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North American power grid

I The world’s largest machine

I Mathematical programming (optimization) is a
major computational tool for power grids:
I Operational and long-term planning
I Electricity market-clearing auctions
I ED, UC, SCUC, PF, OPF, ...

I What makes electricity such a special commodity?
+ Homogeneous good with instantaneous delivery

� Requires very sophisticated infrastructure

� Limited storage capacity ! balance at all times

! Only marginal % of electricity is traded in
real-time; the majority – well ahead of operations.
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Two-stage electricity markets
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I Two-stage electricity markets to manage uncertainty of renewables:
I Day-ahead market: minimize the cost of power supply w.r.t. forecast

I Real-time market: least-cost re-dispatch to accommodate forecast errors

I As renewable penetration increases, the cost of real-time re-dispatch also increases

How to make renewable power generation less expensive for the system?
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Two-stage electricity markets (continued)

min dispatch cost

s.to grid limits (bw)

min re-dispatch cost

s.to grid limits (�bw)

day-ahead market real-time market

fixed dispatch

Improving cost e�ciency across day-ahead and real-time markets:

I Stochastic electricity market design [PZP10, M+12, Dvo19]:

+ Co-optimization of dispatch and re-dispatch decisions

+ Least-cost solution in expectation

� Market properties only hold in expectation

min dispatch cost + EP�bw [re-dispatch cost]

s.to grid limits (bw ,�bw) for all �bw ⇠ P�bw

I Approximating stochastic market e�ciency within deterministic markets:

I Improved scheduling of renewbales [M+14]

I Cost-aware reserve requirements [DDM18]

I Cost-aware transmission allocation [JKP17, DP19]
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In our work, we follow this path with 
 focused on advanced data analytics 

(machine learning) 

wind power forecast forecast error realization



Power systems optimization meets machine learning (ML)

Typical grid optimization problem:

min.
p,q,u

c(p✓) + s(u✓) generation and UC cost

s.to f (p✓, q✓,w✓) = 0 : �✓ power flow equations

g(p✓, q✓,w✓) 6 b(u✓) gen, flow, voltage limits
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Real-time electricity
pricing via GNNs [LWZ21]
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Power systems optimization meets machine learning (ML)
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ML errors = decision errors

DC optimal power flow:

min.
p6p6p

p>Cp+ c>p

s.to 1>(p+ bw � d) = 0 : �b

|F(p+ bw � d)| 6 f : �f ,�f

Locational marginal prices:

�(bw) = 1 · �b(bw)| {z }
uniform part

�F>(�f (bw)� �f (bw))
| {z }

congestion part

I Electricity market clearing based on DC-OPF

I Relies on the forecast bw of wind power generation

I Forecast errors ! pricing errors via market optimization

I May not be a dominant generation resource, yet still exposes
the entire electricity trading to errors
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DeepWP

Thanks to Robert Mieth of Rutgers for the help with this visualization

Forecast errors from a single wind power plant propagate into locational marginal price (LMP) errors across the
IEEE 118-Bus RTS. Electricity at certain buses is systematically over- or under-priced [DF23].
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Market clearing as a deep learning layer

I Dataset {('1,w1), . . . , ('m,wm)} of wind power records, with features ' and measurements w
I Two deep learning architectures DeepWP and DeepWP+ for wind power forecasting:

featu
res

'

forecast

DeepWP

R
eL

U

R
eL

U

R
eL

U

kbw � wk22 + k�(bw)� �(w)k 2
2loss function:

DeepWP+

bw

I DeepWP+ incorporates market clearing as an optimization layer [AK17], which informs on pricing errors
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Accelerating market-clearing optimization layer

I Market-clearing optimization layer significantly slows down the training

I Thousands of market-clearing problems are solved at each training epoch

I We use QP duality and fast distributed algorithms to speed up the process

Market-clearing optimization

min.
p6p6p

p>Cp+ c>p

s.to 1>(p+ bw � d) = 0

|F(p+ bw � d)| 6 f

=) Equivalent primal form

min.
p6p6p

p>Cp+ c>p

s.to Ap > b(bw) : �

=) Equivalent dual form

max.
�>0

⇣
AC�1c+ b(bw)

