#### **INFORMS 2025**

Synthesizing Power Flow Datasets via Constrained Diffusion Models

PhD Student: Milad Hoseinpour

Advisor: Prof. Vladimir Dvorkin

Department of Electrical Engineering and Computer Science



### Outline

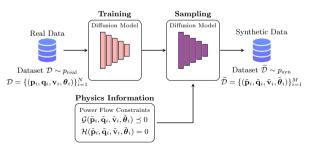
- ► Motivation and Goal
- ► Related Work
- Preliminaries
- ▶ Diffusion Guidance based on Power Flow Constraints
- ► Results
- ► Conclusion
- ► New Work Announcement

#### Motivation and Goal

- ► There is an increasing demand for large-scale and high-quality power flow datasets for machine learning (ML) tasks in power systems.
- ► Challenges in Data Availability: privacy and security concerns

#### Goal: generating synthetic power flow data

Given a dataset including real power flow data points, we aim to synthesize (1) statistically representative and (2) high fidelity power flow data points.



Ref.: Venzke, Andreas, Daniel K. Molzahn, and Spyros Chatzivasileiadis. "Efficient creation of datasets for data-driven power system applications." Electr. Power Syst. Res., 2021.

#### Related Work

### (1) Generic random sampling approaches:

Iteratively perturbing system parameters (e.g., demand level) around the nominal value and solving the corresponding OPF problem.

- Drawback 1: The resulted datasets do NOT represent the true underlying distribution of real-world operating conditions.
- Drawback 2: The required number of random samples to cover the feasibility region of operating conditions grows exponentially.

#### Related Work

## (1) Generic random sampling approaches:

Iteratively perturbing system parameters (e.g., demand level) around the nominal value and solving the corresponding OPF problem.

- Drawback 1: The resulted datasets do NOT represent the true underlying distribution of real-world operating conditions.
- Drawback 2: The required number of random samples to cover the feasibility region of operating conditions grows exponentially.
- (2) Historical data-driven approaches: Generative models (e.g., VAE, GAN)

The historical data-driven approaches leverage real operational records to learn the data distribution.

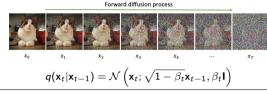
- ▶ Drawback 1: Poor generation quality (VAE), Mode Collapse (GAN)
- ▶ Drawback 2: No rigorous method to control their output (e.g., enforcing power flow constraints)

#### Ref.:

- S. Lovett et al., "OPFData: Large-scale datasets for AC optimal power flow with topological perturbations," arXiv preprint arXiv:2406.07234, 2024.
- A. Jabbar et al., "A survey on generative adversarial networks: Variants, applications, and training," ACM CSUR, vol. 54, no. 8, pp. 1–49, 2021.
- Z. Pan et al., "Data-driven EV load profiles generation using a variational auto-encoder," Energies, vol. 12, no. 5, p. 849, 2019.

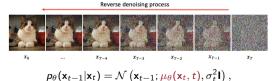
# Preliminary: Diffusion Models

Forward diffusion process that gradually adds noise to input



$$\mathbf{x}_t = \sqrt{ar{lpha}_t} \mathbf{x}_0 + \sqrt{1 - ar{lpha}_t} \epsilon_t, , \quad \epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbb{I}).$$

▶ Reverse denoising process that learns to generate data by denoising



$$\mathbf{x}_{t-1} = \mu_{\theta}(\mathbf{x}_t, t) + \sigma_t \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, \mathbb{I}).$$

# Preliminary: Diffusion Models

### Training the Diffusion model

▶ The loss function to train the neural network  $\epsilon_{\theta}$  is

$$\mathcal{L}_{\mathsf{diff}} = \mathbb{E}_{\mathbf{x}_0,\epsilon,t} \left[ \left\| \epsilon - \epsilon_{ heta}(\mathbf{x}_t,t) 
ight\|^2 
ight].$$

#### Algorithm 1: Training the diffusion model

**Inputs**: initialized neural network  $\epsilon_{\theta}$ , noise schedule  $\{\alpha_t\}_{t=1}^T$ , dataset of  $\mathbf{x}_0$ 's sampled from  $q_0$ 

**Outputs**: trained neural network  $\epsilon_{\theta}$ 

- 1: repeat
- 2:  $\mathbf{x}_0 \sim q_0(\mathbf{x}_0)$
- 3:  $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4:  $\epsilon \sim \mathcal{N}(0, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} \left( \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t \right) \right\|^2$$

