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Power systems as a stroll in the fog

↭ Power systems are critical infrastructures with most of data being classified

↭ We have only a limited observably, e.g., ISO data disclosure portals

↭ Grid stakeholders hence act on a limited set of system data
Hedgehog in the Fog

Yuri Norstein (1975)

Example: DC optimal power flow (OPF) in the (small) IEEE 118-bus system

↭ 1079 rows of element-specific data

↭ Each generator owns only 2 rows

↭ The rest of system data is not explicitly
disclosed to power producers

How to disclose grid data
in a controllable manner?
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Di!erential privacy (DP) enables controlled disclosure of grid data

DC-OPF
optimization

real data solution

(dispatch)

DC-OPF
optimization

DP data solution

(dispatch)

→↑ ↑

↭ DP principle: obfuscate real data (add noise) but preserve its value

↭ In the DC-OPF setting: obfuscate grid data but preserve the OPF solution

↭ Formal privacy guarantee: released DP data does NOT disclose the real data

↭ Many applications to synthesizing high-quality transmission, load and generation data
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Example: Synthesizing transmission line capacities using DP and optimization

↭ IEEE 73-RTS benchmark

↭ Step 1: add random noise to trans capacity

ω1 = f + calibrated noise

↭ Step 2: post-process ω1 to ensure OPF feasibility
and cost-consistency w.r.t. real trans capacity

ω2 → argmin
ω

↑c(f )↓ c(ω)↑+ ↑ω↓ ω1↑

s.t. c(ω) = min
p

c(p) opf cost

s.t. p → P(ω) opf feas

↭ Step 3-N : repeat Step 2 until OPF feasibility and
cost-consistency are restored across many scenarios

Dvorkin, V., Botterud A. Di!erentially private algorithms for synthetic power system datasets, IEEE Control Systems Letters, 2023.
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Challenge: If DP synthetic datasets are so good, do they pose any security risks?

↭ Grid datasets are used for calibrating cyberattacks on power grids

↭ Hypothesis: high-quality synthetic data → well-calibrated attacks

↭ Classes of cyberattacks: false data injection, line outage masking, physical attacks, ...

Contribution: We identify cyberattack risks in releasing DP grid
data and propose new algorithms to guarantee both privacy and

cyber resilience to source grids

Shengyang Wu
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Load redistribution attack

↭ Given load d, the attack corrupts the load d+ ω with bus injection ω from admissible set !

! ↫
{
ω

∣∣∣∣
ω ↬ ω ↬ ω injection limits for each bus

1→ω = 0 total load remains unchanged

}

↭ Amounts solving a bi-level optimization problem:

C
BO
att (d) = max

ω↑!
Copf(d+ ω) maximize the cost

s.t. Copf(d+ ω) = min
x

c→x feedback from OPF

s.t. a→k x+ b→
k (d+ ω) + ek ↬ 0

↭ The problem seeks a stealthy attack vector that maximizes the OPF cost

Can DP grid data be used to successfully execute the load redistribution attack?

>>> V. Dvorkin 5 / 15



Numerical evidence
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Post-processing optimization to minimize attack damage

level 3

level 2

level 1minimize
d

→CBO
att (d)↑ C̃opf→︸ ︷︷ ︸
power of attack

+ω →Copf(d)↑ C̃opf→︸ ︷︷ ︸
cost consistency

+ ε→d↑ d1→︸ ︷︷ ︸
regularization

subject to Copf(d) =

C
BO
att (d) = maximize

ω→!
Copf(ω)

subject to Copf(ω) = minimize
x

Copf(x)

subject to x ↓ opf-eq(d+ ω)

minimize
x

Copf(x)

subject to x ↓ opf-eq(d)

Figure: Tri-level structure of the cyber-resilient post-processing of DP load data.

↭ Step 1: add random noise to real loads: d1 = d+ calibrated noise
↭ Step 2: post-process d1 by solving a tri-level optimization:

↭ Level-1: Optimize synthetic load d to balance attack damage and cost-consistency
↭ Level-2: Feedback from both OPF and attack optimization
↭ Level-3: Embedded OPF for attack calibration

↭ Result: DP load vector d balancing attack damage and cost-consistency
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Tractable approximation of the tri-level problem

↭ Optimizing synthetic loads over bi-level optimization is computationally challenging

↭ We drawn on the connection between bi-level and robust (single-level) optimization

Bi-level attack optimization

C
BO
att (d) = max

ω→!
Copf(d+ ω)

x → argmin
x

c↑x

s.t. a↑k x+ b↑
k (d+ ω) + ek ↫ 0 ↑k

(uniform attack)

Robust optimization (RO) approximation

C
RO
att (d) = min

x
c↑x

s.t. max
ωk→!

