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Why democratizing access to power grid data

have fueled breakthroughs in many fields:

Speech recognition

(ImageNet) (LibriSpeech)
» Power systems research
Real grid data are — due to security and regulation
» Most available datasets are , limiting realism and impact
> Enable open, realistic grid datasets

— without compromising privacy or security of source grids

>> Vladimir Dvorkin - EECS University of Michigan

Biology
(UniProt)
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Where energy data should go?

Arguments in favor of data: Arguments in favor of data:
» Privacy and security » |Improved decision-making
» Regulatory compliance » |ess barriers for entry
» Competitive advantage » |nnovation, research
Is there an answer to this question?

>> Vladimir Dvorkin - EECS University of Michigan / 38



Industry is very hesitant to share data about critical infrastructure systems

< MIT Energy Initiative Sponsors

Tap here for group info

Hey, we are wondering what is the cost-optimal decarbonization

pathway to reduce our emission footprint? 10:42

Hi, we can optimize that! We need your cost data, generation
time series, and some budget data

10:45
Oh, we won'’t be able to share the data... too sensitive. Even if
we could, can you guarantee that the data will not be exposed?
10:47
Okay, we will figure something out. We stay in touch!
10:49

typical conversation with industry partners

» Hesitance to share operational /system data

» Data disclosure treated as binary (share/don’t
share) rather than algorithmic problem

» Decisions are driven more by regulators’ mandates
rather than by the strive to innovate

Why companies are so hesitant to share data?

>> Vladimir Dvorkin - EECS University of Michigan
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ORGANIZATIONS SPEND MORE THAN EVERDEALING WITHTHE COSTS AND
CONSEQUENCES OF INCREASINGLY SOPHISTICATED ATTACKS

Cost of cybercrime is rising

M. Tm=» $13.0m +12% =72%

Average cost of
cybercrimein 2018

Average cost of
cybercrime in 2017

Increase in the
last 5 years

Increasein
the last year

People-based attacks have increased the most

Malware (+11%)

Web-based attacks (+13%)

Denial of service (+10%)

Malicious insider (+15%)

Phishing and social engineering (+8%)
Malicious code (+9%)

Stolen devices (+12%)

Ransomware (+21%)

Botnets (+12%)

. 2,275,024

Legend

W 2017
M 2018

$2,364,806
$2,613,952

$2,014,142

$1,565,435

I $1,721,285
. $1,415,217

$1,621,075

. 51,298,978
I ©1,407,214

I 51,282,324
I $1,396,603

I  $865,985

$973,767

I $532,914
I  $645,920

I $350,012
I $390,752

$0

>> Vladimir Dvorkin - EECS University of Michigan
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Accenture: 9th Annual Cost of Cybercrime study

Business consequences
are expensive

$4.0m

Cost of business disruption

$5.9m

Cost of information loss

36%

Proportion of spend on
discovering attacks in 2018
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Synthetic data is a viable alternative to real data sharing

By 2030, Synthetic Data Will Completely Overshadow Real Data in Al Models

il

» Artificially Generated Data
» Generated From Simple

| | s :
FutureAl Rules, Statistical Modelling,
Data Used | Simulation and Other
for Al Today’s Al Techniques

» Obtained From Direct
Measurements

» Constrained by Cost, Logistics,
Privacy Reasons

2020 . 2030
Time

Source: Gartner

fs01/5 C

>> Vladimir Dvorkin - EECS University of Michigan / 38



Synthetic power systems datasets
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(from 37 to 80k+ bus networks) Europe covering the full ENTSO-E area

Why these datasets may not satisfy our needs?

> “[...] data bears no relation to the actual grid [...] except that
generation and load profiles are similar, based on public data”

> “This test case represents a synthetic (fictitious) transmission”

» “This case Is synthetic and does not model the actual grid”

>> Vladimir Dvorkin - EECS University of Michigan
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This talk

We introduce algorithms to synthesize credible synthetic datasets from
real power systems, while controlling privacy and security risks

» Algorithmic formalization of trust in energy data sharing
o Moving from subjective decisions to quantitative guarantees

» Private or public data? Our algorithms provide a non-binary solution to this dilemma
o Spectrum of privacy-utility tradeoffs, not just share/don’t share

» Comprehensive data scope:

o Optimization datasets (OPF, unit commitment, economic dispatch)
o Dynamical models (e.g., grid frequency dynamics)
o Operational records (power flows, market-clearing outcomes, etc.)

