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are conditioned by the price provided by the price-setting
agent. Similarly to the centralized problem (1a), equilib-
rium prices provide the sensitivity of the expected social
welfare with respect to the marginal change in random
in-feed. Therefore, a set of equilibrium prices t�̃�u@� is
implicitly a function of the information that agents inte-
grate into their optimization problems.

Proposition 1. The solution to the equilibrium problem
(2) exists and is unique for any agent information sets.

Remark 4. The proof of Proposition 1 relies on the strict
monotonicity of agent preferences. In the case of linear
preferences, other approaches would be required (see [10,
Chapter 2]).

2.4. Relation between centralized and equilibrium models

The equivalence between the centralized and equilib-
rium market-clearing models is established with the fol-
lowing proposition.

Proposition 2. Let �mo
� “ �p

� “ �c
�, @� P �. Then, there

exists a set of prices t�̃‹
�u@� that yields the optimal solution

p‹, d‹, tr‹
�, l‹

�u@� in the equilibrium model (2) that solves
the centralized model (1). Moreover, �̃‹

� “ �‹
�, @�.

However, this equivalence no longer holds when the in-
formation of market agents about the renewable in-feed in
the equilibrium model is di�erent from that of the market
operator in the centralized model. In this scenario, the
prices in (1) and (2) are not necessarily identical as they
depend on di�erent information sets, making the market
based on (1) incomplete in terms of information. In the
following we study model (2) that reveals the true equi-
librium state among agents with private information on
uncertainty. Eventually, we show that the system overall
benefits when agents agree on a common information set
that completes the market.

3. Analytic solution for equilibrium prices

Let us define the demand excess function for renewable
power outcome � as z� “ d ` l� ´ p ´ r� ´ ��. We derive
the optimality conditions associated with (2b) and (2c) to
define variables d, l�, p, and r� as a function of equilibrium
prices �̃. Assuming the agent constraints are not binding,
the demand excess function writes as:

z�p�̃q “ � ´ ���̃�

�
` �c

�� ´ �̃�

�c
��

´ ���̃�

�
´ �̃�

�p
��

´ ��.

By solving z�p�̃q “ 0, @� P �, we obtain a closed-form
characterization of equilibrium prices as a function of prob-
abilities that agents assign to uncertain outcomes. In the
interest of illustration, let us consider a set � P th, �u with
only two outcomes with �� “ 1 and �h “ 3. For any agent
it holds that �� `�h “ 1. Let � “ 1.5, � “ 0.3, and � “ 5.
Figure 1 depicts the two equilibrium prices �̃� and �̃h as a
function of �� and �h . We find a clear relationship between
the equilibrium prices and agent information. For instance
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Figure 1: Prices as a function of probabilities that agents assign to the two uncertainty outcomes

2

Figure 1: Equilibrium prices �̃` and �̃h as a function of probabili-
ties that agents assign to the two uncertainty outcomes. The black
markers indicate the three boundary equilibrium cases.

(a) �p
` “ 0.5, �c

` “ 0.5 (b) �p
` “ 0.99, �c

` “ 0.5

Figure 2: Equilibrium point and vector field around equilibrium
point in case of (a) symmetric and (b) asymmetric information.

in case (�), when producer assigns the whole probability
mass to outcome �, it leads to a nearly zero price associated
with outcome h. A similar situation holds in the opposite
case (‹). In a quite critical case (�) with highly asym-
metric assignment of probabilities, the equilibrium yields
almost zero prices for both outcomes. Moreover, we find
that the day-ahead price, i.e., �̃DA “ �̃� ` �̃h, attains its
maximum value when both agents have symmetric infor-
mation, i.e., �p

� “ �c
� .

