Formal Privacy Guarantees for Optimization Datasets in Power Systems

Vladimir Dvorkin

- Department of Electrical Engineering and Computer Science
 - University of Michigan Ann Arbor

March 7, 2024

UNIVERSITY OF MICHIGAN

Power systems of the future as a collection of optimization problems

>>> V. Dvorkin

Power resource allocation

Data: cost, tech limits, topology Type: LP, QP, MIQP, NLP **Result:** cost-optimal and feas. allocation

Renewable power forecasting

Data: historical records, weather forecast **Type:** QP, convex or NLP **Result:** forecast w/ varying leading times

Demand response

Data: loads and tech limits **Type:** LP, QP, MIQP, etc. **Result:** load timing and geo allocation

energy storage

PV gen

When optimization spills secrets - abstraction

Resource allocation

Regression analysis

» V. Dvorkin

Classification

When optimization spills secrets - case of power systems

High-voltage systems

Electricity prices [\$/MWh] at New York ISO, August 28, 2018

>>> V. Dvorkin

 \downarrow data leakage

Power systems as a stroll in the fog

- Power systems are critical infrastructures with most of data being classified
- We have only a limited observably, e.g., MISO data disclosure portal
- Market participants hence act on a limited set of system data

Hedgehog in the Fog Yuri Norstein (1975)

Example: market clearing in the (small) IEEE 118-Bus system

- 1079 rows of element-specific data
- Each generator owns only 2 rows
- The rest of the system remains unknown

In today's talk

>>> V. Dvorkin

- 1. Introduction
- 2. Differential privacy basics
- 3. Privacy-preserving optimization via stochastic programming
- 4. Privacy-preserving synthetic dataset generation
- 5. Outlook

1. Introduction

- 2. Differential privacy basics
- 3. Privacy-preserving optimization via stochastic programming
- 4. Privacy-preserving synthetic dataset generation
- 5. Outlook

Formalizing differential privacy (DP)

- ► Wind power records $y, y', y'', ... \in [0, 1]$
- For given $\alpha > 0$, records y and y' are α -adjacent if $||y y'|| \leq \alpha$
- Let Lap (α/ε) be a zero-mean random Laplacian noise For some parameter $\varepsilon > 0$, the release is ε -DP if $\frac{\Pr[y + \operatorname{Lap}(\alpha/\varepsilon) \in \widehat{y}]}{\Pr[y' + \operatorname{Lap}(\alpha/\varepsilon) \in \widehat{y}]} \leq \exp(\varepsilon)$

for any α -adjacent pair (y, y') and any outcome \widehat{y} >>> V. Dvorkin

DP basics: Laplace mechanism

Function $f : \mathbb{D} \mapsto \mathbb{R}$ mapping datasets from data universe \mathbb{D} to reals

Laplace mechanism of DP

Perturbed function $\tilde{f}(\cdot) = f(\cdot) + Lap$ $\frac{\Pr\left[\tilde{f}(\mathcal{D})\right]}{\Pr\left[\tilde{f}(\mathcal{D}')\right]}$

for any pair $\mathcal{D}, \mathcal{D}' \in \mathbb{D}$ and any outcome

• **Composition**: a series of $\tilde{f}_1(\mathcal{D}), \ldots, \tilde{f}_k(\mathcal{D})$ of ε -DP computations ensures $k\varepsilon$ -DP • Immunity to post-processing: if $\tilde{f}(\mathcal{D})$ is ε -DP, then $g \circ \tilde{f}(\mathcal{D})$ is also ε -DP

>>> V. Dvorkin

• Worst-case sensitivity Δf of function f to datasets, i.e., $\Delta f = \max_{\mathcal{D} \sim \alpha \mathcal{D}'} \|f(\mathcal{D}) - f(\mathcal{D}')\|_1$

$$\left(\mu = 0, b = \frac{\Delta f}{\varepsilon}\right)$$
 is ε -DP for datasets, i.e.,
 $\left(\hat{y} \in \widehat{y}\right]$
 $\left(\hat{y} \in \widehat{y}\right] \leq \exp(\varepsilon)$
ome \widehat{y} .

