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Course overview

Covered topics:

Intro to computational power systems

o]

Duality, optimality conditions, and electricity pricing

=

Optimal power flow & Locational pricing
Distributed/decentralized optimization (ADMM)

[~ ]

ADMM applications to optimal power flow
Online feedback optimization (OFO)
OFO application to Volt/VAr control in distribution grid

=

OFO application to real-time economic re-dispatch

Today: Renewable power forecasting

What comes up next?
B Advanced regression analysis
B Decision-focused analytics

B Final project presentation (April 18th)
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Why forecasting?

B Forecasting is the first step in decision-making
B Resolves (some) uncertainty of decision-making inputs

B Brings confidence to your decision-making



Need for forecasting in power systems

Who needs a forecast?
B Power producers: conventional generators, wind farm operators
B Utility companies, large industrial consumers, aggregators, etc.

B Independent system operators (US), system and market operators (Europe)

What to forecast?
B Renewable power
B Electricity demand
B Day-ahead and real-time prices
B Real-time system imbalance/congestion

B Any other information relevant to your decision-making...
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Renewable energy forecasts in decision-making

Forecast provides inputs to many decision-making problems:
B Reserve quantification (i.e., backup capacity for the system operator)
B Unit commitment, economic dispatch, contingency screeining, etc.
B Trading strategy for renewables, aggregators, utilities, etc.

Relevant inputs include:
B Deterministic forecasts
B Probabilistic forecasts as quantiles, intervals, and predictive distributions
B Probabilistic forecasts in the form of trajectories/scenarios
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Pinson et al. "Evaluation of nonparametric probabilistic forecasts of wind power”
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Forecasting for power system dispatch

Forecast Realization
& \®b —'> %b
‘ U 220
} } time
Day-ahead Real-time
dispatch re-dispatch

B Two-stage decision-making to manage uncertainty of renewables:
B Day-ahead: minimize the cost of power supply using forecast

B Real-time: costly re-dispatch to accommodate forecast errors
B The costs of real-time re-dispatch increase in renewable power capacity

B Electricity prices (and thus revenues) are a function of the forecast
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Forecasting for power system dispatch

Forecast Realization
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B Two-stage decision-making to manage uncertainty of renewables:
B Day-ahead: minimize the cost of power supply using forecast
B Real-time: costly re-dispatch to accommodate forecast errors

B The costs of real-time re-dispatch increase in renewable power capacity

B Electricity prices (and thus revenues) are a function of the forecast
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Forecasting for power system dispatch

Forecast Realization

2% .
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Day-ahead Real-time Re-dispatch cost in Germany [Bn €]

dispatch re-dispatch
B Two-stage decision-making to manage uncertainty of renewables:

B Day-ahead: minimize the cost of power supply using forecast

B Real-time: costly re-dispatch to accommodate forecast errors
B The costs of real-time re-dispatch increase in renewable power capacity

B Electricity prices (and thus revenues) are a function of the forecast

Need for a “good” power forecast to reduce the cost of uncertainty

5/31



Example of market outcomes

B Dutch electricity pool simulated over a year

B 15-MW wind farm with no storage and control over output

B Point and probabilistic forecasts generated with state-of-the-art tools

B Three forecast models versus perfect predictions

B Market outcomes are very sensitivity to a forecast model

B Which forecast model do you chose?

Pers. Adv. point pred. Prob. pred. Perfect pred.

Contracted energy (GWh) 44.37 45.49 62.37 46.41
Surplus (GWh) 18.12 9.87 4.89 0
Shortage (GWh) 16.08 8.95 20.85 0
Down-regulation costs (10° €) 195.72 119.99 42.61 0
Up-regulation costs (103 €) 79.59 52.01 61.46 0
Total revenue (10° €) 1041.38 1145.69 1212.61 1317.69
Av. down-reg. unit cost (€/MWh) 10.80 12.15 8.71 0
Av. up-reg. unit cost (€/MWh) 4.95 5.81 2.95 0
Av. reg. unit cost (€/MWh) 8.05 9.13 4.04 0
Av. energy price (€/MWh) 22.44 24.68 26.13 28.37
Part of imbalance (% prod. energy) 73.69 40.55 55.46 0
Performance ratio (%) 79.1 86.99 92.1 100