⌘>
�

� �>AC�1A>�

large constrained optimization

only inequality constraints only non-negativity constraints

amenable to fast proximal and
ADMM-like algorithms
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Numerical experiments

I 1,000 wind power records from a real wind power
turbine:
I Active power output
I Wind speed and direction
I Blade pitch angle

I DeepWP has 4 hidden layers with 30 neurons each.
DeepWP+ additionally includes an opt. layer

I ADAM optimizer with varying learning rate
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IEEE 118-bus system

DeepWP DeepWP+

DeepWP: Forecast error objective – LMP errors [�4, 1] $/MWh

DeepWP+: LMP error objective – LMP errors [�1, 1] $/MWh
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Wind power forecasts

DeepWP: Minimizes the average forecast deviation

DeepWP+: Intentionally over-predicts in certain range of wind speeds
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Underlying trade-o↵s between forecast and price errors

case
DeepWP DeepWP+

RMSE(bw) RMSE(b�) CVaR(b�) RMSE(bw) RMSE(b�) CVaR(b�)
MWh $/MWh $/MWh MWh gain $/MWh gain $/MWh gain

14 ieee 0.35 0.62 1.52 0.35 +0.6% 0.61 �0.6% 1.50 �0.8%
57 ieee 2.31 11.03 34.64 2.60 +11.2% 10.72 �2.9% 33.59 �3.1%
24 ieee 4.08 8.62 37.70 4.51 +9.6% 8.33 �3.5% 36.35 �3.7%
39 epri 5.94 11.15 31.21 6.43 +7.6% 10.19 �9.4% 28.02 �11.4%
73 ieee 4.02 5.12 16.21 5.51 +26.9% 4.24 �20.8% 13.41 �20.9%
118 ieee 2.29 3.59 11.32 2.60 +12.1% 2.88 �24.7% 9.06 �25.0%

I Price errors reduction comes at the expense of forecast error

I Price error reduction is more significant in larger networks

For more results, including price fairness: https://arxiv.org/pdf/2308.01436
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Revenue-optimal wind power forecasting in two-stage markets

Baseline approach to wind power forecasting:

I Collect a training dataset D = {('1,w1), . . . ,'n,wn)}
I Machine learning model W✓ : F 7! W with parameter ✓

I Learn optimal parameter ✓? by minimizing a prediction loss

min.
k✓k16⌧

L(✓ |D) =
1
n

nX

i=1

kW✓('i )� wik22

Revenue-optimal forecasting [PCK07, CK19, WSC23]:

1. Day-ahead stage: LMP �1 pricing the forecast of wind power

2. Real-time stage: LMP �2 pricing any forecast deviation

max.
k✓k16⌧

RW (✓ |D,�1,�2) =
1
n

nX

i=1

⇣
�1iW✓('i )| {z }

day-ahead revenue

+�2i (wi �W✓('i ))| {z }
real-time revenue

⌘
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Regression equilibrium in two-stage electricity markets [Dvo24]

Optimization of wind power producers

max.
k✓jk6⌧j

RW (✓j |Dj ,�1,�2)� � · L(✓j |Dj)

for all producers j 2 1, . . . , b

Optimization of controllable generators

max.
pi ,ri2G

RG (pi , ri | �1i ,�2i )� c (pi , ri )

for all training samples i 2 D1:b

Others

Market-clearing conditions at the 1st and 2nd stages

0 6 �1i ? pi +
bX

j=1

W✓j ('i )� d > 0, 0 6 �2i ? ri +
bX

j=1

wji �
bX

j=1

W✓j ('i ) > 0

for all training samples i 2 D1:b

How to compute equilibrium regression ⇥??
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Assumptions:
I Class of ML models W✓ is convex in ✓, e.g., kernel regression
I Training datasets are such that n � card['] (unique regression solution)
I The intersection of private feasible regions is compact (at least one feasible dispatch 8i 2 D1:b)

Main result: regression equilibrium exists and is unique!
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b ), such that:

I Feasible operation of the power gird and markets

I Maximized wind power profits, with no incentives to deviate

I Minimized expected dispatch costs across the two markets

How to compute equilibrium regression ⇥??

