Carbon-Aware Computing: How to Get Power Systems and Data Centers to Talk to Each Other

Vladimir Dvorkin

- Department of Electrical Engineering and Computer Science
	- University of Michigan Ann Arbor
		- IEEE CSS Day 2024
			- October 21, 2024

https://web.eecs.umich.edu/~dvorkin/

Optimizing energy. Empowering society.

Agent coordination via contextual regression (AgentCONCUR) is a cost-effective protocol, both in terms of data and computation, designed to coordinate spatial shifts of data center electricity consumption to support power grid operations during peak hours. [paper] [code]

Wind Power Obfuscation (WPO) is a noiseadditive algorithm to create synthetic data from real measurements while maintaining higher quality than standard Laplace-based algorithms. [paper] [code] [FERC talk]

\Rightarrow V. Dvorkin 1 / 15

UptiML

/'ap·tə·məl/

DeepWP+ is a new deep learning architecture designed to enhance wind power predictions by addressing errors and unfairness in electricity prices. Unlike traditional architectures, DeepWP+ embeds a market-clearing optimization problem that guides predictions towards more accurate and fair outcomes. [paper] [slides]

3

- and the constant \mathbf{r} **Component Power Consideration** could consume as much electricity roard condante as made creativity
- GPU Primary power consumer, up to 400W-700W P Da $\lim_{n \to \infty}$ ▶ Data centers have a significant environmental impact

$\overline{}$ Cooling Can consume 10-20% of total system power \gg V. Dvorkin 2 / 15

PUE for GPT-3. We used the US average CO2 e/KWh for GPT-3 at Microsoft Azure (see Appendix A). ▶ Data centers in the U.S. could consume as much electricity by 2030 as some entire industrialized economies

AI is currently the fastest growing electricity demand <u> La Carta de l</u> <u>electricity actitation and the second second</u>

accuracy. [Kap20] notes that some architectures have a much lower footprint than others at equivalent

*starting in 2020. (3) ***Other in this chart includes Coal, Nuclear, Hydro, Geothermal, and Other / Unknown. (4) Not all of this capacity will be built.* ▶ Grid operators require generation projects to undergo a series of impact studies before they can be built \triangleright The total capacity in the queues is growing year-over-year, but the impact studies do not keep up

>>> V. Dvorkin Lawrence Berkeley National Laboratory: Characteristics of Power Plants Seeking Transmission Interconnection As of the End of 2023 3/15

AI electricity demand growth outpaces power grid development

Several regions have delayed accepting or processing new requests due to backlogs

(14% of capacity) submitted from 2000-2018 had been built as of the end of 2023

Lawrence Berkeley NL. 2024 Edition Characteristics of Power Plants Seeking Transmission Interconnection As of the End of 2023.

-
-

calculated by number of projects, not capacity. (4) Limited to data from 7 ISO/RTOs and 30 non-ISO balancing areas which provide ▶ The majority (> 70%) of interconnection requests are withdrawn In Just 20% of requests (14% of capacity) submitted from 2000-2018 had been built as of the end of 2023 ▶ Power grids expansion does not keep with the pace of AI electricity growth

>>> \vee . Dvorkin Lawrence Berkeley National Laboratory: Characteristics of Power Plants Seeking Transmission Interconnection As of the End of 2023 3 / 15

AI electricity demand growth outpaces power grid development

(14% of capacity) submitted from 2000-2018 had been built as of the end of 2023

\gg V. Dvorkin 3 / 15

AI electricity demand growth outpaces power grid development

Disruptive electricity consumption patterns

>>> V. Dvorkin Li, Yuzhuo, et al. "The Unseen AI Disruptions for Power Grids: LLM-Induced Transients." arXiv preprint arXiv:2409.11416 (2024). 4 / 15

>>> V. Dvorkin Li, Yuzhuo, et al. "The Unseen AI Disruptions for Power Grids: LLM-Induced Transients." *arXiv preprint arXiv:2409.11416* (2024). 4 / 15 Situs. LETT mudded framsferres, *arriv preprint arrived roselled* (2021).

What makes AI such a special load?

