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11.1 Classic Inverse Optimization

In modern electricity markets, system operators (ISOs) solve a parameterized Optimal Power Flow (OPF)
to dispatch generation and set prices. We can abstract this as:

minimize f(p,y) subjectto g¢g(p,y)=0 : A,
P
where

e p is the vector of generator outputs,

e y encapsulates unknown parameters—e.g. wind-power forecasts, demand forecasts, marginal costs or
network limits,

e A are the dual multipliers, observed in practice as Locational Marginal Prices (LMPs).
Although y remains hidden, we may have publicly available data:

e Real-time dispatch & LMPs: via platforms like gridstatus.io and electricitymaps.com,
e Weather & forecasts: wind speed, temperature from meteorological APIs,

e Historical market outcomes: aggregated generation, flows, and prices from third-party analytics.

Goal: Given known input data or observed decisions, recover the latent parameters y (e.g. the ISO’s wind
forecast model or cost coefficients) that make the OPF model consistent with the recorded dispatch and
prices.

11.1.1 Taxonomy of inverse optimization (IO) problems

Inverse optimization problems can be organized along three dimensions: the structure of the underlying
decision model (linear, quadratic integer, non-convex), which parameters are unknown (linear, quadratic
integer, non-convex), and how we measure fit between observed and predicted decisions (depending on
available data, we may achieve the perfect fit or, at least, maximize a suitable measure of fitness).
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11.1.2 Forward optimization (FO) problem

Original problem:
minimize x'Cx+c¢'x,
X
subject to Ax > b.
FO surrogate (same structure, unknown parameters):

minimize x' Ox +0'x,
X

subject to ®x > ¢.

e FO replicates the original structure; ©,6 are unknown objective parameters, ®, ¢ are unknown con-
straint parameters.

e To estimate the objective: fix & = A, ¢ = b and recover ©, 6.

e To estimate the constraints: fix © = C, 6 = ¢ and recover P, ¢.

11.1.3 Classical IO using bilevel programming

We consider the following scenario:

e Second-order cost coefficients in C and constraint matrix A are known. The optimal primal and dual
decisions x* and A* from the original problem are also known (from public data).

e First-order cost coefficients in ¢ and the right-hand side parameter b are unknown

and we try to find such model with first-order coefficient @ and right-hand side parameter 1 that can best
approximate the true decisions (i.e. minimize the decision error)

minimize  [|x(6,9) — x", +[IA(8, 4) - A,

s

primal error dual error

subject to

X,
subject to Ax > : A

This problem can be solved by: 1) Taking the KKT conditions of the lower level problem and reformulate
the whole problem as mixed-integer optimization. 2) Use stochastic gradient descent method. It is worth
noting that for the first approach, we will not always get a unique solution when the cost function are linear.
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11.2 Data-driven IO for static parameter estimation

The major differences between classic IO and data-driven IO lies in the number of data available. In classic
10, we only relied on a single observation x* and A*. Data-driven IO acts on the history of n observations

(X'):7 A:)’ M) (X’I*I) AT*L)

The whole data-driven IO formulation for static parameter (right-hand side parameter 1 in the constraints)
estimation are as

N S ]
minimize 5> (|xi(w) = xill, + [A(%) = Al ) (1L.1)
i=1
subject to 1 < < P (11.2)
x; (1) UX(¥) € argmin - x' Cyx + ¢, x (11.3)
X,A
subject to A;x > : A (11.4)

The major problem here is that the 1 on the right hand side are different for every record of observation, and
the computational burden would be large if we perform this optimization problem for each observation. We
make the assumption that the the right hand side parameter comes from a linear prediction model b = Bg,
and the problem is reformulated as

N S * "
minimize > (Ix(B) =], + [ (B) = il ) (11.5)
i=1
subject to  x;(B) UX;(B) € argmin  x'C;x + ¢/ x (11.6)
X,A
subject to A;x > By, : A (11.7)

11.3 Application in Unveiling ISO’s Wind Power Forecast Model

11.3.1 Problem Formulation

Here we consider an optimal power flow problem with consideration for wind power forecast w

minimize p Cp+c'p generator dispatch cost
subje[;t to p<P<P generation limits
1"p+w—d)=0 :X power balance condition
Flp+w-—d)|<f :AsA power flow limits

Our goal is to get the parameters for ISO wind power forecast model with available public dataset, including
public weather data ¢ and Locational Marginal Prices (LMP) = X, - 1 — F " (Af — A¢)
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11.3.2 10O Problem Solving
We first reformulate the problem in the FO form:

minimize ipTCp +c'p
p

subject to Ap =>b(w) :A
and then take its dual
maxi)\mize a@) T A-ATQA
subject to A >0
where q(W) = AC7'c+bw) and Q = AC™1A

By solving this optimization problem which is parameterized by w, we can get the estimated LMP w(w). By
minimizing the difference between the estimated LMP (W) and the true LMP 7* from historic observations
using the data driven 10 model, the wind forecast model parameter B can be estimated.



