Carbon-Aware Computing: How to Get Power Systems and Data Centers to Talk to Each Other

Vladimir Dvorkin

- Department of Electrical Engineering and Computer Science
 - University of Michigan Ann Arbor
 - IEEE CSS Day 2024
 - October 21, 2024

https://web.eecs.umich.edu/~dvorkin/

Optimizing energy. Empowering society.

Agent coordination via contextual regression (AgentCONCUR) is a cost-effective protocol, both in terms of data and computation, designed to coordinate spatial shifts of data center electricity consumption to support power grid operations during peak hours. [paper] [code]

Wind Power Obfuscation (WPO) is a noiseadditive algorithm to create synthetic data from real measurements while maintaining higher quality than standard Laplace-based algorithms. [paper] [code] [FERC talk]

>>> V. Dvorkin

UptiML

/'ap·tə·məl/

DeepWP+ is a new deep learning architecture designed to enhance wind power predictions by addressing errors and unfairness in electricity prices. Unlike traditional architectures, DeepWP+ embeds a market-clearing optimization problem that guides predictions towards more accurate and fair outcomes. [paper] [slides]

Al is currently the fastest growing electricity demand

- Data centers have a significant environmental impact

>>> V. Dvorkin

Data centers in the U.S. could consume as much electricity by 2030 as some entire industrialized economies

Al electricity demand growth outpaces power grid development

Grid operators require generation projects to undergo a series of impact studies before they can be built The total capacity in the queues is growing year-over-year, but the impact studies do not keep up

>>> V. Dvorkin

Lawrence Berkeley National Laboratory: Characteristics of Power Plants Seeking Transmission Interconnection As of the End of 2023

Al electricity demand growth outpaces power grid development

Lawrence Berkeley NL. 2024 Edition Characteristics of Power Plants Seeking Transmission Interconnection As of the End of 2023.

The majority (>70%) of interconnection requests are withdrawn ▶ Just 20% of requests (14% of capacity) submitted from 2000-2018 had been built as of the end of 2023 Power grids expansion does not keep with the pace of AI electricity growth

>>> V. Dvorkin Lawrence Berkeley National Laboratory: Characteristics of Power Plants Seeking Transmission Interconnection As of the End of 2023

Al electricity demand growth outpaces power grid development

Disruptive electricity consumption patterns

>>> V. Dvorkin

Li, Yuzhuo, et al. "The Unseen AI Disruptions for Power Grids: LLM-Induced Transients." arXiv preprint arXiv:2409.11416 (2024).

4 / 15

Disruptive electricity consumption patterns

Power Consumption of BERT in MIT Supercloud Dataset

>>> V. Dvorkin

Li, Yuzhuo, et al. "The Unseen AI Disruptions for Power Grids: LLM-Induced Transients." arXiv preprint arXiv:2409.11416 (2024).

Disruptive electricity consumption patterns

Power Transients of GPT-2 124M

>>> V. Dvorkin

Li, Yuzhuo, et al. "The Unseen AI Disruptions for Power Grids: LLM-Induced Transients." arXiv preprint arXiv:2409.11416 (2024).

Temporal and geospatial load flexibility

Baseline versus Carbon-aware Load

Baseline Load

- Carbon-aware Load

Carbon Intensity

>>> V. Dvorkin

Visualizations are from Google carbon-aware computing reports

4 / 15

Temporal and geospatial load flexibility

Baseline versus Carbon-aware Load

Baseline Load

Carbon-aware Load

Carbon Intensity

>>> V. Dvorkin

Visualizations are from Google carbon-aware computing reports

\$0.05

\$0.3

\$1.5

\$10

Zhang, Xuechen, et al. TREACLE: Thrifty Reasoning via Context-Aware LLM and Prompt Selection. 2024

LLM service can be instantaneously delivered by multiple vendors: random job allocation in the grid, depending on user preferences.

4 / 15

How to coordinate power grids and data centers, considering such a disruptive nature of AI loads?