DP basics: Report noisy max

>>> V. Dvorkin

• Worst-case sensitivity $\Delta = \max_{i} \Delta f_{i}$ of functions to datasets

Report noisy max

What function takes the maximum value on a private dataset \mathcal{D} ?

for i = 1, ... $| \tilde{f}_i(\mathcal{D}) =$ end

Use case: what is the worst-case optimization model for a given (private) dataset?

Finite population of functions $f_1, \ldots, f_k : \mathbb{D} \mapsto \mathbb{R}$ mapping datasets from universe \mathbb{D} to reals

$$., k$$

 $f_i(\mathcal{D}) + Lap(\Delta/arepsilon)$

- **return**: $i^* \in \operatorname{argmax}_i \tilde{f}_i(\mathcal{D})$
- Releasing index i^* satisfies ε -DP (despite k computations on private data!)

- 1. Introduction
- 2. Differential privacy basics
- 3. Privacy-preserving optimization via stochastic programming
- 4. Privacy-preserving synthetic dataset generation
- 5. Outlook

Limits of DP applications to convex optimization

Input perturbation

1 Optimization dataset perturbation

$$\tilde{\mathcal{D}} = \mathcal{D} + \zeta, \quad \zeta \sim \mathsf{Lap}(\alpha/\varepsilon)$$

2 Optimization on perturbed data $x^*(\tilde{\mathcal{D}})$

>>> V. Dvorkin

Conic optimization program • Optimization dataset $\mathcal{D} = \{c, b, A\}$ • Optimal solution x^* is dataset-specific • Often, $x^*(\mathcal{D}) \neq x^*(\mathcal{D}')$ for different datasets \mathcal{D} and \mathcal{D}'

Output perturbation

 \blacktriangleright *l* and *l'* must be made indistinguishable

input and output perturbation strategies are equivalent and yield infeasible results

Stochastic programming for private optimization queries

For a deterministic conic program, we device a chance-constrained (stochastic) counterpart

Solution vector $x(\mathcal{D})$ is modeled as a **linear decision rule** of the form:

$$\widetilde{x}(\mathcal{D}) = \overline{x}(\mathcal{D}) + X(\mathcal{D})\boldsymbol{\zeta}$$

Identity query $(\mathcal{X} = \{X | X = I\})$:

$$ilde{x}(\mathcal{D}) = \overline{x}^*(\mathcal{D}) + X^*(\mathcal{D})\boldsymbol{\zeta} = \overline{x}^*(\mathcal{D}) + \boldsymbol{\zeta}$$

>>> V. Dvorkin

 \overline{x} – nominal solution vector

$$\zeta$$
 – zero-mean perturbation

Sum query $(X = \{X | 1^{\top}X = 1\})$:

 $1^{\top} \tilde{x}(\mathcal{D}) = 1^{\top} \overline{x}^{\star}(\mathcal{D}) + 1^{\top} X^{\star}(\mathcal{D}) \boldsymbol{\zeta} = 1^{\top} \overline{x}^{\star}(\mathcal{D}) + \boldsymbol{\zeta}$

minimize $\mathbb{E}\left[c\cdot(\overline{x}+\zeta)\right]$ subject to $\Pr[\ell \leq \overline{x} + \zeta \leq u] \ge 1 - \eta$,

- ▶ Perturb. of \overline{x}^* is feasible with a high prob.
- Sub-optimal due to feasibility requirement

>>> V. Dvorkin

 \implies

Deterministic program

 $\begin{array}{ll} \underset{x}{\text{minimize}} & c^{\top}x\\ \text{subject to} & b - Ax \in \mathcal{K} \end{array}$