Disruptive electricity consumption patterns

Power Consumption of BERT in MIT Supercloud Dataset

Disruptive electricity consumption patterns

>>> V. Dvorkin Li, Yuzhuo, et al. "The Unseen AI Disruptions for Power Grids: LLM-Induced Transients." arXiv preprint arXiv:2409.11416 (2024). 4 / 15

Power Transients of GPT-2 124M

Temporal and geospatial load flexibility

Baseline versus Carbon-aware Load

-- Baseline Load

- Carbon-aware Load

Carbon Intensity

>>> V. Dvorkin Visualizations are from Google carbon-aware computing reports 4 / 15

Temporal and geospatial load flexibility

Baseline versus Carbon-aware Load

-- Baseline Load

- Carbon-aware Load

Carbon Intensity

>>> V. Dvorkin Visualizations are from Google carbon-aware computing reports 4 / 15

AI as a heterogeneous good

 $$0.05$

 $$0.3$

 $$1.5$

 $$10$

random job allocation in the grid, depending on user preferences. **LLM service can be instantaneously delivered by multiple vendors:**

>>> V. Dvorkin 4 / 15 Lines and dots in light (dark) colors are results with old Zhang, Xuechen, et al. TREACLE: Thrifty Reasoning via Context-Aware LLM and Prompt Selection. 2024

How to coordinate power grids and data centers, considering such a disruptive nature of AI loads?

 \blacktriangleright Data center and grid co-design¹:

- ▶ Optimal sizing, siting and timing of data centers in the grid
- \triangleright Delivers benefits in the long run, but not in the short run
- \blacktriangleright New electricity market design²:
	- \triangleright Definition of new market products is difficult (e.g., pricing geospatial shifts)
	- I Mostly bilateral, out of market contracts. Microsoft & Three Mile Island
- \triangleright Demand response participation³
	- ▶ Currently a working solution, yet with limited scalability
- ▶ Co-optimization of grid and data-center operations:
	- \blacktriangleright Ideal yet unattainable in practice solution
	- \triangleright Significant privacy concerns and computational requirements

 $¹$ Y. Abdennadher et al. Carbon Efficient Placement of Data Center Locations. 2022</sup> 2 W. Zhang et al. Flexibility from networks of data centers: A market clearing formulation with virtual links. 2020 3 https://cloud.google.com/blog/products/infrastructure/using-demand-response-to-reduce-data-center-power-consumption \gg V. Dvorkin 5 / 15

<https://app.electricitymaps.com/map>

\triangleright Data center and grid co-design¹:

- \triangleright Optimal sizing, siting and timing of data centers in the grid
- \triangleright Delivers benefits in the long run, but not in the short run

\blacktriangleright New electricity market design²:

- \triangleright Definition of new market products is difficult (e.g., pricing geospatial shifts)
- I Mostly bilateral, out of market contracts. Microsoft & Three Mile Island
- \triangleright Demand response participation³ \blacktriangleright Currently a working solution, yet with limited scalability

▶ Co-optimization of grid and data-center operations: \blacktriangleright Ideal yet unattainable in practice solution \triangleright Significant privacy concerns and computational requirements

 $¹$ Y. Abdennadher et al. Carbon Efficient Placement of Data Center Locations. 2022</sup> 2% . Zhang et al. Flexibility from networks of data centers: A market clearing formulation with virtual links. 2020 ³https://cloud.google.com/blog/products/infrastructure/using-demand-response-to-reduce-data-center-power-consumption \gg V. Dvorkin 5 / 15

-
-

Co-optimization of grid and data-center operations

. minimize *p* \rhd Dispatch cost subject to $p \in \mathcal{P}_{pwr}(\vartheta)$ b Grid feasibility

 \gg V. Dvorkin 6 / 15

Power grid optimization problem:

. minimize *p* $C_{\text{pwr}}(p)$ b Dispatch cost Subject to $p \in \mathcal{P}_{pwr}(\vartheta)$ b Grid feasibility

 \gg V. Dvorkin 6 / 15

minimize ϑ $\mathcal{C}_{\sf net\text{-}dc}(\vartheta) \qquad \qquad \triangleright \text{ Latency loss}$ **subject to** $\vartheta \in \mathcal{W}_{\text{net-dc}}(\varphi)$ b NetDC feasibility

Power grid optimization problem:

Data centers optimization problem:

. minimize *p* $C_{\text{pwr}}(p)$ b Dispatch cost Subject to $p \in \mathcal{P}_{pwr}(\vartheta)$ b Grid feasibility

 \gg V. Dvorkin 6 / 15

minimize ϑ $\mathcal{C}_{\sf net\text{-}dc}(\vartheta) \qquad \qquad \triangleright \text{ Latency loss}$ **subject to** $\vartheta \in \mathcal{W}_{\text{net-dc}}(\varphi)$ b NetDC feasibility

Power grid optimization problem:

Data centers optimization problem:

 $\text{minimize} \quad c_{\text{pwr}}(p)$. Dispatch cost φ, p subject to $p \in \mathcal{P}_{\mathsf{pwr}}(\vartheta)$. $\qquad \qquad \circ$ Grid feasibility minimize ϑ $\mathcal{C}_{\sf net\text{-}dc}(\vartheta)$. Latency loss **Subject to** $\vartheta \in \mathcal{W}_{\text{net-dc}}(\varphi)$ \triangleright NetDC feasibility **el. demand**

 \gg V. Dvorkin 6 / 15

Power Grid–NetDC coordination problem:

computing task shift

Bilevel structure: the grid operator minimizes dispatch costs by optimizing task shifts that reshape data-center electricity demand.

