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Why democratizing access to power grid data

↭ Open-access datasets have fueled breakthroughs in many fields:

Computer vision

(ImageNet)

Speech recognition

(LibriSpeech)

Biology

(UniProt)

↭ Power systems research lags behind:

Real grid data are hard to access — due to security and regulation

↭ Most available datasets are synthetic, limiting realism and impact

↭ Goal: Enable open, realistic grid datasets

— without compromising privacy or security of source grids
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Where energy data should go?

data

Arguments in favor of private data:

↭ Privacy and security

↭ Regulatory compliance

↭ Competitive advantage

Arguments in favor of public data:

↭ Improved decision-making

↭ Less barriers for entry

↭ Innovation, research

Is there an non-discrete answer to this question?
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Industry is very hesitant to share data about critical infrastructure systems

Hi, we can optimize that! We need your cost data, generation 
time series, and some budget data

10:45 ✓

Hey, we are wondering what is the cost-optimal decarbonization 
pathway to reduce our emission footprint?   

10:42

Oh, we won’t be able to share the data… too sensitive. Even if 
we could, can you guarantee that the data will not be exposed?

10:47

Okay, we will figure something out. We stay in touch!
10:49 ✓

MIT Energy Initiative Sponsors

✓

✓

Tap here for group info

typical conversation with industry partners

↭ Hesitance to share operational/system data

↭ Data disclosure treated as binary (share/don’t
share) rather than algorithmic problem

↭ Decisions are driven more by regulators’ mandates
rather than by the strive to innovate

Why companies are so hesitant to share data?
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Accenture: 9th Annual Cost of Cybercrime study
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Synthetic data is a viable alternative to real data sharing
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Synthetic power systems datasets

Texas A&M University Grid Datasets

(from 37 to 80k+ bus networks)
PyPSA-Eur: synthetic dataset of

Europe covering the full ENTSO-E area

Synthetic Data of the National

Electricity Market (Australia)

Why these datasets may not satisfy our needs?

↭ “[...] data bears no relation to the actual grid [...] except that
generation and load profiles are similar, based on public data”

↭ “This test case represents a synthetic (fictitious) transmission”

↭ “This case is synthetic and does not model the actual grid”
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This talk

We introduce algorithms to synthesize credible synthetic datasets from
real power systems, while controlling privacy and security risks

↭ Algorithmic formalization of trust in energy data sharing
→ Moving from subjective decisions to quantitative guarantees

↭ Private or public data? Our algorithms provide a non-binary solution to this dilemma
→ Spectrum of privacy-utility tradeo!s, not just share/don’t share

↭ Comprehensive data scope:
→ Optimization datasets (OPF, unit commitment, economic dispatch)

→ Dynamical models (e.g., grid frequency dynamics)

→ Operational records (power flows, market-clearing outcomes, etc.)

Core message: Our algorithms enable controlled data disclosures while
resolving privacy, security, and logistics concerns
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Power systems as a stroll in the fog

↭ Power systems are critical infrastructures with most of data being classified

↭ We have only a limited observably, e.g., ISO data disclosure portals

↭ Grid stakeholders hence act on a limited set of system data
Hedgehog in the Fog

Yuri Norstein (1975)

Example: DC optimal power flow (OPF) in the (small) IEEE 118-bus system

↭ 1079 rows of element-specific data

↭ Each generator owns only 2 rows

↭ The rest of system data is not explicitly
disclosed to power producers

How to disclose grid data
in a controllable manner?
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Di!erential privacy (DP) enables controlled disclosure of grid data

DC-OPF
optimization

real data solution

(dispatch)

DC-OPF
optimization

DP data solution

(dispatch)

→↑ ↑

↭ DP principle: obfuscate real data (add noise) but preserve its value

↭ In the DC-OPF setting: obfuscate grid data but preserve the OPF solution

↭ Formal privacy guarantee: released DP data does NOT disclose the real data

↭ Many applications to synthesizing high-quality transmission, load and generation data
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Formalizing di!erential privacy (DP)

ŷ

—— ↭ exp(ω)

wind power output

0 1

y
→

y
→

y
→→

ω

↫ Wind power records y , y →, y →→, ... → [0, 1]
↫ For given ω > 0, records y and y

→ are ω↑adjacent if ↓y ↑ y
→
↓ ↭ ω

↫ Let Lap(ω/ω) be a zero-mean random Laplacian noise
↫ For some parameter ω > 0, the release is ω↑DP if

Pr [ y → + Lap(ω/ω) → ŷ ]
Pr [ y → + Lap(ω/ω) → ŷ ]