Core message: Our algorithms enable controlled data disclosures while
resolving privacy, security, and logistics concerns

55> Vladimir Dvorkin - EECS University of Michigan / 38



. Intro

. Formalization of energy data privacy

. Synthesizing optimization data with privacy and cyber security guarantees

. Synthesizing power system dynamics models with privacy guarantees

. Synthesizing power flow datasets with constrained diffusion models

. Outro



2. Formalization of energy data privacy



Power systems as a stroll in the fog

» Power systems are critical infrastructures with most of data being classified
» We have only a limited observably, e.g., ISO data disclosure portals

» Grid stakeholders hence act on a limited set of system data

Hedgehog in the Fog
Yuri Norstein (1975)

Example: DC optimal power flow (OPF) in the (small) IEEE 118-bus system

| sy | "’ T
w i &;ﬁ@/ 51 Vi a » 1079 rows of element-specific data

/ e
T 49 =
. o Q‘/ N\ Each generator owns only 2 rows
ﬁ . A ‘ > The rest of system data is not explicitly

z *\/ ‘ disclosed to power producers

50 E 3 (D
H

2N
250 @
755 °$?E

/ How to disclose grid data

. 3 N in a controllable manner?

3?

>> Vladimir Dvorkin - EECS University of I\/Iichgan
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Formalizing differential privacy (DP)

» Wind power records y,y’, y"”, ... € [0, 1]

» For given a > 0, records y and y’ are aa—adjacent if ||y — y'|| < «

> Let Lap(a/c) be a zero-mean random Laplacian noise

» For some parameter € > 0, the release is e—DP if

Pr

Y -

Pr

I

for any a—adjacent pair (y, y’) and any outcome y

>> Vladimir Dvorkin - EECS University of Michigan

> wind power output
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Example: Synthesizing transmission line capacities using DP and optimization M

iteration: 1 infeas: 98.0% suboptimality: 11.4%

B real capacity

» |[EEE 73-RTS benchmark synthetic capacity
600

> . add random noise to trans capacity

p1 = f + calibrated noise

> . post-process 1 to ensure OPF feasibility
and cost-consistency w.r.t. real trans capacity

400 1

p2 € argmin  [c(f) = ()| + [l — |

s.t. ¢ = min C opf cost

st. p &€ P(p) opffeas

> . repeat Step 2 until OPF feasibility and
cost-consistency are restored across many scenarios

20 40 60 80 100
transmission line index (sorted)

Dvorkin, V., Botterud A. Differentially private algorithms for synthetic power system datasets, IEEE Control Systems Letters, 2023.

>> Vladimir Dvorkin - EECS University of Michigan / 38



3. Synthesizing optimization data with privacy and cyber security guarantees



Challenge: If DP synthetic datasets are so good, do they pose any security risks? M

» Grid datasets are used for calibrating cyberattacks on power grids
» Hypothesis: high-quality synthetic data — well-calibrated attacks

» Classes of cyberattacks: false data injection, line outage masking, physical attacks, ...

Contribution: We identify cyberattack risks in releasing DP grid
data and propose new algorithms to guarantee both privacy and
cyber resilience to source grids

Shengyang Wu

>> Vladimir Dvorkin - EECS University of Michigan / 38



Load redistribution attack

» Given load d, the attack corrupts the load d + 0 with bus injection 0 from admissible set A

A L d<i<Ké Injection limits for each bus
1'6=0 total load remains unchanged

» Amounts solving a bi-level optimization problem:

PV

Co2(d) = max  Cops(d + 0) maximize the cost ‘
eA PQ
s.t. Cops(d+ ) =min c'x  feedback from OPF

PQ

st. a,x+b, (d+05)+e <0

» The problem seeks a stealthy attack vector o that maximizes the OPF cost

Can DP grid data be used to successfully execute the load redistribution attack?

>> Vladimir Dvorkin - EECS University of Michigan / 38



Numerical evidence

Average Outcomes of Load Redistribution Attacks
| |

300 Copt (real load)
Copt (DP load) i
— V / /]
] V / /
LI Small attack (real load) il 12
250 | - ¢/ v/ 4 —
1 Small attack (DP load) 2zl | - Iz
= 7 /] V7 / [/ 7 (7 7]
N~ _ ¢/ / 7 / 224 ¢/ /
v / /  / / [/ / [/ /]
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S — ¢/ / 7 / /7 /7
v . v / / V / / (/ / [/
(@) 200 B 4 E‘ Medlum attaCk (DP |Oad) v / / ' / / r / / v / /| ]
— ¢/ / 7/ 2% ¢ 7/
v / / V / / [/ / ( / /]
I Large attack (real load) 2l 12 2l 1%
PN ¢/ / 7 22 ¢/ /
=7, ¢/ / 7 024 7/
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v 150 ¢/ / 0] 2 oA —
O ¢/ / 7 / 2% ¢/ /
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 / / 2 ¢/ / 7 22 ¢/ /
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Benchmark Power System

