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2.1 Introduction to Optimization Problems

2.1.1 Objective Function

The objective function defines the goal of the optimization problem, such as minimizing cost or maximizing
efficiency.

2.1.2 Constraints

Constraints define the feasible region, limiting the solution space to satisfy problem-specific conditions.

• Inequality Constraints: gi(xxx) ≤ 0, ∀i = 1, . . . ,m

• Equality Constraints: hi(xxx) = 0, ∀i = 1, . . . , p

2.2 Lagrangian and Duality

2.2.1 Lagrangian Function

The Lagrangian function enables optimization with constraints by turning them into terms in the objective
function.

L(xxx,λλλ,ννν) = c(xxx) +

m∑
i=1

λigi(xxx) +

p∑
j=1

νjhj(xxx)

• L(xxx,λλλ,ννν) combines the objective function and its constraints.

2.2.2 Lagrange Multipliers

Lagrange multipliers show how sensitive the objective value is to changes in a constraint.

• λλλ represents the Lagrange multipliers for inequality constraints.
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• λλλ ≥ 0 ensures that the constraints are properly penalized if violated.

• ννν represents the Lagrange multipliers for equality constraints.

• ννν can be positive or negative.

2.2.3 Dual Function

The dual function provides a lower bound for the primal problem, enabling duality-based optimization.

ϕ(λλλ,ννν) = min
xxx

L(xxx,λλλ,ννν) = min
xxx

(
c(xxx) +

m∑
i=1

λigi(xxx) +

p∑
j=1

νjhj(xxx)
)

• The Dual Function minimizes the Lagrangian Function.

• Always concave.

2.2.4 Dual Problem

maximize
λλλ,ννν

ϕ(λλλ,ννν), subject to λλλ ≥ 0

• The Dual Problem maximizes the Dual Function.

• The Dual Problem provides the best lower bound for the primal solution.

• Always concave.

Solving the dual problem often simplifies the computation of optimal solutions for the primal problem.

2.3 Duality Concepts

2.3.1 Weak Duality

Weak duality ensures the dual solution provides a valid lower bound for the primal solution.

• Non-zero duality gap: ϕ(λλλ∗, ννν∗) ≤ c(xxx∗)

• Common for non-convex problems.

2.3.2 Strong Duality

Strong duality guarantees that the primal and dual solutions are equal and optimal for convex problems.

• Zero duality gap: ϕ(λλλ∗, ννν∗) = c(xxx∗)

• Holds for convex problems.

• We can use λλλ∗ and ννν∗ to certify optimality of xxx∗.
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2.3.3 Complementary Slackness Condition

Complementary slackness connects active constraints to their Lagrange multipliers.

m∑
i=1

λ∗
i gi(xxx

∗) = 0 ⇒ λ∗
i gi(xxx

∗) = 0, ∀i = 1, . . . ,m

• λ∗
i = 0 ⇔ the i-th constraint is inactive at the optimum.

• λ∗
i > 0 ⇔ the i-th constraint is active at the optimum.

2.4 Karush-Kuhn-Tucker (KKT) Conditions

The KKT conditions are necessary for optimality in constrained optimization problems. They include:

1. Primal feasibility:

gi(xxx
∗) ≤ 0, hj(xxx

∗) = 0, ∀i, j

for economic dispatch: ppp ≤ ppp ≤ ppp, 111Tppp = d

2. Dual feasibility:

λλλ∗ ≥ 0

for economic dispatch: λλλ,λλλ ≥ 0

3. Lagrangian optimality:

∇xxxc(xxx
∗) +

∑
i

λ∗
i∇xxxgi(xxx

∗) +
∑
j

ν∗j∇xxxhj(xxx
∗) = 0

for economic dispatch: ∇pppc(ppp)− λλλ+ λλλ+111ν = 0

4. Complementary slackness:

λ∗
i gi(xxx

∗) = 0, ∀i

for economic dispatch: λλλ ◦ (ppp− ppp) = 0, λλλ ◦ (ppp− ppp) = 0

Note: For convex problems (minimization) or concave problems (maximization), if xxx∗,λλλ∗, ννν∗ satisfy the
KKT conditions:

• There is zero duality gap: c(xxx∗) = ϕ(λλλ∗, ννν∗)

• The primal and dual solutions are globally optimal.

The KKT conditions combine feasibility, optimality, and slackness, providing a unified framework for solving
constrained optimization problems.
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2.5 Steps for Solving Optimization Problems

2.5.1 Linear Programs (LP)

LPs are optimization problems where duality and constraints are applied to determine optimal solutions.

