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AI is currently the fastest growing electricity demand
3

Fig. 1. Reported energy consumption of training di�erent LLM models with respect to model parameters [14], [22]–[25]. Note the
consumption shown here is relatively positioned, not based on accurate numerical calculation. The exact energy consumption
can di�er dramatically given di�erent AI acceleration hardware, training and inference settings. * means estimated energy
consumption based on model size.

TABLE I
Typical components of a high-performance AI compute node

and their power considerations

Component Power Consideration
GPU Primary power consumer, up to 400W-700W

per GPU
CPU Moderate power draw, 200W-400W for high-

end models
Memory Considerable power draw, especially for HBM

(30W-80W per GPU)
Cooling Can consume 10-20% of total system power
Power Supply E�ciency crucial, typically 90-96% e�cient or

even higher

Fig. 2. The schematic topology of an AI server with 8 GPUs.

1) Training
Training is the most power-intensive phase of LLM

operations. During this process, transformer-based model
learns from vast datasets [41]. Such procedure requires
sustained high GPU utilization for extended periods, often
lasting days, weeks, or even months. This phase demands

peak power from all system components, including GPUs,
CPUs, memory, and storage. The continuous high com-
putational load generates significant heat, necessitating
robust cooling systems. Power supplies must be capable
of handling prolonged maximum loads, and uninterrupted
power is crucial. Power capping strategies may be em-
ployed to balance performance and energy costs.

2) Fine-tuning
Fine-tuning involves adapting a pre-trained model to

specific tasks or domains, typically requiring moderate to
high power consumption. This phase sees intermittent high
GPU utilization but usually for shorter durations than
full training. Power draw can fluctuate more during fine-
tuning, demanding cooling systems that e�ciently handle
variable heat loads. This phase presents opportunities for
implementing power-saving features during less intensive
periods and allows for more flexible power management
strategies compared to full training.

3) Inference
Inference is generally the least power-intensive phase,

involving the application of trained models to new data. It
often consists of shorter computational bursts, with power
consumption varying widely based on model size and query
complexity. Inference workloads may benefit from special-
ized hardware optimized for lower power consumption.
Power draw during inference can be sporadic, requiring
responsive power delivery systems. This phase o�ers sig-
nificant opportunities for power savings through e�cient
scheduling and hardware utilization, though it is crucial to
balance low-latency response times with energy e�ciency.
While generally less power-intensive than training or fine-
tuning, inference presents unique challenges due to its
behavior-dominated nature. Usage patterns can be highly
variable and unpredictable, driven by user interactions,

Li et al. The Unseen AI Disruptions for Power Grids: LLM-Induced Transients. 2024

● GPT-3    is   an   autoregressive   language   model   with   175B   parameters,   10x   more   than   any   non-sparse   
language   model   at   the   time   [Bro20].   It   achieves   strong   performance   on   many   NLP   datasets.   A   winner   of   
the   best   paper   award   at   NeurIPS   2020,   this   8-month-old   paper   already   has   ~700   citations   and    made   
mainstream   media   headlines . 13    It   is   now   available   for   commercial   use.   One   potential   energy   benefit   of   a   
large   language   model   like   GPT-3   is   that   they   exhibit    few-shot   generalization ,   which   means   that   they   
don’t   need   to   be   retrained   for   every   new   task   like   smaller   models   [Wan20].    Its   estimated   carbon   
emissions   due   to   training   are   552   tCO 2 e   and   its   energy   consumption   is   1287   MWh. 14   

Table   4   also   lists   the   neural   architecture   search   for   Evolved   Transformer,   discussed   shortly.   

  
Figure   2.   Total   FLOPS   versus   number   of   parameters   relative   to   Transformer   (Big)   in   a   log-log   graph   
(Table   1).   While   all   are   not   doing   the   same   tasks,   a   reason   T5   has   relatively   lower   FLOPS   relative   to   its   
number   of   parameters   is   that   it   trains   until   the   accuracy   is   good   enough   instead   of   to   the   best   possible   
accuracy.   [Kap20]   notes   that   some   architectures   have   a   much   lower   footprint   than   others   at   equivalent   
accuracy   and   suggests   that   significant   power   might   be   saved   by   revisiting   accuracy   requirements.   

  
Figure   3.   Accelerator   years   of   computation,   energy   consumption,   and   CO 2 e   for   five   large   NLP   DNNs.   

13  Metz,   C.,   Meet   GPT-3.   It   Has   Learned   to   Code   (and   Blog   and   Argue),   November   24,   2020,    New   York   Times .   
14  We   measured   all   the   data   for   Google   models.   OpenAI   measured   V100   performance,   V100   power,   total   FLOPS,   and   
PUE   for   GPT-3.   We   used   the   US   average   CO 2 e/KWh   for   GPT-3   at   Microsoft   Azure   (see   Appendix   A).   