As shown in [2], the unstable equilibrium may not be
computable by standard distributed algorithms. To ver-
ify the stability of the equilibrium solution under di�erent
assignments of probabilities, we consider a dynamic price
adjustment process as the following first order di�erential
equation [11]:

d�̃ptq
dt

“ �zp�̃ptqq, �̃p0q “ �̃0, (3)

where � is some positive constant, and �̃0 is a vector of
initial prices. We discuss the stability of the equilibrium
solution using the following proposition.

Proposition 3 (Adapted from [12]). If �̃ is a solution
of (3) and all the eigenvalues of the Jacobian matrix of z
have strictly negative real parts, then �̃ is locally stable. If
at least one eigenvalue has strictly positive real part, then
�̃ is unstable.

By verifying the eigenvalues of the Jacobian of z, we
find that for any assignment of probabilities, the equilib-
rium solution is locally stable and, thus, supposedly com-
putable. However, we observe that for asymmetric cases
the ratio of the two eigenvalues significantly increases. This
ratio heavily a�ects the convergence rate for gradient search
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LDR approximation: Learning worst-case scenarios
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SAA LDR

I Duality yields a conservative bound
I What is a likelihood of LDR sub-optimality?
I With small problem instances, we learn the

worst-case sub-optimality scenarios

Bilevel optimization-based learning

max
�

�� c�Y �
�� �� �

LDR

� c�(y�1 + y2)� �� �
SAA

��

s.to � 6 � 6 �

y2 � argmin
y2

c�(y�1 + y2)

s.to A (y�1 + y2) � b̃(�)

I Acts on the support of P�
I Recast as a mixed-integer linear program
I Only right-hand side uncertainty b̃(�)

Sample-based learning

max
�

�

s.to
�� c̃(�s)�Y �

�s� �� �
LDR

� c̃(�s)�(y�1 + y�2s)� �� �
SAA

�� 6 �

�s = 1, . . . , S
where S is the number of samples from

I Acts on samples from P� [MGL14]
I Recast as a linear program
I Uncertainty of c̃(�) and b̃(�)
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Optimization with performance guarantees

Private optimization & machine learning

Private support vector machine (SVM) for classification

I Dataset (x1, y1), . . . , (xm, ym)

I Feature xi 2 Rn, label yi 2 {�1, 1}
I Computes a hyperplane w>xi � b

I Classification rule sign[w?>x̂ � b?]

min
b̃(�),w̃(�),z

E

�
�kwk2 + 1

m1>z + �kW �k2

�

s.t. Pr

�
yi (w

>xi � b) � 1 � zi � yi ((W �)>xi � B�),
zi � 0, 8i = 1, . . . , m

�
� 1 � �,

�
W
B

�
= diag[1]

I Quering hyperplane parameters

I Deterministic hyperplane is very
sensitive to perturbation

I Stochastic hyperplane, in contrast,
is very robust to perturbation

mean accuracy 51.2% mean accuracy 97.6%
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gas pressure and flow limits
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�
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gas pressure and flow variance

(19a)
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��3�>
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�
��̆2�̂3�>
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` u'�

F [�]>`

gas pressure and flow limits

�
�
��̆2�̂3�>
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` u'

�
F [�]>`

gas pressure and flow variance

(19b)
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�
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�
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flow congestion rent

+
�
�w>�2 + ��> � ��>�

� + ��>� � ��>�

pressure congestion rent

+ �'>s' + ��>s�

variance rent

(19c)
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gas pressure and flow limits
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�
u'>��̀2�n + u�>��̆2�n
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gas pressure and flow variance

(19d)

Table I
DETERMINISTIC VERSUS CHANCE-CONSTRAINED OPTIMIZATION OF CONTROL POLICIES

Parameter Unit Deterministic
control policies

Chance-constrained control policies

Variance-
agnostic

Pressure variance-aware, �� Flow variance-aware, �'