6: until converged

# Preliminary: Diffusion Models

#### Sampling the Diffusion Model

First, predict the clean data  $\hat{\mathbf{x}}_0$ :

$$\hat{\mathbf{x}}_0(\mathbf{x}_t,t) = rac{1}{\sqrt{ar{lpha}_t}} \left(\mathbf{x}_t - \sqrt{1-ar{lpha}_t} \, \epsilon_ heta(\mathbf{x}_t,t)
ight),$$

$$\mathbf{x}_{t-1} = \frac{\sqrt{\alpha_t(1-\bar{\alpha}_{t-1})}}{1-\bar{\alpha}_t}\mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}\beta_t}}{1-\bar{\alpha}_t}\mathbf{\hat{x}}_0 + \sigma_t z.$$

#### Algorithm 2: Sampling new data points

**Inputs**: trained neural network  $\epsilon_{\theta}$ , noise schedule  $\{\alpha_t\}_{t=1}^T$ , noise scale  $\sigma_t$ 

**Outputs**: new data point  $\tilde{\mathbf{x}}_0$ 

1: 
$$\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$$

2: **for** 
$$t = T, ..., 1$$
 **do**

3: 
$$\hat{\mathbf{x}}_0 \leftarrow \frac{1}{\sqrt{\bar{\alpha}_t}} \left( \mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right)$$

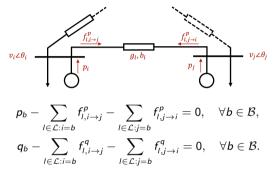
4: 
$$\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$$
 if  $t > 1$ , else  $\mathbf{z} = 0$ 

5: 
$$\mathbf{x}_{t-1} \leftarrow \frac{\sqrt{\alpha_t(1-\bar{\alpha}_{t-1})}}{1-\bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1-\bar{\alpha}_t} \hat{\mathbf{x}}_0 + \sigma_t \mathbf{z}$$

6: **return**  $\tilde{\mathbf{x}}_0$ 

# Preliminary: Power Flow Constraints

#### **Power Flow Equality Constraints**



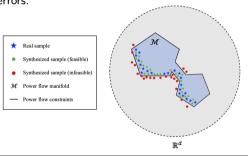
► The expressions for  $f_{l,i \to j}^{p}$  and  $f_{l,i \to j}^{q}$  are

$$f_{l,i\to j}^{p} = v_i v_j [g_l \cos(\theta_i - \theta_j) + b_l \sin(\theta_i - \theta_j)], \quad \forall l \in \mathcal{L},$$
  
$$f_{l,i\to j}^{q} = v_i v_j [g_l \sin(\theta_i - \theta_j) - b_l \cos(\theta_i - \theta_j)], \quad \forall l \in \mathcal{L},$$

where  $g_l$  and  $b_l$  are the real and imaginary parts of Y = G + jB.

▶ Theoretically, a diffusion model trained on a dataset of feasible power flow data points should satisfy the power flow constraints.

In practice, a diffusion model may generate power flow data points that are **infeasible** due to learning and sampling errors.



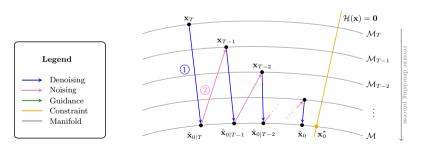
How can we enforce power flow constraints in generated samples?

#### Ref.

- Feng, Berthy T., Ricardo Baptista, and Katherine L. Bouman. "Neural approximate mirror maps for constrained diffusion models." arXiv preprint arXiv:2406.12816, 2024.
- G. Daras et al., "Consistent diffusion models: Mitigating sampling drift by learning to be consistent," Adv. Neural Inf. Process. Syst., vol. 36, pp. 42 038–42 063, 2023.

#### **Geometry of Sampling without Guidance**

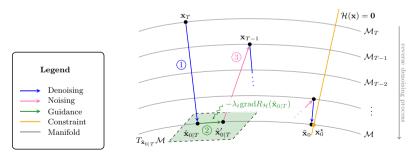
- ▶ Sampling steps can be characterized as transitions from  $\mathcal{M}_i$  to  $\mathcal{M}_{i-1}$ :
  - ightharpoonup (1) we do a denoising step based on  $\mathbf{x}_t$  and estimate the clean data  $\hat{\mathbf{x}}_0$ ,
  - $\triangleright$  (2) add noise w.r.t. the corresponding noise schedule and obtain  $\mathbf{x}_{t-1}$ .



The sampling trajectory is oblivious to the power flow constraints.