>>> Vladimir Dvorkin - EECS University of Michigan 13 / 24



Regression equilibrium in two-stage electricity markets [Dvo24]

Optimization of wind power producers

max.
k✓jk6⌧j

RW (✓j |Dj ,�1,�2)� � · L(✓j |Dj)

for all producers j 2 1, . . . , b

Optimization of controllable generators

max.
pi ,ri2G

RG (pi , ri | �1i ,�2i )� c (pi , ri )

for all training samples i 2 D1:b

Others

Market-clearing conditions at the 1st and 2nd stages

0 6 �1i ? pi +
bX

j=1

W✓j ('i )� d > 0, 0 6 �2i ? ri +
bX

j=1

wji �
bX

j=1

W✓j ('i ) > 0

for all training samples i 2 D1:b

Equilibrium regression profile ⇥? = (✓?
1 , . . . ,✓

?
b ), such that:

I Feasible operation of the power gird and markets

I Maximized wind power profits, with no incentives to deviate

I Minimized expected dispatch costs across the two markets

How to compute equilibrium regression ⇥??

>>> Vladimir Dvorkin - EECS University of Michigan 13 / 24



Connection to variational inequalities theory [S+10]

Equilibrium
problem

Variational
inequalities

Equivalent
optimization

I Equilibrium problem: stacks many private optimization problems

I Variational inequalities (VI): analyzes the interaction between private optimization problems

I In some special cases (like ours), VI connects equilibrium to a centralized optimization

For more details visit Appenix A in: https://arxiv.org/pdf/2405.17753
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Computing regression equilibrium: centralized optimization

I By the Symmetry Principle Theorem [FP03], there exists an equivalent opt solving the equilibrium
I ... which happens to minimizes the expected generation and regulation costs
I ... thus enhancing the temporal coordination of day-ahead and real-time markets

min.
⇥,p,r

1
n

nX

i=1

c (pi , ri ) + � k⇥'i � wik22 regularized expected cost

s.to 1>(pi +⇥'i � d) = 0, day-ahead power balance

1>(ri �⇥'i + wi ) = 0, real-time power balance

|F(pi +⇥'i � d)| 6 f, day-ahead power flow limit

|F(pi +⇥'i � d)

+ F(ri �⇥'i + wi )| 6 f, real-time power flow limit

p 6 pi + ri 6 p, generation limit

|ri | 6 r, 8i = 1, . . . , n, regulation limit

|⇥| 6 ⌧ equilibrium feature selection

I For more details visit Appenix A in: https://arxiv.org/pdf/2405.17753
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Computing regression equilibrium: Walrasian auction and ADMM

Step 1 Primal update of each wind power producer:

✓k  max.
k✓k6⌧

RW (✓|D,�k
1 ,�

k
2)� � · L(✓|D)

+
%
2

���pk�1 +W✓(')� d
���
2

2
+

%
2

���rk�1 + w �W✓(')
���
2

2| {z }
ADMM feasibility terms

Step 2 Primal update of each conventional generator:

pk , rk  max.
p,r2G

RG (p, r | �k
1 ,�

k
2)� c (p, r)

+
%
2
kp+W✓k�1(')� dk22 +

%
2
kr + w �W✓k�1(')k22

| {z }
ADMM feasibility terms

Step 3 Electricity price updates:

�k+1
1  

h
�k

1 � %
⇣
pk +W✓k (')� d

⌘i

+

�k+1
2  

h
�k

2 � %
⇣
rk + w �W✓k (')

⌘i

+

I Resembles Walrasian auction: Equilibrium is computed via price exchange
I Proprietary training datasets are localized and not exchanged
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Experiments on a modified IEEE 24-Bus RTS

3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

wind speed [m/s]

ac
ti
ve

p
ow

er
ou

tp
ut

[p
.u
.]