10�3 10�2 10�1 1 101 102

Expected cost $1000 80.9 82.5 (100%) 100.5% 105.6% 113.8% 100.1% 102.5% 112.6%�
n Var[�̃n(�)] MPa2 217.5 63.4 (100%) 44.2% 18.9% 12.8% 92.8% 46.7% 24.7%�
` Var[�̃`(�)] BMSCFD2 26.1 58.0 (100%) 83.4% 64.1% 59.2% 93.4% 44.8% 25.9%

�
`2Ec

�
�` kPa 1939 3914 3570 3734 3661 3914 4030 3888�

`2Ev

�
�` kPa 0 0 0 150 576 0 1 500

Constraint inf. % 53.7 0.04 0.02 0.02 0.02 0.03 0.02 0.03
Average Pinj MMSCFD 960.91 0.01 0.03 0.02 0.02 0.02 0.04 0.04
Average Pact kPa 121.68 0.19 0.08 0.10 0.05 0.28 0.04 0.04
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Figure 1: 48-node Gas Network
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Figure 2. Comparison of the variance-agnostic (left) and the variance-aware (right) chance-constrained control policies in terms of the state variables variance
for � = 10%. The red values show the probability of flow reversal. The inset plot shows the correlation between the pressures at nodes 34 and 35.

The chance-constrained policies, on the other hand, produce
the control inputs that remain feasible with a probability at
least 1 � � = 99% and require a minimal effort to restore
the real-time gas flow feasibility. The variance-agnostic policy
requires only a slight increase of the expected cost relative
to the deterministic solution by 1.6%, while the variance-
aware policies allow to trade-off the expected operational cost
for the smaller variations of pressures and flow rates. The
variance of gas pressures and flow rates can be reduced by
63.8% and 7.2%, respectively, without any substantial impact
on the expected cost. Observe that the subsequent variance
reduction is achieved also due to the activation of valves in
two active pipelines, that are not operating in the deterministic
and variance-agnostic solutions.

Next, we show how the cost-variance trade-offs change
with different assignments of control policies (7) to network
assets. Figure 1 illustrates the cost-variance trade-offs when
the control policies are assigned to gas injections only (� �
free, � = 0), to gas injections and compressors (�, � �
free, [�]�� = 0, �� � Ev), and to all network assets including
valves (�, � � free). Observe that the variance reduction
is achieved more rapidly and at lower costs as more active
pipelines are involved into uncertainty and variance control.
Hence, the stochastic control becomes more available as the
network operator deploys more pressure regulation action by
compressors and valves.

With the density plots in Fig. 2, we demonstrate the uncer-
tainty propagation through the network. The variance-agnostic
solution results in the large pressure variance in the eastern
part of the network with a large concentration of stochastic
gas extractions. This solution further allows the probability
of the gas flows reversal up to 11% for certain pipelines,
thus making the prediction of flow directions difficult. The
variance-aware solution with the joint penalization of pressures
and flows variance, in turn, drastically reduces the variation of
the state variables and localizes the most of the variation only
at nodes 34 and 35. Although this variation remains large,
the pressures at these nodes are highly correlated. Thus, by
Weymouth equation (2c), the flow variance and the probability
of flow reversal in edge (34, 35) remain small.

B. Revenue Analysis

Figure 3 depicts the total revenues of active pipelines and
gas injections as well as the total charges of gas consumers.
It further shows their decomposition into revenue streams
defined by the pricing scheme in (13). Relative to the de-
terministic payments, the chance-constrained policies lead to
a substantial increase in payments that further increase due to
the variance awareness. Besides the nominal supply revenues,
the chance-constrained policies produce the compensations
for the uncertainty and variance control that together exceed
deterministic payments by 37.3%. Moreover, the payments for

Figure 1. Comparison of the variance-agnostic (left) and the variance-aware (right) chance-constrained control policies in terms of the state variables variance
for � = 10%. The red values show the probability of flow reversal. The inset plot shows the correlation between the pressures at nodes 34 and 35.

at (1 � �̂)�quantile [19]. The standard deviation of each
gas extraction is set to 10% of the nominal rate. The joint
constraint violation probability � is set to 1% by default. To
retrieve the stationary point in (4), the non-convex problem (2)
is solved for the nominal gas extraction rates using the Ipopt
solver [18]. The repository [31] contains the input data and
code implementation in the JuMP package for Julia [32].