Data center and grid co-design¹:

- Optimal sizing, siting and timing of data centers in the grid
- Delivers benefits in the long run, but not in the short run
- New electricity market design²:
 - Definition of new market products is difficult (e.g., pricing geospatial shifts)
 - Mostly bilateral, out of market contracts. Microsoft & Three Mile Island
- Demand response participation³
 - Currently a working solution, yet with limited scalability
- Co-optimization of grid and data-center operations:
 - Ideal yet unattainable in practice solution
 - Significant privacy concerns and computational requirements

¹Y. Abdennadher et al. Carbon Efficient Placement of Data Center Locations. 2022 ²W. Zhang et al. Flexibility from networks of data centers: A market clearing formulation with virtual links. 2020 ³https://cloud.google.com/blog/products/infrastructure/using-demand-response-to-reduce-data-center-power-consumption >>> V. Dvorkin

https://app.electricitymaps.com/map

			 			1111				 			
 	 	 1110	 	 				 	 	 	1111		 000
 	 	 	 ****	 			***	 	 _	 			
 	 	 	 	 	-			 -	 -	 		-	 -
 		 	 	 _	-				 -	 			 _

Data center and grid co-design¹:

- Optimal sizing, siting and timing of data centers in the grid
- Delivers benefits in the long run, but not in the short run

New electricity market design²:

- Definition of new market products is difficult (e.g., pricing geospatial shifts)
- Mostly bilateral, out of market contracts. Microsoft & Three Mile Island
- Demand response participation³ Currently a working solution, yet with limited scalability

Co-optimization of grid and data-center operations: Ideal yet unattainable in practice solution Significant privacy concerns and computational requirements

¹Y. Abdennadher et al. Carbon Efficient Placement of Data Center Locations. 2022 ²W. Zhang et al. Flexibility from networks of data centers: A market clearing formulation with virtual links. 2020 ³https://cloud.google.com/blog/products/infrastructure/using-demand-response-to-reduce-data-center-power-consumption >>> V. Dvorkin

Co-optimization of grid and data-center operations

>>> V. Dvorkin

Power grid optimization problem:

minimize $c_{pwr}(p)$ ▷ Dispatch cost р subject to $p \in \mathcal{P}_{pwr}(\vartheta)$ ▷ Grid feasibility

>>> V. Dvorkin

Power grid optimization problem:

minimize $c_{pwr}(p)$ ▷ Dispatch cost subject to $p \in \mathcal{P}_{pwr}(\vartheta)$ ▷ Grid feasibility

Data centers optimization problem:

minimize $c_{\text{net-dc}}(\vartheta)$ ▷ Latency loss subject to $\vartheta \in \mathcal{W}_{\mathsf{net-dc}}(\varphi)$ ▷ NetDC feasibility

>>> V. Dvorkin

Power grid optimization problem:

minimize $c_{pwr}(p)$ ▷ Dispatch cost subject to $p \in \mathcal{P}_{pwr}(\vartheta)$ ▷ Grid feasibility

Data centers optimization problem:

minimize $c_{\text{net-dc}}(\vartheta)$ ▷ Latency loss subject to $\vartheta \in \mathcal{W}_{\mathsf{net-dc}}(\varphi)$ ▷ NetDC feasibility

>>> V. Dvorkin

Power Grid–NetDC coordination problem:

minimize $c_{pwr}(p)$ \triangleright Dispatch cost arphi, psubject to $p \in \mathcal{P}_{pwr}(\vartheta)$ el. demand ▷ Grid feasibility minimize $c_{\text{net-dc}}(\vartheta)$ ▷ Latency loss subject to $\vartheta \in \mathcal{W}_{\mathsf{net-dc}}(\varphi)$ > NetDC feasibility

computing task shift

Bilevel structure: the grid operator minimizes dispatch costs by optimizing task shifts that reshape data-center electricity demand.