7   

437 round-trip flights 
between New York 
and London

Patterson et al. Carbon Emissions and Large Neural Network Training. 2021

I Data centers in the U.S. could consume as much electricity by 2030 as some entire industrialized economies

I Data centers have a significant environmental impact
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AI electricity demand growth outpaces power grid development

12
Notes: (1) *Hybrid storage capacity is estimated for some projects using storage:generator ratios from projects that provide separate capacity data, and that value is only included 
starting in 2020. Storage duration is not provided in interconnection queue data. (2) **Wind capacity includes onshore and offshore for all years, but offshore is only broken out 
starting in 2020. (3) ***Other in this chart includes Coal, Nuclear, Hydro, Geothermal, and Other / Unknown. (4) Not all of this capacity will be built.

Active queue capacity is highest in the West (706 GW), followed by CAISO (523 GW). 
Several regions have delayed accepting or processing new requests due to backlogs

In 2022, PJM 
paused review 
of new requests 
until 2026

MISO delayed 
their 2023 
request window 
until 2024

Includes CAISO 
Cluster 15, 
which was 
delayed from 
2022 to 2023

Lawrence Berkeley NL. 2024 Edition Characteristics of Power Plants Seeking Transmission Interconnection As of the End of 2023.

I Grid operators require generation projects to undergo a series of impact studies before they can be built

I The total capacity in the queues is growing year-over-year, but the impact studies do not keep up
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AI electricity demand growth outpaces power grid development

27

The majority (>70%) of interconnection requests are withdrawn. Just 20% of requests 
(14% of capacity) submitted from 2000-2018 had been built as of the end of 2023

Notes: (1) Final outcome for projects entering the queues in recent years may not yet be determined; some take 5 or more years from request to 
COD. (2) Status shown represents a snapshot of all available data as of the end of 2023. (3) Completion rate shown in chart on right is 
calculated by number of projects, not capacity. (4) Limited to data from 7 ISO/RTOs and 30 non-ISO balancing areas which provide 
comprehensive status information.
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Lawrence Berkeley NL. 2024 Edition Characteristics of Power Plants Seeking Transmission Interconnection As of the End of 2023.

I The majority (> 70%) of interconnection requests are withdrawn

I Just 20% of requests (14% of capacity) submitted from 2000-2018 had been built as of the end of 2023

I Power grids expansion does not keep with the pace of AI electricity growth
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I The majority (> 70%) of interconnection requests are withdrawn

I Just 20% of requests (14% of capacity) submitted from 2000-2018 had been built as of the end of 2023

I Power grids expansion does not keep with the pace of AI electricity growth
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It is unlikely that we can meet the growing demand by 
building new generations alone. We need to operationalize 

the unique features of the growing AI demand.



What makes AI such a special load?

Disruptive electricity consumption patterns
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Fig. 6. Power Consumption of BERT in MIT Supercloud Dataset (Peak power consumption of approximately 48.70 kW, with
an average consumption of 17.80 kW and a standard deviation of 12.39 kW. The job ran for an extended period of 4 days).

Fig. 7. Power Consumption CDF of BERT.

Fig. 8. Power Consumption PDF of BERT.

designed by Andrej Karpathy to be more accessible and
easier to understand than larger, more complex models.

The power consumption characteristics of these training
sessions reveal interesting di�erences between the NVIDIA
RTX 4090 and AMD Radeon RX 7900 XTX GPUs, as
well as between the two model architectures. The GPT-2
124M training on the RTX 4090 shows a relatively stable
power draw, averaging 414W with a maximum of 461W
over a 22-hour training period. This setup exhibits large

power transients, with drops of about 320W and ramps of
350W, demonstrating the GPU’s ability to quickly adjust
its power state.

In contrast, the nanoGPT training on the RX 7900
XTX displays more variable power consumption, fluctu-
ating between approximately 50W and 250W. The power
transients for this setup are smaller, with drops of about
150W and ramps of 130W. This di�erence in power profile
could be attributed to the smaller model size of nanoGPT,
di�erences in GPU architecture, or varying power manage-
ment strategies between NVIDIA and AMD.

The unique power consumption patterns observed in
these training sessions highlight the dynamic nature of
GPU utilization in AI workloads. The RTX 4090’s higher
and more stable power draw, coupled with larger tran-
sients, suggests the device operating closer to its maximum
capacity for longer periods. This is supported by its high
average power of 414W and standard deviation of 113.7W.
The RX 7900 XTX, while showing lower overall power
consumption, demonstrates more frequent fluctuations,
indicating algorithmic influence of the AI training coupling
with the characteristics of the smaller nanoGPT model.

These observations underscore the importance of consid-
ering both hardware capabilities and model architecture
when setting up AI training environments. The choice
of GPU and model can significantly impact power con-
sumption patterns, which in turn a�ects energy e�ciency,
cooling requirements, and overall system design for AI
training setups.

D. Case study 3: Fintuning of LLM
The fine-tuning process of GPT2-medium on an AMD

GPU 7900 XTX, following AMD’s guidance [49], demon-
strates distinct power consumption patterns that corre-
spond to di�erent stages of the training process. The power
consumption graph illustrates the dynamic nature of GPU
utilization during model fine-tuning, with four key phases
identifiable as shown in Figure 13.