A. Analysis of the Optimized Network Response

We first study the optimized gas network response to
uncertainty under deterministic and chance-constrained control

policies (7a). The deterministic policies are optimized by set-
ting the safety factor z�̂ in problem (12) to zero. The policies
are compared in terms of the expected cost (9a), the aggregated
variance of gas pressures and flow rates

�
n Var[�̃n(�)] and�

� Var[�̃�(�)], respectively, and the total pressure regulation
by compressors

�
��Ec

�
�� and valves

�
��Ev

�
��. Note, we

discuss the natural pressure quantities, not their squared coun-
terparts used in optimization. The policies are also compared
in terms of network constraints satisfaction. We first sample
control inputs from (7) for S = 1, 000 realizations of forecast
errors and count the violations of network limits (6c). Second,
we assess the quality of the control inputs (7a) for the non-
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Where data should go?

data

Arguments in favor of private data:

I Privacy and security

I Regulatory compliance

I Competitive advantage

Arguments in favor of public data:

I Improved decision-making

I Less barriers for entry

I Innovation, research

Synthetic data serves as a middle ground !
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By 2030 synthetic data will completely overshadow real data in AI models
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Synthetic power systems datasets

Texas A&M University Grid Datasets

(from 37 to 80k+ bus networks)

PyPSA-Eur: synthetic dataset of

Europe covering the full ENTSO-E area

Synthetic Data of the National

Electricity Market (Australia)

Why these datasets may not satisfy our needs?

I “[...] data bears no relation to the actual grid [...] except that
generation and load profiles are similar, based on public data”

I “This test case represents a synthetic (fictitious) transmission”

I “This case is synthetic and does not model the actual grid”
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Di↵erential privacy & optimization for synthetic power systems data

Real-world dataset
Calibrated noise

Privacy-
preserving dataset

Privacy-preserving and 
consistent datasetPost-processing

optimization



Formalizing di↵erential privacy (DP)

by
wind power output

0 1

y 0y 0 y 00

↵

I Wind power records y , y 0, y 00, ... 2 [0, 1]

I For given ↵ > 0, records y and y 0 are ↵�adjacent if ky � y 0k 6 ↵

I The goal is to obfuscate di↵erences in records up to ↵
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—— 6 exp(")

wind power output
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I Wind power records y , y 0, y 00, ... 2 [0, 1]

I For given ↵ > 0, records y and y 0 are ↵�adjacent if ky � y 0k 6 ↵

I The goal is to obfuscate di↵erences in records up to ↵

Strong theoretical properties

I Rigorous, quantifiable privacy guarantees

I Immunity to post-processing! Arbitrary transformations of noisy data preserve privacy
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Wind power obfuscation (WPO) algorithm (Part I)

real dataset: D = {(y1, x1), . . . , (yn, xn)}

synthetic dataset: D̃ = {(ỹ1, x1), . . . , (ỹn, xn)}

minimum
�

kX� � yk + � k�k

I Regression on synthetic data ỹ must match the regression on real data y

I We use regression loss and weights as a measure of accuracy

I Private estimation of regression parameters:

loss : ` = `(y) + Lap

✓
�`

"

◆
, weights : � = �(y) + Lap

✓
��

"

◆

where �(·) is the sensitivity of (·) to data ↵�adjacent datasets

I Lemma (global sensitivity bounds):

�` 6 maximum
i=1,...,n

���(X (X>X + �I )�1X> � I )(ei � ↵)
��� �� 6

���(X>X + �I )�1X>
���

1
↵
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Wind power obfuscation (WPO) algorithm (Part II)

