Where data should go?

Arguments in favor of **private** data:
- Privacy and security
- Regulatory compliance
- Competitive advantage

Arguments in favor of **public** data:
- Improved decision-making
- Less barriers for entry
- Innovation, research
Where data should go?

Arguments in favor of private data:
- Privacy and security
- Regulatory compliance
- Competitive advantage

Arguments in favor of public data:
- Improved decision-making
- Less barriers for entry
- Innovation, research

Synthetic data serves as a middle ground!
By 2030 synthetic data will completely overshadow real data in AI models.
Synthetic power systems datasets

Texas A&M University Grid Datasets
(from 37 to 80k+ bus networks)

PyPSA-Eur: synthetic dataset of
Europe covering the full ENTSO-E area

Synthetic Data of the National Electricity Market (Australia)

Why these datasets may not satisfy our needs?

- "[...] data bears no relation to the actual grid [...] except that generation and load profiles are similar, based on public data"
- "This test case represents a synthetic (fictitious) transmission".
- "This case is synthetic and does not model the actual grid"
Synthetic power systems datasets

Texas A&M University Grid Datasets (from 37 to 80k+ bus networks)

PyPSA-Eur: synthetic dataset of Europe covering the full ENTSO-E area

Synthetic Data of the National Electricity Market (Australia)

Why these datasets may not satisfy our needs?

- “[…] data bears no relation to the actual grid […] except that generation and load profiles are similar, based on public data”
- “This test case represents a synthetic (fictitious) transmission”
- “This case is synthetic and does not model the actual grid”
Differential privacy & optimization for synthetic power systems data

Real-world dataset → Calibrated noise → Privacy-preserving dataset → Post-processing optimization → Privacy-preserving and consistent dataset
Formalizing differential privacy (DP)

- Wind power records $y, y', y'', ... \in [0, 1]$
- For given $\alpha > 0$, records y and y' are α-adjacent if $\|y - y'\| \leq \alpha$
- The goal is to obfuscate differences in records up to α
Formalizing differential privacy (DP)

- Wind power records $y, y', y'', \ldots \in [0, 1]$
- For given $\alpha > 0$, records y and y' are α-adjacent if $\| y - y' \| \leq \alpha$
- The goal is to obfuscate differences in records up to α
Formalizing differential privacy (DP)

- Wind power records \(y, y', y'', \ldots \in [0, 1] \)
- For given \(\alpha > 0 \), records \(y \) and \(y' \) are \(\alpha \)-adjacent if \(||y - y'|| \leq \alpha \)
- The goal is to obfuscate differences in records up to \(\alpha \)

- Let \(\zeta \sim \text{Lap}(\alpha/\varepsilon) \) be a zero-mean random Laplacian noise
- For some small parameter \(\varepsilon > 0 \), the release is \(\varepsilon \)-DP if

\[
\frac{\Pr[y + \zeta \in \hat{y}]}{\Pr[y' + \zeta \in \hat{y}]} \leq \exp(\varepsilon)
\]
Formalizing differential privacy (DP)

- Wind power records \(y, y', y'', \ldots \in [0, 1] \)
- For given \(\alpha > 0 \), records \(y \) and \(y' \) are \(\alpha \)-adjacent if \(\| y - y' \| \leq \alpha \)
- The goal is to obfuscate differences in records up to \(\alpha \)
- Let \(\zeta \sim \text{Lap}(\alpha/\varepsilon) \) be a zero-mean random Laplacian noise
- For some small parameter \(\varepsilon > 0 \), the release is \(\varepsilon \)-DP if

\[
\frac{\Pr[y + \zeta \in \hat{y}]}{\Pr[y' + \zeta \in \hat{y}]} \leq \exp(\varepsilon)
\]
Formalizing differential privacy (DP)

Wind power records $y, y', y'', \ldots \in [0, 1]$

For given $\alpha > 0$, records y and y' are α-adjacent if $\|y - y'\| \leq \alpha$