Power Consumption of BERT in MIT Supercloud Dataset 



What makes AI such a special load?

Disruptive electricity consumption patterns
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Power Transients of GPT-2 124M
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Fig. 9. Power Consumption of GPT-2 124M trained on setup 1.

Fig. 10. Power Transients of GPT-2 124M trained on setup 1.

Fig. 11. Power Consumption of nanoGPT trained on setup 2.



What makes AI such a special load?

Temporal and geospatial load flexibility
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What makes AI such a special load?

AI as a heterogeneous good
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TREACLE: Thrifty Reasoning via Context-Aware LLM and Prompt Selection

(a) Varying budget with ↵ = 1
20

(b) Varying ↵ with $1.5 budget.

Figure 5: Number of times each model is re-queried.

Figure 6: Performance of TREACLE with and without the
ability to re-query. The dashed lines represent the methods
that allow re-querying. Experiments with ↵ = 1/20.

was not allowed. Methods without re-querying eventually
achieved comparable accuracy with those with re-querying
capability, but with significantly larger budgets.Additional
ablation experiments showing that re-querying or prompt
selection help are shown in Appendix C.3.

• Observation 5: TREACLE’s choice of model and prompt

is impacted by relative LLM prices. As the relative cost of
Llama models decreases (↵ decreases), TREACLE increas-
ingly utilizes Llama to answer queries, allowing for cost
savings, as shown in Figure 5b. This shift enables use of
more expensive models like GPT-4 when tackling complex
problems, thereby enhancing overall accuracy. When Llama
becomes more expensive, TREACLE no longer chooses it.
This aligns with our intuition that using Llama to verify
response consistency becomes less economical.

5.2.1. ADDITION OF NEW LLMS

LLM development is rapid, with better models continuously
emerging, and the API prices set by providers can change
at any time. TREACLE’s ability to react to such changes

Figure 7: Performance with new LLMs and lowered prices.
Lines and dots in light (dark) colors are results with old
(new) prices and LLMs.

is thus an important practical consideration. We show that
TREACLE can adapt by fine-tuning itself using few samples.

We study two types of changes to the LLMs and their prices.
(1) API price adjustment: In November 2023, OpenAI
released GPT-4-turbo, offering performance on par with
GPT-4 but at a more affordable price. Concurrently, the
price for GPT-3.5-turbo was lowered. (2) Fine-tuned open-
source LLMs: Several domain-specific fine-tuned models
with higher accuracy have been released. Specifically, we
exchanged Llama-2 for MetaMath (Yu et al., 2023), which
is fine-tuned specifically for GSM8K. For both scenarios,
we partitioned the GSM8K test data into 80% validation
and 20% test samples, generated new state-action trajecto-
ries from the validation set, then fine-tuned TREACLE on
these new trajectories. To create a comparable baseline, we
similarly fine-tuned FrugalGPT’s DistilBERT.

Firstly, we show the performance of TREACLE with both
the API price adjustments and improved LLMs in Figure 7.
The individual points on the plot illustrate the changes in
the API prices for gpt-3.5-turbo. The lines show the perfor-
mance of the new TREACLE with new models and prices
and the old TREACLE (i.e., from previous subsections). The
results shows that the new TREACLE can achieve the peak
accuracy with only a $1 budget, clearly benefiting from the
new models and lowered prices. Benefits are also significant
for lower budgets, where the improved TREACLE has sig-
nificantly higher accuracy, because the lowest performing
Llama-2 models were replaced by fine-tuned Metamaths.
Finally, for a FrugalGPT that relies on a fine-tuned Distil-
BERT accuracy estimator, performance didn’t improve and
can even degrade due to distribution shifts and overfitting.

Secondly, we investigate the sample efficiency of fine-tuning
compared to training TREACLE from scratch. The sample
efficiency is important it can be expensive to collect query-
response pairs from new LLMs to further train TREACLE.
The results are presented in Figure 8 and indicate that when
there are minor changes to the available LLMs, deploying
the previously trained TREACLE can be sufficient. For in-

7

LLM service can be instantaneously delivered by multiple vendors: 
random job allocation in the grid, depending on user preferences.

Zhang, Xuechen, et al. TREACLE: Thrifty Reasoning via Context-Aware LLM and Prompt Selection. 2024



What makes AI such a special load?

AI as a heterogeneous good
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How to coordinate power grids and data centers, 
considering such a disruptive nature of AI loads? 