>> Vladimir Dvorkin - EECS University of Michigan / 38



Post-processing optimization to minimize attack damage

> : add random noise to real loads: di = d + calibrated noise
> . post-process di by solving a tri-level optimization:

» Level-1: Optimize synthetic load d to balance attack damage and cost-consistency
» Level-2: Feedback from both OPF and attack optimization
» Level-3: Embedded OPF for attack calibration

> : DP load vector d balancing attack damage and cost-consistency
r a
minimize || Caie (d) — Copf|| +8 || Copr(d) — Copf|| +||d — d1] level 1
d —_—  — O
power of attack cost consistency regularization
subject to Copr(d) = minimize  Copr(x) level 2
subject to x € opf-eq(d)
BO( 4\ _
G (d) = maxirRize Cops(0)
¢
subject to  Copf(0) = minimize  Cop(X) level 3
subject to x € opf-eq(d + )
N Y

Figure: Tri-level structure of the cyber-resilient post-processing of DP load data.
/ 38



Tractable approximation of the tri-level problem

» Optimizing synthetic loads over bi-level optimization is computationally challenging

» \We drawn on the connection between bi-level and robust (single-level) optimization

Bi-level attack optimization Robust optimization (RO) approximation
CL2(d) = max Copf(d + 0) CX2(d) = min ¢'x
S X
X € argmin ¢ ' x s.t. max [a,;rx + b, (d+ 04) + ek} <0 Vk
X k€

st.agx+b,(d+0)+e <0 Vk

(uniform attack) (per constraint attack)

For any feasible load d, relation Ch¢(d) > C52(d) holds.

55> Vladimir Dvorkin - EECS University of Michigan / 38



Cyber Resilient Obfuscation (CRQO) Algorithm

> - Obfuscate real load data
DP load di = d + calibrated noise
DP estimation of OPF costs: Cops = Copf(d) + calibrated noise

> . Post-process d; to balance cost-consistency and cyber resilience P

minimize HCaFi?(d) — éopr +8 || Cop(d) — 50pr +v[|d — di

d W
power of attack cost consistency regularization

embedded attack embedded OPF
optimization optimization

» Replacing the two embedded optimization problems with their Karush—Kuhn—Tucker conditions leads to
a single-level mixed-integer problem.

55> Vladimir Dvorkin - EECS University of Michigan / 38



CRO-Exp: selecting only important constraints for post-processing

RO
Catt,T

S.t.

(d) = min c'x

-
MmaXx (dx X
rEA L

T
a, X+

b, (d

b, d

k)

ek}éﬂ Vk € K’

+ek}<0 Vk € IC

» We select only most important 7 constraints for RO reformulation

» Most important constraints in X' are function of original loads

» Exponential mechanism of DP to obfuscate loads when selecting K’

# of variables

# of complementarities

_ .9
10° .« CRO .9
104 - o =+ CRO-Exp

PO * o Standard | ... o °
4 03 1 ettt O B e L T
$: R -SRNPRIEET S @ """ [

102- @il
101

5-bus 14-bus 24-bus 118-bus 5-bus 14-bus 24-bus 118-bus

>> Vladimir Dvorkin - EECS University of Michigan

RO-reformulated cons

original problem cons

Selecting only important
constraints substantially reduces
the computational burden

/ 38



CRO-Exp with privacy and cyber resilience guarantees

Algorithm 1: Privacy-preserving CRO-Exp

Input: real load d, DP parameters (a, €1, €2, e3), attack data (B,v, A, 1), K = {0}
1 DP obfuscation of load and OPF costs:

d° = d+ Lap (ﬁ)

€1

~ oC
Copf — Copf(d) T Lap <g>

2 DP estimation of the set /IC of the worst-case constraints
fort=1,...,7 do
for k=1,...,K do

Cr = CRO.(d) + Lap (2£)

end
ki <— argmax, Cy

end
3 Post-processing optimization of the synthetic load vector

d € argmin || Copr(d) — Coptll1 + Bl CRS 1 (d) — Copellr + v/ d — d°|lx
d

Output: Synthetic load vector d

55> Vladimir Dvorkin - EECS University of Michigan / 38



CRO application to PJM 5-Bus system

more loads get obfuscated
S E——

Adjacency a=20MW Adjacency a=50MW Adjacency a=100MW

Copf(app)
Cro(d,,) [ | 2 . . .
Co(d) |o ;o » Blue distributions - normal operation
o Cur(d) 2 ot

Frequency

» Red distributions - post-attack operation

|' | Ei ) » Top row - standard DP post-processing

— » Bottom row - proposed CRO post-processing

standard DP

Copt(dero)
o)) Co(d,, ) f
T 3 Copld) |
o & SO E
C o :i 1B
O ¢ 5 P . .

