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Agent coordination via contextual regression
(AgentCONCUR) is a cost-effective protocol,
both in terms of data and computation, designed
to coordinate spatial shifts of data center
electricity consumption to support power grid
operations during peak hours.
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Wind Power Obfuscation (WPO) is a noise-
additive algorithm to create synthetic data from
real measurements while maintaining higher

quality than standard Laplace-based algorithmes.
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DeepWP+ is a new deep learning architecture
designed to enhance wind power predictions by
addressing errors and unfairness in electricity
prices. Unlike traditional architectures, Deep WP+
embeds a market-clearing optimization problem
that guides predictions towards more accurate
and fair outcomes.
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Al is currently the fastest growing electricity demand M
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» Data centers in the U.S. could consume as much electricity by 2030 as some entire industrialized economies

» Data centers have a significant environmental impact
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Al electricity demand growth outpaces power grid development
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Lawrence Berkeley NL. 2024 Edition Characteristics of Power Plants Seeking Transmission Interconnection As of the End of 2023.

» Grid operators require generation projects to undergo a series of impact studies before they can be built

» The total capacity in the queues Is growing year-over-year, but the impact studies do not keep up

>> V. Dvorkin Lawrence Berkeley National Laboratory: Characteristics of Power Plants Seeking Transmission Interconnection As of the End of 2023 / 15



electricity demand growth outpaces power grid development
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Lawrence Berkeley NL. 2024 Edition Characteristics of Power Plants Seeking Transmission Interconnection As of the End of 2023.

» The majority (> 70%) of interconnection requests are withdrawn
> Just 20% of requests (14% of capacity) submitted from 2000-2018 had been built as of the end of 2023

» Power grids expansion does not keep with the pace of Al electricity growth

>> V. Dvorkin Lawrence Berkeley National Laboratory: Characteristics of Power Plants Seeking Transmission Interconnection As of the End of 2023 / 15



Al electricity demand growth outpaces power grid development

It is unlikely that we can meet the growing demand by
building new generations alone. We need to operationalize
the unique features of the growing Al demand.

>> V. Dvorkin / 15



What makes Al such a special load?

Disruptive electricity consumption patterns

>> V. Dvorkin Li, Yuzhuo, et al. "The Unseen Al Disruptions for Power Grids: LLM-Induced Transients." arXiv preprint arXiv:2409.11416 (2024). / 15



What makes Al such a special load?

Disruptive electricity consumption patterns
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What makes Al such a special load?

Disruptive electricity consumption patterns

Zoomed-In Power Consumption Max Decline Zoomed-In Power Consumption Max Ramp
400 - : 400 - \ E
300 - i !J\ 300 - E
S i S a
g _i__w g \f i
S 200 & 200 E
4 |
Power ramping |
100 - Power decline 100 - happens A350W ~
happens
A200W —— Power Draw —— Power Draw
0 0

60955.0 60957.5 60960.0 60962.5 60965.0 60967.5 60970.0 60972.5  60975.0 20625.0 20627.5  20630.0 20632.5 20635.0 20637.5 20640.0 20642.5  20645.0
Elapsed Time (s) Elapsed Time (s)

Power Transients of GPT-2 124M

>> V. Dvorkin Li, Yuzhuo, et al. "The Unseen Al Disruptions for Power Grids: LLM-Induced Transients." arXiv preprint arXiv:2409.11416 (2024). / 15



What makes Al such a special load?

Temporal and load flexibility

Baseline versus Carbon-aware Load

Baseline Lcad == Carbon-aware Load Carbon Intensity
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What makes Al such a special load?

Temporal and load flexibility

Baseline versus Carbon-aware Load
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Visualizations are from Google carbon-aware computing reports
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What makes Al such a special load?

>»> V. Dvorkin

LLM service can be instantaneously delivered by multiple vendors:

random job allocation in the grid, depending on user preferences.
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How to coordinate power grids and data centers,
considering such a disruptive nature of Al loads?



