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Power systems of the future as a collection of optimization problems
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Power resource allocation

Data: cost, tech limits, topology
Type: LP, QP, MIQP, NLP
Result: cost-optimal and feas. allocation

Renewable power forecasting

Data: historical records, weather forecast
Type: QP, convex or NLP
Result: forecast w/ varying leading times

Demand response

Data: loads and tech limits
Type: LP, QP, MIQP, etc.
Result: load timing and geo allocation
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When optimization spills secrets - abstraction

Resource allocation Regression analysis Classification
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When optimization spills secrets - case of power systems

High-voltage systems

Data-Driven Inverse Optimization for Marginal O�er Price Recovery in Electricity Markets e-Energy ’23, June 20–23, 2023, Orlando, FL, USA

Figure 8: NYISO 1814-bus system.

Figure 9: LMP heat-map of NYISO system at 4 p.m. on Aug.
28, 2018 (Unit of LMPs: $/MWh).

Figure 7: IEEE 14-bus system [20].

Table 3: Parameters of generators in IEEE 14-bus system

No. �max/�min (MW) �0 ($) �1 ($/MWh) �2 ($/MWh2)

G1 100/0 2 0.05 0.002
G2 100/0 5 0.10 0.003
G3 100/0 8 0.15 0.004
G4 100/0 12 0.20 0.005
G5 100/0 15 0.30 0.006

Proof of Lemma 4.6: Since � (�) =
��
�=1 |�� |� =

��
�=1 �

�
� when

�� � 0 for �� , we have �� /��� = ����1
� and �2 � /���2 = � (� �

1)���2
� > 0 for ��� > 0 and �� > 1. Since �2 � /��� �� � = 0,�� � � ,

�2 � (�) is a diagonal matrix where the diagonal elements �2 � /���2,��
are the corresponding eigenvalues of �2 � (�). Therefore, �2 � (�) �
0 since all of its eigenvalues are positive, which means that the
second-order condition for strict convexity is satis�ed. �

C DATA FOR CASE STUDY
C.1 Data of IEEE 14-bus system
The IEEE 14-bus system is depicted in Fig. 7 [20] and the parameters
of the �ve generators are listed in Table 3. The power generation
cost of each generator follows a quadratic equation �0 + �1� + �2�2,
where � is the output power of the generator.

C.2 Data of NYISO 1814-bus system
The NYISO system, consisting of 1814 buses (black dots), 2207
lines, 362 generators, and 33 wind farms (blue dots), is shown in
Fig. 8. Colors of the transmission lines re�ect power �ows, with
red denoting heavy �ow and green indicating light �ow. Speci�c
parameters of this system can be found in [30]. Fig. 9 shows the
heat-map of LMPs at 4 p.m. on Aug. 28, 2018, which is a moment
with particularly heavy load and high LMPs.
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Electricity prices [$/MWh] at New York ISO, August 28, 2018

Medium- and low-voltage systems
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Power systems as a stroll in the fog

I Power systems are critical infrastructures with most of data being classified

I We have only a limited observably, e.g., MISO data disclosure portal

I Market participants hence act on a limited set of system data
Hedgehog in the Fog

Yuri Norstein (1975)

Example: market clearing in the (small) IEEE 118-Bus system

I 1079 rows of element-specific data

I Each generator owns only 2 rows

I The rest of the system remains unknown
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In today’s talk

c,X
min c(x)

s.t. x 2 X
?x?data solution

optimization

reverse engineering
x

Privacy-preserving optimization
that does not leak data

c,X
min c(x)

s.t. x 2 X
?x?real data solution

c̃, X̃
min c̃(x)

s.t. x 2 X̃
?x̃?

synt data solution

6⇡ ⇡ Privacy-preserving synthetic datasets
with consistent performance
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Formalizing di↵erential privacy (DP)

by

—— 6 exp(")

wind power output

0 1

y
0

y
0

y
00

↵

I Wind power records y , y 0, y 00, ... 2 [0, 1]
I For given ↵ > 0, records y and y 0 are ↵�adjacent if ky � y 0k 6 ↵

I Let Lap(↵/") be a zero-mean random Laplacian noise
I For some parameter " > 0, the release is "�DP if

Pr [ y 0 + Lap(↵/") 2 by ]
Pr [ y 0 + Lap(↵/") 2 by ]

6 exp(")

for any ↵�adjacent pair (y , y 0) and any outcome by
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DP basics: Laplace mechanism

I Function f : D 7! R mapping datasets from data universe D to reals

I Worst-case sensitivity �f of function f to datasets, i.e., �f = max
D⇠↵D0

kf (D)� f (D0)k
1

Laplace mechanism of DP

Perturbed function f̃ (·) = f (·) + Lap
�
µ = 0, b = �f

"

�
is "�DP for datasets, i.e.,

Pr
h
f̃ (D ) 2 by

i

Pr
h
f̃ (D0) 2 by

i 6 exp(")

for any pair D,D0 2 D and any outcome by .