z =‘ g I CRO sends important signal to attackers: the attacks
— do not lead to extra OPF cost to the system.
/75 80 85 90 95 100105 /75 80 85 90 95 100 105 /75 80 85 90 95 100105
Dispatch Cost(k) Dispatch Cost(k$) Dispatch Cost(k$) (normal and post-attack distributions overlap)

OPF cost distributions in normal and post-attack operation

>> Vladimir Dvorkin - EECS University of Michigan / 38



CRO-Exp application to larger systems

more loads get obfuscated
S E——

Adjacency a=1% Adjacency a=5% Adjacency a=10%

~20 20- 20-
g S " mean
m (%15- 15- 15- P
A §1o - 104, 104 -+
W= s : 5- 51 .
w = s, N . .
=<0 o:cen0:ie] 0 e T =--e:::ef P The more constraints under attack — more resilent
§ 20, 20° 20° the source grid to load redistribution attacks
> 15 151 151
< £ . . . .
N G104 10{%%ev0, P » 5 constraints on average to minimize the damage
HJJ S 5- . 5 s 5 e,

8 2 .
u_J < 0- L SR TRRRY 0- ‘@::=s@r1::@ 0. @ s @==:9
§ gZS* 251 25 -
i 520 20 20-
00 ©
- £ 151 15 - 151 . . . . .
= 8 T gl e e After 5 iterations, the CRO-Exp algorithm identified the
e > B | ‘e.e...e| MOSt Important constraints for post-processing synthetic
- <o\ ~—®ee| o o0+ "

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 loads and ensuring grid resilience.

Number of iterations T of Exponential Mechanism in Alg. 2

Post-attack damage as a function of constraints selected for
post-processing optimization

55> Vladimir Dvorkin - EECS University of Michigan / 38



Conclusions

» Synthetic grid data is optimized to guarantee privacy, quality and cyber resilience simultaneously

» Trade-offs under linear cost functions are “flat”: resilience is achieved with little to no impact on data quality

» The tri-level post-processing optimization can be efficiently collapsed to single-level optimization under
reasonable and judicious approximations (connecting bi-level and robust optimization techniques)

438 IEEE CONTROL SYSTEMS LETTERS, VOL. 9, 2025 ,//

= CSS
Synthesizing Grid Data With Cyber
Resilience and Privacy Guarantees

Shengyang Wu' ', Student Member, IEEE, and Vladimir Dvorkin*, Member, IEEE

Check paper for details on:
» DP guarantees of CRO and CRO-Exp

Abstract—Differential privacy (DP) provides a principled
approach to synthesizing data (e.g., loads) from real-world
power systems while limiting the exposure of sensitive
information. However, adversaries may exploit synthetic
data to calibrate cyberattacks on the source grids. To
control these risks, we propose new DP algorithms for
synthesizing data that provide the source grids with both
cyber resilience and privacy guarantees. The algorithms
incorporate both normal operation and attack optimization
models to balance the fidelity of synthesized data and cyber
resilience. The resulting post-processing optimization is
reformulated as a robust optimization problem, which is
compatible with the exponential mechanism of DP to mod-
erate its computational burden.

Index Terms—Power systems, synthetic dataset, differ-
ential privacy, cyber security.

with such releases remain largely unexplored. Possible cyber
attacks include false data injection, which subtly alters state
estimation results [13], line outage masking, which discon-
nects a transmission line and misguides a control center to
seek outage elsewhere [14], and load redistribution, which
manipulates demand measurements to increase OPF cost and
constraint violation [15]. The latter is of main interest to
this letter. Executing such attacks requires some grid knowl-
edge [16], which is traditionally difficult to obtain. However,
the availability of synthetic grid data may unintentionally
inform adversaries and help them calibrate the attack.
Contribution: Recognizing the risks that synthetic grid
parameters may inform cyber adversaries, we develop new
DP algorithms that simultaneously guarantee cyber resilience
and privacy for the source power grids. Our algorithms

>> Vladimir Dvorkin - EECS University of Michigan

» Connection between Bi-level and RO

» Experiment settings, data and code

/ 38



4. Synthesizing power system dynamics models with privacy guarantees



The Challenge

» Stability of power grids is critical

Renewables, inverter-based resources, and data centers reshape grid dynamics
» We need a shared dynamical model so independent parties can design optimal control
» But releasing the real model exposes sensitive system details

» Goal: Synthesize a model that behaves nearly identically — without disclosing the original model

o 4 4 2
£ £ min ZC’g(Pg) S ZP%‘ = ZPI d
20
- Py Py P3P,
I |
woo & Y 5| w

AGC

Py

P, | Pilq Py
Wil " el
Piora+AP! area a = 1 area a = 2 Pt FAP?