Power-NetDC coordination: From optimization to regression

From optimization to regression for Power-NetDC coordination

- Solving the bilevel problem in real-time is extremely challenging: Power and NetDC needs to be exchanged in real time (privacy barriers)
 - Large-scale bilevel optimization in real time (computationally intractable)
- Instead, we consider a contextual regression policy for real-time coordination

locational marginal prices, zonal electricity demand, renewable power generation)

The baseline training of the regression policy: 1. Collect a dataset $\{(x_1, \varphi_1^*), \ldots, (x_q, \varphi_q^*)\}$ of q coordination scenarios. Each scenario i includes contextual features x_i and the optimal solution φ_i^* to the coordination problem 2. Train a contextual regression to map coordination features into the optimal task shifts in real-time

minimize $\|\beta\|_1 \leqslant \varepsilon$ feature selection

>>> V. Dvorkin

- $\phi(\mathbf{x}) = \beta_0 + \beta_1 \mathbf{x}$
- where $\beta = (\beta_0, \beta_1)$ are regression weights and x is the vector of real-time coordination features (e.g.

$$\frac{1}{q}\sum_{i=1}^{q} \|\beta_0 + \beta_1 x_i - \varphi_i^{\star}\|_2^2 \longleftarrow$$

Minimum prediction loss, but no guarantees on policy costoptimality and feasibility

AgentCONCUR protocol with performance guarantees

AgentCONCUR: Ensuring feasibility of the contextual regression

The task shifts are restricted to the affine policy of contextual features.

- Optimization anticipates how the affine restriction affects the average OPF costs.
- \blacktriangleright Feasibility guarantees on the training set \rightarrow also holds on the testing set

Numerical Experiments on the New York Independent System Operator's System

NYISO: Settings

>>> V. Dvorkin

Data inputs:

- 11-zone aggregation of the New York ISO
- Network of 5 data centers (10 virtual links)
- ► Varying demand from 5% to 30% of the peak load

We study two coordination settings:

- Ideal day-ahead coordination with optimization
- Real-time coordination with contextual regression

9 / 15

NYISO: Ideal coordination at the day-ahead stage

>>> V. Dvorkin

The flat (in red) loading profile is re-distributed in space and time

NYISO: AgentCONCUR for real-time coordination

Ideal coordination versus the AgentCONCUR solution

>>> V. Dvorkin

Contextual features from NYISO website

- Zonal real-time electricity demand (d);
- Zonal electricity prices (λ) ;
- ▶ Zonal renewable power generation (r);
- Power flows between aggregation zones (f).

Coordination policy to be optimized offline:

$$\phi \triangleq \beta_0 + \beta_1^d \begin{bmatrix} d_1 \\ \vdots \\ d_{11} \end{bmatrix} + \beta_1^\lambda \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_{11} \end{bmatrix} + \beta_1^r \begin{bmatrix} r_1 \\ \vdots \\ r_{11} \end{bmatrix} + \beta_1^f$$

NYISO: Cost-savings of AgentCONCUR

- **Non-coordinated solution** \Rightarrow quadratic cost growth
- \blacktriangleright Ideal coordination \Rightarrow more linear cost growth
 - **Baseline regression** is often infeasible \Rightarrow small savings
- Feasibility guarantees of the AgentCONCUR protocol \Rightarrow efficient approximation of the ideal coordination

NYISO: Cost-savings of AgentCONCUR

- **Non-coordinated solution** \Rightarrow quadratic cost growth

NYISO: Coordination feature selection for AgentCONCUR

- Feature selection by means of ℓ_1 -regularization
- \triangleright ℓ_1 -regularization also ensures coordination robustness
- Can we organize coordination using just one feature?