The goal is to obfuscate differences in records up to α

Let $\zeta \sim \text{Lap}(\alpha/\varepsilon)$ be a zero-mean random Laplacian noise

For some small parameter $\varepsilon > 0$, the release is ε-DP if

$$\frac{\Pr[y + \zeta \in \hat{y}]}{\Pr[y' + \zeta \in \hat{y}]} \leq \exp(\varepsilon)$$
Formalizing differential privacy (DP)

- Wind power records $y, y', y'', \ldots \in [0, 1]$
- For given $\alpha > 0$, records y and y' are α-adjacent if $||y - y'|| \leq \alpha$
- The goal is to obfuscate differences in records up to α

Strong theoretical properties
- Rigorous, quantifiable privacy guarantees
- Immunity to post-processing! Arbitrary transformations of noisy data preserve privacy
Wind power obfuscation (WPO) algorithm (Part I)

real dataset: \(\mathcal{D} = \{ (y_1, x_1), \ldots, (y_n, x_n) \} \)

synthetic dataset: \(\tilde{\mathcal{D}} = \{ (\tilde{y}_1, x_1), \ldots, (\tilde{y}_n, x_n) \} \)

- Regression on synthetic data \(\tilde{y} \) must match the regression on real data \(y \)
- We use regression loss and weights as a measure of accuracy
- Private estimation of regression parameters:

\[
\begin{align*}
\text{loss: } & \quad \ell = \ell(y) + \text{Lap}\left(\frac{\delta_\ell}{\epsilon} \right), \\
\text{weights: } & \quad \tilde{\beta} = \beta(y) + \text{Lap}\left(\frac{\delta_\beta}{\epsilon} \right)
\end{align*}
\]

where \(\delta(\cdot) \) is the sensitivity of \(\cdot \) to data \(\alpha \)-adjacent datasets

- Lemma (global sensitivity bounds):

\[
\delta_\ell \leq \max_{i=1,\ldots,n} \left\| (X(X^T X + \lambda I)^{-1} X^T - I)(e_i \circ \alpha) \right\| \quad \delta_\beta \leq \left\| (X^T X + \lambda I)^{-1} X^T \right\|_1 \alpha
\]
Wind power obfuscation (WPO) algorithm (Part I)

real dataset: \(\mathcal{D} = \{(y_1, x_1), \ldots, (y_n, x_n)\} \)

synthetic dataset: \(\tilde{\mathcal{D}} = \{ (\tilde{y}_1, x_1), \ldots, (\tilde{y}_n, x_n) \} \)

- Regression on synthetic data \(\tilde{y} \) must match the regression on real data \(y \)
- We use regression loss and weights as a measure of accuracy
- Private estimation of regression parameters:

 \[\text{loss : } \bar{\ell} = \ell(y) + \text{Lap}\left(\frac{\delta_{\ell}}{\varepsilon} \right), \quad \text{weights : } \bar{\beta} = \beta(y) + \text{Lap}\left(\frac{\delta_{\beta}}{\varepsilon} \right) \]

 where \(\delta_{(\cdot)} \) is the sensitivity of \((\cdot) \) to data \(\alpha \)-adjacent datasets

Lemma (global sensitivity bounds):

\[\delta_{\ell} \leq \max_{i=1,\ldots,n} \| (X(X^TX + \lambda I)^{-1}X^T - I)(e_i \circ \alpha) \| \]

\[\delta_{\beta} \leq \left\| (X^TX + \lambda I)^{-1}X^T \right\|_1 \alpha \]
Wind power obfuscation (WPO) algorithm (Part I)

real dataset: \(\mathcal{D} = \{(y_1, x_1), \ldots, (y_n, x_n)\} \)

synthetic dataset: \(\tilde{\mathcal{D}} = \{ (\tilde{y}_1, x_1), \ldots, (\tilde{y}_n, x_n) \} \)

