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3.1 Power Flow Models

The main objective of power flow is to calculate active power, reactive power, voltage magnitude, and voltage
angle at each bus in a network.

3.1.1 Power Transmission Networks

Power transmission networks can be modeled as electric circuits with:

• N nodes (buses) and E edges (lines and transformers)

• AC voltages and currents as phasors: V = V ejθ = ℜ[V] + jℑ[V]

• Ohm’s law: V = ZI

π-model can be utilized to model transmission lines with the below elements:

• Voltages Vn and Vm at line ends

• Line series impedance znm = rnm + jxnm

• Line series admittance ynm = 1
znm

= gnm + jbnm

• Line series conductance gnm = rnm

r2nm+x2
nm

• Line series susceptance bnm = xnm

r2nm+x2
nm

• Line charging susceptance bcnm

Line currents entering nodes (buses): Inm =
(
ynm + j

bcnm

2

)
Vn − ynmVm

Kitchoff’s current law can be used to sum all currents between node n and all other connected nodes:

In =

N∑
m=1

(
ynm + j

bcnm
2

)
Vn −

N∑
m=1

ynmVm, ∀n = 1, ..., N, such that n ̸= m (3.1)

Multivariate Ohm’s law considers multiple voltages, currents, and admittances in a matrix/vector form.

3-1



3-2 Lecture 3: Optimal Power Flow & Locational Pricing

• i = Yv, where i and v are vectors, and Y is a matrix.

• Bus admittance matrix is a descriptor of the network and it encodes line connections.

Ynm =



∑
k ̸=n

ynk + j
bcnk

2 , n = m

−ynm, ∃ line (n,m)

0, otherwise

(3.2)

Ynm is symmetric, non-Hermitian, sparse and invertible (if bcnm ̸= 0 for at least one line; otherwise
Y1 = 0)

• Bus impedance matrix Z is non-sparse and not the matrix of line impedances (i.e. Znm ̸= znm = 1
ynm

)

Complex power expression for power flow from node n to m: Snm = VmI∗
nm

3.1.2 AC Power Flow Model

• Polar Coordinates

Pn = Vn

N∑
m=1

Vm(Gnmcos(θnm) +Bnmsin(θnm)) (3.3)

Qn = Vn

N∑
m=1

Vm(Gnmsin(θnm)−Bnmcos(θnm)) (3.4)

Note that: Sn = Pn + jQn, θnm = θn − θm

• Rectangular Coordinates

Pn = ℜ[Vn]

N∑
m=1

(ℜ[Vm]Gnm−ℑ[Vm]Bnm) + ℑ[Vn]

N∑
m=1

(ℑ[Vm]Gnm−ℜ[Vm]Bnm) (3.5)

Qn = ℑ[Vn]

N∑
m=1

(ℜ[Vm]Gnm−ℑ[Vm]Bnm)−ℜ[Vn]

N∑
m=1

(ℑ[Vm]Gnm−ℜ[Vm]Bnm) (3.6)

3.1.3 Solving Power Flow Equations

• 2N equations and 4N variables {(Pm, Qm, Vm, θm)}Nm=1

• Problem Statement: using the known 2N variables, find the values of the rest of the variables (2N
unknowns) that satisfy the nonlinear power flow equations.

• Where do the known variables come from? The known variables at each bus depend on the type of
bus.

1. Nd Load buses (PQ buses): (Pn, Qn)

2. Ng Generator buses (PV buses): (Pn, Vn)

3. Reference bus: (Vn, θn = 0)

• Total number of buses: N = 1 +Ng +Nd
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• Resultant 2N power flow equations:

Pn = Vn

N∑
m=1

Vm(Gnmcos(θnm) +Bnmsin(θnm)), ∀n = 1, ..., Nd +Ng = N − 1 (3.7)

Qn = Vn

N∑
m=1

Vm(Gnmsin(θnm)−Bnmcos(θnm)), ∀n = 1, ..., Nd (3.8)

• Recursive methods such as (Gauss-Seidel, Newton, FDPF) can be used to solve for {(Vn, θn)}Nn=1, then
other quantities (injections, flows, currents, losses) can be calculated.

