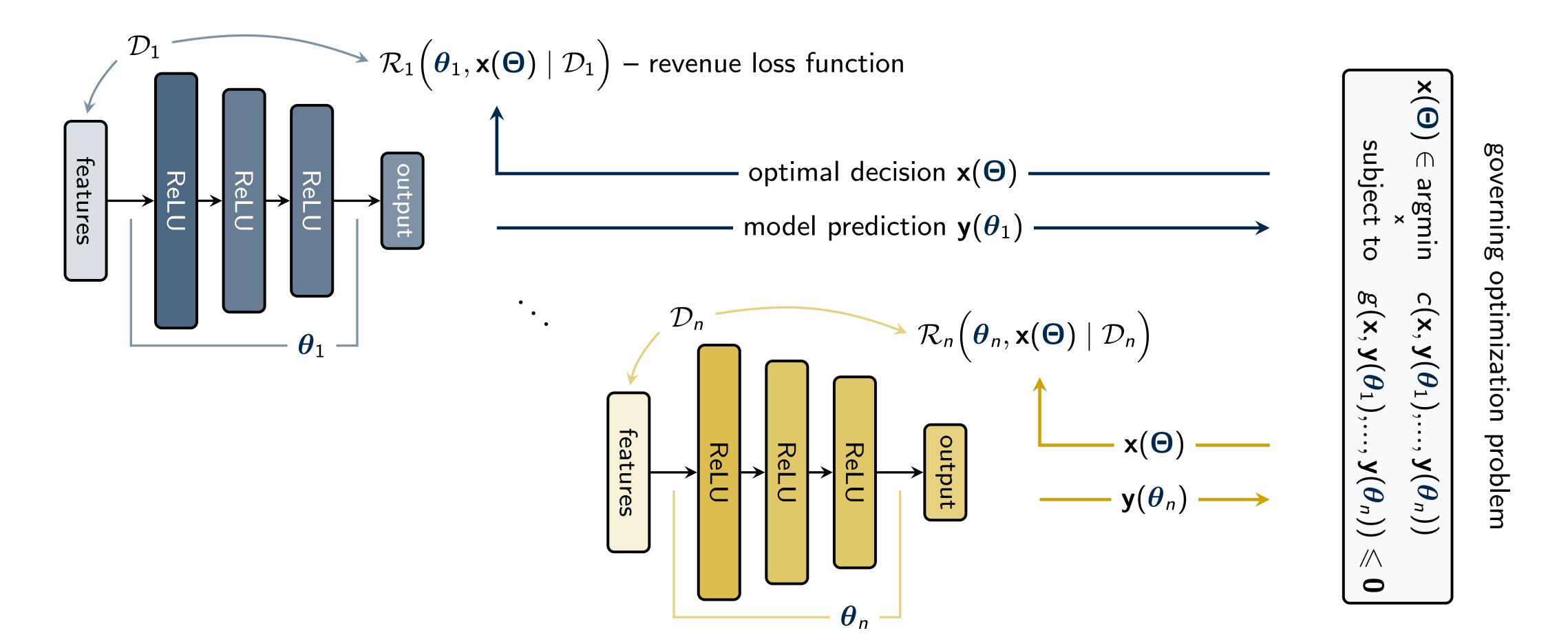
Regression Equilibrium in Electricity Markets

What is next? Al equilibrium in systems governed by optimization programs



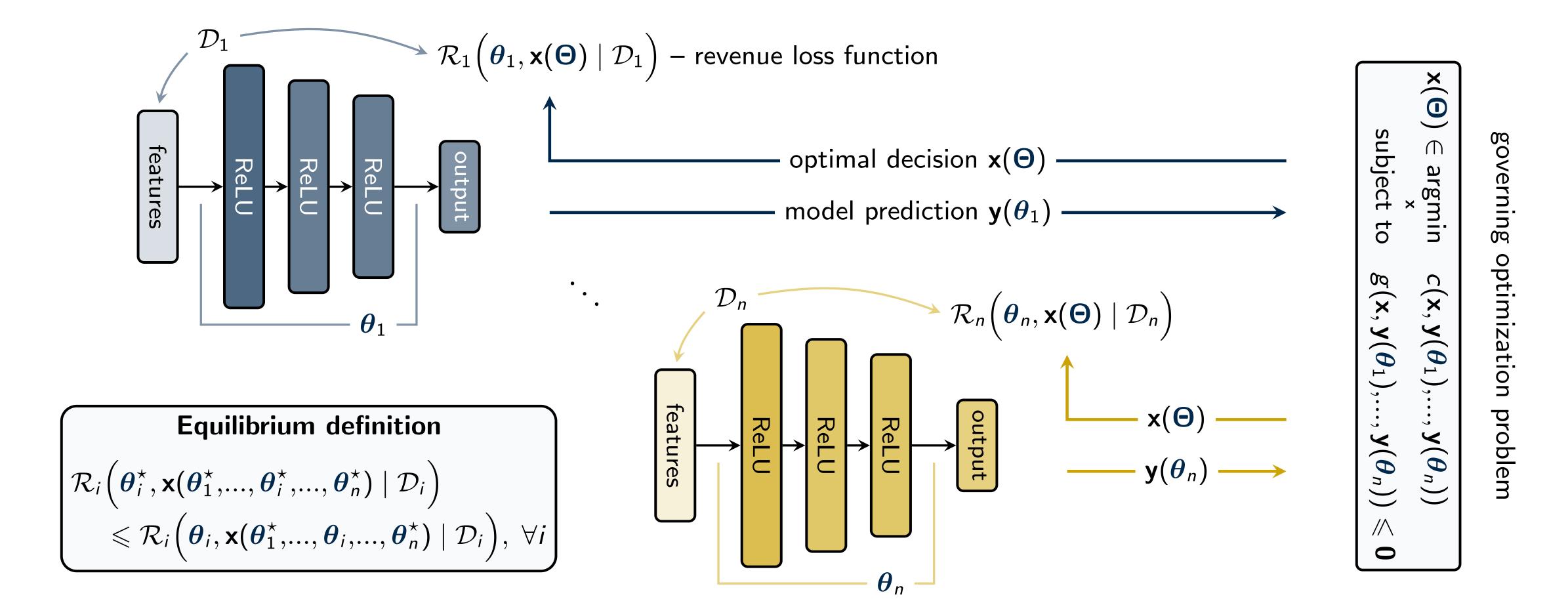
- Many systems governed by optimization (pricing, scheduling, social planning, optimal control,...)
- Arbitrary Al models (regression, deep learning, reinforcement learning, trees)
- From Nash to Generalized Nash Equilibrium: more insights, algorithms, etc.
- Does the design of the governing optimization steer AI models to operational and economic equilibrium?