Integrate such disruptive loads into power grids

I Data center and grid co-design1:
I Optimal sizing, siting and timing of data centers in the grid

I Delivers benefits in the long run, but not in the short run

I New electricity market design2:
I Definition of new market products is di�cult (e.g., pricing geospatial shifts)

I Mostly bilateral, out of market contracts. Microsoft & Three Mile Island

I Demand response participation3

I Currently a working solution, yet with limited scalability

I Co-optimization of grid and data-center operations:
I Ideal yet unattainable in practice solution

I Significant privacy concerns and computational requirements

1
Y. Abdennadher et al. Carbon E�cient Placement of Data Center Locations. 2022

2
W. Zhang et al. Flexibility from networks of data centers: A market clearing formulation with virtual links. 2020

3
https://cloud.google.com/blog/products/infrastructure/using-demand-response-to-reduce-data-center-power-consumption

>>> V. Dvorkin 5 / 15

Proposals on power grid and data center coordination

https://app.electricitymaps.com/map
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Proposals on power grid and data center coordination
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Co-optimization of grid and data-center operations



Co-optimization of networked data centers (NetDC) and power grid operations
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Co-optimization of networked data centers (NetDC) and power grid operations
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computing task shift 

el. demand

Bilevel structure: the grid operator minimizes dispatch 
costs by optimizing task shifts that reshape data-center 

electricity demand. 



Power-NetDC coordination: From optimization to regression



From optimization to regression for Power-NetDC coordination

I Solving the bilevel problem in real-time is extremely challenging:
I Power and NetDC needs to be exchanged in real time (privacy barriers)

I Large-scale bilevel optimization in real time (computationally intractable)

I Instead, we consider a contextual regression policy for real-time coordination

�(x) = �0 + �1x

where � = (�0,�1) are regression weights and x is the vector of real-time coordination features (e.g,
locational marginal prices, zonal electricity demand, renewable power generation)

I The baseline training of the regression policy:
1. Collect a dataset {(x1, '?

1
), . . . , (xq , '?

q )} of q coordination scenarios.

Each scenario i includes contextual features xi and the optimal solution '?
i to the coordination problem

2. Train a contextual regression to map coordination features into the optimal task shifts in real-time

minimize
k�k

1
6"

1

q

qX

i=1

k�0 + �1xi � '?
i k2

2

>>> V. Dvorkin 7 / 15feature selection

Minimum prediction loss, but 
no guarantees on policy cost-

optimality and feasibility



AgentCONCUR protocol with performance guarantees



AgentCONCUR: Ensuring feasibility of the contextual regression

. minimize
�,'i ,...,'q ,pi ,...,pq

1
q

qX

i=1

cpwr(pi ) . Average dispatch cost

subject to pi 2 Ppwr(#
?
i ), 8i = 1, . . . , q . Grid equations for each scenario

'i = �0 + �1xi , k�k1 6 ", 8i = 1, . . . , q . Coupling contextual regression

#?
i 2 minimize

#i

cnet-dc(#i ) . Latency loss

subject to #i 2 Wnet-dc('i ), 8i = 1, . . . , q . NetDC feasibility

I The task shifts are restricted to the a�ne policy of contextual features.

I Optimization anticipates how the a�ne restriction a↵ects the average OPF costs.

I Feasibility guarantees on the training set ! also holds on the testing set

>>> V. Dvorkin 8 / 15



Numerical Experiments on the
New York Independent System Operator’s System



NYISO: Settings

1. WEST

2. GENESE

3. CENTRAL

4. NORTH

5. MHK VL 6. CAPITL

7. HUD VL

8. MILLWD

9. DUNWOD

10. NYC
11. LONGIL

� �

�

�

�

� Data center

New York ISO

Data inputs:

I 11-zone aggregation of the New York ISO

I Network of 5 data centers (10 virtual links)

I Varying demand from 5% to 30% of the peak load

We study two coordination settings:

I Ideal day-ahead coordination with optimization

I Real-time coordination with contextual regression

>>> V. Dvorkin 9 / 15



NYISO: Ideal coordination at the day-ahead stage

1. WEST

2. GENESE

3. CENTRAL

4. NORTH

5. MHK VL 6. CAPITL

7. HUD VL

8. MILLWD

9. DUNWOD

10. NYC
11. LONGIL

�
+168 MWh

�
+911 MWh

�
+852 MWh

�
-629 MWh

�
-1302 MWh

-1302 MWh

� Data center

Ideal coordination

New York ISO

Example of task shifts across the network of data centers

Relaxation of latency constraints ) greater generation cost savings

Unit commitment constraints prevent unlocking the whole NetDC flexibility

The flat (in red) loading profile is re-distributed in space and time
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NYISO: AgentCONCUR for real-time coordination

1. WEST

2. GENESE
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New York ISO

Ideal coordination versus the AgentCONCUR solution

Contextual features from NYISO website

I Zonal real-time electricity demand (d);

I Zonal electricity prices (�);

I Zonal renewable power generation (r);

I Power flows between aggregation zones (f ).

Coordination policy to be optimized o✏ine:
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NYISO: Cost-savings of AgentCONCUR

400
600
800

1000
1200

Average peak-hour NYISO dispatch cost [$1000]

maximum latency loss α = 25%

400
600
800

1000
1200

maximum latency loss α = 100%

penetration level of NetDC [% of the system peak load]
5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

400
600
800

1000
1200

maximum latency loss α = 200%

No coordination
BaseRegression

AgentCONCUR
Ideal coordination

I Non-coordinated solution ) quadratic cost growth
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I Base regression: NetDC demand is shifted according to
the base regression policy optimized in (9);

I AgentCONCUR: NetDC demand is shifted according to
the regression policy optimized in (10).