Step 1 Synthetic wind power measurements:

ỹ 0 = y + Lap (↵/"1)

Step 2 Private regression parameters estimation:

` = `(y) + Lap (�`/"2) � = �(y) + Lap (��/"2)

Step 3 Synthetic dataset post-processing:

ỹ 2 argmin
ỹ

��` � `(ỹ)
��

| {z }
loss accuracy

+��

��� � �(ỹ)
��

| {z }
weight accuracy

+�y

���ỹ 0 � ỹ
���

| {z }
regularization

s.t. 0 6 ỹ 6 1

�(ỹ), `(ỹ) 2 argmin
�

kX� � ỹk| {z }
`

+� k�k

Theorem: "1 = "/2 and "2 = "/4 renders WPO
"�DP for ↵�adjacent wind power datasets.
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WPO algorithm: Application to Alstom Eco 80 wind turbine

Laplace Mechanism WPO Algorithm

Accuracy of the WPO Algorithm remains high with a growing privacy requirement ↵

7 / 16



Di↵erentially private release of network parameters

Optimal Power Flow (OPF) problem

C(f ) = min
p2P

c>p dispatch costs

s.t. 1>(p � d) = 0 power balance

|F (p � d)| 6 f power flow limit

How to release vector of transmission capacities f privately?

Laplace mechanism:

'0 = f + Lap(↵/")

Almost never feasible

Laplace + Bilevel optimization:

min
'̂

���'0 � '̂
���

s.t. |C('̂) � C?| 6 �C?

Feasible and cost-consistent with
respect to a single OPF model

Laplace & Exponential mechanisms

+ Bilevel optimization:

I LM for obfuscation

I EM for worst-case OPF models

I Bilevel opt. on worst-case models

Feasible and cost-consistent with
respect to a population of OPF models
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Di↵erentially private transmission capacity obfuscation (TCO) Algorithm

Step 1 Initialize synthetic data using LM:

'0 = f + Lap(↵/"1)

Step 2 Find the worst-case OPF model using EM:

�Ci =
���Ci (f ) � CR

i ('0)
���

1
+ Lap (c↵/"2) , 8i = 1, . . . , m

return index k of the worst-case model

Step 3 Compute the worst-case cost using LM:

C = Ck (f ) + Lap (c↵/"2)

Step 4 Post-processing bilevel optimization:

't 2 argmin
'

��C � Ck (')
�� +

��' � '0
��

Theorem: "1 = "/2 and "2 = "/(4T ) achieve "�di↵erential privacy
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IEEE 73-RTS benchmark: Laplace versus TCO Algorithm

Laplace mechanism TCO Algorithm
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IEEE 73-RTS benchmark: TCO feasibility and sup-optimality
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more privacy required
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IEEE 73-RTS benchmark: TCO robustness bias
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Future of synthetic power system datasets

What we used to say about synthetic datasets:

I “[...] data bears no relation to the actual grid [...]”

I “This test case represents [...] fictitious transmission”

I “This case is synthetic and does not model the actual grid”

What we will say about synthetic datasets:

I “This synthetic dataset is produced based on the data from a real-world power grid”

I “It is not possible to infer the real data from this synthetic dataset”

I “Computational results on this data are consistent with the real data”
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What does it mean for electricity market operators?

I New algorithms for controllable market transparency:
I infrastructure data (grid topology, network parameters, generation, loads, etc.)
I market participation data (bidding quantities, prices, etc.)

I No need for aggregation:
I system cost/load =) nodal cost/load
I aggregated generation =) highly granular generation records

I Rigorous privacy quantification =) legal compliance (e.g., US Census Bureau)
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Where data should go?

data

Our "�di↵erentially private algorithms provide

a non-discrete answer to this question!
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Thank you for your attention!
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Let’s stay in touch:

� DvorkinVladimir � Vladimir-Dvorkin @ dvorkin@mit.edu
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