What is next? Al equilibrium in systems governed by optimization programs



- Many systems governed by optimization (pricing, scheduling, social planning, optimal control,...)
- Arbitrary Al models (regression, deep learning, reinforcement learning, trees)
- From Nash to Generalized Nash Equilibrium: more insights, algorithms, etc.
- Does the design of the governing optimization steer AI models to operational and economic equilibrium?

What is next? Al equilibrium in systems governed by optimization programs



- Many systems governed by optimization (pricing, scheduling, social planning, optimal control,...)
- Arbitrary Al models (regression, deep learning, reinforcement learning, trees)
- From Nash to Generalized Nash Equilibrium: more insights, algorithms, etc.
- Does the design of the governing optimization steer AI models to operational and economic equilibrium?

References I

- Thomas Carriere and George Kariniotakis, *An integrated approach for value-oriented energy forecasting and data-driven decision-making application to renewable energy trading*, IEEE Trans. Smart Grid **10** (2019), no. 6, 6933–6944.
- Vladimir Dvorkin, Stefanos Delikaraoglou, and Juan M Morales, Setting reserve requirements to approximate the efficiency of the stochastic dispatch, IEEE Trans. Power Syst. 34 (2018), no. 2, 1524–1536.
- Stefanos Delikaraoglou and Pierre Pinson, Optimal allocation of hvdc interconnections for exchange of energy and reserve capacity services, Energy Systems 10 (2019), no. 3, 635–675.
- Yury Dvorkin, A chance-constrained stochastic electricity market, IEEE Trans. Power Syst. **35** (2019), no. 4, 2993–3003.
- Vladimir Dvorkin, Regression equilibrium in electricity markets, arXiv preprint arXiv:2405.17753 (2024).
- Francisco Facchinei and Jong-Shi Pang, Finite-dimensional variational inequalities and complementarity problems, Springer-Verlag New York, Inc., 2003.
- Tue Vissing Jensen, Jalal Kazempour, and Pierre Pinson, Cost-optimal atcs in zonal electricity markets, IEEE Trans. Power Syst. **33** (2017), no. 4, 3624–3633.

References II

- Juan M Morales et al., *Pricing electricity in pools with wind producers*, IEEE Trans. Power Syst. **27** (2012), no. 3, 1366–1376.
- _____, Electricity market clearing with improved scheduling of stochastic production, Eur. J. Oper. Res. **235** (2014), no. 3, 765–774.
- Robert Mieth and H Vincent Poor, *Prescribed robustness in optimal power flow*, Electric Power Systems Research **235** (2024), 110704.
- Pierre Pinson, Christophe Chevallier, and George N Kariniotakis, *Trading wind generation from short-term probabilistic forecasts of wind power*, IEEE Trans. Power Syst. **22** (2007), no. 3, 1148–1156.
- Geoffrey Pritchard, Golbon Zakeri, and Andrew Philpott, A single-settlement, energy-only electric power market for unpredictable and intermittent participants, Oper. Res. 58 (2010), no. 4-part-2, 1210–1219.
- Gesualdo Scutari et al., Convex optimization, game theory, and variational inequality theory, IEEE Signal Process. Mag. 27 (2010), no. 3, 35–49.
- Dariush Wahdany, Carlo Schmitt, and Jochen L Cremer, *More than accuracy: end-to-end wind power forecasting that optimises the energy system*, Electric Power Syst. Res. **221** (2023), 109384.