↭ exp(ω)

for any ε↑adjacent pair (y , y →) and any outcome ŷ
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Example: Synthesizing transmission line capacities using DP and optimization

↭ IEEE 73-RTS benchmark

↭ Step 1: add random noise to trans capacity

ω1 = f + calibrated noise

↭ Step 2: post-process ω1 to ensure OPF feasibility
and cost-consistency w.r.t. real trans capacity

ω2 → argmin
ω

↑c(f )↓ c(ω)↑+ ↑ω↓ ω1↑

s.t. c(ω) = min
p

c(p) opf cost

s.t. p → P(ω) opf feas

↭ Step 3-N : repeat Step 2 until OPF feasibility and
cost-consistency are restored across many scenarios

Dvorkin, V., Botterud A. Di!erentially private algorithms for synthetic power system datasets, IEEE Control Systems Letters, 2023.
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Challenge: If DP synthetic datasets are so good, do they pose any security risks?

↭ Grid datasets are used for calibrating cyberattacks on power grids

↭ Hypothesis: high-quality synthetic data → well-calibrated attacks

↭ Classes of cyberattacks: false data injection, line outage masking, physical attacks, ...

Contribution: We identify cyberattack risks in releasing DP grid
data and propose new algorithms to guarantee both privacy and

cyber resilience to source grids

Shengyang Wu
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Load redistribution attack

↭ Given load d, the attack corrupts the load d+ ω with bus injection ω from admissible set !

! ↫
{
ω

∣∣∣∣
ω ↬ ω ↬ ω injection limits for each bus

1→ω = 0 total load remains unchanged

}

↭ Amounts solving a bi-level optimization problem:

C
BO

att (d) = max
ω↑!

Copf(d+ ω) maximize the cost

s.t. Copf(d+ ω) = min
x

c→x feedback from OPF

s.t. a→k x+ b→

k (d+ ω) + ek ↬ 0

PQ

ω

ω

PQ

PQ

PV

PV

↭ The problem seeks a stealthy attack vector ω that maximizes the OPF cost

Can DP grid data be used to successfully execute the load redistribution attack?
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Numerical evidence
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Post-processing optimization to minimize attack damage

level 3

level 2

level 1minimize
d

→C
BO

att (d)↑ C̃opf→︸ ︷︷ ︸
power of attack

+ω →Copf(d)↑ C̃opf→︸ ︷︷ ︸
cost consistency

+ ε→d↑ d1→︸ ︷︷ ︸
regularization

subject to Copf(d) =

C
BO

att (d) = maximize
ω→!

Copf(ω)

subject to Copf(ω) = minimize
x

Copf(x)

subject to x ↓ opf-eq(d+ ω)

minimize
x

Copf(x)

subject to x ↓ opf-eq(d)

Figure: Tri-level structure of the cyber-resilient post-processing of DP load data.

↭ Step 1: add random noise to real loads: d1 = d+ calibrated noise
↭ Step 2: post-process d1 by solving a tri-level optimization:

↭ Level-1: Optimize synthetic load d to balance attack damage and cost-consistency

↭ Level-2: Feedback from both OPF and attack optimization

↭ Level-3: Embedded OPF for attack calibration

↭ Result: DP load vector d balancing attack damage and cost-consistency
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Tractable approximation of the tri-level problem

↭ Optimizing synthetic loads over bi-level optimization is computationally challenging

↭ We drawn on the connection between bi-level and robust (single-level) optimization

Bi-level attack optimization

C
BO

att (d) = max
ω→!

Copf(d+ ω)

x → argmin
x

c↑x

s.t. a↑k x+ b↑

k (d+ ω) + ek ↫ 0 ↑k

(uniform attack)

Robust optimization (RO) approximation

C
RO

att (d) = min
x

c↑x

s.t. max
ωk→!

[
a↑k x+ b↑

k (d+ ωk) + ek

]
↫ 0 ↑k

a↑k

(per constraint attack)

Proposition: For any feasible load d, relation C
RO

att (d) ↬ C
BO

att (d) holds.
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Cyber Resilient Obfuscation (CRO) Algorithm

↭ Step 1: Obfuscate real load data

DP load d1 = d+ calibrated noise

DP estimation of OPF costs: C̃opf = Copf(d) + calibrated noise

↭ Step 2: Post-process d1 to balance cost-consistency and cyber resilience P

minimize
d

→C
RO

att (d)↑ C̃opf→︸ ︷︷ ︸
power of attack

+ω →Copf(d)↑ C̃opf→︸ ︷︷ ︸
cost consistency

+ ε→d↑ d1→︸ ︷︷ ︸
regularization

↭ Replacing the two embedded optimization problems with their Karush–Kuhn–Tucker conditions leads to
a single-level mixed-integer problem.
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CRO-Exp: selecting only important constraints for post-processing

C
RO

att,ω (d) = min
x

c→x

s.t. max
ωk↑!