Power-NetDC coordination: From optimization to regression

From optimization to regression for Power-NetDC coordination

- \triangleright Solving the bilevel problem in real-time is extremely challenging: ▶ Power and NetDC needs to be exchanged in real time (privacy barriers)
	- I Large-scale bilevel optimization in real time (computationally intractable)
- I Instead, we consider a contextual regression policy for real-time coordination

 \blacktriangleright The baseline training of the regression policy: 1. Collect a dataset $\{(x_1, \varphi_1^*)$, \dots , $(x_q, \varphi_q^*)\}$ of q coordination scenarios. Each scenario *i* includes contextual features x_i and the optimal solution φ^{\star}_i to the coordination problem 2. Train a contextual regression to map coordination features into the optimal task shifts in real-time

locational marginal prices, zonal electricity demand, renewable power generation)

$$
\frac{1}{q}\sum_{i=1}^{q}||\beta_0 + \beta_1x_i - \varphi_i^*||_2^2 \leftarrow
$$

minimize $\|\beta\|_1 \leqslant \varepsilon$ >>> V. Dvorkin ⁷ / ¹⁵ *feature selection*

- $\phi(x) = \beta_0 + \beta_1 x$
- where $\beta = (\beta_0, \beta_1)$ are regression weights and x is the vector of real-time coordination features (e.g,

Minimum prediction loss, but no guarantees on policy costoptimality and feasibility

AgentCONCUR protocol with performance guarantees

AgentCONCUR: Ensuring feasibility of the contextual regression

$$
\begin{array}{ll}\n\text{minimize} & \frac{1}{q} \sum_{i=1}^{q} c_{\text{pwr}}(p_i) & \text{Average dispatch cost} \\
\text{subject to} & p_i \in \mathcal{P}_{\text{pwr}}(\vartheta^{\star}_i), \quad \forall i = 1, \dots, q & \text{b grid equations for each scenario} \\
& \varphi_i = \beta_0 + \beta_1 x_i, \|\beta\|_1 \leqslant \varepsilon, \quad \forall i = 1, \dots, q & \text{b coupling contextual regression} \\
\vartheta^{\star}_i \in \text{minimize} & c_{\text{net-dc}}(\vartheta_i) & \text{b Latency loss} \\
\text{subject to} & \vartheta_i \in \mathcal{W}_{\text{net-dc}}(\varphi_i), \quad \forall i = 1, \dots, q & \text{b NetDC feasibility}\n\end{array}
$$

- \blacktriangleright The task shifts are restricted to the affine policy of contextual features.
- ▶ Optimization anticipates how the affine restriction affects the average OPF costs.
- Feasibility guarantees on the training set \rightarrow also holds on the testing set

\gg V. Dvorkin 8 / 15

Numerical Experiments on the New York Independent System Operator's System

NYISO: Settings

 \gg V. Dvorkin 9 / 15

Data inputs:

- ▶ 11-zone aggregation of the New York ISO
- \triangleright Network of 5 data centers (10 virtual links)
- \triangleright Varying demand from 5% to 30% of the peak load

We study two coordination settings:

- \blacktriangleright Ideal day-ahead coordination with optimization
- \blacktriangleright Real-time coordination with contextual regression

NYISO: Ideal coordination at the day-ahead stage

 \gg V. Dvorkin 10 / 15

The flat (in red) loading profile is re-distributed in space and time

NYISO: AgentCONCUR for real-time coordination

Ideal coordination versus the AgentCONCUR solution

 \gg V. Dvorkin 11 / 15

Contextual features from NYISO website

- \triangleright Zonal real-time electricity demand (d) ;
- \blacktriangleright Zonal electricity prices (λ) ;
- ▶ Zonal renewable power generation (r) ;
- \blacktriangleright Power flows between aggregation zones (f) .

