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Motivation and Goal

» There is an increasing demand for large-scale and high-quality power flow datasets for machine
learning (ML) tasks in power systems.

» Challenges in Data Availability: privacy and security concerns
Goal: generating synthetic power flow data

Given a dataset including real power flow data points, we aim to synthesize (1) statistically repre-
sentative and (2) high fidelity power flow data points.

Training Sampling
Diffusion Model Diffusion Model

Real Data Synthetic Data

S — |l — II =
Dataset D ~ Psyn

Dataset D ~ preal
D= {(prai v 800} G B

Physics Information

Power Flow Constraints

G(pi, @i, vi,0:) <0

H(Di, @, i,0:) = 0

Ref.: Venzke, Andreas, Daniel K. Molzahn, and Spyros Chatzivasileiadis. “Efficient creation of datasets for data-driven power system applications.” Electr. Power Syst. Res., 2021.
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Related Work

(1) Generic random sampling approaches:

Iteratively perturbing system parameters (e.g., demand level) around the nominal value and
solving the corresponding OPF problem.

» Drawback 1: The resulted datasets do NOT represent the true underlying distribution of
real-world operating conditions.

» Drawback 2: The required number of random samples to cover the feasibility region of operating
conditions grows exponentially.
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(2) Historical data-driven approaches: Generative models (e.g., VAE, GAN)

’The historical data-driven approaches leverage real operational records to learn the data distribution. ‘

» Drawback 1: Poor generation quality (VAE), Mode Collapse (GAN)

» Drawback 2: No rigorous method to control their output (e.g., enforcing power flow constraints)

Ref.:
- S. Lovett et al., “OPFData: Large-scale datasets for AC optimal power flow with topological perturbations,” arXiv preprint arXiv:2406.07234, 2024.
- A. Jabbar et al., “A survey on generative adversarial networks: Variants, applications, and training,” ACM CSUR, vol. 54, no. 8, pp. 1-49, 2021.

- Z. Pan et al., "Data-driven EV load profiles generation using a variational auto-encoder,” Energies, vol. 12, no. 5, p. 849, 2019.
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Preliminary: Diffusion Models

» Forward diffusion process that gradually adds noise to input

Forward diffusion process

alxilxe1) = N (x VT Boxe1, el
xt:\/(STtxo—l— \/l—O_étEt,, €t NN(O,]I)

» Reverse denoising process that learns to generate data by denoising

Reverse denoising process

Xo Xp—g Xr-3 Xr—z X7-1 xr

po(xe—1|xt) = N (xe—1; po(xe, t), o2l)

Xt—1 = ‘LLQ(Xt, t) -+ Ot€t, €t N~ N(O, ]I)
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Preliminary: Diffusion Models

Training the Diffusion model

» The loss function to train the neural network ¢g is

Laitt = Exge,t [HE — eo(xt, t)||2] .

Algorithm 1 : Training the diffusion model

Inputs: initialized neural network €, noise schedule {at}thl,
dataset of x’s sampled from go
Outputs: trained neural network €y

1: repeat

2 %0 ~ go(Xo)

3: t ~ Uniform({1,...,T})

4: e~N(0,1I)

5 Take gradient descent step on

Vo ||€ — €9 (Vaxo + V1 — aue, t) ||2

6: until converged

Ref.: J. Ho et al., “Denoising diffusion probabilistic models,” Adv. Neural Inf. Process. Syst., vol. 33, pp. 6840-6851, 2020.
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Preliminary: Diffusion Models

Sampling the Diffusion Model
» First, predict the clean data Xq:

Ro(xer 1) = — (xe — VI Grco(xe, 1)) |

(073
vVor(l —ae— o
Xt—1 = o o 1)Xt + ar E/Btf(o + oz,

1—ay 1—a

Algorithm 2 : Sampling new data points

Inputs: trained neural network €y, noise schedule {a;}7 1,
noise scale oy
Outputs: new data point X
1. Xp ~ N(O, I
2. fort=1T,...,1do
3: X0 \/% (xt - \/1——dteg(xt,t))
4 z~N(0,I)ift > 1, else z=0
5

Var(l—ap— Vi o
Xi_1 ar(1—a l)xt+ T:altﬁ!

=&, Xo + 012

6: return X

Ref.: J. Ho et al., “Denoising diffusion probabilistic models,” Adv. Neural Inf. Process. Syst., vol. 33, pp. 6840-6851, 2020.
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Preliminary: Power Flow Constraints

Power Flow Equality Constraints

v;46; gub —_— v;26;

po— > = > /=0, VbeB,

leL:i=b leL:j=b
- > £~ S f7,,=0, VbeB.
leL:i=b 1€L:j=b

» The expressions for f, ; and f,HJ

f;?i—»j = v,-vj[g/ COS(@,‘ — 91) + by sin(@,- — Gj)], VI e ,C,
;= vivj|@isin(0; — 0;) — bycos(0; — 0;)], Ve L,
where g; and by are the real and imaginary parts of Y = G + jB.

Ref.: D. K. Molzahn et al., “A survey of relaxations and approximations of the power flow equations,” Found. Trends Electr. Energy Syst., vol. 4, no. 1-2, pp. 1-221, 2019.
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Diffusion Guidance based on Power Flow Constraints

» Theoretically, a diffusion model trained on a dataset of feasible power flow data points should
satisfy the power flow constraints.

» In practice, a diffusion model may generate power flow data points that are infeasible due to
learning and sampling errors.