- Regression on synthetic data \(\tilde{y} \) must match the regression on real data \(y \)
- We use regression loss and weights as a measure of accuracy
- Private estimation of regression parameters:

\[
\text{loss : } \ell = \ell(y) + \text{Lap} \left(\frac{\delta_\ell}{\varepsilon} \right), \quad \text{weights : } \beta = \beta(y) + \text{Lap} \left(\frac{\delta_\beta}{\varepsilon} \right)
\]

where \(\delta(\cdot) \) is the sensitivity of \((\cdot) \) to data \(\alpha \)-adjacent datasets

- Lemma (global sensitivity bounds):

\[
\delta_\ell \leq \max_{i=1,\ldots,n} \left\| (X(X^T X + \lambda I)^{-1} X^T - I)(e_i \circ \alpha) \right\| \quad \delta_\beta \leq \left\| (X^T X + \lambda I)^{-1} X^T \right\|_1 \alpha
\]

\[
\text{min}_{\beta} \| X\beta - y \| + \lambda \| \beta \|
\]
Wind power obfuscation (WPO) algorithm (Part II)

Step 1 Synthetic wind power measurements:

\[\tilde{y}^0 = y + \text{Lap} \left(\frac{\alpha}{\varepsilon_1} \right) \]

Step 2 Private regression parameters estimation:

\[\overline{\ell} = \ell(y) + \text{Lap} \left(\frac{\delta_{\ell}}{2\varepsilon_2} \right) \quad \overline{\beta} = \beta(y) + \text{Lap} \left(\frac{\delta_{\beta}}{2\varepsilon_2} \right) \]

Step 3 Synthetic dataset post-processing:

\[\bar{y} \in \arg\min_{\tilde{y}} \quad \underbrace{\| \overline{\ell} - \ell(\tilde{y}) \|}_{\text{loss accuracy}} + \gamma_{\beta} \underbrace{\| \overline{\beta} - \beta(\tilde{y}) \|}_{\text{weight accuracy}} + \gamma_y \underbrace{\| \tilde{y}^0 - \tilde{y} \|}_{\text{regularization}} \]

s.t. \(0 \leq \bar{y} \leq 1 \)

\[\beta(\bar{y}), \ell(\bar{y}) \in \arg\min_{\beta} \quad \underbrace{\| X\beta - \tilde{y} \|}_{\ell} + \lambda \| \beta \| \]

Theorem: \(\varepsilon_1 = \varepsilon/2 \) and \(\varepsilon_2 = \varepsilon/4 \) renders WPO \(\varepsilon-\text{DP} \) for \(\alpha-\text{adjacent wind power datasets.} \)
Wind power obfuscation (WPO) algorithm (Part II)

Step 1 Synthetic wind power measurements:
\[\hat{y}^0 = y + \text{Lap}(\alpha / \varepsilon_1) \]

Step 2 Private regression parameters estimation:
\[\bar{\ell} = \ell(y) + \text{Lap}(\delta_{\ell} / \varepsilon_2) \quad \bar{\beta} = \beta(y) + \text{Lap}(\delta_{\beta} / \varepsilon_2) \]

Step 3 Synthetic dataset post-processing:
\[\hat{y} \in \text{argmin}_{\tilde{y}} \quad \left(||\bar{\ell} - \ell(\tilde{y})|| + \gamma_{\beta} ||\bar{\beta} - \beta(\tilde{y})|| + \gamma_y ||\hat{y}^0 - \tilde{y}|| \right) \]

\[\text{s.t.} \quad 0 \leq \hat{y} \leq 1 \]
\[\beta(\hat{y}), \ell(\hat{y}) \in \text{argmin}_{\beta} \left(\|X\beta - \hat{y}\| + \lambda \|\beta\| \right) \]