3.2 DC Power Flow Model

3.2.1 Formulation

DC power flow approximates AC power flow through the following assumptions:

1. Low r/x ratio in transmission lines

rnm << xnm → gnm << bnm → G ≈ 0 and bnm = xnm

r2nm+x2
nm

2. Small angle difference: sin(θn − θm) ≈ θn − θm

3. Voltage magnitudes: Vn ≈ 1

DC power flow model becomes:

Pn ≈
∑

m:n∼m

Pnm =
∑

m:n∼m

bnm(θn − θm) (3.9)

3.2.2 B Matrix

Equation (3.7) shows that power injections relate linearly to phase differences. The corresponding multivari-
ate power flow model:

p = Bθθθ (3.10)

DC Bus Admittance Matrix: (different from matrix B in Y = G + j B)

Bnm =


∑
k ̸=n

bnk, n = m

−bnm, ∃ line (n,m)

0, otherwise

(3.11)

• B matrix is real, symmetric, sparse, and positive semidefinite

• Lossless lines: B1 = 0 ⇒ 1Tp = 0 (1T (pg − pd) = 0)

• bnm is often further simplified to: bnm = xnm

r2nm+x2
nm

≈ 1
xnm

(based on the assumption xnm >> rnm)
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3.3 Optimal Power Flow

3.3.1 Formulation in Rectangular Coordinates

• Collect nodal voltages in rectangular coordinates in vvv ∈ CN

vvv =
[
ℜ[V1] + jℑ[V1] . . . ℜ[VN ] + jℑ[VN ]

]T
• Power injections and squared voltage magnitudes are quadratic functions of vvv:

Pn(v) = vvvHMMMPn
vvv

Qn(v) = vvvHMMMQn
vvv

V 2
n (v) = vvvHMMMVnvvv

where matrices MMM are Hermitian symmetric (MMM =MMMH)

• Every bus contributes two quadratic constraints (active and reactive power) on vvv

3.3.2 Finding MMM Matrices

• Voltage magnitude (eeen is the n-th canonical vector)

V 2
n (vvv) = V∗

nVn = vvvHeeeneee
T
nvvv ⇒ MMMVn

= eeeneee
T
n

• Complex power injection

Sn = Pn + jQn = VnI∗
n = (vvvTeeen)(eee

T
niii

∗) = vTeeeneee
T
nYYY

∗vvv∗ = vvvHYYY ∗eeeneee
T
nvvv

• Active and reactive power then take the form

Pn =
1

2
(Sn + S∗

n) = vvvHMMMPn
vvv, MMMPn

=
1

2
(YYY ∗eeeneee

T
n + eeeneee

T
nYYY

∗)

Qn =
1

2
(Sn − S∗

n) = vvvHMMMQnvvv, MMMQn =
1

2
(YYY ∗eeeneee

T
n − eeeneee

T
nYYY

∗)

3.3.3 Power Flow as a Feasibility Problem

• System state as solution of feasibility problem:

find v

s.t. vvvHMMMkvvv = sk, ∀k = 1, . . . , 2N [note: vvvHMMMkvvv = Tr(MMMkvvvvvv
H)]

• Introduce matrix variable VVV = vvvvvvH :

find (vvv,VVV )

s.t. Tr(MMMkVVV ) = sk, ∀k = 1, . . . , 2N

VVV = vvvvvvH
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• Eliminate variable vvv; non-convex problem due to rank constraint:

find (VVV )

s.t. Tr(MMMkVVV ) = sk, ∀k = 1, . . . , 2N

VVV ⪰ 000, rank(VVV ) = 1

Note: The rank constraint ensures finding a unique set of voltages.

3.3.4 Semidefinite Program Relaxation

• Drop rank constraint to get semidefinite program (SDP):

find (VVV )

s.t. Tr(MMMkVVV ) = sk, ∀k = 1, . . . , 2N

VVV ⪰ 000

which is a convex problem.