I Composition: a series of f̃1(D), . . . , f̃k(D) of "�DP computations ensures k"�DP

I Immunity to post-processing: if f̃ (D) is "�DP, then g � f̃ (D) is also "�DP
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DP basics: Report noisy max

I Finite population of functions f1, . . . , fk : D 7! R mapping datasets from universe D to reals

I Worst-case sensitivity � = max
i

�fi of functions to datasets

Report noisy max

What function takes the maximum value on a private dataset D?

for i = 1, . . . , k

| f̃i (D) = fi (D) + Lap (�/")

end
return : i? 2 argmax

i

f̃i (D)

Releasing index i? satisfies "�DP (despite k computations on private data!)

I Use case: what is the worst-case optimization model for a given (private) dataset?
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Limits of DP applications to convex optimization

minimize
x

c>x

subject to b � Ax 2 K

I Conic optimization program

I Optimization dataset D = {c, b,A}
I Optimal solution x? is dataset-specific

I Often, x?(D) 6=x?(D0) for di↵erent datasets D and D0

Input perturbation

1 Optimization dataset perturbation

D̃ = D + ⇣, ⇣ ⇠ Lap(↵/")

2 Optimization on perturbed data x?(D̃)

Output perturbation

1 Worst-case sensitivity computation

�↵ = maxD,D02D
��x̃?(D)� x̃?(D0)

��
1

2 Perturbation of optimization results

x̃?(D) = x?(D) + ⇣, ⇣ ⇠ Lap(�↵/")
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Linear programming example

minimize
x

c · x

subject to ` 6 x 6 u,

I ` and `0 must be made indistinguishable

I input and output perturbation strategies are
equivalent and yield infeasible results
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•
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•

x
?
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Stochastic programming for private optimization queries

For a deterministic conic program, we device a chance-constrained (stochastic) counterpart

minimize
x

c>x

subject to b � Ax 2 K
=)

minimize
x,X2X

E [c>(x + X⇣)] exp. cost

subject to Pr [b � A(x + X⇣) 2 K] > 1� ⌘ feas. guarantee

Solution vector x(D) is modeled as a linear decision rule of the form:

x̃(D) = x(D) + X (D)⇣

x – nominal solution vector

X – recourse matrix

⇣ – zero-mean perturbation

Identity query (X = {X |X = I}) :

x̃(D) = x?(D) + X ?(D)⇣ = x?(D) + ⇣

Sum query (X = {X |1>X = 1}) :

1>x̃(D) = 1>x?(D) + 1>X ?(D)⇣ = 1>x?(D) + ⇣
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Linear programming example

minimize
x

E [c · (x + ⇣)]

subject to Pr [` 6 x + ⇣ 6 u] > 1� ⌘,

I Perturb. of x? is feasible with a high prob.

I Sub-optimal due to feasibility requirement
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Main result: "�di↵erential privacy of the optimized linear decision rules

Deterministic program

minimize
x

c>x

subject to b � Ax 2 K
=)

Stochastic program

minimize
x,X2X

E [c>(x + X⇣)]

subject to Pr [b � A(x + X⇣) 2 K] > 1� ⌘

Di↵erential privacy of identity optimization queries

I dataset adjacency ↵

I solution sensitivity �↵

I privacy budget "
=) ⇣ ⇠ Lap(�↵/") =)

Pr[x?(D0) + X ?(D0)⇣ = bx ]
Pr[x?(D0) + X ?(D0)⇣ = bx ] 6 exp(")

I for any optimization outcome bx
I and ↵�adjacent dataset pair (D,D0)
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Private optimal power flow (OPF) problem

min
x,X2X

E[c>(x + X⇣)] expected generation cost

s.t. 1>(x + X⇣ � d ) = 0 perturbed power balance

Pr

"
|F (x + X⇣ � d )| 6 f max

xmin 6 x + X⇣ 6 xmax

#
> 1� ⌘ stochastic network limits

I Load vector d (in MWh) is private information

I Must be stat. similar to any ↵�adjacent load d 0

I Queries in electricity markets
I System costs (objective function)

I Generation by a particular technology

1�DP system cost query on the IEEE 24-Bus RTS

perturbation

strategy

OPF infeasibility (%) OPF sub-optimality (%)