Theorem: \(\varepsilon_1 = \varepsilon / 2 \) and \(\varepsilon_2 = \varepsilon / 4 \) renders WPO \(\varepsilon \)-DP for \(\alpha \)-adjacent wind power datasets.
WPO algorithm: Application to Alstom Eco 80 wind turbine

Laplace Mechanism

Accuracy of the WPO Algorithm remains high with a growing privacy requirement α
Differentially private release of network parameters

Optimal Power Flow (OPF) problem

\[
C(\bar{f}) = \min_{p \in \mathcal{P}} \quad c^T p \\
\text{s.t.} \quad 1^T (p - d) = 0 \\
|F(p - d)| \leq \bar{f}
\]

dispatch costs

power balance

power flow limit

How to release vector of transmission capacities \(\bar{f} \) privately?

Laplace mechanism:

\[
\bar{\varphi}^0 = \bar{f} + \text{Lap}(\alpha/\varepsilon)
\]

Almost never feasible

Laplace + Bilevel optimization:

\[
\min_{\hat{\varphi}} \quad \|\bar{\varphi}^0 - \hat{\varphi}\| \\
\text{s.t.} \quad |C(\hat{\varphi}) - C^*| \leq \beta C^*
\]

Feasible and cost-consistent with respect to a single OPF model

Laplace & Exponential mechanisms + Bilevel optimization:

- LM for obfuscation
- EM for worst-case OPF models
- Bilevel opt. on worst-case models

Feasible and cost-consistent with respect to a population of OPF models
Optimal Power Flow (OPF) problem

\[
C(\mathbf{f}) = \min_{\mathbf{p} \in \mathcal{P}} c^T \mathbf{p} \\
\text{s.t.} \quad 1^T (\mathbf{p} - d) = 0 \\
|F(\mathbf{p} - d)| \leq \mathbf{f}
\]

dispatch costs

power balance

power flow limit

How to release vector of transmission capacities \(\mathbf{f} \) privately?

Laplace mechanism:

\[
\varphi^0 = \mathbf{f} + \text{Lap}(\alpha/\varepsilon)
\]

Almost never feasible

Laplace + Bilevel optimization:

\[
\min_{\hat{\varphi}} \| \varphi^0 - \hat{\varphi} \| \\
\text{s.t.} \quad |C(\hat{\varphi}) - C^*| \leq \beta C^*
\]

Feasible and cost-consistent with respect to a single OPF model

Laplace & Exponential mechanisms + Bilevel optimization:

- LM for obfuscation
- EM for worst-case OPF models
- Bilevel opt. on worst-case models

Feasible and cost-consistent with respect to a population of OPF models
Differentially private release of network parameters

Optimal Power Flow (OPF) problem

\[
C(\overline{f}) = \min_{p \in \mathcal{P}} \quad c^T p \\
\text{s.t.} \quad 1^T (p - d) = 0 \\
\quad |F(p - d)| \leq \overline{f}
\]

dispatch costs

power balance

power flow limit

How to release vector of transmission capacities \(\overline{f}\) privately?

Laplace mechanism:

\[
\varphi^0 = \overline{f} + \text{Lap}(\alpha/\varepsilon)
\]

Almost never feasible

Laplace + Bilevel optimization:

\[
\min_{\hat{\varphi}} \quad \| \varphi^0 - \hat{\varphi} \| \\
\text{s.t.} \quad |C(\hat{\varphi}) - C_*| \leq \beta C_*
\]

Feasible and cost-consistent with respect to a **single** OPF model

Laplace & Exponential mechanisms + Bilevel optimization:

- LM for obfuscation
- EM for worst-case OPF models
- Bilevel opt. on worst-case models

Feasible and cost-consistent with respect to a **population** of OPF models
Differentially private release of network parameters

Optimal Power Flow (OPF) problem

\[C(\bar{f}) = \min_{p \in \mathcal{P}} \quad c^T p \]
\[\text{subject to} \quad 1^T (p - d) = 0 \]
\[|F(p - d)| \leq \bar{f} \]

\(\text{dispatch costs} \)
\(\text{power balance} \)
\(\text{power flow limit} \)

How to release vector of transmission capacities \(\bar{f} \) privately?