Coordination policy to be optimized offline:

$$
\phi \triangleq \beta_0 + \beta_1^d \begin{bmatrix} d_1 \\ \vdots \\ d_{11} \end{bmatrix} + \beta_1^{\lambda} \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_{11} \end{bmatrix} + \beta_1^r \begin{bmatrix} r_1 \\ \vdots \\ r_{11} \end{bmatrix} + \beta_1^f
$$

NYISO: Cost-savings of AgentCONCUR

 \gg V. Dvorkin 12 / 15

- \triangleright Non-coordinated solution \Rightarrow quadratic cost growth
- \triangleright Ideal coordination \Rightarrow more linear cost growth
- \triangleright Baseline regression is often infeasible \Rightarrow small savings
- **Feasibility guarantees of the AgentCONCUR protocol** \Rightarrow efficient approximation of the ideal coordination

NYISO: Cost-savings of AgentCONCUR

 \gg V. Dvorkin 12 / 15

- \triangleright Non-coordinated solution \Rightarrow quadratic cost growth
	-
	-
	-

NYISO: Coordination feature selection for AgentCONCUR

>>> V. Dvorkin 13 / 15

- Feature selection by means of ℓ_1 -regularization
- \blacktriangleright ℓ_1 -regularization also ensures coordination robustness
- ▶ Can we organize coordination using just one feature?

NYISO: Coordination feature selection for AgentCONCUR gression annualisme reuten coordination poli

Selected contextual features for Crid NetDC coordination for different c **Selected contextual features for Grid-NetDC coordination for different** *ε*

>>> V. Dvorkin 13 / 15

approximation using just one feature?

NYISO: Coordination feature selection for AgentCONCUR gression annualisme reuten coordination poli

Selected contextual features for Crid NetDC coordination for different c **Selected contextual features for Grid-NetDC coordination for different** *ε*

>>> V. Dvorkin 13 / 15

approximation using just one feature?

peak electricity demand in New York City

AgentCONCUR: Implementation barriers

Policy optimization still requires sensitive data

$$
\begin{array}{ll}\text{minimize} & \frac{1}{q} \sum_{i=1}^{q} c_{\text{pwr}}(p_i) \\ \text{subject to} & p_i \in \mathcal{P}_{\text{pwr}}(\vartheta_i^{\star}) \\ & \varphi_i = \beta_0 + \beta_1, \\ & \vartheta_i^{\star} \in \text{minimize} \\ & \vartheta_i^{\star} \in \text{minimize} \\ & \vartheta_i \\ \text{subject to} \end{array}
$$

 \blacktriangleright How to enable the exchange of sensitive training datasets?

 $\langle \theta_i^{\star} \rangle$, $\forall i = 1, \ldots, q$ $\left|\beta_1 x_i, \|\beta\|_1 \leqslant \varepsilon, \quad \forall i = 1, \ldots, q$ $\zeta_i^* \in \text{minimize}$ $c_{\text{net-dc}}(\vartheta_i)$ $\mathcal{V}_i = \mathcal{V}_i \in \mathcal{W}_{\text{net-dc}}(\varphi_i), \quad \forall i = 1, \ldots, q$ **cost function? network/gen/load data?**

AgentCONCUR: Implementation barriers

Policy optimization still requires sensitive data

$$
\begin{array}{ll}\text{minimize} & \frac{1}{q} \sum_{i=1}^{q} c_{\text{pwr}}(p_i) \\ \text{subject to} & p_i \in \mathcal{P}_{\text{pwr}}(\vartheta_i^{\star}) \\ & \varphi_i = \beta_0 + \beta_1, \\ & \vartheta_i^{\star} \in \text{minimize} \\ & \vartheta_i^{\star} \in \text{minimize} \\ & \vartheta_i \\ & \text{subject to} \end{array}
$$

 \blacktriangleright How to enable the exchange of sensitive training datasets?

▶ Differential privacy provides an answer

Differentially Private Algorithms for Synthetic Power System Datasets

Vladimir Dvorkin, Jr., *Member, IEEE*, and Audun Botterud, *Member, IEEE*

 \gg V. Dvorkin 14 / 15

Conclusions

-
- \blacktriangleright We need to leverage the unique (geospatial) flexibility of datacenters to accommodate the loads
- \blacktriangleright Legacy optimization-based solutions to coordination are not the option
	- \blacktriangleright Lack of real-time communication interfaces
	- **Perivacy barriers for information exchange**
	- \triangleright Computationally intractable problem
- ▶ We developed a contextual regression mechanism (AgentCONCUR) to:
	- \blacktriangleright Minimize real-time communication requirements (contextual features)
	- **Inable coordination at minimum data exchange (e.g., feature selection)**
	- \triangleright Computationally tractable real-time computations (millisecond)

IEEE TRANSACTIONS ON POWER SYSTEMS, AUGUST 2024 1

Agent Coordination via Contextual Regression (AgentCONCUR) for Data Center Flexibility

Vladimir Dvorkin, *Member, IEEE*

 \triangleright We build significantly less generation capacity than what we need to accommodate the growing AI demand