#### Geometry of Sampling with Guidance

- ▶ Sampling steps can be characterized as transitions from  $\mathcal{M}_i$  to  $\mathcal{M}_{i-1}$ :
  - ightharpoonup (1) we do a denoising step based on  $\mathbf{x}_t$  and estimate the clean data  $\hat{\mathbf{x}}_0$ ,
  - ▶ (2) add the gradient guidance term,
  - $\blacktriangleright$  (3) add noise w.r.t. the corresponding noise schedule and obtain  $\mathbf{x}_{t-1}$ .



The gradient guidance steers the sampling trajectory toward feasible power flow data points.

#### **Gradient Guidance**

Main Idea: The guidance term corresponds to a single iteration of Riemannian gradient descent on the clean data manifold.

ightharpoonup We minimize the data consistency loss  $R_{\mathcal{H}}(\mathbf{x})$  on the learned data manifold  $\mathcal{M}$ :

$$\min_{\mathbf{x} \in \mathcal{M}} \ R_{\mathcal{H}}(\mathbf{x}),$$

where

$$R_{\mathcal{H}}(\mathbf{x}) = \|\mathcal{H}(\mathbf{x})\|_2^2.$$

► We take one step of Riemannian gradient descent:

$$\hat{\mathbf{x}}_{0|t}' = \hat{\mathbf{x}}_{0|t} - au_t \text{ grad } R_{\mathcal{H}}(\hat{\mathbf{x}}_{0|t}),$$

where

$$\mathsf{grad}\ R_{\mathcal{H}}(\hat{\mathbf{x}}_{0|t}) = \mathcal{P}_{\mathcal{T}_{\hat{\mathbf{x}}_{0|t}}\mathcal{M}}\left(\nabla_{\hat{\mathbf{x}}_{0|t}}R_{\mathcal{H}}(\hat{\mathbf{x}}_{0|t})\right).$$

Ref.:

- H. Chung et al., "Improving diffusion models for inverse problems using manifold constraints," Adv. Neural Inf. Process. Syst., vol. 35, pp. 25 683–25 696, 2022.
- N. Boumal, An introduction to optimization on smooth manifolds. Cambridge University Press, 2023

#### **Gradient Guidance**

 $\blacktriangleright$  Affine subspace assumption of clean data manifold  $\mathcal{M}$ :

$$\mathcal{P}_{\mathcal{T}_{\hat{\mathbf{x}}_{0|t}}\mathcal{M}}\left(\nabla_{\mathsf{x}_{t}}R_{\mathcal{H}}(\hat{\mathbf{x}}_{0|t})\right) pprox \nabla_{\mathsf{x}_{t}}R_{\mathcal{H}}(\hat{\mathbf{x}}_{0|t}).$$

$$\hat{\mathbf{x}}_{0|t}' = \hat{\mathbf{x}}_{0|t} - \lambda_t \ \nabla_{\mathbf{x}_t} R_{\mathcal{H}}(\hat{\mathbf{x}}_{0|t}).$$

#### **Algorithm 4**: Sampling with gradient guidance

**Inputs**: trained neural network  $\epsilon_{\theta}$ , noise schedule  $\{\alpha_t\}_{t=1}^T$ . noise scale  $\sigma_t$ , guidance scale  $\lambda_t$ 

**Outputs**: new data point  $\tilde{\mathbf{x}}_0$ 

1: 
$$\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I}_{4B})$$

2: **for** 
$$t = T - 1$$
 to 0 **do**

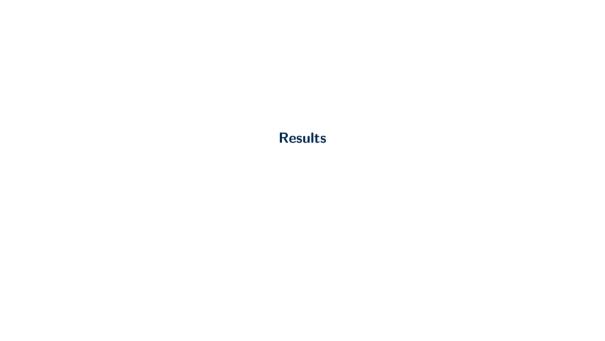
3: 
$$\hat{\mathbf{x}}_0 \leftarrow \frac{1}{\sqrt{\bar{\alpha}_t}} \left( \mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right)$$

4: 
$$\hat{\mathbf{x}}_0' \leftarrow \hat{\hat{\mathbf{x}}}_0 - \lambda_t \nabla_{\mathbf{x}_t} R_{\mathcal{H}}(\hat{\mathbf{x}}_0)$$