• If the solution VVV ⋆ is rank-1, the relaxation is said to be exact.

• If exact, find vvv⋆ from VVV ⋆ = vvv⋆vvv⋆H

• Relaxation is oftentimes exact under practical system conditions.

3.3.5 Optimal Power Flow Using Semidefinite Relaxation

• OPF problem:

min
VVV⪰000

Tr(MMMVVV )

s.t. Tr(MMMkVVV ) = sk, ∀k = 1, . . . , 2N

• Design matrix MMM to strengthen the relaxation (favor rank-1 solutions)1:

– Selecting MMM = YYY HYYY minimizes ∥iii∥22
– Selecting MMM = BBB minimizes losses

– Both yield the “high-voltage solution” of the power flow equations

• Use
∑N

n=1 cnTr(MMMPn
VVV ) as an objective to minimize the dispatch cost2

• Incorporate squared voltage bounds as: vvv2 ≤ Tr(MMMVn
VVV ) ≤ vvv2

1
R. Madani, J. Lavaei, and R. Baldick. *Convexification of power flow problem over arbitrary networks.* IEEE CDC 2015.

2
J. Lavaei and S. Low. *Zero duality gap in optimal power flow problem.* IEEE Trans. on Power Systems. 2012.



3-6 Lecture 3: Optimal Power Flow & Locational Pricing

3.3.6 Formulation in Polar Coordinates

• AC power flow model:

Pn(v, θ) = Vn

N∑
m=1

Vm(Gnm cos θnm +Bnm sin θnm), ∀n = 1, . . . , N

Qn(v, θ) = Vn

N∑
m=1

Vm(Gnm sin θnm −Bnm cos θnm), ∀n = 1, . . . , N

• Classic AC-OPF problem formulation:

min
pppg,qqqg,vvv,θθθ

c(pppg) generation cost

s.t. ppp(vvv,θθθ) = pppg − pppd active power flow

qqq(vvv,θθθ) = qqqg − qqqd reactive power flow

pppgmin ≤ pppg ≤ pppgmax min/max gen p-limits

qqqgmin ≤ qqqg ≤ qqqgmax min/max gen q-limits

vvvmin ≤ vvv ≤ vvvmax min/max voltage mag limits

θθθmin ≤ θθθ ≤ θθθmax min/max voltage angle limits

• Minimize generation cost subject to power flow equations and variable limits.

3.3.7 Security-Constrained AC-OPF (SC-AC-OPF)

• Optimization problem:

min
pppg,qqqg,vvv0,θθθ0,vvvc,θθθc

c(pppg) generation cost

s.t. ppp0(vvv0, θθθ0) = pppg − pppd nominal active power flow

qqq0(vvv0, θθθ0) = qqqg − qqqd nominal reactive power flow

pppc(vvvc, θθθc) = pppg − pppd, ∀c = 1, . . . , Nc post-contingency active power flow

qqqc(vvvc, θθθc) = qqqg − qqqd, ∀c = 1, . . . , Nc post-contingency reactive power flow

+ limits on optimization variables

• Constraints for the nominal and all contingency scenarios.

• Line outage: pppc() and qqqc() include new admittances YYY c.

• One dispatch (pppg, qqqg) is computed for the nominal and all contingency scenarios.
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• SC-AC-OPF costs ≥ classic AC-OPF since SC-AC-OPF has more constraints which shrinks the feasible
solution region.

• If single-line outages are considered: Nc = number of lines

• If double-line outages are considered: Nc =
number of lines (number of lines−1)

2

• Similarly, generator outage security constraints are added to SC-AC-OPF.

3.3.8 DC-OPF (bθ-Formulation)

min
ppp,θθθ

c(ppp) generation cost

s.t. BBBθθθ = ppp− ddd active power balance

ppp ≤ ppp ≤ ppp min/max gen p-limits

− fnm ≤ bnm(θn − θm) ≤ fnm, power flow limits

• New notation: pppg → ppp and pppd → ddd.

• Acts on the DC power flow approximation.