picture courtesy of Sairaj Dhople

o, ACEl Y4 Y3
A A
== - w1 lwa | P4 P3 |wg|ws - -
Py

X
Q

Physical Layer
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Grid frequency dynamic model

External load disturbance
throws-off supply-demand
balance

Dispatch executed with Resource primary controls

offline load forecast arrest frequency; Secondary control restores
secondary control is slow to act frequency to nominal
/ — -

picture courtesy of Sairaj Dhople

M~ (Ké+p —d — Dw) swing equation

W
§ = w phase angle dynamics
p=—T(p-+r+ Rw) generator control

How to release the parameters of system dynamics in a privacy-preserving way?
>>> Vladimir Dvorkin - EECS University of Michigan / 38



Classic solution based on Kron reduction

J
bl TENSOR = =
© TR - —— ANALYSIS
g M 1 [y OF NETWORKS
aE -k
},;Q Kron
S —_—>
) & reduction
g
» Partitioning of the swing equation:
- | 1 r - - | 1 r - - - - - - | 1 r -
_“_/lg_l_o_ Wg | _ _'_(g§+’_(g_€_ Og 4 Pg| |de| _[_)g_l_o__ Wg
I 0 | 0 ) _we_ I Kgg Kgg ] _(Sg_ _O_ _Clg_ I 0 | Dg ) _we_

» Kron-reduced swing equation with the identical dynamics
Mgw, = Kreddg — Dgwg + (p — dg) — Kacdy

» Does the release of the reduced equation preserves privacy?
No! [SH Low (2024); Deka, Kekatos & Cavraro (2024)]

>> Vladimir Dvorkin - EECS University of Michigan / 38



Differentially private Kron reduction

» \We synthesize the reduced topology matrix Kiq

> Perturb the topology with random noise (Laplace mechanism)

~

Kred = Kred + Lap(a/e)

> Post-process the perturb topology by optimizing the perturbed model of frequency dynamics

i
min [ wg(tRes) — wi(0)[ ot + [Kees = K
K, 0

ed

st. Muyw, = Kieady — Dyw, + (p — dg) — Kacds
Differentially private way to solve this optimization: Adjoint method + DP gradient descent

» The optimal K preserves the privacy of the original topology in K but behaves similarly
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Differentially private Kron reduction

» \We synthesize the reduced topology matrix Kiq

> Perturb the topology with random noise (Laplace mechanism)

~

Kred = Kred + LaP(Oé/EI)

7 0.0000 - x 0.00007
S -0.0005 - S -0.0005 - e |
£ ©
é -0.0010 - é —0.0010 -
> — ref > | — ref
S ~0.0015 - i~ g ~0.0015 wio pp
S 5 _0.0020 -
£ -0.0020 — w/pp o — w/ pp

0 50 100 0 50 100

time(s) time(s)
Kred = Kred + I—ap(‘I /5) Kred = Kred + Lap(3/€)
Less privacy protection More privacy protection
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5. Synthesizing power flow datasets with constrained diffusion models



Motivation and Goal M

» There is an increasing demand for high-quality power flow datasets for machine learning (ML) tasks in power
systems: state estimation, optimal power flow solvers, etc.

» Challenges of data availability: privacy and security concerns, legal barriers

» Given a dataset of real power flow data points, a system operator aims to generate:

(1) and
(2) synthetic power flow data points.
Training Sampling
(Diffusion Model (Diffusion Model
Real Data Synthetlc Data
= — > ||I a—
S ——
Dataset D ~ Dpreal Dataset D ~ psyn
N y N ) ~ U
D = {(pi, i, Vi, 0i) }in1 N D = {(pi,Qi, Vi, 0:) Hity

Physics Information

Milad Hoseinpour
Power Flow Constraints

G(Pi,ai,Vi,0:) =0
H(Di, Qi, Vi, 0:) = 0
. y
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Related Work

(1) Generic random sampling approaches:

Iteratively perturbing system parameters (e.g., demand level) around the nominal value and solving the
corresponding OPF problem.

» Drawback 1: Datasets do NOT represent the of real operating records.

» Drawback 2: The number of samples to cover the feasible region grows

(2) Historical data-driven approaches: Generative models (e.g., VAE, GAN)

The historical data-driven approaches leverage real operational records to learn the data distribution.

» Drawback 1: Poor generation quality (VAE), mode collapse (GAN)
» Drawback 2: No rigorous method to their output (e.g., enforcing power flow constraints)

Ref.:
- S. Lovett et al., “OPFData: Large-scale datasets for AC optimal power flow with topological perturbations,” arXiv preprint arXiv:2406.07234, 2024.