% Real sample 4
®  Synthesized sample (feasible)
®  Synthesized sample (infeasible)
M Power flow manifold \

—  Power flow constraints \

How can we enforce power flow constraints in generated samples?

Ref.:

- Feng, Berthy T., Ricardo Baptista, and Katherine L. Bouman. “Neural approximate mirror maps for constrained diffusion models.” arXiv preprint arXiv:2406.12816, 2024.

- G. Daras et al., “Consistent diffusion models: Mitigating sampling drift by learning to be consistent,” Adv. Neural Inf. Process. Syst., vol. 36, pp. 42 038-42 063, 2023.
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Diffusion Guidance based on Power Flow Constraints

Geometry of Sampling without Guidance
» Sampling steps can be characterized as transitions from M; to M,_1:

» (1) we do a denoising step based on x; and estimate the clean data %o,

» (2) add noise w.r.t. the corresponding noise schedule and obtain x;_1.

- — H(x) =0
Mo
Legend Moy b
Denoising ;
Noising Mo Z
Guidance e t
Constraint
Manifold &
Xo|T X0 x4 ) M

The sampling trajectory is oblivious to the power flow constraints.
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Diffusion Guidance based on Power Flow Constraints

Geometry of Sampling with Guidance
» Sampling steps can be characterized as transitions from M; to M,_1:

» (1) we do a denoising step based on x; and estimate the clean data Xo,

> (2) add the gradient guidance term,

» (3) add noise w.r.t. the corresponding noise schedule and obtain x;_1.

H(x)=0
M
Moy /,
Legend 3
Mr—2 |2
Denoising E
Noising — O T
Guidance 3
Constraint e y; - ——— .
Manifold % Xor %ol X5 M

The gradient guidance steers the sampling trajectory toward feasible power flow data points.
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Diffusion Guidance based on Power Flow Constraints

Gradient Guidance

Main Idea: The guidance term corresponds to a single iteration of Riemannian gradient
descent on the clean data manifold.

» We minimize the data consistency loss Ry (x) on the learned data manifold M:
in R
i e
where

2

Ry (x) = [[H(x)]]2-
» We take one step of Riemannian gradient descent:

)26“ = )’ZO\t — Tt grad R’H()’EO“),

where
grad Ry (Xoj:) = Pr (Vﬁou RH(Xou)) :
Ref.:
- H. Chung et al., “Improving diffusion models for inverse problems using manifold constraints,” Adv. Neural Inf. Process. Syst., vol. 35, pp. 25 683-25 696, 2022.
- N. Boumal, An introduction to optimization on smooth manifolds. Cambridge University Press, 2023.
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Diffusion Guidance based on Power Flow Constraints

Gradient Guidance

» Affine subspace assumption of clean data manifold M:

Pr, s (Ve R (Roje)) = Ve Rae(Ro)e)-

Xo|t

Al A A
Xoje = Rojt — At Vx, Rt (Xo|¢)-

Algorithm 4 : Sampling with gradient guidance

Inputs: trained neural network €,, noise schedule {a;}7_;,
noise scale oy, guidance scale \;
Outputs: new data point X
X7 ~ ./\/'(O7 1_13)
fort=T—1to0do
: Xo \/% (x¢ — VI = azep(x¢,t))

1:
2:
3:
4: X+ %0 — At Vi, Ry (%0)
5
6
7:

"/m( 7z’,,1)xt+ /at—1Bt 51

i-a, X0 + o0z

return X,
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Results



Statistical Similarity: marginal distribution

» Histograms of the ground truth versus synthetic power flow data points:
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Statistical Similarity: joint distribution

» 2D scatter plots with density estimates of p — q and v — @:
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» The synthetic data points
» closely follow the distributional pattern of the real data.
» closely span the entire domain of the real joint probability distributions.

» captures the multi-modal structure of the real data distribution.
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Constraint Satisfaction

» Histograms of violation magnitudes for the active and reactive power balance constraints in the
PJM 5-bus system (A = 1072 vs \ = 0):
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» Wasserstein distances between the ground truth D and synthetic data D

Distance between... 5-Bus 24-Bus 118-Bus

D and D w/o guidance 0.442  0.607  0.622
.Dand D w/ guidance ~ 0.382 0585  0.597
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Conclusion

» The synthesized power flow data points effectively capture both the marginal and joint
distributions of the real power flow data.

» The proposed gradient guidance approach successfully enforces power flow constraints during
sampling, ensuring the feasibility of the generated data.

» The gradient guidance mechanism maintains the sampling trajectory within the data manifold,
preventing divergence from the learned data distribution.
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New Work Announcement

All materials in this talk are based on our preprint:

Constrained Diffusion Models for Synthesizing Representative Power Flow Datasets

(available on arXiv)

Our latest work:

DiffOPF: Diffusion Solver for Optimal Power Flow

(available on arXiv)

» We saw how to learn the underlying distribution of OPF data and generate synthetic OPF data
points. But, can we use this learned distribution as a prior and solve new OPF problems?

Goal: solving OPF problem via conditional sampling

Given a learned distribution of OPF data points, we aim to sample from this distribution conditioned
on a new demand input.
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https://arxiv.org/pdf/2506.11281
https://arxiv.org/abs/2510.14075

Introducing Our Latest Work: Diffusion Solver for Optimal Power Flow

» We introduce a diffusion-based OPF solver, termed DiffOPF, that treats OPF as a conditional
sampling problem.

Training Sampling
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Thank You!
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