• Active power only; reactive power disregarded.

• Double-sided power flow constraints ensure that power does not exceed rated line capacity in either
direction.

3.3.9 DC-OPF (PTDF Formulation)

• Formulate the DC-OPF problem in one variable pppg only.

• Use matrix FFF ∈ RE×N of power transfer distribution factors (PTDF):

– Defines how power flow in line e changes with a power injection at node n.

– Obtained by manipulating the DC bus admittance matrix BBB.

• Power flow is given by: f = FFF (ppp− ddd) (distribution of net injections across power lines)

• The new DC-OPF formulation:

min
ppp

c(ppp) generation cost

s.t. 1⊤(ppp− ddd) = 000 active power balance

|FFF (ppp− ddd)| ≤ f power flow limits

ppp ≤ ppp ≤ ppp min/max gen p-limits

• Less variables than in bθ-formulation but requires more memory to store and operate with matrix FFF .

• Often used for locational marginal pricing in high-voltage grids.
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3.4 Locational Electricity Pricing

3.4.1 Duality of DC-OPF

• Focus on the coupling constraints (i.e., linking generators and loads):

min
ppp≤ppp≤ppp

c(ppp)

s.t.

1⊤(ppp− ddd) = 0 : λ

FFF (ppp− ddd) ≤ f : µµµ

−FFF (ppp− ddd) ≤ f : µµµ

• Partial Lagrangian function (dualizing only the coupling constraints):

max
λ,µµµ,µµµ

min
ppp≤ppp≤ppp

L(ppp, λ,µµµ,µµµ) = c(ppp)− λ1⊤(ppp− ddd) +µµµ⊤(FFF (ppp− ddd)− fff) +µµµ⊤(−FFF (ppp− ddd)− fff)

• Group terms corresponding to dispatch ppp, demand ddd, and line limits fff :

L = Lppp + Lddd + Lfff , where

Lppp(ppp, λ,µµµ,µµµ) = c(ppp)− (1λ−FFF⊤µµµ+FFF⊤µµµ)⊤ppp

Lddd(λ,µµµ,µµµ) = (1λ−FFF⊤µµµ+FFF⊤µµµ)⊤ddd

Lfff (µµµ,µµµ) = −(µµµ+µµµ)⊤fff

Note: Power dispatch ppp and demand ddd share the same multiplier but with opposite signs.

3.4.2 Locational Marginal Prices (LMPs)

πππ⋆(λ⋆,µµµ⋆,µµµ⋆) = 1λ⋆︸︷︷︸
uniform

−FFF⊤(µµµ⋆ −µµµ⋆)︸ ︷︷ ︸
congestion

∈ RN

• πππ⋆
n is the cost of supplying the next unit of demand at node n.

• If congestion occurs (µµµ⋆ > 0 or µµµ⋆ > 0), electricity price varies across the grid.

• The price at the reference bus is λλλ⋆ (since the reference column of FFF is zero).

3.4.3 Equilibrium Interpretation

• Equilibrium problem:

ppp(πππ⋆) = argmin
ppp≤ppp≤ppp

Lppp(ppp,πππ⋆) = c(ppp)− πππ⋆⊤ppp

The market operator finds equilibrium prices πππ⋆(λλλ⋆,µµµ⋆,µµµ⋆) such that:

1⊤(ppp(πππ⋆)− ddd) = 0

|FFF (ppp(πππ⋆)− ddd)| ≤ f
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• Once equilibrium is found:

– Inelastic demands are charged at πππ⋆ ◦ ddd.

– Transmission operator collects congestion rent (µµµ⋆ +µµµ⋆)⊤fff .

– If no congestion (µµµ⋆ = µµµ⋆ = 0), the problem reduces to economic dispatch.

– Elastic demand → utility-maximization problem for each demand.

3.4.4 Some Desirable Market Properties

• Market efficiency: Equilibrium LMPs yield the least-cost dispatch.

Proof: Extrapolate the solution to Assignment 1 (Problem 2) to the network-constrained case.

• Cost recovery: For fully dispatchable generators (i.e., ppp = 000).