Our results reveal that the New York ISO system benefits
from coordinating spatial tasks shifts in amount of � 1.9
GWh from the densely populated South towards the Central,
Northern, and Western parts of the state, as shown in Fig.
2. Noticeably, the ideal coordination consistently uses the
same 4 out of 10 virtual links, while the AgentCONCUR
coordination policy enjoys more active links. This difference
is due to less flexible, affine policy structure, which results in
more used links to ensure feasibility across the entire training
dataset simultaneously, as opposed to per-scenario feasibility
satisfaction provided by the ideal coordination.

Figure 5 illustrates the discrepancies in dispatch costs in all
four cases. As the penetration of NetDC increases, the non-
coordinated solution demonstrates rapid, quadratic growth of
dispatch costs in the New York ISO dominated by conven-
tional generation. On the other hand, the ideal coordination
demonstrates a rather linear growth (e.g., see the bottom
plot) of dispatch costs thanks to the cost-aware allocation
of computing tasks. However, the extent of cost reduction
significantly depends on the maximum allowable latency loss
�, specified by the NetDC operator. For a small loss of 25%,
users are likely to observe no difference in the quality of
service. However, this enables savings of up to 24.5% of
dispatch costs in the ideal coordination case, depending on
the penetration level. The cost-saving potential increases to
49.0% and 56.7% in the case of double and tripled latency loss,
respectively, when users experience more noticeable delays
during peak-hour operations of the power system.

This cost-saving potential is exploited by both base re-
gression and AgentCONCUR coordination policies. However,
the base regression policy, which ignores power system and
NetDC operational constraints, often results in substantively
higher dispatch costs, which tend to stay closer to the non-
coordinated solution than to the ideal one. On the other hand,
the AgentCONCUR policy, which is aware of constraints
of both systems, efficiently approximates the ideal solution,
i.e., staying relatively close to the ideal solution in many
cases depicted in Fig. 5. However, it tends to show a larger
approximation gap with the allowable latency loss and NetDC
penetration increase.

Fig. 5. Average NYISO dispatch cost across the testing dataset under different
coordination models for the varying NetDC penetration level and maximum
allowable latency loss. The area between the dashed lines defines the cost-
saving potential for regression-based coordination.

D. Feasibility of Regression-Based Coordination

The approximation gaps reported in Fig. 5 are due to
infeasible task shifts, i.e., the shifts that violate power system
constraints, NetDC constraints, or both. Whenever the task
shift is infeasible in real-time, the two operators resort to a
more expensive yet feasible non-coordinated solution. How-
ever, the feasibility of regression-based coordination improves
with a larger size of the training dataset, as illustrated in Fig.
6. The AgentCONCUR policy dominates the base one and
achieves zero violations of power system constraints (e.g.,
no load shedding) with sample size q � 150. Moreover,
for q � 150, it keeps infeasibility of NetDC operations
below 7%. The dominance of AgentCONCUR is consistent,
which is important when the size of the training dataset with
representative records is limited. We also observed similar

TABLE II
SELECTED REGRESSION FEATURES (BLACK DOTS) FOR AGENTCONCUR FOR DIFFERENT REGULARIZATION PARAMETER �

�
# of

features
zonal electricity demand power flow zonal electricity price zonal renewable power output

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 f1 f2 f3 f4 f5 f6 �7 f8 f9 f10 f11 f12 �1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11

1000.0 29 � • • • � • � • • � � • • • • • • • • • • • � • • • • • • • � • • � � • • � � � � � � � •
100.0 28 • • • • • • � • • • � • • • • • • • • � • � � � • • • • � � • • • • � • � � � � � � � � •
10.0 24 • • • • � • • • • • • • • • • � • • • • • � � � � � � � � � • • • � � • � � � � � � � � •
5.0 20 • • � • • • • • • • • • • • � • � • • • � � � � � � � � � � � • • � � • � � � � � � � � �
2.5 13 • � • � � • • • • • � • • � � � • � � • � � � � � � � � � � � • • � � � � � � � � � � � �
1.0 6 • � • � � � � � � • � • • � � � � � � � • � � � � � � � � � � � � � � � � � � � � � � � �
0.5 3 • � � � � � � � � • � � � • � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0.1 1 � � � � � � � � � • � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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AgentCONCUR: Implementation barriers

Policy optimization still requires sensitive data
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I How to enable the exchange of sensitive training datasets?