↵ = 1 ↵ = 3 ↵ = 10 ↵ = 1 ↵ = 3 ↵ = 10

input 51.5 49.9 50.3 0.0 0.1 0.0

output 52.7 51.5 48.8 0.0 0.0 0.1

program 0.1 0.1 0.1 1.7 5.1 17.1
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Private optimal power flow (OPF) problem

min
x,X2X

E[c>(x + X⇣)] expected generation cost

s.t. 1>(x + X⇣ � d ) = 0 perturbed power balance

Pr

"
|F (x + X⇣ � d )| 6 f max

xmin 6 x + X⇣ 6 xmax

#
> 1� ⌘ stochastic network limits

I Load vector d (in MWh) is private information

I Must be stat. similar to any ↵�adjacent load d 0

I Queries in electricity markets
I System costs (objective function)

I Generation by a particular technology
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Private monotone curve fitting

min
�

E
"

nX

i=1

 
yi � '(xi )

>�
| {z }
business as usual

�'(xi )
>⇣

| {z }
perturbation

!2#

s.t. P [C(� + ⇣) > 0] > 1� ⌘,

I Dataset {(y1, x1), . . . , (yn, xn)}
I Minimize regression loss function

I By finding optimal weights �? ...

I ... of basis functions in vector '(x)

output perturbation strategy

infeasible curve with probability 9.8%

program perturbation strategy

infeasible curve with probability 1.3%
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Private monotone curve fitting

min
�

E
"

nX

i=1

 
yi � '(xi )

>�
| {z }
business as usual

�'(xi )
>⇣

| {z }
perturbation

!2#

s.t. P [C(� + ⇣) > 0] > 1� ⌘,

I Dataset {(y1, x1), . . . , (yn, xn)}
I Minimize regression loss function

I By finding optimal weights �? ...

I ... of basis functions in vector '(x)

Alstom.Eco.80 output perturbation program perturbation
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Private support vector machine (SVM) for classification

I Dataset (x1, y1), . . . , (xm, ym)

I Feature xi 2 Rn, label yi 2 {�1, 1}
I Computes a hyperplane w>xi � b

I Classification rule sign[w?>x̂ � b?]

min
b̃(⇣),w̃(⇣),z

E
"
� kwk2 + 1

m
1>z + � kW ⇣k2

#

s.t. Pr

"
yi (w

>xi � b) > 1� zi � yi ((W ⇣)>xi � B⇣),
zi > 0, 8i = 1, . . . ,m

#
> 1� ⌘,


W
B

�
= I

I Quering hyperplane parameters

I Deterministic hyperplane is very sensitive to
perturbation

I Stochastic hyperplane, in contrast, is very
robust to perturbation

mean accuracy 51.2% mean accuracy 97.6%
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Private support vector machine (SVM) for classification

I Dataset (x1, y1), . . . , (xm, ym)

I Feature xi 2 Rn, label yi 2 {�1, 1}
I Computes a hyperplane w>xi � b

I Classification rule sign[w?>x̂ � b?]

min
b̃(⇣),w̃(⇣),z

E
"
� kwk2 + 1

m
1>z + � kW ⇣k2

#

s.t. Pr

"
yi (w

>xi � b) > 1� zi � yi ((W ⇣)>xi � B⇣),
zi > 0, 8i = 1, . . . ,m

#
> 1� ⌘,


W
B

�
= I

I Load data to classify OPF feasibility

I Output perturbation (OP) accuracy is small

I Program perturbation (PP) accuracy high and
improves with a smaller constraint violation prob. ⌘
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Synthetic datasets are not new to power systems

Texas A&M University Grid Datasets PyPSA-Eur: European synthetic data Australian synthetic market data

Why these datasets may not satisfy our needs?

I “[...] data bears no relation to the actual grid [...] except that
generation and load profiles are similar, based on public data”

I “This test case represents a synthetic (fictitious) transmission”

I “This case is synthetic and does not model the actual grid”
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Wind power obfuscation (WPO) algorithm



Wind power obfuscation (WPO) algorithm (Part I)

real dataset: D = {(y1, x1), . . . , (yn, xn)}

synthetic dataset: D̃ = {(ỹ1, x1), . . . , (ỹn, xn)}

minimum
�

kX� � yk+ � k�k

I Regression on synthetic data ỹ must match the regression on real data y

I We use regression loss and weights as a measure of accuracy

I Private estimation of regression parameters:

loss : ` = `(y) + Lap

✓
�`
"

◆
, weights : � = �(y) + Lap

✓
��
"