Proof:

Primal Problem Dual Problem

max
ppp

πππ⋆⊤ppp− ccc⊤ppp min
ϑϑϑ,ϑϑϑ≥000

ϑϑϑ
⊤
ppp− ϑϑϑ⊤ppp

subject to ppp ≤ ppp ≤ ppp subject to ccc− πππ⋆ + ϑϑϑ− ϑϑϑ = 0

Strong duality: πππ⋆⊤ppp⋆ − ccc⊤ppp⋆ = ϑϑϑ
⋆⊤

ppp− ϑϑϑ⋆⊤ppp.

Since ϑϑϑ
⋆
,ϑϑϑ⋆ ≥ 000 and ppp = 000, the profit is non-negative and thus, generators that are paid LMP’s are

able to recover their costs.

• What holds for aggregate also holds for individual generators.

• Revenue adequacy in markets with fully dispatchable units (i.e., ppp = 000):

Market operator does not run into deficit (demand charges ≥ generator revenues).

Proof: The Lagrangian function in optimality decomposes into:

L(ppp⋆, λ⋆,µµµ⋆,µµµ⋆)︸ ︷︷ ︸
=c(ppp⋆)

= c(ppp⋆)− πππ⋆⊤ppp⋆︸ ︷︷ ︸
minus profit

+ πππ⋆⊤ddd︸ ︷︷ ︸
charges

−fff
⊤
(µµµ⋆ +µµµ⋆)︸ ︷︷ ︸

congestion rent

⇐⇒ πππ⋆⊤ddd− πππ⋆⊤ppp⋆ = (µµµ⋆ +µµµ⋆)⊤fff

We thus only need to show that congestion rent is non-negative:

The dual feasibility conditions µµµ⋆,µµµ⋆ ≥ 000 imply that πππ⋆⊤ddd− πππ⋆⊤ppp⋆ ≥ 0.

Since congestion rent is non-negative, revenue adequacy holds.
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3.4.5 Unit Commitment (UC) Problem

min
pppt,uuut

T∑
t=1

c(pppt,uuut)

subject to 1⊤(pppt − dddt) = 0

FFF (pppt − dddt) ≤ f

−FFF (pppt − dddt) ≤ f

uuut ◦ ppp ≤ pppt ≤ uuut ◦ ppp
+ other constraints ∀t = 1, . . . , T

• Binary unit commitment decisions uuut ∈ {0, 1}N .

• Discontinuous generator cost functions ⇒ non-convex problem.

• Because of discontinuity, the dual variables do not exist.

• Mixed-integer (MI) linear (or quadratic) program.

• How to price electricity using unit commitment? Solve the UC problem to optimaly find the generators
that need to be running, then solve an optimal power flow problem (such as DC-OPF).

3.4.6 Electricity Pricing with Discontinuous Costs

• Let uuu⋆
1, . . . ,uuu

⋆
T be the optimal UC decisions (e.g., after solving UC with an MI solver).

• Formulate the relaxed problem:

min
pppt,uuut

T∑
t=1

c(pppt,uuut)

subject to

1⊤(pppt − dddt) = 0 : λt

FFF (pppt − dddt) ≤ f : µµµt

−FFF (pppt − dddt) ≤ f : µµµ
t

uuut ◦ ppp ≤ pppt ≤ uuut ◦ ppp
uuut = uuu⋆

t : ϑϑϑt

This is a convex optimization problem with the dual solution3:

– Prices πππ⋆
t (λ

⋆
t ,µµµ

⋆
t ,µµµ

⋆
t
) and ϑϑϑ⋆

t solve a competitive equilibrium with discontinuous costs.

– Uplift payment ϑϑϑ⋆
t ◦ uuut remunerates costs not covered by LMPs.

– This applies to not fully dispatchable units (ppp ̸= 0).

• UC is solved days ahead to compute uplifts, while OPF is solved later to price electricity.

3
O’Neill et al. Efficient market-clearing prices in markets with nonconvexities. EJOR, 2025.