I Di↵erential privacy provides an answer

Differentially Private Algorithms for Synthetic
Power System Datasets

Vladimir Dvorkin, Jr., Member, IEEE , and Audun Botterud, Member, IEEE

Abstract— While power systems research relies on the
availability of real-world network datasets, data owners
(e.g., system operators) are hesitant to share data due to
privacy risks. To control these risks, we develop privacy-
preserving algorithms for synthetic generation of optimiza-
tion and machine learning datasets. Taking a real-world
dataset as input, the algorithms output its noisy, synthetic
version, which preserves the accuracy of the real data on
a specific downstream model or even a large population of
those. We control the privacy loss using Laplace and Ex-
ponential mechanisms of differential privacy and preserve
data accuracy using a post-processing convex (or mixed-
integer) optimization. We apply the algorithms to generate
synthetic network parameters and wind power data.

Index Terms— Differential privacy, machine learning,
power systems optimization, synthetic datasets

I. INTRODUCTION

POWER system datasets are instrumental for enhancing
solutions to many problems, including optimal power

flow (OPF) and wind power forecasting. Releasing real data,
however, is challenging due to security and privacy concerns.
Indeed, detailed network datasets inform cyberattacks on
SCADA systems and can be used by strategic market players
to maximize profits at the expense of deteriorating social
welfare. These concerns motivate producing synthetic datasets
– a sanitized version of private datasets that approximately
preserve accuracy of data for power system applications.

Differential privacy (DP) is an algorithmic notion of privacy
preservation that enables trade-offs between data privacy and
accuracy in optimization [1] and machine learning [2]. It has
also found applications in the context of privacy-preserving
OPF computations, e.g., in distributed algorithms [3] and
centralized solvers for power grids [4], [5], as well as in
machine learning problems specific to power systems [6].
Models in [3]– [6], however, only control data leakages in
computations and do not provide synthetic datasets per se.

Producing synthetic datasets in a DP way is achieved by cor-
rupting data with privacy-preserving noise [7], [8]. However,
applications of the standard noise-additive DP mechanisms
in power systems, such as the Laplace mechanism, may no
longer admit a meaningful result. Indeed, adding noise to
data may fundamentally alter important statistics and trends
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(MIT), Cambridge, MA 02139, USA. Vladimir Dvorkin is also with the
MIT Energy Initiative. {dvorkin,audunb}@mit.edu
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in machine learning datasets [9]. In the OPF context, [10] and
[11] showed that the Laplacian perturbation of network data
almost surely violates OPF feasibility. As a remedy, they pro-
posed an optimization-based post-processing which restores
the accuracy of synthetic OPF datasets without altering the
privacy guarantee. The proposed restoration, however, renders
the synthetic dataset feasible only for a particular OPF model.
Repeated applications of the Laplace mechanism to restore
accuracy on many OPF models (e.g., for different instances of
variable renewable production) may not be possible, as noise
must be scaled drastically as per composition of DP [12].

In this paper, we introduce private synthetic dataset genera-
tion algorithms for power systems, which ensure the accuracy
of synthetic datasets for downstream models. They enjoy
known DP mechanisms and convex (or mixed-integer) post-
processing optimization of data. Specifically, we develop:

1) Wind power obfuscation (WPO) algorithm which pri-
vately generates wind power measurements, while guar-
anteeing DP of the real data and ensuring accuracy in
terms of the outcomes of a regression analysis.

2) Transmission capacity obfuscation (TCO) algorithm,
which generates synthetic line parameters, while ensur-
ing their feasibility and cost-consistency on a population
of OPF models. Here, we use both Laplace and Expo-
nential mechanisms of DP to substantially reduce the
noise compared to using the Laplace mechanism alone.

Next section reviews the basic DP results. In Sections III
and IV we present the two algorithms and their theoretical
properties. Section V provides numerical experiments, and
Section VI concludes. Proofs are relegated to the Appendix.

Notation: I is an identity matrix, ei is the basis vector with
element 1 at position i. Schur product is denoted by �. By
�·�1 and �·� we denote L1 and L2 norms, respectively.

II. PRELIMINARIES ON DIFFERENTIAL PRIVACY

This section reviews basic DP mechanisms used as building
blocks for our synthetic dataset generation algorithms.

Consider a vector y � Y � Rn, with n private records
from universe Y , and a query Q : Y �� R as a mapping from
universe Y to range R. Queries of interest include simple
numerical queries, i.e., identity Q(y) = y, and optimization
and ML queries, such as OPF or regression models. The goal
is to make adjacent vectors y, y� � Y of private records,
statistically indistinguishable in query answers.

Definition 1 (Adjacency [13]): Vectors y, y� � Y are said
to be ��adjacent, denoted as y �� y�, if �i � 1, . . . , n, s.t.
yj = y�

j , �j � {1, . . . , n}\i, and |yi � y�
i| 6 � for � > 0.

>>> V. Dvorkin 14 / 15

cost function?

network/gen/load data?



AgentCONCUR: Implementation barriers

Policy optimization still requires sensitive data

. minimize
�,'i ,...,'q ,pi ,...,pq

1
q

qX

i=1

cpwr(pi )

subject to pi 2 Ppwr(#
?
i ), 8i = 1, . . . , q

'i = �0 + �1xi , k�k1 6 ", 8i = 1, . . . , q

#?
i 2 minimize

#i

cnet-dc(#i )

subject to #i 2 Wnet-dc('i ), 8i = 1, . . . , q

I How to enable the exchange of sensitive training datasets?