[
a→k x+ b→

k (d+ ωk) + ek

]
↭ 0 →k ↑ K

↓
RO-reformulated cons

max
ωk↑!

[
a→k x+ b→

k (d+ωk) + ek

]
↭ 0 →k ↑ K original problem cons

↫ We select only most important ω constraints for RO reformulation

↫ Most important constraints in K
↓ are function of original loads

↫ Exponential mechanism of DP to obfuscate loads when selecting K
↓

Selecting only important
constraints substantially reduces

the computational burden
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CRO-Exp with privacy and cyber resilience guarantees

Algorithm 1: Privacy-preserving CRO-Exp

Input: real load d, DP parameters (ω, ε1, ε2, ε3), attack data (ϑ, ϖ,!, ϱ), K = {→}
1 DP obfuscation of load and OPF costs:

d̃0 = d+ Lap

(
ω

ε1

)
n

C̃opf = Copf(d) + Lap

(
ωc

ε2

)

2 DP estimation of the set K of the worst-case constraints

for t = 1, . . . , ϱ do
for k = 1, . . . ,K do

Ck = C
RO
att,t(d) + Lap

(
ωc

ε3

)

end
kt ↑ argmaxk Ck

K ↑ K ↓ {kt}
end
3 Post-processing optimization of the synthetic load vector

d̃ ↔ argmin

d̃

↗Copf(d̃)↘ C̃opf↗1 + ϑ↗CRO
att,ϑ (d̃)↘ C̃opf↗1 + ϖ↗d̃↘ d̃0↗1

Output: Synthetic load vector d̃
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CRO application to PJM 5-Bus system

OPF cost distributions in normal and post-attack operation

↭ Blue distributions - normal operation

↭ Red distributions - post-attack operation

↭ Top row - standard DP post-processing

↭ Bottom row - proposed CRO post-processing

CRO sends important signal to attackers: the attacks
do not lead to extra OPF cost to the system.
(normal and post-attack distributions overlap)
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CRO-Exp application to larger systems

Post-attack damage as a function of constraints selected for

post-processing optimization

↭ The more constraints under attack → more resilent
the source grid to load redistribution attacks

↭ 5 constraints on average to minimize the damage

After 5 iterations, the CRO-Exp algorithm identified the
most important constraints for post-processing synthetic

loads and ensuring grid resilience.
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Conclusions

↭ Synthetic grid data is optimized to guarantee privacy, quality and cyber resilience simultaneously

↭ Trade-o!s under linear cost functions are “flat”: resilience is achieved with little to no impact on data quality

↭ The tri-level post-processing optimization can be e”ciently collapsed to single-level optimization under
reasonable and judicious approximations (connecting bi-level and robust optimization techniques)

Check paper for details on:

↭ DP guarantees of CRO and CRO-Exp

↭ Connection between Bi-level and RO

↭ Experiment settings, data and code
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The Challenge

↭ Stability of power grids is critical

Renewables, inverter-based resources, and data centers reshape grid dynamics

↭ We need a shared dynamical model so independent parties can design optimal control

↭ But releasing the real model exposes sensitive system details

↭ Goal: Synthesize a model that behaves nearly identically — without disclosing the original model

picture courtesy of Sairaj Dhople
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Grid frequency dynamic model

picture courtesy of Sairaj Dhople

ω̇ = M→1(Kε + p→ d→Dω) swing equation

ε̇ = ω phase angle dynamics

ṗ = →T(p+ r + Rω) generator control

How to release the parameters of system dynamics in a privacy-preserving way?
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Classic solution based on Kron reduction

ω

ω

ω

g

g

ω

g

g

Kron

reduction

↭ Partitioning of the swing equation:
[

Mg 0
0 0

] [
ωg

ωω

]
=

[
Kgg Kgω

Kωg Kωω

] [
εg

εω

]
+

[
pg

0

]
→

[
dg

dω

]
→

[
Dg 0
0 Dω

] [
ωg

ωω

]