Differential privacy of identity optimization queries

 $\implies \zeta \sim \mathsf{Lap}(\mathbf{\Delta}_{lpha} / arepsilon) \implies$

- dataset adjacency α
- solution sensitivity Δ_{α}
- privacy budget ε

$$\frac{\Pr[\overline{x}^{\star}(\mathcal{D}) + X^{\star}(\mathcal{D})\zeta = \widehat{x}]}{\Pr[\overline{x}^{\star}(\mathcal{D}') + X^{\star}(\mathcal{D}')\zeta = \widehat{x}]} \leqslant \epsilon$$

▶ for any optimization outcome x
 ▶ and α-adjacent dataset pair (D, D')

 $\exp(arepsilon)$ \widehat{x} $(\mathcal{D},\mathcal{D}')$

Private optimal power flow (OPF) problem

$$\begin{array}{l} \displaystyle \min_{\overline{x}, X \in \mathcal{X}} \quad \mathbb{E}[c^{\top}(\overline{x} + X\boldsymbol{\zeta})] \\ \text{s.t.} \quad 1^{\top}(\overline{x} + X\boldsymbol{\zeta} - \boldsymbol{d}) = 0 \\ \\ \displaystyle \mathsf{Pr} \begin{bmatrix} |F(\overline{x} + X\boldsymbol{\zeta} - \boldsymbol{d})| \leqslant f^{\max} \\ |x^{\min} \leqslant \overline{x} + X\boldsymbol{\zeta} \leqslant x^{\max} \end{bmatrix} \geqslant 1 - \eta \end{array}$$

Load vector d (in MWh) is private information

>>> V. Dvorkin

• Must be stat. similar to any α -adjacent load d'

perturbation strategy	OPF infeasibility (%)			OPF sub-optimality (%)		
	$\alpha = 1$	$\alpha = 3$	lpha= 10	$\alpha = 1$	$\alpha = 3$	lpha= 10
input	51.5	49.9	50.3	0.0	0.1	0.0
output	52.7	51.5	48.8	0.0	0.0	0.1
program	0.1	0.1	0.1	1.7	5.1	17.1

perturbed power balance

stochastic network limits

Queries in electricity markets

- System costs (objective function)
- Generation by a particular technology

1-DP system cost query on the IEEE 24-Bus RTS

Private optimal power flow (OPF) problem

$$\begin{split} \min_{\overline{x}, X \in \mathcal{X}} & \mathbb{E}[c^{\top}(\overline{x} + X\boldsymbol{\zeta})] \\ \text{s.t.} & \mathbf{1}^{\top}(\overline{x} + X\boldsymbol{\zeta} - \boldsymbol{d}) = 0 \\ & \mathsf{Pr} \begin{bmatrix} |F(\overline{x} + X\boldsymbol{\zeta} - \boldsymbol{d})| \leqslant f^{\mathsf{max}} \\ |x^{\mathsf{min}} \leqslant \overline{x} + X\boldsymbol{\zeta} \leqslant x^{\mathsf{max}} \end{bmatrix} \geqslant 1 - \eta \end{split}$$

Load vector d (in MWh) is private information • Must be stat. similar to any α -adjacent load d'

>>> V. Dvorkin

expected generation cost

perturbed power balance

stochastic network limits

Queries in electricity markets

- System costs (objective function)
- Generation by a particular technology

Private monotone curve fitting

$$\min_{\beta} \mathbb{E} \left[\sum_{i=1}^{n} \left(\underbrace{y_{i} - \varphi(x_{i})^{\top} \beta}_{\text{business as usual}} \underbrace{-\varphi(x_{i})^{\top} \zeta}_{\text{perturbation}} \right)^{2} \right]$$
s.t. $\mathbb{P} \left[C(\beta + \zeta) \ge 0 \right] \ge 1 - \eta,$

output perturbation strategy

-0.00/

- Dataset $\{(y_1, x_1), \ldots, (y_n, x_n)\}$
- Minimize regression loss function
- ▶ By finding optimal weights β^* ...
- ... of basis functions in vector $\varphi(x)$