Pinson, Chevallier, Kariniotakis. “Trading wind generation from short-term probabilistic forecasts of wind power”. IEEE TPWRS
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Forecast products



Wind power in Denmark

Agg. zone  Orig. zones % of capacity
1 1,23 31
2 56,7 18
3 4,8,9 17
4 10, 11, 14, 15 23
5 12, 13 10

Figure: The Western Denmark dataset: original locations for which measurements are available, 15 control zones defined by Energinet, as
well as the 5 aggregated zones, for a nominal capacity of around 2.5 GW.
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Forecast products — Point forecast

A point forecast informs of the conditional expectation of power generation

power [GW]

2.0

1.6

1.2

0.8

0.4

0.0

—e— observations
— forecasts

T T T T T 1
12 18 24 30 36 43

lead time [h]

8/31



Forecast products — Point forecast

A point forecast informs of the

power [p.u]

power [p.u]

06 0.8 1.0

0.4

0.2

0.0

0.8

0.2 0.4 0.6

0.0

conditional expectation of power generation

o _ e
zone 1 zone 2 zone 3
w w
S S
= o | = o
3 o 2 ©
s s
3 8
HE g 34
g s g 3
o o
S S
° °
S- S -
— T T T T T T T T T T T
12 18 24 30 36 42 1 6 12 18 24 30 36 42 1 6 12 18 24 30 36 42
lead time [h] lead time [h] lead time [h]
e
zone 5
«
L
=T @
2 o 7
s
8
3 =
8 s
o
o
e J
S

lead time [h]

lead time [h]

8/31



Forecast products — Quantile forecast

A quantile forecast is to be seen as a probabilistic threshold for power generation

e
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« is the quantile of the cumulative distribution function of the random process
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Forecast products — Interval forecast

A prediction interval is an interval within which power generation may lie, with a

20
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here is between 0.05th and 0.95th quantiles (90% probability)
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Forecast products — Predictive density

A predictive density fully describes the probabilistic distribution of power generation
for every lead time
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Forecast products — Predictive density

A predictive density fully describes the probabilistic distribution of power generation
for every lead time
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Forecast products — Trajectory (scenarios)

Trajectories are equally-likely samples of multivariate predictive densities for power
generation (in time and/or space)
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Forecast products — Trajectory (scenarios)

Trajectories are equally-likely samples of multivariate predictive densities for power
generation (in time and/or space)
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Basics of forecasting



Theoretical wind power curve
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B Maps meteorological features to the wind power output
B Dead band and cut-off wind speed

B Easy to scale one turbine to the entire farm
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Practical wind power curve

20
|

power [MW]
10
L

B Actual wind power curve is very different
B A lot of uncertainty in the conversion process

B The uncertainty is amplified by the weather predictions errors
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Linear regression for wind power curve fitting

B Dataset {(x1,t1),...,(Xi, t),.-.,(Xn, tn)} of n observations
B Vector x; of weather features and target t; for power output

B Goal: Fit a linear model to relate power output to weather
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Linear regression for wind power curve fitting

B Dataset {(x1,t1),...,(Xi, t),.-.,(Xn, tn)} of n observations
B Vector x; of weather features and target t; for power output

B Goal: Fit a linear model to relate power output to weather
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Linear regression

B Using dataset {(x;, t;)}7_;, with feature x and target t, we estimate the model

y:waer

with weight w and bias b (intercept)

B Loss function measures per-instance loss
1 2

B Cost function measures the loss across the entire dataset

C(y,t) = % > (i —t)?

i=1

B Optimize the model by solving the following convex optimization

mlnlmlze Z(y, —t)

where y; =w Txi+ b Vi=1,...,n
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B Minimize the cost function in scalar variables w and b

R IR
minimize Z(WTXi +b—t;)?

w .
’ i=1

What is the natural algorithm to solve this problem?
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B Minimize the cost function in scalar variables w and b

R IR
minimize Z(WTXi +b—t;)?

w .
’ i=1

What is the natural algorithm to solve this problem?