↭ Kron-reduced swing equation with the identical dynamics

Mg ω̇g = Kredεg →Dgωg + (p→ dg )→ Kacdω

↭ Does the release of the reduced equation preserves privacy?
No! [SH Low (2024); Deka, Kekatos & Cavraro (2024)]
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Di!erentially private Kron reduction

↭ We synthesize the reduced topology matrix Kred

↭ Step 1: Perturb the topology with random noise (Laplace mechanism)

K̃red = Kred + Lap(ω/ε)

↭ Step 2: Post-process the perturb topology by optimizing the perturbed model of frequency dynamics

min
K̂red

∫
T

0

→ωg (t|K̂red)↑ ωref(t)→
2

2 dt + →K̃red ↑ K̂→F

s.t. Mg ω̇g = K̂redεg ↑Dgωg + (p↑ dg )↑ Kacdω

Di!erentially private way to solve this optimization: Adjoint method + DP gradient descent

↭ The optimal K̂ preserves the privacy of the original topology in K but behaves similarly
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Di!erentially private Kron reduction

↭ We synthesize the reduced topology matrix Kred

↭ Step 1: Perturb the topology with random noise (Laplace mechanism)

K̃red = Kred + Lap(ω/ε)

(a) k0 = k + Lap( 1
ω ) (b) k0 = k + Lap( 3

ω )

Figure 10: frequency trajectory under di!erent initial coe”cient vector k0 (w/ noisy reference trajectory)

26
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Motivation and Goal

↭ There is an increasing demand for high-quality power flow datasets for machine learning (ML) tasks in power
systems: state estimation, optimal power flow solvers, etc.

↭ Challenges of data availability: privacy and security concerns, legal barriers

↭ Given a dataset of real power flow data points, a system operator aims to generate:
(1) statistically representative and

(2) physically meaningful synthetic power flow data points.

Real Data

Dataset D → preal

D = {(pi,qi,vi,ωi)}
N
i=1

Di!usion Model

Training

Di!usion Model

Sampling

Synthetic Data

Dataset D̃ → psyn

D̃ = {(p̃i, q̃i, ṽi, ω̃i)}
M
i=1

Power Flow Constraints

Physics Information

G(p̃i, q̃i, ṽi, ω̃i) ↑ 0

H(p̃i, q̃i, ṽi, ω̃i) = 0
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Related Work

(1) Generic random sampling approaches:

Iteratively perturbing system parameters (e.g., demand level) around the nominal value and solving the
corresponding OPF problem.

↭ Drawback 1: Datasets do NOT represent the true underlying distribution of real operating records.

↭ Drawback 2: The number of required samples to cover the feasible region grows exponentially.

(2) Historical data-driven approaches: Generative models (e.g., VAE, GAN)

The historical data-driven approaches leverage real operational records to learn the data distribution.

↭ Drawback 1: Poor generation quality (VAE), mode collapse (GAN)

↭ Drawback 2: No rigorous method to control their output (e.g., enforcing power flow constraints)

Ref.:

- S. Lovett et al., “OPFData: Large-scale datasets for AC optimal power flow with topological perturbations,” arXiv preprint arXiv:2406.07234, 2024.

- A. Jabbar et al., “A survey on generative adversarial networks: Variants, applications, and training,” ACM CSUR, vol. 54, no. 8, pp. 1–49, 2021.

- Z. Pan et al., “Data-driven EV load profiles generation using a variational auto-encoder,” Energies, vol. 12, no. 5, p. 849, 2019.
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Preliminary: Di!usion Models

↭ Forward di!usion process: iteratively add noise to data sample

q(xt |xt→1) = N
(
xt ;

√
1→ ωtxt→1,ωt I

)

xt =
→
ω̄tx0 +

→
1↑ ω̄tεt , , εt ↓ N (0, I).

↭ Reverse denoising process: denoise to restore the data sample

pω(xt→1|xt) = N
(
xt→1;µω(xt , t),ε

2
t I
)
,

xt→1 = µω(xt , t) + ϑtεt , εt ↓ N (0, I).
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Power flow constraints

pb →

∑

l→L:i=b

f
p

l,i↑j
→

∑

l→L:j=b

f
p

l,j↑i
= 0, ↑b ↓ B,

qb →

∑

l→L:i=b

f
q

l,i↑j
→

∑

l→L:j=b

f
q

l,j↑i
= 0, ↑b ↓ B.

↭ The expressions for f p
l,i↑j

and f
q

l,i↑j
are

f
p

l,i↑j
= vivj

[
gl cos(ωi → ωj) + bl sin(ωi → ωj)

]
, ↑l ↓ L,

f
q

l,i↑j
= vivj

[
gl sin(ωi → ωj)→ bl cos(ωi → ωj)

]
, ↑l ↓ L,

where gl and bl are the real and imaginary parts of Y = G + jB.