Laplace mechanism:

\[\bar{\varphi}^0 = \bar{f} + \text{Lap}(\alpha/\varepsilon) \]

Almost never feasible

Laplace + Bilevel optimization:

\[\min_{\hat{\varphi}} \quad \| \bar{\varphi}^0 - \hat{\varphi} \| \]
\[\text{subject to} \quad |C(\hat{\varphi}) - C^*| \leq \beta C^* \]

Feasible and cost-consistent with respect to a single OPF model

Laplace \& Exponential mechanisms + Bilevel optimization:

- LM for obfuscation
- EM for worst-case OPF models
- Bilevel opt. on worst-case models

Embedded OPF

Feasible and cost-consistent with respect to a population of OPF models
Differentially private transmission capacity obfuscation (TCO) Algorithm

Step 1 Initialize synthetic data using LM:

\[
\bar{\varphi}^0 = \bar{f} + \text{Lap}(\alpha/\varepsilon_1)
\]

Step 2 Find the worst-case OPF model using EM:

\[
\Delta C_i = \left\| C_i(\bar{f}) - C_i^R(\bar{\varphi}^0) \right\|_1 + \text{Lap}(\bar{c}\alpha/\varepsilon_2), \forall i = 1, \ldots, m
\]

return index \(k\) of the worst-case model

Step 3 Compute the worst-case cost using LM:

\[
\bar{c} = C_k(\bar{f}) + \text{Lap}(\bar{c}\alpha/\varepsilon_2)
\]

Step 4 Post-processing bilevel optimization:

\[
\bar{\varphi}^* \in \arg\min_{\varphi} \left\| \bar{c} - C_k(\varphi) \right\| + \left\| \bar{\varphi} - \bar{\varphi}^0 \right\|
\]

Theorem: \(\varepsilon_1 = \varepsilon/2\) and \(\varepsilon_2 = \varepsilon/(4T)\) achieve \(\varepsilon\)—differential privacy
Differentially private transmission capacity obfuscation (TCO) Algorithm

Step 1 Initialize synthetic data using LM:

\[\varphi^0 = \overline{f} + \text{Lap}(\alpha/\varepsilon_1) \]

Step 2 Find the worst-case OPF model using EM:

\[\Delta C_i = \left\| C_i(\overline{f}) - C^R_i(\varphi^0) \right\|_1 + \text{Lap}(\overline{c}\alpha/\varepsilon_2), \forall i = 1, \ldots, m \]

return index \(k \) of the worst-case model

Step 3 Compute the worst-case cost using LM:

\[\overline{C} = C_k(\overline{f}) + \text{Lap}(\overline{c}\alpha/\varepsilon_2) \]

Step 4 Post-processing bilevel optimization:

\[\varphi^* \in \text{argmin} \| \overline{C} - C_k(\varphi) \| + \| \varphi - \varphi^0 \| \]

Theorem: \(\varepsilon_1 = \varepsilon/2 \) and \(\varepsilon_2 = \varepsilon/(4T) \) achieve \(\varepsilon \)-differential privacy
Differentially private transmission capacity obfuscation (TCO) Algorithm

Step 1 Initialize synthetic data using LM:

\[\varphi^0 = \bar{f} + \text{Lap}(\alpha/\varepsilon_1) \]

Step 2 Find the worst-case OPF model using EM:

\[\Delta C_i = \left\| C_i(\bar{f}) - C_i^R(\varphi^0) \right\|_1 + \text{Lap}(\bar{\alpha}/\varepsilon_2), \forall i = 1, \ldots, m \]

return index \(k \) of the worst-case model

Step 3 Compute the worst-case cost using LM:

\[\bar{C} = C_k(\bar{f}) + \text{Lap}(\bar{\alpha}/\varepsilon_2) \]