Closed-form solution

B Vectorized features:
X=[1 ¥

B Compute the weight and bias:

{ﬂ =(XTx)"IxTt
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B Minimize the cost function in scalar variables w and b

mlnlmlze Z(W xi + b — t;)?

w,

What is the natural algorithm to solve this problem?

Gradient descent (GD)

B Derivatives of the cost function:
ac 91 , 1
- = pp— :75 - — t)x;
ow  Ow 2n ey Ui i) n ,.Zl(yl i)

ab 8b 2n Z(YI t: = Z(YI —t;)

B For some chosen step size « > 0 and iter_max

for k =1,...,iter_max do

1o
w <+ w—a— weight update
ow

b+ b—a% bias update
ob

end for
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B Minimize the cost function in scalar variables w and b

mlnlmlze Z(W xi + b — t;)?

What is the natural algorithm to solve this problem?

Gradient descent (GD)

B Derivatives of the cost function:
ac 91 , 1
- = pp— :75 - — t)x;
ow  Ow 2n ey Ui i) n ,.Zl(yl i)

ab 8b 2n Z(YI t/ = Z(YI —t;)

B For some chosen step size « > 0 and iter_max
for k =1,...,iter_max do

-

W w—a—
ow

weight update Why GD and not the closed form?
B Applies to a much broader set of models
B In high dimension, matrix inversion is a
very expensive operation

b+ b—a% bias update
ob

end for
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Linear regression results

B For a = 0.01, iter_.max= 25,000 and intial model parameters (w, b) = (0,0) :

power output [p.u.]

0.9
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T

observations
[ | e linear regression

wind speed [m/s]

10
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Linear regression results

B For a = 0.01, iter_.max= 25,000 and intial model parameters (w, b) = (0,0) :
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B Can we make it better?
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Linear regression results

B For a = 0.01, iter_max= 25,000 and intial model parameters (w, b) = (0,0) :
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B Can we make it better? Yes! Let’s fit several regression models, each for a
particular wind speed range
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Quiz time

Which statement about wind power forecasting is FALSE?

A Trying to predict renewable power output, we will also be wrong
B The point forecast can be used by ISOs for reserve determination
C The linear regression model captures the ascending trend of the wind power curve

D The interval forecast is less informative than predictive density
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Feature transformation

Wind power extraction

1
p(u) = 5 CopAu?

power output [p.u.]

025

A rotor swept area A rotor swept area

u wind speed u wind speed

0.00

normalized wind speed

B We used linear regression despite the wind power curve is non-linear

B Leverage the underlying physical law to transform the features:
B Add cubic wind speed?!

B More generally, fit polynomial or logistic function?
B In any case, the model remains linear in features

B Is there a more flexible (less restrictive) approach to curve fitting?

1Chapter 3 of Burton, T., Jenkins, N., Sharpe, D., & Bossanyi, E. Wind energy handbook. 2011
2Wang, Yun, et al. Wind power curve modeling and wind power forecasting with inconsistent data. 2018
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Fitting using Radial basis functions

B Radial basis function (RBF) is real-valued function ¢ whose value depends only
on the (typically Euclidean) distance between the input and some fixed point

B For a fixed point ¢ (center), the RBF is ¢c(x) = ¢(||x — cl|)
B A series ¢, (X), ..., @c, (x) forms the basis for some function space of interest

B The weighted sum of RBFs approximates the function f(x) of interest, i.e.,

K K
F(x) =D wige,(x) = > wig(llx —il])
i=1 i=1

where w; is the weight to be optimized (e.g., solving a linear regression)
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Fitting using Radial basis functions

B Radial basis function (RBF) is real-valued function ¢ whose value depends only
on the (typically Euclidean) distance between the input and some fixed point

B For a fixed point ¢ (center), the RBF is ¢c(x) = ¢(||x — cl|)
B A series ¢, (X), ..., @c, (x) forms the basis for some function space of interest

B The weighted sum of RBFs approximates the function f(x) of interest, i.e.,
K K
Fx) =D wioe,(x) = Y wi(llx — ¢;]])
i=1 i=1

where w; is the weight to be optimized (e.g., solving a linear regression)

B Examples of relevant RBFs (kernels):

B Gaussian B Thin plate spline
A A 2
¢(r) = exp (—(vr)?) @(r) = r’In(r)
B Inverse quadratic B Inverse multiquadric
1 1

14 (yr)? V14 (yr)?
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° o
o o

power output [p.u.]