I Di↵erential privacy provides an answer

Differentially Private Algorithms for Synthetic
Power System Datasets

Vladimir Dvorkin, Jr., Member, IEEE , and Audun Botterud, Member, IEEE

Abstract— While power systems research relies on the
availability of real-world network datasets, data owners
(e.g., system operators) are hesitant to share data due to
privacy risks. To control these risks, we develop privacy-
preserving algorithms for synthetic generation of optimiza-
tion and machine learning datasets. Taking a real-world
dataset as input, the algorithms output its noisy, synthetic
version, which preserves the accuracy of the real data on
a specific downstream model or even a large population of
those. We control the privacy loss using Laplace and Ex-
ponential mechanisms of differential privacy and preserve
data accuracy using a post-processing convex (or mixed-
integer) optimization. We apply the algorithms to generate
synthetic network parameters and wind power data.

Index Terms— Differential privacy, machine learning,
power systems optimization, synthetic datasets

I. INTRODUCTION

POWER system datasets are instrumental for enhancing
solutions to many problems, including optimal power

flow (OPF) and wind power forecasting. Releasing real data,
however, is challenging due to security and privacy concerns.
Indeed, detailed network datasets inform cyberattacks on
SCADA systems and can be used by strategic market players
to maximize profits at the expense of deteriorating social
welfare. These concerns motivate producing synthetic datasets
– a sanitized version of private datasets that approximately
preserve accuracy of data for power system applications.

Differential privacy (DP) is an algorithmic notion of privacy
preservation that enables trade-offs between data privacy and
accuracy in optimization [1] and machine learning [2]. It has
also found applications in the context of privacy-preserving
OPF computations, e.g., in distributed algorithms [3] and
centralized solvers for power grids [4], [5], as well as in
machine learning problems specific to power systems [6].
Models in [3]– [6], however, only control data leakages in
computations and do not provide synthetic datasets per se.

Producing synthetic datasets in a DP way is achieved by cor-
rupting data with privacy-preserving noise [7], [8]. However,
applications of the standard noise-additive DP mechanisms
in power systems, such as the Laplace mechanism, may no
longer admit a meaningful result. Indeed, adding noise to
data may fundamentally alter important statistics and trends

Vladimir Dvorkin and Audun Botterud are with the Laboratory for
Information & Decision Systems, Massachusetts Institute of Technology
(MIT), Cambridge, MA 02139, USA. Vladimir Dvorkin is also with the
MIT Energy Initiative. {dvorkin,audunb}@mit.edu

This work is supported by the Marie Sklodowska-Curie Actions and
Iberdrola Group, Grant №101034297 – project Learning ORDER.

in machine learning datasets [9]. In the OPF context, [10] and
[11] showed that the Laplacian perturbation of network data
almost surely violates OPF feasibility. As a remedy, they pro-
posed an optimization-based post-processing which restores
the accuracy of synthetic OPF datasets without altering the
privacy guarantee. The proposed restoration, however, renders
the synthetic dataset feasible only for a particular OPF model.
Repeated applications of the Laplace mechanism to restore
accuracy on many OPF models (e.g., for different instances of
variable renewable production) may not be possible, as noise
must be scaled drastically as per composition of DP [12].

In this paper, we introduce private synthetic dataset genera-
tion algorithms for power systems, which ensure the accuracy
of synthetic datasets for downstream models. They enjoy
known DP mechanisms and convex (or mixed-integer) post-
processing optimization of data. Specifically, we develop:

1) Wind power obfuscation (WPO) algorithm which pri-
vately generates wind power measurements, while guar-
anteeing DP of the real data and ensuring accuracy in
terms of the outcomes of a regression analysis.

2) Transmission capacity obfuscation (TCO) algorithm,
which generates synthetic line parameters, while ensur-
ing their feasibility and cost-consistency on a population
of OPF models. Here, we use both Laplace and Expo-
nential mechanisms of DP to substantially reduce the
noise compared to using the Laplace mechanism alone.

Next section reviews the basic DP results. In Sections III
and IV we present the two algorithms and their theoretical
properties. Section V provides numerical experiments, and
Section VI concludes. Proofs are relegated to the Appendix.

Notation: I is an identity matrix, ei is the basis vector with
element 1 at position i. Schur product is denoted by �. By
�·�1 and �·� we denote L1 and L2 norms, respectively.

II. PRELIMINARIES ON DIFFERENTIAL PRIVACY

This section reviews basic DP mechanisms used as building
blocks for our synthetic dataset generation algorithms.

Consider a vector y � Y � Rn, with n private records
from universe Y , and a query Q : Y �� R as a mapping from
universe Y to range R. Queries of interest include simple
numerical queries, i.e., identity Q(y) = y, and optimization
and ML queries, such as OPF or regression models. The goal
is to make adjacent vectors y, y� � Y of private records,
statistically indistinguishable in query answers.