- A. Jabbar et al., “A survey on generative adversarial networks: Variants, applications, and training,” ACM CSUR, vol. 54, no. 8, pp. 1-49, 2021.
- Z. Pan et al., “Data-driven EV load profiles generation using a variational auto-encoder,” Energies, vol. 12, no. 5, p. 849, 2019.
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Preliminary: Diffusion Models

» Forward diffusion process: iteratively add noise to data sample

» Reverse denoising process: d

Po(xt—1[xt) =N (xe—1; po(xt, t), o¢l) |

Xt—1 — /LQ(Xt, t) —+ Ot€t, €Er N N(O, I[)
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Power flow constraints

» The expressions for f”

Ref.:

N\

N\
Iji—>j f{?j—>
> <
v 26, gt o1 v; 20,
() TPi pjT ()
- 2 = 2 =0 VbeEB
leL:i=b leL:j=b
S - X f=0 vbeEB
leL:i=b leL:j=b
S, and f’_ . are

fr = viv :gl cos(0i — 0;) + bysin(0; — ‘91'):7 vie L,

7l_>./

a oo cin(O.
fiis: = viv;| g sin(0;

— (9]') — by COS(@,‘ — (9j): , VIeL,

where g and b, are the real and imaginary parts of Y = G + JB.

D. K. Molzahn et al., “

A survey of relaxations and approximations of the power flow equations,”

>> Vladimir Dvorkin - EECS University of Michigan

Found. Trends Electr. Energy Syst., vol. 4, no. 1-2, pp. 1-221, 2019.
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Diffusion guidance based on power flow constraints

» Theoretically, a diffusion model trained on a dataset of feasible power flow data points should satisfy the

power flow constraints.
» |n practice, a diffusion model may generate power flow data points that are infeasible due to learning and

___________
-"- -~

sampling errors.

Y Real sample ,

® Synthesized sample (feasible)

® Synthesized sample (infeasible)

— - —
- o I

M Power flow manifold
\

— Power flow constraints
\

Yy
bl
- - -
O - -

How can ensure that the generated samples satisfy power flow constraint?

Ref.:
- Feng, Berthy T., Ricardo Baptista, and Katherine L. Bouman. “Neural approximate mirror maps for constrained diffusion models.” arXiv preprint arXiv:2406.12816, 2024.

/ 38

- G. Daras et al., “Consistent diffusion models: Mitigating sampling drift by learning to be consistent,” Adv. Neural Inf. Process. Syst., vol. 36, pp. 42 038—42 063, 2023.
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Diffusion guidance based on power flow constraints

Geometry of Sampling without Guidance
» Sampling steps as transitions from noisy (M;) to less noisy (M_1) data manifolds:

» (1) Denoise based on x; and estimate the clean data X,

> (2) add noise w.r.t. the corresponding noise schedule and obtain x;_1.

XT H(x) =0
/?/ Mo
( ) XT_l
P
Legend / Mr_1
@ XT—-2
. . — t
—> Denoising — ey Mo,
Noising
Constraint / \I\
———  Manifold Y AN 7S 2
\ y, /}A((H;/}A(mT—l }A(O|T—2 5(0 }66\ M
The sampling trajectory Is to the power flow constraints.
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Diffusion guidance based on power flow constraints

Geometry of sampling with guidance
» Sampling steps as transitions from noisy (M;) to less noisy (M;_1) data manifolds:

» (1) Denoise based on x; and estimate the clean data Xy,
» (2) add the gradient guidance term,

> (3) add noise w.r.t. the corresponding noise schedule and obtain x;_1.

XT H(x) =0
— 1 Mo
XT—-1
N
r 2 / Mo
Legend @

—> Denoising

Noising _— 5 AtgradRMfm)\j'\

—> (Guidance | _ _

Constraint //./)% il — &
Manlf()ld d XO|T @ XoIT ) / Xo! X0 M

The steers the sampling trajectory toward power flow data points.
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| )
70000 76000

_l load; _l loads,

5-Bus PJM system

What usually gets published?

Electricity prices
Aggregated statistics (demand, gen mix)

What we can publish using diffusion?