NYISO: Coordination feature selection for AgentCONCUR

>>> V. Dvorkin

Selected contextual features for Grid-NetDC coordination for different ε

ر د	# of	zonal electricity demand													power flow													zonal electricity price											zonal renewable power output												
	features	d_1	d_2	d	30	l_4	d_5		6 d	l_7 (d_8	d_9	d	10	d_{11}	f_1	f	2 J	² 3 f	4 J	f_5 .	f_6	λ_7	f_8	f_9	f_{10}	f_1	1 f	12	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ_8	λ_9	λ_{10}	λ_{11}	r_1	r_2	r_3	r_4	r_5	r_6	r_7	r_8	r_9	r_{10} .	r_{11}
1000.0	29	С	ullet)	•	0			0			(0	0	•)			•	•	•				•		0		•	•	٠	•	•	•	0	•	•	0	0	•	•	0	0	0	0	0	0	0	•
100.0	28		ullet)	•	•			0	ullet	ullet	(•	0	•) (•	•	•	ullet	0	ullet	0		0	0	ullet	•	ullet	•	0	0	ullet	ullet	•	•	0	ullet	0	0	0	0	0	0	0	0	ullet
10.0	24		ullet)	•	0			•	•	ullet	(•	•	ullet) (0	•	•	•	ullet	•	0		0	0	0	0	0	0	0	0	ullet	ullet	•	0	0	ullet	0	0	0	0	0	0	0	0	ullet
5.0	20		ullet	С)	•	•			•	•	ullet	(•	•	•)	•	0	•	ullet	ullet	0	0		0	0	0	0	0	0	0	0	0	ullet	•	0	0	ullet	0	0	0	0	0	0	0	0	0
2.5	13		0)	0	0			•		ullet	(•	0	•) () C	D	0	•	0	0	ullet	0	0		0	0	0	0	0	0	0	0	0	●	•	0	0	0	0	0	0	0	0	0	0	0	0
1.0	6		0)	0	0	С		0	0	0	(•	0	•) () ()	0	0	0	0	0	ullet	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.5	3		0	С)	0	0	С		0	0	0	(•	0	0	С)		D	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.1	1	С	0	С)	0	0	С) (0	0	0	(•	0	0	С) () (D (0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Feature selection by means of ℓ_1 -regularization

 \triangleright ℓ_1 -regularization also ensures coordination robustness

Can we organize coordination using just one feature?

NYISO: Coordination feature selection for AgentCONCUR

>>> V. Dvorkin

Selected contextual features for Grid-NetDC coordination for different ε

ر د	# of features		zonal electricity demand												power flow													zonal electricity price												zonal renewable power output										
C		$ \overline{d_1}$	d_2	d_3	d_4	d_5 (d_6	d_7	d_8	d_9	d_{10}	d_{11}	f_1	f_2	f_3	f_4	f_5	f_6	λ_7	f_8	f_9	f_{10}	f_{11}	f_{12}	$_2 \lambda_1$	$_1 \lambda_2$	$_2 \lambda_3$	$_{3} \lambda_{4}$	$_4 \lambda_5$	λ_6	; λ_7	λ_8	λ_9	λ_{10}	$\overline{\lambda_{11}}$	r_1	r_2	$\overline{r_3}$	r_4	r_5	r_6	$r_7 i$	$r_8 r$	$9 r_1$	r_{11}					
1000.0	29	0	•	•	•	0	•	0	•	•	0	0	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	0	•	•	0	0	•	•	0	0	0	0	0 () C)					
100.0	28	•	ullet	ullet	ullet	•	•	0	•	ullet	•	0	ullet	ullet	ullet	ullet	ullet	•	•	ullet	0	•	0	0	0	•	•	•	•	0	0	ullet	ullet	ullet	•	0	ullet	0	0	0	0	0	0 () с)					
10.0	24	•	●	•	ullet	0	•	•	•	•	•	ullet	•	•	ullet	ullet	0	•	•	ullet	•	•	0	0	0	0	0	0	0	0	0	•	•	ullet	0	0	ullet	0	0	0	0	0	0 (с с)					
5.0	20	•	ullet	0	ullet	•	•	•	•	•	ullet	ullet	●	ullet	ullet	0	•	0	•	ullet	•	0	0	0	0	0	0	0	0	0	0	0	ullet	•	0	0	ullet	0	0	0	0	0	0 (с с) ()					
2.5	13	•	0	•	0	0	•	•	•	•	•	0	•	•	0	0	0	•	0	0	•	0	0	0	0	0	0	0	0	0	0	0	•	•	0	0	0	0	0	0	0	0	0 (с с) ()					
1.0	6	•	0	•	0	0	0	0	0	0	ullet	0	•	•	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (с с) ()					
0.5	3	•	0	0	0	0	0	0	0	0	•	0	0	0	ullet	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (с с) 0					
0.1	1	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () с) O					
		-										$\overline{}$																																						
													\searrow																																					