0.0

0.25 0.50 0.75 1.00
normalized wind speed

The weight of each Gaussian RBF is 1. Our goal is to weight them properly to
shape a smooth wind power curve.
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RBF-Based Support Vector Regression

B Dataset {(x;, t;)}7_,, with feature x and target t, we estimate the model
k
y=wo+ Y wpi(x)

Jj=1

with parameters w = [wo, wy, ..., wi] T

B Optimize the model by solving the following convex optimization

o 1 n k P
minimize > Z <wo + Z wjp;(x;i) — t;)

i=1 j=1

cost function C

Q. Is it convex or non-convex optimization problem?

3Z. Jianwu, W. Qiao. Support vector machine-based short-term wind power forecasting. 2011.
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RBF-Based Support Vector Regression

B Dataset {(x;, t;)}7_,, with feature x and target t, we estimate the model
k
y=wo+ Y wpi(x)

Jj=1

with parameters w = [wo, wy, ..., wi] T

B Optimize the model by solving the following convex optimization

o 1 n k P
minimize > Z <wo + Z wjp;(x;i) — t;)

i=1 j=1

cost function C

Q. Is it convex or non-convex optimization problem?

B Optimization is not convex in features x, but convex in RBF weights w!

3Z. Jianwu, W. Qiao. Support vector machine-based short-term wind power forecasting. 2011.
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Regularization

B To prevent overfitting, we introduce a regularization term R(w)

1 < k 2
minLrlnize o Z (Wo + Z wjpj(xi) — t,-) + AR(w)

i=1 j=1

with typically small parameter ), e.g.,107°
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Regularization

B To prevent overfitting, we introduce a regularization term R(w)

1 < k 2
minLrlnize o Z (Wg + Z wjpj(xi) — t,-) + AR(w)

i=1 j=1

with typically small parameter ), e.g.,107°
B Tikhonov regularization: R(w) = % HwH% gives rise to ridge regression

B For the fitting models with many RBFs, Tikhonov regularization mitigates the
problem of multicollinearity (highly correlated RBFs with similar parameters)

B ¢;-regularization: R(w) = ||w||; gives rise to LASSO regression
B LASSO: Least Absolute Shrinkage and Selection Operator

B For the fitting models with many RBFs, LASSO puts zero weight on redundant
features (introduce many RBFs and select only important ones using LASSO)
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Solving RBF-Based Support Vector Regression

B Closed-form solution is unlikely due to dimensionality of the feature matrix X
X=[1 ¢i(x) ... ex(x)]

B The gradient descent is also challenging due to dimensionality of the gradients

n

K
(0%
wo —wo — — > (Wo + > wii(x) — ti)
j=1

i=1
ad k
W wj = > (Wo +> wipi(x) - t;)soj(Xi) Vi=1,...k
i=1 j=1

which is very expensive to compute at every iterations

Q. How can we avoid computing so many gradients at every iterations?
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Stochastic gradient descent (SGD)

for k=1,..., iter max do

step 1. Sample index i ~ U[1, n] from a uniform distribution

step 2. Update model parameters on (x;, t;) only

k

wo <wp — CX(WQ + Z WjQDj(X,‘) — t,')
j=1
k
wj —w;j — Oé(Wo + > wipj(xi) — ti)SOj(Xi) Vi=1,...,k
j=1

end for

B At each iteration, the gradients are only evaluated at a single x;
B Regarded as a stochastic approximation of the original gradient descent