High-granular streams of operational data
Active and reactive power injections
Voltage magnitudes and phase angles

Training Sampling

(Diffusion Model (Diffusion Model
Real Data ]

S — |k — ||||' ‘

Dataset D ~ preal
-
D = {(pi,qi, Vi, 0:) }irq

Physics Information

J

Power Flow Constraints
H(Pi, Qi, Vi, 0;) =0
. J




Statistical similarity: Marginal distributions

» Histograms of the ground truth versus synthetic power flow data points:

MW
0.010 py (MW)
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I Syn.: constrained
0.000 = ==
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Statistical similarity: Joint distribution

» 2D scatter plots with density estimates of p — q and v — 0:

O Ground truth &
- ¢ - . 400 5
A Syn.: constrained _ v
g > 5 5 100 5
= 0 = -90 = =3 )
— N m < O 2 TRQITORE 2
@y @y @y @y N
—250 0 et
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» The synthetic data points
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of the real joint probability distributions.

of the real data distribution.
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Constraint satisfaction of synthetic power flow records

» Histograms of violation magnitudes for the active and reactive power balance constraints
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» \Wasserstein distances between the ground truth D and synthetic D datasets
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6. Outro



Where energy data should go?

Our privacy-preserving algorithms provide a
answer to this question!

» Controlled disclosure of optimization models,
system dynamics, and machine learning datasets

» Rigorous quantification of privacy (for some
| algorithms), verifiable synthetic datasets

» Performance guarantees across statistical
consistency, grid resilience, and physical realism
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What we have in other fields....

W &‘ﬂ,’ B ‘Sﬁl T+ B ‘m':i
Computer vision Speech recognition Biology
(ImageNet) (LibriSpeech) (UniProt)

What we can have in power systems

e Statistically credible and operation-feasible
models of power grid dispatch

: e High-fidelity models of power systems dynamics

* Arbitrary large, credible training datasets for
— machine learning applications in power systems




Future of synthetic power system datasets

What we used to say about synthetic datasets:

» “[...] data bears no relation to the actual grid [...]"
» “This test case represents |[...] fictitious transmission”

» “This case Is synthetic and does not model the actual grid"”

What we will say about synthetic datasets:

» “This synthetic dataset is produced based on the data from a real-world power grid”
> “lt is not possible to infer the real data from this synthetic dataset”

» “Computational results on this data are consistent with the real data”



From today's talk

Synthetic optimization data
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IEEE

Synthesizing Grid

Data With Cyber

Css

Resilience and Privacy Guarantees

Shengyang Wu'~, Student Member, IEEE, and Vladimir Dvorkin, Member, IEEE

Abstract—Differential privacy (DP) provides a principled
approach to synthesizing data (e.g., loads) from real-world
power systems while limiting the exposure of sensitive
information. However, adversaries may exploit synthetic
data to calibrate cyberattacks on the source grids. To
control these risks, we propose new DP algorithms for
synthesizing data that provide the source grids with both
cyber resilience and privacy guarantees. The algorithms
incorporate both normal operation and attack optimization
models to balance the fidelity of synthesized data and cyber
resilience. The resulting post-processing optimization is
reformulated as a robust optimization problem, which is
compatible with the exponential mechanism of DP to mod-
erate its computational burden.

Index Terms—Power systems, synthetic dataset, differ-
ential privacy, cyber security.

I. INTRODUCTION

PTIMAL power flow (OPF) analysis in power systems

requires realistic grid models with accurate network,
generation, and load parameters—data that is difficult
to source from real-world grids due to privacy and
(cyber-)security concerns. While the lack of such models has
inspired the development of artificial grids [1], [2], a more
principled approach leverages the theory of differential privacy
(DP) [3] to release grid models directly from real-world
systems.

The DP theory asserts that it is impossible—up to prescribed
privacy parameters—to infer the original parameters from their
DP release. Such strong privacy guarantees originate from
Laplacian perturbations [4] of real grid parameters, followed
by post-processing optimization of the perturbed parameters
to restore their modeling fidelity to the source grid, e.g., in
terms of similarity of the OPF outcomes [5], [6], [7]. The
DP theory also lies at the core of modern privacy-preserving
OPF solvers [8], [9], [10], the release of aggregated grid
statistics [11], and related grid information [12].

However, the privacy guarantees alone may not suffice
to release grid parameters, as cybersecurity risks associated

Received 16 March 2025; revised 2 May 2025; accepted 15
May 2025. Date of publication 27 May 2025; date of current ver-
sion 11 June 2025. Recommended by Senior Editor S. Olaru.
(Corresponding author: Shengyang Wu.)

The authors are with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, Ml 48109 USA
(e-mail: syseanwu @umich.edu; dvorkin @umich.edu).