60 $h(x) = 0.49\varphi_1(x) + 1.482\varphi_2(x)$ 30 y(x) 0 • -30 -60O 2 6 4 8 Х

program perturbation strategy

Private monotone curve fitting

$$\begin{split} \min_{\beta} & \mathbb{E} \left[\sum_{i=1}^{n} \left(\underbrace{y_{i} - \varphi(x_{i})^{\top} \beta}_{\text{business as usual}} \underbrace{-\varphi(x_{i})^{\top} \zeta}_{\text{perturbation}} \right)^{2} \right] \\ \text{s.t.} & \mathbb{P} \left[C(\beta + \zeta) \ge 0 \right] \ge 1 - \eta, \end{split}$$

Alstom.Eco.80

>>> V. Dvorkin

- Dataset $\{(y_1, x_1), \ldots, (y_n, x_n)\}$
- Minimize regression loss function
- ▶ By finding optimal weights β^* ...
- ... of basis functions in vector $\varphi(x)$

Private support vector machine (SVM) for classification

Dataset (x₁, y₁), ..., (x_m, y_m)
 Feature x_i ∈ ℝⁿ, label y_i ∈ {−1, 1}

$$\min_{\tilde{b}(\boldsymbol{\zeta}), \tilde{w}(\boldsymbol{\zeta}), z} \mathbb{E} \left[\lambda \| \overline{w} \|^2 + \frac{1}{m} \mathbf{1}^\top z + \lambda \| W \right]$$

s.t.
$$\Pr \left[\begin{array}{c} y_i (\overline{w}^\top x_i - \overline{b}) \ge 1 - z_i - z_i \\ z_i \ge 0, \quad \forall i = 1, \dots, m \end{array} \right]$$

- Quering hyperplane parameters
- Deterministic hyperplane is very sensitive to perturbation
- Stochastic hyperplane, in contrast, is very robust to perturbation

>>> V. Dvorkin

mean accuracy 51.2%

mean accuracy 97.6%

Private support vector machine (SVM) for classification

► Dataset $(x_1, y_1), ..., (x_m, y_m)$ Feature $x_i \in \mathbb{R}^n$, label $y_i \in \{-1, 1\}$

$$\min_{\tilde{b}(\boldsymbol{\zeta}), \tilde{w}(\boldsymbol{\zeta}), z} \mathbb{E} \left[\lambda \| \overline{w} \|^2 + \frac{1}{m} \mathbf{1}^\top z + \lambda \| W \right]$$

s.t.
$$\Pr \left[\begin{array}{c} y_i (\overline{w}^\top x_i - \overline{b}) \ge 1 - z_i - z_i \\ z_i \ge 0, \quad \forall i = 1, \dots, m \end{array} \right]$$

- Load data to classify OPF feasibility
- Output perturbation (OP) accuracy is small
- Program perturbation (PP) accuracy high and improves with a smaller constraint violation prob. η

>>> V. Dvorkin

Computes a hyperplane $w^{\top}x_i - b$ ► Classification rule sign[$w^{*\top}\hat{x} - b^{*}$] $\| \boldsymbol{\zeta} \|^2$ $\begin{array}{c|c} -y_i((W\zeta)^\top x_i - B\zeta), \\ \eta \end{array} \geqslant 1 - \eta, \quad \begin{bmatrix} W \\ B \end{bmatrix} = I \end{array}$ OPF feasibility classification on IEEE 24-Bus RTS 90 80 ccuracy (%) 70 |-60 50 non-private OP PP (η = 5%) PP ($\eta = 1\%$) PP ($\eta = 0.01\%$)

- 1. Introduction
- 2. Differential privacy basics
- 3. Privacy-preserving optimization via stochastic programming
- 4. Privacy-preserving synthetic dataset generation

5. Outlook

Synthetic datasets are not new to power systems

Texas A&M University Grid Datasets

Why these datasets may not satisfy our needs?