[
a↑k x+ b↑

k (d+ ωk) + ek

]
↫ 0 ↑k

a↑k

(per constraint attack)

Proposition: For any feasible load d, relation C
RO
att (d) ↬ C

BO
att (d) holds.
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Cyber Resilient Obfuscation (CRO) Algorithm

↭ Step 1: Obfuscate real load data

DP load d1 = d+ calibrated noise

DP estimation of OPF costs: C̃opf = Copf(d) + calibrated noise

↭ Step 2: Post-process d1 to balance cost-consistency and cyber resilience P

minimize
d

→CRO
att (d)↑ C̃opf→︸ ︷︷ ︸
power of attack

+ω →Copf(d)↑ C̃opf→︸ ︷︷ ︸
cost consistency

+ ε→d↑ d1→︸ ︷︷ ︸
regularization

↭ Replacing the two embedded optimization problems with their Karush–Kuhn–Tucker conditions leads to
a single-level mixed-integer problem.
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CRO-Exp: selecting only important constraints for post-processing

C
RO
att,ω (d) = min

x
c→x

s.t. max
ωk↑!

[
a→k x+ b→

k (d+ ωk) + ek

]
↭ 0 →k ↑ K↓

RO-reformulated cons

max
ωk↑!

[
a→k x+ b→

k (d+ωk) + ek

]
↭ 0 →k ↑ K original problem cons

↫ We select only most important ω constraints for RO reformulation

↫ Most important constraints in K↓ are function of original loads

↫ Exponential mechanism of DP to obfuscate loads when selecting K↓

Selecting only important
constraints substantially reduces

the computational burden
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CRO-Exp with privacy and cyber resilience guarantees

Algorithm 1: Privacy-preserving CRO-Exp

Input: real load d, DP parameters (ω, ε1, ε2, ε3), attack data (ϑ, ϖ,!, ϱ), K = {→}
1 DP obfuscation of load and OPF costs:

d̃0 = d+ Lap

(
ω

ε1

)
n

C̃opf = Copf(d) + Lap

(
ωc

ε2

)

2 DP estimation of the set K of the worst-case constraints
for t = 1, . . . , ϱ do

for k = 1, . . . ,K do

Ck = C
RO
att,t(d) + Lap

(
ωc

ε3

)

end
kt ↑ argmaxk Ck

K ↑ K ↓ {kt}
end
3 Post-processing optimization of the synthetic load vector

d̃ ↔ argmin
d̃

↗Copf(d̃)↘ C̃opf↗1 + ϑ↗CRO
att,ϑ (d̃)↘ C̃opf↗1 + ϖ↗d̃↘ d̃0↗1

Output: Synthetic load vector d̃
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CRO application to PJM 5-Bus system

OPF cost distributions in normal and post-attack operation

↭ Blue distributions - normal operation

↭ Red distributions - post-attack operation

↭ Top row - standard DP post-processing

↭ Bottom row - proposed CRO post-processing

CRO sends important signal to attackers: the attacks
do not lead to extra OPF cost to the system.
(normal and post-attack distributions overlap)
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CRO-Exp application to larger systems

Post-attack damage as a function of constraints selected for
post-processing optimization

↭ The more constraints under attack → more resilent
the source grid to load redistribution attacks

↭ 5 constraints on average to minimize the damage

After 5 iterations, the CRO-Exp algorithm identified the
most important constraints for post-processing synthetic

loads and ensuring grid resilience.

>>> V. Dvorkin 13 / 15

more loads get obfuscated 



Conclusions

↭ Synthetic grid data is optimized to guarantee privacy, quality and cyber resilience simultaneously

↭ Trade-o!s under linear cost functions are “flat”: resilience is achieved with little to no impact on data quality

↭ The tri-level post-processing optimization can be e”ciently collapsed to single-level optimization under
reasonable and judicious approximations (connecting bilevel and robust optimization techniques)

Check paper for details on:

↭ DP guarantees of CRO and CRO-Exp

↭ Connection between Bi-level and RO

↭ Experiment settings, data and code
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Miscellaneous

Our work on energy data privacy:

1 Synthesizing grid data with cyber resilience and privacy guarantees
IEEE Control Systems Letters, 2025

2 Di!erentially private algorithms for synthetic power system datasets
IEEE Control Systems Letters, 2023

3 Privacy-preserving convex optimization: When di!erential privacy meets stochastic programming
2025 IEEE Conference on Decision and Control

4 Di!erentially private optimal power flow for distribution grids
IEEE Transactions on Power Systems, 2021. ! Best 2019–2021 Paper Award

5 Di!erentially private distributed optimal power flow
2020 IEEE Conference on Decision and Control

New perspective on energy data privacy via di!usion models:

Milad Hoseinpour
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