Digital Object Identifier 10.1109/LCSYS.2025.3574146

2475-1456 © 2025 IEEE. All rights reserved, including rights
and similar technologies. Personal use is permitted, bu

with such releases remain largely unexplored. Possible cyber
attacks include false data injection, which subtly alters state
estimation results [13], line outage masking, which discon-
nects a transmission line and misguides a control center to
seek outage elsewhere [14], and load redistribution, which
manipulates demand measurements to increase OPF cost and
constraint violation [15]. The latter is of main interest to
this letter. Executing such attacks requires some grid knowl-
edge [16], which is traditionally difficult to obtain. However,
the availability of synthetic grid data may unintentionally
inform adversaries and help them calibrate the attack.
Contribution: Recognizing the risks that synthetic grid
parameters may inform cyber adversaries, we develop new
DP algorithms that simultaneously guarantee cyber resilience
and privacy for the source power grids. Our algorithms
build on [5], [6], [7] and leverage the Laplace mechanism
and post-processing optimization to tune synthetic data while
anticipating cyber risks through embedded attack optimization.
The contributions of this letter are summarized as follows:
1) We formulate a Cyber Resilient Obfuscation (CRQO)
algorithm, an optimization-based algorithm to release
electric load data with a guarantee to preserve the
privacy of the original data and ensure the resilience
of the source grid to load redistribution attacks. The
algorithm post-processes synthetic loads to balance their
fidelity with the potential damage to the grid; other grid

See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 13,2025 at 03:16:06 UTC from |IEEE Xplore. Restrictions apply.
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Synthetic machine learning datasets
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Constrained Diffusion Models for Synthesizing
Representative Power Flow Datasets

Milad Hoseinpour, Student Member, IEEE, Vladimir Dvorkin, Member, IEEE

Abstract—High-quality power flow datasets are essential for
training machine learning models in power systems. However,
security and privacy concerns restrict access to real-world
data, making statistically accurate and physically consistent
synthetic datasets a viable alternative. We develop a diffusion
model for generating synthetic power flow datasets from real-
world power grids that both replicate the statistical properties
of the real-world data and ensure AC power flow feasibility.
To enforce the constraints, we incorporate gradient guidance
based on the power flow constraints to steer diffusion sampling
toward feasible samples. For computational efficiency, we further
leverage insights from the fast decoupled power flow method
and propose a variable decoupling strategy for the training
and sampling of the diffusion model. These solutions lead to a
physics-informed diffusion model, generating power flow datasets
that outperform those from the standard diffusion in terms of
feasibility and statistical similarity, as shown in experiments
across IEEE benchmark systems.

Index Terms—Diffusion model, generative Al in power systems,
physics-informed machine learning, power flow, synthetic data.

I. INTRODUCTION

OWER flow datasets [1]-[3] are essential for training

and benchmarking machine learning (ML) models for
optimal power flow (OPF) [4] and state estimation [5]. How-
ever, the real-world power flow datasets are rarely available
due to privacy, security, and legal barriers [6]-[10]. Recent
advances in generative Al, capable of producing synthetic data
with distributions similar to the original data [11]-[20], have
partially lifted these barriers, yet statistical consistency alone
cannot guarantee adherence to physical grid constraints [21].
Consequently, ML models trained on constraint-agnostic syn-
thetic datasets are likely to perform substantially worse than
those trained on original data. This paper introduces a data
generation framework to synthesize statistically consistent and
physically meaningful power flow datasets. To achieve this, we
develop a constrained diffusion model to learn the underlying
distribution of power flow data and generate synthetic samples
that are both statistically representative and feasible with
respect to the AC power flow constraints. This constrained
diffusion model can be trained internally by system operators
to publicly release high-quality synthetic power flow data to
support a wide range of downstream ML applications.

A. Related Work

The literature on generating synthetic datasets for power
systems broadly falls into two categories: generic random

The authors are with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48109, USA. E-mail:
{miladh, dvorkin} @umich.edu.

sampling and historical data-driven approaches.

The former focuses on power flow data generation through
iterative uniform sampling of loads followed by solving the
OPF problem [22], [23]. In [24], authors use a truncated Gaus-
sian distribution as another variation of sampling, which also
accounts for correlations between power injections at different
locations. However, the datasets based on generic sampling
only represent a small portion of the feasibility region. To
solve this, [6] uniformly samples loads from a convex set,
containing the feasible region, and iteratively refines this set
using infeasibility certificates. In [25], a bilevel optimization is
proposed to sample operating conditions close to the bound-
aries of the feasible region, which is more informative that
a random sampling. A basic requirement for ML-based OPF
solvers is robustness to grid topology variations, e.g., network
topology switching [26]. To meet this requirement, authors in
[27] incorporate topological perturbations in addition to load
perturbations in their synthetic data generation framework.

Although straightforward, random sampling comes with
certain limitations. The resulting datasets do not represent the
true underlying distribution of real-world operating conditions.
That is, the synthetic data points may fail to capture corre-
lations, patterns, or variability present in historical data. ML-
based OPF solvers trained on such data may generalize poorly,
leading to inaccurate predictions and erroneous uncertainty
quantification [28], [29]. Moreover, the required number of
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