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Motivation and Goal

▶ There is an increasing demand for large-scale and high-quality power flow datasets for machine
learning (ML) tasks in power systems.

▶ Challenges in Data Availability: privacy and security concerns

Goal: generating synthetic power flow data

Given a dataset including real power flow data points, we aim to synthesize (1) statistically repre-
sentative and (2) high fidelity power flow data points.

Real Data

Dataset D ∼ preal

D = {(pi,qi,vi,θi)}Ni=1

Diffusion Model

Training

Diffusion Model

Sampling

Synthetic Data

Dataset D̃ ∼ psyn

D̃ = {(p̃i, q̃i, ṽi, θ̃i)}Mi=1

Power Flow Constraints

Physics Information

G(p̃i, q̃i, ṽi, θ̃i) ⪯ 0

H(p̃i, q̃i, ṽi, θ̃i) = 0

Ref.: Venzke, Andreas, Daniel K. Molzahn, and Spyros Chatzivasileiadis. “Efficient creation of datasets for data-driven power system applications.” Electr. Power Syst. Res., 2021.
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Related Work

(1) Generic random sampling approaches:

Iteratively perturbing system parameters (e.g., demand level) around the nominal value and
solving the corresponding OPF problem.

▶ Drawback 1: The resulted datasets do NOT represent the true underlying distribution of
real-world operating conditions.

▶ Drawback 2: The required number of random samples to cover the feasibility region of operating
conditions grows exponentially.
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Related Work

(1) Generic random sampling approaches:

Iteratively perturbing system parameters (e.g., demand level) around the nominal value and
solving the corresponding OPF problem.

▶ Drawback 1: The resulted datasets do NOT represent the true underlying distribution of
real-world operating conditions.

▶ Drawback 2: The required number of random samples to cover the feasibility region of operating
conditions grows exponentially.

(2) Historical data-driven approaches: Generative models (e.g., VAE, GAN)

The historical data-driven approaches leverage real operational records to learn the data distribution.

▶ Drawback 1: Poor generation quality (VAE), Mode Collapse (GAN)

▶ Drawback 2: No rigorous method to control their output (e.g., enforcing power flow constraints)

Ref.:

- S. Lovett et al., “OPFData: Large-scale datasets for AC optimal power flow with topological perturbations,” arXiv preprint arXiv:2406.07234, 2024.

- A. Jabbar et al., “A survey on generative adversarial networks: Variants, applications, and training,” ACM CSUR, vol. 54, no. 8, pp. 1–49, 2021.

- Z. Pan et al., “Data-driven EV load profiles generation using a variational auto-encoder,” Energies, vol. 12, no. 5, p. 849, 2019.
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Preliminary: Diffusion Models

▶ Forward diffusion process that gradually adds noise to input

q(xt |xt−1) = N
(
xt ;

√
1− βtxt−1, βt I

)
xt =

√
ᾱtx0 +

√
1− ᾱtϵt , , ϵt ∼ N (0, I).

▶ Reverse denoising process that learns to generate data by denoising

pθ(xt−1|xt) = N
(
xt−1;µθ(xt , t), σ

2
t I
)
,

xt−1 = µθ(xt , t) + σtϵt , ϵt ∼ N (0, I).
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Preliminary: Diffusion Models

Training the Diffusion model

▶ The loss function to train the neural network ϵθ is

Ldiff = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt , t)∥2

]
.

Ref.: J. Ho et al., “Denoising diffusion probabilistic models,” Adv. Neural Inf. Process. Syst., vol. 33, pp. 6840–6851, 2020.
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Preliminary: Diffusion Models

Sampling the Diffusion Model
▶ First, predict the clean data x̂0:

x̂0(xt , t) =
1√
ᾱt

(
xt −

√
1− ᾱt ϵθ(xt , t)

)
,

xt−1 =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x̂0 + σtz .

Ref.: J. Ho et al., “Denoising diffusion probabilistic models,” Adv. Neural Inf. Process. Syst., vol. 33, pp. 6840–6851, 2020.
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Preliminary: Power Flow Constraints

Power Flow Equality Constraints

pb −
∑

l∈L:i=b

f pl,i→j −
∑

l∈L:j=b

f pl,j→i = 0, ∀b ∈ B,

qb −
∑

l∈L:i=b

f ql,i→j −
∑

l∈L:j=b

f ql,j→i = 0, ∀b ∈ B.

▶ The expressions for f pl,i→j and f ql,i→j are

f pl,i→j = vivj
[
gl cos(θi − θj) + bl sin(θi − θj)

]
, ∀l ∈ L,

f ql,i→j = vivj
[
gl sin(θi − θj)− bl cos(θi − θj)

]
, ∀l ∈ L,

where gl and bl are the real and imaginary parts of Y = G + jB.

Ref.: D. K. Molzahn et al., “A survey of relaxations and approximations of the power flow equations,” Found. Trends Electr. Energy Syst., vol. 4, no. 1-2, pp. 1–221, 2019.
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Diffusion Guidance based on Power Flow Constraints

▶ Theoretically, a diffusion model trained on a dataset of feasible power flow data points should
satisfy the power flow constraints.

▶ In practice, a diffusion model may generate power flow data points that are infeasible due to
learning and sampling errors.

How can we enforce power flow constraints in generated samples?