1. Construct the Lagrangian: combine the linear objective function with the constraints

L(xxx,λλλ,ννν) = cccTxxx+ λλλT (GGGxxx− hhh) + νννT (AAAxxx− bbb).

2. Find the Dual Function: minimize the Lagrangian with respect to x.

ϕ(λλλ,ννν) = min
xxx

L(xxx,λλλ,ννν).

3. Formulate the Dual Problem: maximize the dual function over feasible λλλ and ννν.

maximize ϕ(λλλ,ννν) subject to λλλ ≥ 0.

4. Solve for the primal solution: use the dual solution (λλλ∗, ννν∗) and constraints to determine xxx∗.

GxGxGx ≤ hhh, AxAxAx = bbb.

5. Code the solution and verify strong duality.

c(xxx∗) = ϕ(λλλ∗, ννν∗)

2.5.2 Quadratic Programs (QP)

QPs extend LPs with quadratic terms, making them ideal for modeling energy systems and financial opti-
mization problems.

1. Construct the Lagrangian: combine the quadratic objective function with the constraints.

L(xxx,λλλ,ννν) = cccTxxx+
1

2
xxxTQxQxQx+ λλλT (GxGxGx− hhh) + νννT (AxAxAx− bbb).

2. Solve for xxx∗: take the derivative of the Lagrangian with respect to xxx and set it to zero.

∂L
∂xxx

= ccc+QxQxQx+GGGTλλλ+AAATννν = 0.

3. Find the Dual Function: substitute xxx∗ back into the Lagrangian.

ϕ(λλλ,ννν) = L(xxx∗,λλλ,ννν).

4. Formulate the Dual Problem: maximize the dual function over feasible λλλ and ννν.

maximize ϕ(λλλ,ννν) subject to λλλ ≥ 0.

5. Solve for the primal solution: use the dual solution (λλλ∗, ννν∗) and constraints to determine xxx∗.

GxGxGx ≤ hhh, AxAxAx = bbb.

6. Code the solution and verify strong duality.

c(xxx∗) +
1

2
(xxx∗)TQQQxxx∗ = ϕ(λλλ∗, ννν∗)
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2.6 Economic Dispatch

Economic dispatch is the process of allocating generation among available units to minimize the total gen-
eration cost while satisfying system constraints. It ensures that power generation meets demand efficiently
while adhering to operational limits.

2.6.1 Problem Formulation

minimize
ppp=(p1,...,pn)

c(ppp),

subject to
ppp ≤ ppp ≤ ppp : λλλ,λλλ

111Tppp = d : ν

• c(ppp): Dispatch cost. Total cost of power generation as a function of power generation.

• ppp: Dispatch limits. Maximum generation limits for generators.

• ppp: Dispatch limits. Minimum generation limits for generators.

• d: Power balance Total power demand.

• λλλ,λλλ, ν: Lagrange multipliers for constraints.

2.6.2 Steps to Solve Economic Dispatch

1. Construct the Lagrangian: combine the objective function and constraints.

L(ppp,λλλ,λλλ, ν) = c(ppp) + λλλT (ppp− ppp) + λλλ
T
(ppp− ppp) + ν(111Tppp− d).

2. Solve for the Dual Function: minimize the Lagrangian with respect to p:

ϕ(λλλ,λλλ, ν) = min
ppp

L(ppp,λλλ,λλλ, ν).

For linear cost c(ppp) = cccTppp, the dual function becomes:

ϕ(λλλ,λλλ, ν) =

{
λλλ
T
ppp− λλλTppp− νd if c− λλλ+ λλλ+111ν = 0,

−∞ otherwise.

3. Formulate the Dual Problem: maximize the dual function over feasible λλλ,λλλ, ν:

maximize ϕ(λλλ,λλλ, ν), subject to λλλ,λλλ ≥ 0.

4. Solve for the primal solution: use the dual solution (λλλ∗,λλλ
∗
, ν∗) and constraints to determine ppp∗.

ppp ≤ ppp ≤ ppp, 111Tppp∗ = d.

5. Interpret the electricity price: the dual variable ν∗ represents the marginal cost of electricity. It
is calculated as follows ζζζ is a marginal change in demand):

ν∗ =
∂L(ppp∗,λλλ∗,λλλ

∗
, ν∗, ζζζ)

∂ζζζ
,

6. Code the solution and verify strong duality.

c(ppp∗) = ϕ(λλλ∗,λλλ
∗
, ν∗),