Proposals on power grid and data center coordination

» Data center and grid co-design*:

» Optimal sizing, siting and timing of data centers in the grid
» Delivers benefits in the long run, but not in the short run

» New electricity market design®:

» Definition of new market products is difficult (e.g., pricing geospatial shifts)
» Mostly bilateral, out of market contracts. Microsoft & Three Mile Island

https://app.electricitymaps.com/map

» Demand response participation’

» Currently a working solution, yet with limited scalability

» Co-optimization of grid and data-center operations:

» Ideal yet unattainable in practice solution
» Significant concerns and computational requirements

Y. Abdennadher et al. Carbon Efficient Placement of Data Center Locations. 2022
W. Zhang et al. Flexibility from networks of data centers: A market clearing formulation with virtual links. 2020
https:/ /cloud.google.com /blog/products/infrastructure /using-demand-response-to-reduce-data-center-power-consumption
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» Co-optimization of grid and data-center operations:

» Ideal yet unattainable in practice solution
» Significant concerns and computational requirements


https://app.electricitymaps.com/map

Co-optimization of grid and data-center operations



Co-optimization of networked data centers (NetDC) and power grid operations M
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Co-optimization of networked data centers (NetDC) and power grid operations
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Co-optimization of networked data centers (NetDC) and power grid operations
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Co-optimization of networked data centers (NetDC) and power grid operations M
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costs by optimizing task shifts that reshape data-center
electricity demand.
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Power-NetDC coordination: From optimization to regression



From optimization to regression for Power-NetDC coordination

» Solving the bilevel problem in real-time is extremely challenging:
» Power and NetDC needs to be exchanged in real time (privacy barriers)

> Large-scale bilevel optimization in real time (computationally intractable)

» |Instead, we consider a contextual regression policy for real-time coordination

¢(x) = Bo + Bix

where 8 = (Bo, 51) are regression weights and x is the vector of real-time coordination features (e.g,
locational marginal prices, zonal electricity demand, renewable power generation)

» The baseline training of the regression policy:
1. Collect a dataset {(x1,%7),---,(Xg,5)} of g coordination scenarios.

Each scenario / includes contextual features x; and the optimal solution ¢* to the coordination problem

2. Train a contextual regression to map coordination features into the optimal task shifts in real-time

Minimum prediction loss, but

q

. 1 .

minimize — E |Bo + B1xi — F Hg > no guarantees on policy cost-
18]l1se q-— optimality and feasibility

feature selection /

>> V. Dvorkin / 15




AgentCONCUR protocol with performance guarantees



AgentCONCUR: Ensuring feasibility of the contextual regression

L 1 —
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» The task shifts are restricted to the affine policy of contextual features.

>

>

>

>

Average dispatch cost

Grid equations for each scenario

Coupling contextual regression

Latency loss

NetDC feasibility

» Optimization anticipates how the affine restriction affects the average OPF costs.

» Feasibility guarantees on the training set — also holds on the testing set

>»> V. Dvorkin
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Numerical Experiments on the
New York Independent System Operator’s System



NYISO: Settings
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NYISO: Ideal coordination at the day-ahead stage M
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NYISO: AgentCONCUR for real-time coordination
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NYISO: Cost-savings of AgentCONCUR

» Non-coordinated solution = quadratic cost growth
Average peak-hour NYISO dispatch cost [$1000]
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NYISO: Cost-savings of AgentCONCUR
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NYISO: Coordination feature selection for AgentCONCUR
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» Feature selection by means of £;—regularization
» /1—regularization also ensures coordination robustness

» Can we organize coordination using just one feature?
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NYISO: Coordination feature selection for AgentCONCUR
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NYISO: Coordination feature selection for AgentCONCUR
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AgentCONCUR: Implementation barriers

Policy optimization still requires sensitive data

. 1 —
Minimize — Cowr ( Pi
B, iy y%LqsPis-+-9Pq q; P ( )

SUbjeCt to p; Ppwr(,ﬁ;'k)a Vi = ].7 e

i = Po+ Bixi, IBll; <&, Vi=1,...,q

97 € minj9mize Cnet-dc ()
/
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» How to enable the exchange of sensitive training datasets?
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» How to enable the exchange of sensitive training datasets?

» Differential privacy provides an answer
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Conclusions M

» We build significantly less generation capacity than what we need to accommodate the growing Al demand
> We need to leverage the unique (geospatial) flexibility of datacenters to accommodate the loads

» |egacy optimization-based solutions to coordination are not the option
> Lack of real-time communication interfaces
» Privacy barriers for information exchange

» Computationally intractable problem

» We developed a contextual regression mechanism (AgentCONCUR) to:
> Minimize real-time communication requirements (contextual features)
» Enable coordination at minimum data exchange (e.g., feature selection)

> Computationally tractable real-time computations (millisecond)
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