Ref.:

- Feng, Berthy T., Ricardo Baptista, and Katherine L. Bouman. “Neural approximate mirror maps for constrained diffusion models.” arXiv preprint arXiv:2406.12816, 2024.

- G. Daras et al., “Consistent diffusion models: Mitigating sampling drift by learning to be consistent,” Adv. Neural Inf. Process. Syst., vol. 36, pp. 42 038–42 063, 2023.
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Diffusion Guidance based on Power Flow Constraints

Geometry of Sampling without Guidance
▶ Sampling steps can be characterized as transitions from Mi to Mi−1:

▶ (1) we do a denoising step based on xt and estimate the clean data x̂0,

▶ (2) add noise w.r.t. the corresponding noise schedule and obtain xt−1.

Legend
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The sampling trajectory is oblivious to the power flow constraints.
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Diffusion Guidance based on Power Flow Constraints

Geometry of Sampling with Guidance
▶ Sampling steps can be characterized as transitions from Mi to Mi−1:

▶ (1) we do a denoising step based on xt and estimate the clean data x̂0,

▶ (2) add the gradient guidance term,

▶ (3) add noise w.r.t. the corresponding noise schedule and obtain xt−1.

Legend
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The gradient guidance steers the sampling trajectory toward feasible power flow data points.
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Diffusion Guidance based on Power Flow Constraints

Gradient Guidance

Main Idea: The guidance term corresponds to a single iteration of Riemannian gradient
descent on the clean data manifold.

▶ We minimize the data consistency loss RH(x) on the learned data manifold M:

min
x∈M

RH(x),

where
RH(x) = ∥H(x)∥22.

▶ We take one step of Riemannian gradient descent:

x̂′0|t = x̂0|t − τt grad RH(x̂0|t),

where
grad RH(x̂0|t) = PTx̂0|tM

(
∇x̂0|tRH(x̂0|t)

)
.

Ref.:

- H. Chung et al., “Improving diffusion models for inverse problems using manifold constraints,” Adv. Neural Inf. Process. Syst., vol. 35, pp. 25 683–25 696, 2022.

- N. Boumal, An introduction to optimization on smooth manifolds. Cambridge University Press, 2023.
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Diffusion Guidance based on Power Flow Constraints

Gradient Guidance

▶ Affine subspace assumption of clean data manifold M:

PTx̂0|tM
(
∇xtRH(x̂0|t)

)
≈ ∇xtRH(x̂0|t).

x̂′0|t = x̂0|t − λt ∇xtRH(x̂0|t).
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Results



Statistical Similarity: marginal distribution

▶ Histograms of the ground truth versus synthetic power flow data points:
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Statistical Similarity: joint distribution

▶ 2D scatter plots with density estimates of p− q and v − θ:

▶ The synthetic data points

▶ closely follow the distributional pattern of the real data.

▶ closely span the entire domain of the real joint probability distributions.

▶ captures the multi-modal structure of the real data distribution.
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Constraint Satisfaction

▶ Histograms of violation magnitudes for the active and reactive power balance constraints in the
PJM 5-bus system (λ = 10−2 vs λ = 0):

▶ Wasserstein distances between the ground truth D and synthetic data D̃
Distance between... 5-Bus 24-Bus 118-Bus

...D and D̃ w/o guidance 0.442 0.607 0.622

...D and D̃ w/ guidance 0.382 0.585 0.597
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Conclusion

▶ The synthesized power flow data points effectively capture both the marginal and joint
distributions of the real power flow data.

▶ The proposed gradient guidance approach successfully enforces power flow constraints during
sampling, ensuring the feasibility of the generated data.

▶ The gradient guidance mechanism maintains the sampling trajectory within the data manifold,
preventing divergence from the learned data distribution.
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New Work Announcement

All materials in this talk are based on our preprint:

Constrained Diffusion Models for Synthesizing Representative Power Flow Datasets
(available on arXiv)

Our latest work:

DiffOPF: Diffusion Solver for Optimal Power Flow
(available on arXiv)

▶ We saw how to learn the underlying distribution of OPF data and generate synthetic OPF data
points. But, can we use this learned distribution as a prior and solve new OPF problems?

Goal: solving OPF problem via conditional sampling

Given a learned distribution of OPF data points, we aim to sample from this distribution conditioned
on a new demand input.

16 / 17

https://arxiv.org/pdf/2506.11281
https://arxiv.org/abs/2510.14075


Introducing Our Latest Work: Diffusion Solver for Optimal Power Flow

▶ We introduce a diffusion-based OPF solver, termed DiffOPF, that treats OPF as a conditional
sampling problem.

OPF Data

Dataset D ∼ preal

D = {(pi
d,q

i
d,p

i
g,q

i
g)}Ni=1

Training

Algorithm 1

Sampling

Algorithm 3

pθ(pg,qg|pd,qd)

Demand

(pd,qd)

co
n
d
it
io
n p

d

pd
pd p

g

pg

pθ(pg | pd)

pg

d
en

si
ty

▶ The OPF problem is a multi-valued (non-unique) mapping from loads to dispatch setpoints.

non-convex power
flow equations

controlled disturbances

Tap changes Shunt on/off

Topology switching

uncontrolled disturbances
(weather-dependent admittances, fuel prices, etc.)

load d dispatch

setpoints

Power System

dispatch setpoint [MW]

Solution from single-
valued mapping on d

True distribution from
history of operations

DiffOPF(d)
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Thank You!
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