Step 4 Post-processing bilevel optimization:

\[\varphi^* \in \text{argmin}_{\varphi} \left\| \bar{C} - C_k(\varphi) \right\| + \left\| \varphi - \varphi^0 \right\| \]

Theorem: \(\varepsilon_1 = \varepsilon/2 \) and \(\varepsilon_2 = \varepsilon/(4T) \) achieve \(\varepsilon \)-differential privacy
Differentially private transmission capacity obfuscation (TCO) Algorithm

Step 1 Initialize synthetic data using LM:

$$\varphi^0 = \bar{f} + \text{Lap}(\alpha/\varepsilon)$$

Step 2 Find the worst-case OPF model using EM:

$$\Delta C_i = \| C_i(\bar{f}) - C_i^R(\varphi^0)\|_1 + \text{Lap}(\bar{c}\alpha/\varepsilon_2), \forall i = 1, \ldots, m$$

return index k of the worst-case model

Step 3 Compute the worst-case cost using LM:

$$\bar{C} = C_k(\bar{f}) + \text{Lap}(\bar{c}\alpha/\varepsilon_2)$$

Step 4 Post-processing bilevel optimization:

$$\varphi^* \in \text{argmin} \| \bar{C} - C_k(\bar{\varphi})\| + \|\bar{\varphi} - \varphi^0\|$$

Theorem: $\varepsilon_1 = \varepsilon/2$ and $\varepsilon_2 = \varepsilon/(4T)$ achieve ε—differential privacy
Differentially private transmission capacity obfuscation (TCO) Algorithm

Step 1 Initialize synthetic data using LM:

\[\varphi^0 = f + \text{Lap}(\alpha/\varepsilon_1) \]

Step 2 Find the worst-case OPF model using EM:

\[\Delta C_i = \left\| C_i(f) - C_i^R(\varphi^{t-1}) \right\|_1 + \text{Lap}(\bar{c}\alpha/\varepsilon_2) \quad \forall i = 1, \ldots, m \]

return index \(k^t \) of the worst-case model

Step 3 Compute the worst-case cost using LM:

\[\bar{C}_t = C_k^t(f) + \text{Lap}(\bar{c}\alpha/\varepsilon_2) \]

Step 4 Post-processing bilevel optimization:

\[\varphi^t \in \text{argmin}_{\varphi} \sum_{\tau=1}^t \left\| \bar{C}_\tau - C_k^\tau(\varphi) \right\| + \left\| \varphi - \varphi^{t-1} \right\| \]

Theorem: \(\varepsilon_1 = \varepsilon/2 \) and \(\varepsilon_2 = \varepsilon/(4T) \) achieve \(\varepsilon \)-differential privacy
Differentially private transmission capacity obfuscation (TCO) Algorithm

Step 1 Initialize synthetic data using LM:

\[
\varphi^0 = \overline{f} + \text{Lap}(\alpha/\varepsilon_1)
\]

Step 2 Find the worst-case OPF model using EM:

\[
\Delta C_i = \left\| C_i(\overline{f}) - C^R_i(\varphi^{t-1}) \right\|_1 + \text{Lap}(\overline{c}\alpha/\varepsilon_2), \forall i = 1, \ldots, m
\]

return index \(k^t\) of the worst-case model

Step 3 Compute the worst-case cost using LM:

\[
\overline{C}_t = C_{k^t}(\overline{f}) + \text{Lap}(\overline{c}\alpha/\varepsilon_2)
\]

Step 4 Post-processing bilevel optimization:

\[
\varphi^t \in \arg\min \sum_{\tau=1}^t \left\| \overline{C}_\tau - C_{k^\tau}(\overline{\varphi}) \right\| + \left\| \overline{\varphi} - \overline{\varphi}^{t-1} \right\|
\]