◆

where �(·) is the sensitivity of (·) to data ↵�adjacent datasets

I Lemma (global sensitivity bounds):

�` 6 maximum
i=1,...,n

���(X (X>X + �I )�1X> � I )(ei �↵)
��� �� 6

���(X>X + �I )�1X>
���
1

↵

>>> V. Dvorkin 19 / 30



Wind power obfuscation (WPO) algorithm (Part II)

Step 1 Synthetic wind power measurements:

ỹ 0 = y + Lap (↵/"1)

Step 2 Private regression parameters estimation:

` = `(y) + Lap (�`/"2) � = �(y) + Lap (��/"2)

Step 3 Synthetic dataset post-processing:

ỹ 2 argmin
ỹ

��`� `(ỹ)
��

| {z }
loss accuracy

+��
��� � �(ỹ)

��
| {z }
weight accuracy

+�y
���ỹ 0 � ỹ

���
| {z }
regularization

s.t. 0 6 ỹ 6 1

�(ỹ), `(ỹ) 2 argmin
�

kX� � ỹk
| {z }

`

+� k�k

Theorem: "1 = "/2 and "2 = "/4 renders WPO
"�DP for ↵�adjacent wind power datasets.

>>> V. Dvorkin 20 / 30



WPO algorithm: Application to Alstom Eco 80 wind turbine

Laplace Mechanism WPO Algorithm

Accuracy of the WPO Algorithm remains high with a growing privacy requirement ↵
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Transmission capacity obfuscation (TCO) algorithm



Di↵erentially private release of network parameters

Optimal Power Flow (OPF) problem

C(f ) = min
p2P

c>p dispatch costs

s.t. 1>(p � d) = 0 power balance

|F (p � d)| 6 f power flow limit

How to release vector of transmission capacities f privately?

Laplace mechanism:

'0 = f + Lap(↵/")

Almost never feasible

Laplace + Bilevel optimization:

min
'̂

���'0 � '̂
���

s.t. |C('̂)� C?| 6 �C?

Feasible and cost-consistent with
respect to a single OPF model

Laplace & Exponential mechanisms
+ Bilevel optimization:

I LM for obfuscation

I EM for worst-case OPF models

I Bilevel opt. on worst-case models

Feasible and cost-consistent with
respect to a population of OPF models
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Di↵erentially private transmission capacity obfuscation (TCO) algorithm

Step 1 Initialize synthetic data using LM:

'0 = f + Lap(↵/"1)

Step 2 Find the worst-case OPF model using EM:

�Ci =
���Ci (f )� CR

i ('
t�1)

���
1

+ Lap (c↵/"2) , 8i = 1, . . . ,m

return index kt of the worst-case model

Step 3 Compute the worst-case cost using LM:

Ct = Ckt (f ) + Lap (c↵/"2)

Step 4 Post-processing bilevel optimization:

't 2 argmin
'

Pt
⌧=1

��C⌧ � Ck⌧ (')
��+

��'� 't�1
��

Theorem: "1 = "/2 and "2 = "/(4T ) achieve "�di↵erential privacy

>>> V. Dvorkin 23 / 30

re
pe

at
  T

  t
im

es



IEEE 73-RTS benchmark: Laplace versus TCO Algorithm

Laplace mechanism TCO Algorithm
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IEEE 73-RTS benchmark: TCO feasibility and sup-optimality
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IEEE 73-RTS benchmark: TCO feasibility and sup-optimality
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IEEE 73-RTS benchmark: TCO robustness bias
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Concluding remarks



Future of synthetic power system datasets

What we used to say about synthetic datasets:

I “[...] data bears no relation to the actual grid [...]”

I “This test case represents [...] fictitious transmission”

I “This case is synthetic and does not model the actual grid”

What we will say about synthetic datasets:

I “This synthetic dataset is produced based on the data from a real-world power grid”

I “It is not possible to infer the real data from this synthetic dataset”

I “Computational results on this data are consistent with the real data”
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What does it mean for electricity market/system operators?

I New algorithms for controllable market transparency:
I infrastructure data (grid topology, network parameters, generation, loads, etc.)

I market participation data (bidding quantities, prices, etc.)

I No need for aggregation:
I system cost/load =) nodal cost/load

I aggregated generation =) highly granular generation records

I Rigorous privacy quantification =) legal compliance
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What is next?

What has been done so far

I Noise addition to obfuscate private data

I Post-processing optimization to improve utility

Di↵usion models are the next step

I Privacy-preserving perturbation in the forward process

I Optimization in the reverse process to ensure utility
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Thank you for your attention!
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