Definition 1 (Adjacency [13]): Vectors y, y� � Y are said
to be ��adjacent, denoted as y �� y�, if �i � 1, . . . , n, s.t.
yj = y�

j , �j � {1, . . . , n}\i, and |yi � y�
i| 6 � for � > 0.

>>> V. Dvorkin 14 / 15

cost function?

network/gen/load data?



Conclusions

I We build significantly less generation capacity than what we need to accommodate the growing AI demand

I We need to leverage the unique (geospatial) flexibility of datacenters to accommodate the loads

I Legacy optimization-based solutions to coordination are not the option
I Lack of real-time communication interfaces

I Privacy barriers for information exchange

I Computationally intractable problem

I We developed a contextual regression mechanism (AgentCONCUR) to:
I Minimize real-time communication requirements (contextual features)

I Enable coordination at minimum data exchange (e.g., feature selection)

I Computationally tractable real-time computations (millisecond)
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Agent Coordination via Contextual Regression
(AgentCONCUR) for Data Center Flexibility

Vladimir Dvorkin, Member, IEEE

Abstract—A network of spatially distributed data centers
can provide operational flexibility to power systems by shifting
computing tasks among electrically remote locations. However,
harnessing this flexibility in real-time through the standard
optimization techniques is challenged by the need for sensitive
operational datasets and substantial computational resources. To
alleviate the data and computational requirements, this paper
introduces a coordination mechanism based on contextual regres-
sion. This mechanism, abbreviated as AgentCONCUR, associates
cost-optimal task shifts with public and trusted contextual data
(e.g., real-time prices) and uses regression on this data as a
coordination policy. Notably, regression-based coordination does
not learn the optimal coordination actions from a labeled dataset.
Instead, it exploits the optimization structure of the coordination
problem to ensure feasible and cost-effective actions. A NYISO-
based study reveals large coordination gains and the optimal
features for the successful regression-based coordination.

Index Terms—Contextual learning, data centers, feature se-
lection, regression, sustainable computing, system coordination

NOMENCLATURE

The main symbols used in this paper are stated below.
Additional symbols are defined in the paper where needed.

A. Dimensions
b Number of power system buses
l Number of transmission lines
m Number of data center users
n Number of data centers forming a network
k Number of virtual links connecting data centers
q Length of a training dataset
t Length of the day-ahead planning horizon

B. Optimization Parameters
A Incidence matrix of the network of data centers
c Vector of the 1

st�order cost coefficients
C Matrix of the 2

nd�order cost coefficients
con Vector of start-up cost coefficients
d Vector of the electric power loads
F Matrix of the power transfer distribution factors
f Vector of the maximum power transmission capacity
G Matrix of distances between users and data centers
p Vector of the maximum generation capacities
p Vector of the minimum generation capacities
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mail: dvorkin@umich.edu. The project is supported in part by the
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101034297 – project Learning ORDER.

p�/� Vectors of maximum ramp up/down capacity
pup Vectors of maximum ramp up capacity at start up
pdw Vectors of maximum ramp down capacity at shot down
s Vector of the linear load shedding cost coefficients
x Vector of contextual features
� Latency loss parameters (% of the nominal latency)
� Matrix converting computing loads to electric loads
� Vector of user computing demands
� Regularization parameter for feature selection
� Regularization parameter for task allocation
� Vector of renewable power injections

C. Optimization Variables
cup Vector of auxiliary variables to model start-up
� Vector of electric power load shedding
p Vector of generation dispatch decisions
u Vector of unit commitment decisions
W Matrix allocating user demand among data centers
�0 Vector of regression intercept coefficient
�� Matrix of regression coefficients associate w/ feature �
� Vector stacking �0 and vectorized matrices ��

�̃ Vector of time-shifted user computing demands
� Vector of nominal computing loads of data centers
�̃ Vector of time-shifted computing loads of data centers
� Vector of computing task shifts in a data center network

D. Notation
Lower- and upper-case letters denote vectors and matrices,

respectively. For some matrix A, aij denotes its element
at position (i, j). Symbol � stands for transposition, and ẋ
denotes the optimal value of x. Vectors 0 and 1 are of zeros
and ones, respectively. Operator �·�F is the Frobenius inner
product, and �·�p denotes the p�norm.

I. INTRODUCTION

COORDINATED operations of bulk power systems and
coupled infrastructures allow for leveraging their com-

plementarity and offsetting operational and economic ineffi-
ciencies, thus leading to enhanced performance. Coordination
schemes have been proposed to synchronize grid operations
with power distribution [1], natural gas [2], water [3], and
district heating [4] systems, and more recently, a large coor-
dination potential has emerged from the networks of spatially
distributed data centers (NetDC) [5]. The unique coordination
advantage of such networks is in spatial flexibility, which
distributed data centers provide by shifting computing tasks
among electrically remote locations. This flexibility resource
will be important for future power grids, as electricity demand
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