I 6 with farms with identical data and features

I Cover 38.4% of load at peak generation

I Kernel regression with 30 transformed features

I 5, 000 training and 10, 000 testing samples

I Although data is the same, how do equilibrium forecasts
depend on the wind farm location in the grid?

I What are the equilibrium benefits in terms profits (any
incentives to deviate?) and cost of electricity?
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Baseline versus Equilibrium forecasts

I Baseline: minimizes a prediction error

I Equilibrium: maximizes wind farm profits

Systematic over- or under-prediction depending
on the wind farm’s location in the grid

>>> Vladimir Dvorkin - EECS University of Michigan 18 / 24



Wind farm profits and incentives to deviate

I Equilibrium regression yields larger profits for all wind farms

I There are large profit incentives to unilaterally deviate from the baseline regression

I And (almost) no incentives to deviate from the equilibrium regression
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Impact of regression equilibrium on dispatch costs

Regression RMSE, MWh
Average dispatch cost, $ Total dispatch cost error, $

total day-ahead real-time average CVaR10%

Oracle ——– 37, 246 37, 246 ——– ——– ——–
Baseline 88 39, 223 37, 459 1, 764 1, 977 8, 626
Equilibrium 395 38, 326 38, 154 172 1, 080 3, 555

I Baseline regression: minimal forecast error, yet results in large real-time cost

I Equilibrium regression: large forecast errors, withholds cheap generation from the day-ahead
market; yet, results in very cheap real-time re-dispatch

I Saving of 2.4% on average, and 13.6% on average across 10% of the worst-case scenarios
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Concluding remarks

Part I:

I Erroneous ML models have a significant impact on pricing and dispatch decisions in electricity markets

I We integrate market-clearing optimization into training to inform them on specific decision objective

Part II:

I Network coupling of private ML models (ripple e↵ect on the entire electricity market)

I Nash regression equilibrium syncs private models and yields maximum profits

I It implicitly minimizes the cost across day-ahead and real-time markets ...

I ...thus delivering some benefits of stochastic market design in the existing deterministic markets

Part 1

Thank you for your attention!

Part 2
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ECE 598: Computational Power Systems

Term: Winter 2025
Credit Hours: 3 credits
Time: Fridays 10:30-13:30
Format : Lecture (75 min) + Break + Tutorial (75 min)
Instructor: Vladimir (Vlad) Dvorkin
E-mail: dvorkin@umich.edu

Course Description

The growing digitization of power systems and the rapid integration of renewable energy re-
sources call for new computational algorithms to support power system operations and elec-
tricity markets. In this course, students will learn the core computational problems in power
systems and modern algorithms to solve those problems, while managing the trade-offs between
performance, speed and data requirements.

Load/renewable

power forecasting

(NLP, QP, ...)

Electricity

market clearing

(MILP, MIQP)

x?

Optimal power flow

Contingency screening

Real-time re-dispatch

(NLP, LP, QP)

• Automatic

generator

control

•
week/day

. . . •
day

. . .

•
hour/minute

. . . •
seconds time

Figure 1: Computational power systems timeline

In the first part of the course, students will fa-
miliarize themselves with optimization prob-
lems in power systems, including economic
dispatch and market clearing for transmission
grids, as well as voltage control and peer-to-
peer markets for distribution grids. They will
also learn how machine learning (ML) aids
in solving these optimization problems. In
the second part, the focus will be on decen-
tralized/distributed decision-making in high-
voltage and distribution grids, and how agents can autonomously solve dispatch, control, and
learning problems using decentralized/distributed algorithms, such as dual decomposition,
ADMM, and their variants. In the third part, students will acquire prescriptive analytics skills: it
will introduce algorithms for decision-focused learning in the context of renewable power fore-
casting and other relevant analytical tasks. Students will work on final projects (to be agreed
upon with the instructor) and present the results to their peers. Possible project topics include:

• Decentralized electricity market designs

• Carbon-constrained electric power dispatch and pricing

• Optimization algorithms for voltage control in distribution grids

• Power grid coordination with adjacent infrastructures (e.g., with data centers)

Each weekly session will consist of a lecture and a follow-up tutorial on the lecture materials.
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