- "[...] data bears no relation to the actual grid [...] except that generation and load profiles are similar, based on public data"
- "This test case represents a synthetic (fictitious) transmission"
- "This case is synthetic and does not model the actual grid"

>>> V. Dvorkin

PyPSA-Eur: European synthetic data

Australian synthetic market data

Wind power obfuscation (WPO) algorithm

Wind power obfuscation (WPO) algorithm (Part I)

real dataset:
$$D = \{(y_1, x_1), ..., (y_n, x_n)\}$$

synthetic dataset: $\tilde{\mathcal{D}} = \{ (\tilde{y}_1, x_1), \dots, (\tilde{y}_n, x_n) \}$

- Regression on synthetic data \tilde{y} must match the regression on real data y We use regression loss and weights as a measure of accuracy
- Private estimation of regression parameters:

$$\mathsf{loss}: \quad \overline{\ell} = \ell(y) + \mathsf{Lap}\left(\frac{\delta_{\ell}}{\varepsilon}\right), \quad \mathsf{weights}: \quad \overline{\beta} = \beta(y) + \mathsf{Lap}\left(\frac{\delta_{\beta}}{\varepsilon}\right)$$

where $\delta_{(.)}$ is the sensitivity of (.) to data α -adjacent datasets Lemma (global sensitivity bounds):

$$\delta_{\ell} \leq \underset{i=1,\ldots,n}{\operatorname{maximum}} \left\| (X(X^{\top}X + \lambda I)^{-1}X^{\top} - I)(e_i \circ \alpha) \right\| \qquad \delta_{\beta} \leq \left\| (X^{\top}X + \lambda I)^{-1}X^{\top} \right\|_1 \alpha$$

>>> V. Dvorkin

Wind power obfuscation (WPO) algorithm (Part II)

Step 1 Synthetic wind power measurements:

Step 2 Private regression parameters estimation:

 $\overline{\ell} = \ell(y) + Lap(y)$

Step 3 Synthetic dataset post-processing:

 $\widetilde{y} \in \underset{\widetilde{y}}{\operatorname{argmin}} \quad \bigcup_{\widetilde{\ell}}$ los

s.t. **0** ≤

 $\beta($

Theorem: $\varepsilon_1 = \varepsilon/2$ and $\varepsilon_2 = \varepsilon/4$ renders WPO ε -DP for α -adjacent wind power datasets.

 $\tilde{y}^0 = y + \text{Lap}(\alpha/\varepsilon_1)$

$$\left(\delta_{\ell}/\varepsilon_{2}
ight) \quad \overline{eta} = eta(y) + \operatorname{Lap}\left(\delta_{\beta}/\varepsilon_{2}
ight)$$

$$\begin{split} \overline{\xi} &= \ell(\widetilde{y}) \| + \gamma_{\beta} \underbrace{\|\overline{\beta} - \beta(\widetilde{y})\|}_{\text{weight accuracy}} + \gamma_{y} \underbrace{\|\widetilde{y}^{0} - \widetilde{y}\|}_{\text{regularization}} \\ \leqslant \widetilde{y} \leqslant \mathbf{1} \\ \widetilde{y}), \ell(\widetilde{y}) \in \operatorname*{argmin}_{\beta} \underbrace{\|X\beta - \widetilde{y}\|}_{\ell} + \lambda \|\beta\| \end{split}$$

Laplace Mechanism

Accuracy of the WPO Algorithm remains high with a growing privacy requirement α

>>> V. Dvorkin

Transmission capacity obfuscation (TCO) algorithm

Differentially private release of network parameters

Optimal Power Flow (OPF) problem

$$egin{aligned} \mathcal{C}(\overline{f}) &= \min_{p \in \mathcal{P}} & c^ op p & dispatch \ ext{s.t.} & \mathbf{1}^ op (p-d) &= 0 & power b \ ert F(p-d) ert \leqslant \overline{f} & power flow \end{aligned}$$

Laplace mechanism:

Laplace + Bilevel optimization:

Feasible and cost-consistent with respect to a **single** OPF model

 $\overline{\varphi}^{0} = \overline{f} + \operatorname{Lap}(\alpha/\varepsilon)$

Almost never feasible

>>> V. Dvorkin

h costs

balance

w limit

How to release vector of transmission capacities f privately?