Feature selection by means of ℓ_1 -regularization

 \triangleright ℓ_1 -regularization also ensures coordination robustness

Can we organize coordination using just one feature?

> peak electricity demand in New York City

AgentCONCUR: Implementation barriers

Policy optimization still requires sensitive data

$$\begin{array}{ll} \underset{\beta,\varphi_{i},\ldots,\varphi_{q},p_{i},\ldots,p_{q}}{\text{minimize}} & \frac{1}{q} \sum_{i=1}^{q} c_{\mathsf{pwr}}(\mu) \\ \text{subject to} & p_{i} \in \mathcal{P}_{\mathsf{pwr}}(\vartheta) \\ \varphi_{i} = \beta_{0} + \beta_{0} \\ \vartheta_{i}^{\star} \in \underset{\vartheta_{i}}{\text{minim}} \\ \text{subject} \end{array}$$

How to enable the exchange of sensitive training datasets?

(pi) cost function?
(pi) network/gen/load data? $(\boldsymbol{9}_{i}^{\star}), \quad \forall i=1,\ldots,q$ $\beta_1 x_i, \|\beta\|_1 \leq \varepsilon, \quad \forall i = 1, \ldots, q$ nize $c_{\text{net-dc}}(\vartheta_i)$ bject to $\boldsymbol{\vartheta}_i \in \mathcal{W}_{\mathsf{net-dc}}(\boldsymbol{\varphi}_i), \quad \forall i = 1, \dots, q$

AgentCONCUR: Implementation barriers

Policy optimization still requires sensitive data

$$\begin{array}{ll} \underset{\beta, \varphi_{i}, \dots, \varphi_{q}, p_{i}, \dots, p_{q}}{\operatorname{minimize}} & \frac{1}{q} \sum_{i=1}^{q} c_{\mathsf{pwr}}(\mu) \\ \text{subject to} & p_{i} \in \mathcal{P}_{\mathsf{pwr}}(\vartheta) \\ \varphi_{i} = \beta_{0} + \beta \\ \vartheta_{i}^{\star} \in \underset{\vartheta_{i}}{\operatorname{minim}} \\ \end{array}$$

How to enable the exchange of sensitive training datasets?

Differential privacy provides an answer

Differentially Private Algorithms for Synthetic Power System Datasets

Vladimir Dvorkin, Jr., Member, IEEE, and Audun Botterud, Member, IEEE

Conclusions

>>> V. Dvorkin

- We need to leverage the unique (geospatial) flexibility of datacenters to accommodate the loads
- egacy optimization-based solutions to coordination are not the option
 - Lack of real-time communication interfaces
 - Privacy barriers for information exchange
 - Computationally intractable problem
- We developed a contextual regression mechanism (AgentCONCUR) to:
 - Minimize real-time communication requirements (contextual features)
 - Enable coordination at minimum data exchange (e.g., feature selection)
 - Computationally tractable real-time computations (millisecond)

IEEE TRANSACTIONS ON POWER SYSTEMS, AUGUST 2024

Agent Coordination via Contextual Regression (AgentCONCUR) for Data Center Flexibility

Vladimir Dvorkin, Member, IEEE

We build significantly less generation capacity than what we need to accommodate the growing AI demand

15 / 15