Theorem: \(\varepsilon_1 = \varepsilon/2\) and \(\varepsilon_2 = \varepsilon/(4T)\) achieve \(\varepsilon\)–differential privacy
IEEE 73-RTS benchmark: Laplace versus TCO Algorithm

Laplace mechanism

- infeas: 100.0%
- suboptimality: 14.2%

TCO Algorithm

- iteration: 1
- infeas: 98.0%
- suboptimality: 11.4%
IEEE 73-RTS benchmark: TCO feasibility and sup-optimality

more privacy required

adjacency $\alpha = 5$MW

adjacency $\alpha = 15$MW

adjacency $\alpha = 30$MW

infeasibility [%]

iteration limit T
more privacy required

IEEE 73-RTS benchmark: TCO feasibility and sup-optimality

adjacency $\alpha = 5$MW

adjacency $\alpha = 15$MW

adjacency $\alpha = 30$MW

infeasibility [%]

iteration limit T

$\Delta C [%]$

iteration limit T

iteration limit T
IEEE 73-RTS benchmark: TCO robustness bias

The figure shows a box plot of the capacity of line #40 [MW] after 1, 5, and 10 iterations, with different values of α: 5MW, 15MW, and 30MW, and the true capacity represented by a green line. The distribution of capacities varies across iterations and values of α.
IEEE 73-RTS benchmark: TCO robustness bias

The diagram illustrates the capacity of line #40 [MW] after 1 iteration, after 5 iterations, and after 10 iterations, under different values of α: 5MW, 15MW, and 30MW, compared to the true value (green line).

- After 1 iteration:
 - $\alpha=5MW$: Capacity distribution
 - $\alpha=15MW$: Capacity distribution
 - $\alpha=30MW$: Capacity distribution

- After 5 iterations:
 - $\alpha=5MW$: Capacity distribution
 - $\alpha=15MW$: Capacity distribution
 - $\alpha=30MW$: Capacity distribution

- After 10 iterations:
 - $\alpha=5MW$: Capacity distribution
 - $\alpha=15MW$: Capacity distribution
 - $\alpha=30MW$: Capacity distribution
IEEE 73-RTS benchmark: TCO robustness bias
Future of synthetic power system datasets

What we used to say about synthetic datasets:

- “[...] data bears no relation to the actual grid [...]”
- “This test case represents [...] fictitious transmission”
- “This case is synthetic and does not model the actual grid”

What we will say about synthetic datasets:

- “This synthetic dataset is produced based on the data from a real-world power grid”
- “It is not possible to infer the real data from this synthetic dataset”
- “Computational results on this data are consistent with the real data”
What does it mean for electricity market operators?

- New algorithms for **controllable** market transparency:
 - infrastructure data (grid topology, network parameters, generation, loads, etc.)
 - market participation data (bidding quantities, prices, etc.)

- No need for aggregation:
 - system cost/load \rightarrow nodal cost/load
 - aggregated generation \rightarrow highly granular generation records

- Rigorous privacy quantification \rightarrow legal compliance (e.g., US Census Bureau)
Where data should go?

Our ε—differentially private algorithms provide a non-discrete answer to this question!
Thank you for your attention!

From this talk:
1. Dvorkin, V., Botterud A.
 Differentially private algorithms for synthetic power system datasets
 IEEE Control Systems Letters, 2023

Other references:
2. Dvorkin, V., Fioretto, F., Van Hentenryck, P., Kazempour, J. and Pinson, P.
 Privacy-preserving convex optimization: When differential privacy meets stochastic programming
 Differentially private optimal power flow for distribution grids
 IEEE Transactions on Power Systems, 2021
 🏆 Best 2019–2021 Paper Award
4. Dvorkin, V., Van Hentenryck, P., Kazempour, J. and Pinson P.
 Differentially private distributed optimal power flow
 2020 Conference on Decision and Control

Let’s stay in touch:

Twitter: DvorkinVladimir
LinkedIn: Vladimir-Dvorkin
Email: dvorkin@mit.edu