5: 
$$z \sim \mathcal{N}(0, \mathbf{I}_{4B})$$

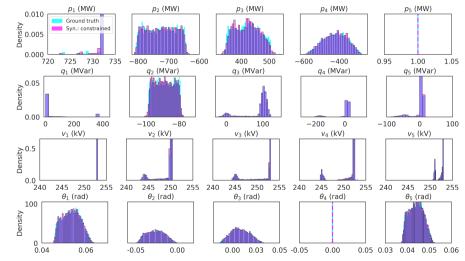
5: 
$$z \sim \mathcal{N}(0, \mathbf{I}_{4B})$$
  
6:  $\mathbf{x}_{t-1} \leftarrow \frac{\sqrt{\alpha_t(1-\bar{\alpha}_{t-1})}}{1-\bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1-\bar{\alpha}_t} \hat{\mathbf{x}}_0' + \sigma_t \mathbf{z}$ 

7: return  $\tilde{\mathbf{x}}_0$ 



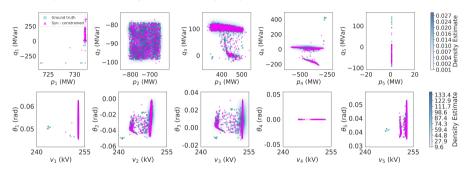
# Statistical Similarity: marginal distribution

Histograms of the ground truth versus synthetic power flow data points:



# Statistical Similarity: joint distribution

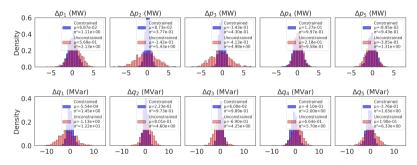
▶ 2D scatter plots with density estimates of  $\mathbf{p} - \mathbf{q}$  and  $\mathbf{v} - \boldsymbol{\theta}$ :



- ► The synthetic data points
  - closely follow the distributional pattern of the real data.
  - closely span the entire domain of the real joint probability distributions.
  - ▶ captures the multi-modal structure of the real data distribution.

#### Constraint Satisfaction

▶ Histograms of violation magnitudes for the active and reactive power balance constraints in the PJM 5-bus system ( $\lambda = 10^{-2}$  vs  $\lambda = 0$ ):



lacktriangle Wasserstein distances between the ground truth  ${\mathcal D}$  and synthetic data  $\widetilde{{\mathcal D}}$ 

| Distance between                                           | 5-Bus | 24-Bus | 118-Bus |
|------------------------------------------------------------|-------|--------|---------|
| $\mathcal{D}$ and $\widetilde{\mathcal{D}}$ w/o guidance   |       |        | 0.622   |
| $\mathcal{D}$ and $\widetilde{\mathcal{D}}$ w $/$ guidance | 0.382 | 0.585  | 0.597   |

#### Conclusion

- ▶ The synthesized power flow data points effectively capture both the marginal and joint distributions of the real power flow data.
- ▶ The proposed gradient guidance approach successfully enforces power flow constraints during sampling, ensuring the feasibility of the generated data.
- ▶ The gradient guidance mechanism maintains the sampling trajectory within the data manifold, preventing divergence from the learned data distribution.

#### New Work Announcement

#### All materials in this talk are based on our preprint:

Constrained Diffusion Models for Synthesizing Representative Power Flow Datasets (available on arXiv)

#### Our latest work:

DiffOPF: Diffusion Solver for Optimal Power Flow (available on arXiv)

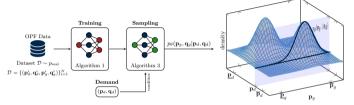
▶ We saw how to learn the underlying distribution of OPF data and generate synthetic OPF data points. But, can we use this learned distribution as a prior and solve new OPF problems?

### Goal: solving OPF problem via conditional sampling

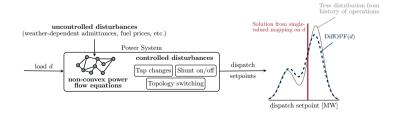
Given a learned distribution of OPF data points, we aim to sample from this distribution conditioned on a new demand input.

# Introducing Our Latest Work: Diffusion Solver for Optimal Power Flow

▶ We introduce a diffusion-based OPF solver, termed DiffOPF, that treats OPF as a conditional sampling problem.



▶ The OPF problem is a multi-valued (non-unique) mapping from loads to dispatch setpoints.



# Thank You!



Google Scholar Profile