Laplace & Exponential mechanisms + **Bilevel optimization**:

- ► LM for obfuscation
- EM for worst-case OPF models
- Bilevel opt. on worst-case models

Feasible and cost-consistent with respect to a **population** of OPF models

Differentially private transmission capacity obfuscation (TCO) algorithm

Step 1 Initialize synthetic data using LM:

Theorem: $\varepsilon_1 = \varepsilon/2$ and $\varepsilon_2 = \varepsilon/(4T)$ achieve ε —differential privacy

>>> V. Dvorkin

$$\overline{\varphi}^{0} = \overline{f} + \mathsf{Lap}(\alpha/\varepsilon_{1})$$

Step 2 Find the worst-case OPF model using EM:

$$\overline{f}) - \mathcal{C}_i^R(\overline{\varphi}^{t-1}) \Big\|_1 + \operatorname{Lap}(\overline{c}\alpha/\varepsilon_2), \forall i = 1, \dots, m$$

return index k^t of the worst-case model **Step 3** Compute the worst-case cost using LM:

$$\overline{\mathcal{C}}_{t} = \mathcal{C}_{k^{t}}(\overline{f}) + \operatorname{Lap}(\overline{c}\alpha/\varepsilon_{2})$$

Step 4 Post-processing bilevel optimization:

in
$$\sum_{\tau=1}^{t} \left\| \overline{\mathcal{C}}_{\tau} - \mathcal{C}_{k^{\tau}}(\overline{\varphi}) \right\| + \left\| \overline{\varphi} - \overline{\varphi}^{t-1} \right\|$$

Laplace mechanism

>>> V. Dvorkin

TCO Algorithm

IEEE 73-RTS benchmark: TCO feasibility and sup-optimality

>>> V. Dvorkin

more privacy (more noise)

IEEE 73-RTS benchmark: TCO robustness bias

>>> V. Dvorkin

after 5 iterations

after 10 iterations

Concluding remarks

>>> V. Dvorkin

What we used to say about synthetic datasets:

- "[...] data bears no relation to the actual grid [...]"
- "This test case represents [...] fictitious transmission"
- "This case is synthetic and does not model the actual grid"

What we will say about synthetic datasets:

- "This synthetic dataset is produced based on the data from a real-world power grid"
- "It is not possible to infer the real data from this synthetic dataset"
- "Computational results on this data are consistent with the real data"

 \blacktriangleright Rigorous privacy quantification \Longrightarrow legal compliance

What is next?

What has been done so far

- Noise addition to obfuscate private data
- Post-processing optimization to improve utility

Diffusion models are the next step

- Privacy-preserving perturbation in the forward process
- Optimization in the reverse process to ensure utility

>>> V. Dvorkin

Thank you for your attention!

References:

- 1 Dvorkin, V., Botterud A. Differentially private algorithms for synthetic power system datasets **IEEE** Control Systems Letters, 2023
- 2 Dvorkin, V., Fioretto, F., Van Hentenryck, P., Kazempour, J. and Pinson, P. Privacy-preserving convex optimization: When differential privacy meets stochastic programming Priprint, arXiv preprint arXiv:2006.12338, 2022
- 3 Dvorkin, V., Fioretto, F., Van Hentenryck, P., Pinson, P. and Kazempour J. Differentially private optimal power flow for distribution grids IEEE Transactions on Power Systems, 2021 **Q** Best 2019–2021 Paper Award
- 4 Dvorkin, V., Van Hentenryck, P., Kazempour, J. and Pinson P. Differentially private distributed optimal power flow 2020 Conference on Decision and Control

Let's stay in touch:

dvorkin@umich.edu