Ref.: D. K. Molzahn et al., “A survey of relaxations and approximations of the power flow equations,” Found. Trends Electr. Energy Syst., vol. 4, no. 1-2, pp. 1–221, 2019.
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Di!usion guidance based on power flow constraints

↭ Theoretically, a di!usion model trained on a dataset of feasible power flow data points should satisfy the
power flow constraints.

↭ In practice, a di!usion model may generate power flow data points that are infeasible due to learning and
sampling errors.

How can ensure that the generated samples satisfy power flow constraint?

Ref.:

- Feng, Berthy T., Ricardo Baptista, and Katherine L. Bouman. “Neural approximate mirror maps for constrained di!usion models.” arXiv preprint arXiv:2406.12816, 2024.

- G. Daras et al., “Consistent di!usion models: Mitigating sampling drift by learning to be consistent,” Adv. Neural Inf. Process. Syst., vol. 36, pp. 42 038–42 063, 2023.
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Di!usion guidance based on power flow constraints

Geometry of Sampling without Guidance
↭ Sampling steps as transitions from noisy (Mi ) to less noisy (Mi→1) data manifolds:

↭ (1) Denoise based on xt and estimate the clean data x̂0,

↭ (2) add noise w.r.t. the corresponding noise schedule and obtain xt→1.

Legend

Denoising
Noising

Guidance
Constraint
Manifold

1

2

xT H(x) = 0

xT→1

xT→2

x̂0|T
x̂0|T→1 x̂0|T→2 x̃0 xω

0

MT

MT→1

MT→2

...

M

. .
.

. .
.

reverse
d
en

oisin
g
p
ro
cess

The sampling trajectory is oblivious to the power flow constraints.
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Di!usion guidance based on power flow constraints

Geometry of sampling with guidance
↭ Sampling steps as transitions from noisy (Mi ) to less noisy (Mi→1) data manifolds:

↭ (1) Denoise based on xt and estimate the clean data x̂0,

↭ (2) add the gradient guidance term,

↭ (3) add noise w.r.t. the corresponding noise schedule and obtain xt→1.

Legend

Denoising
Noising

Guidance
Constraint
Manifold

xT H(x) = 0

xT→1

x̂0|T x̂↑

0|T x̃0 xω
0

MT

MT→1

MT→2

...

M

. . .
. .
.

→ωtgradRH(x̂0|T )

Tx̂0|T M

1

2

3

reverse
d
en

oisin
g
p
ro
cess

The gradient guidance steers the sampling trajectory toward feasible power flow data points.
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5-Bus PJM system

What usually gets published?  

• Electricity prices 

• Aggregated statistics (demand, gen mix)

What we can publish using diffusion?  

• High-granular streams of operational data

• Active and reactive power injections 

• Voltage magnitudes and phase angles



Statistical similarity: Marginal distributions

↭ Histograms of the ground truth versus synthetic power flow data points:
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Statistical similarity: Joint distribution

↭ 2D scatter plots with density estimates of p→ q and v → ω:

↭ The synthetic data points

↭ closely follow the distributional pattern of the real data.

↭ closely span the entire domain of the real joint probability distributions.

↭ captures the multi-modal structure of the real data distribution.
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Constraint satisfaction of synthetic power flow records

↭ Histograms of violation magnitudes for the active and reactive power balance constraints

↭ Wasserstein distances between the ground truth D and synthetic D̃ datasets

Distance between... 5-Bus 24-Bus 118-Bus

...D and D̃ w/o guidance 0.442 0.607 0.622

...D and D̃ w/ guidance 0.382 0.585 0.597
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Where energy data should go?

data

Our privacy-preserving algorithms provide a

non-discrete answer to this question!

↭ Controlled disclosure of optimization models,

system dynamics, and machine learning datasets

↭ Rigorous quantification of privacy (for some

algorithms), verifiable synthetic datasets

↭ Performance guarantees across statistical

consistency, grid resilience, and physical realism
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What we have in other fields….

What we can have in power systems

• Statistically credible and operation-feasible 
models of power grid dispatch  

• High-fidelity models of power systems dynamics  

• Arbitrary large, credible training datasets for 
machine learning applications in power systems





From today’s talk

Synthetic optimization data Synthetic machine learning datasets Synthetic dynamics models

Thank you for your attention!
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