B Mini-batch extension: sample a small subset of training data
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Stochastic gradient descent (SGD)

for k=1,..., iter max do

step 1. Sample index i ~ U[1, n] from a uniform distribution

step 2. Update model parameters on (x;, t;) only

k

wo <wp — CX(WQ + Z WjQDj(X,‘) — t,')
j=1
k
wj —w;j — Oé(Wo + > wipj(xi) — ti)SOj(Xi) Vi=1,...,k
j=1

end for

B At each iteration, the gradients are only evaluated at a single x;
B Regarded as a stochastic approximation of the original gradient descent

B Mini-batch extension: sample a small subset of training data

Q. Does it account for regularization?
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Tikhonov regularization for SGD

K
L 1 2 A 2
minimize > (Wo + jEZl wipj(xi) — t,') + 3 [lwll3

Q. How do the gradients in SGD look like? (in-class exercise)

27 /31



Tikhonov regularization for SGD

K
L 1 2 A 2
minimize > (Wo + jEZl wipj(xi) — t,') + 3 [lwll3

Q. How do the gradients in SGD look like? (in-class exercise)

k
wo wp — cx(wo + Z wjpj(xi) — ti — )\WO)
j=1

wj —wj — a((wo + i wjpj(xi) — t,-)goj(x,-) - )\Wj) Vji=1,...,k
j=1
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Lasso regularization for SGD

k
(Wo +> wiei(x) — ti>2 + A lwll

=1

minimize
w

N =
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Lasso regularization for SGD

k

(Wo +> wiei(x) — ti>2 + A lwll

=1

N =

minimize
w
B Focus on the terms involving wy

k
. 1 2
minimize = (w0 -+ lvv,-so,-(x/)—r,-) + Alwol
j=

residual r;
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Lasso regularization for SGD

k

(Wo +> wiei(x) — ti>2 + A lwll

=1

N =

minimize
w
B Focus on the terms involving wy

k
. 1 2
minimize = (w0 -+ lvv,-so,-(x/)—r,-) + Alwol
j=

residual r;

B Derivative of the squared term w.r.t. wy
01,

— 1=

Owp 2 '
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Lasso regularization for SGD

k

(Wo +> wiei(x) — ti>2 + A lwll

=1

N =

minimize
w
B Focus on the terms involving wy

k
. 1 2
minimize = (w0 -+ lvv,-so,-(x/)—r,-) + Alwol
j=

residual r;

B Derivative of the squared term w.r.t. wy

B For the regularization term, the subgradient is

P A, wy >0
—Awo| = =, wp <0
Iwo anyg € [-\ A, wp=0
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Lasso regularization for SGD

k

(Wo +> wiei(x) — ti>2 + A lwll

=1

N =

minimize
w
B Focus on the terms involving wy

k
. 1 2
minimize = (w0 -+ lvv,-so,-(x/)—r,-) + Alwol
j=

residual r;

B Derivative of the squared term w.r.t. wy

B For the regularization term, the subgradient is

P A, wy >0
—Awo| = =, wp <0
Iwo anyg € [-\ A, wp=0

B The optimality conditions w.r.t. wp
ri+ Asign(wp) =0, wg#0 and || <A, wp=0
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Lasso regularization for SGD (cont'd)

B We need a well defined optimality condition for the gradient update, i.e.,
wp < wp — ati [w/o £1-regularization]

B Instead, we will apply a soft-thresholding function®

X—T, X>T
ST(X): 0, ‘X‘ ST 0T @
xX+717, x< -7

B Applying the soft-thresholding function to the gradient step
wop — ari —aX, Wy — ari > a\
wo = Sax(wo —ar) = 0, lwp — ar| < aX

wo — ari +aX, wp—arn < —a\

B This ensures small wy shrink to 0, as desired. Apply similarly to wy, ..., wy

4Wright and Yi. High-dimensional data analysis with low-dimensional models. 2022.
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RBF-SVM for wind power curve fitting

B Gaussian radial basis functions ¢;(x) = exp (—(5 ||x — ¢|)?)

B Centered across the normalized wind speed range c =0:0.05: 1.1
B step size o = 0.01, iter_max = 25,000, reg. parameter A = 10—3
B Gray lines depict the 23 Gaussian RBF for curve fitting

power output [p.u.]

0.25 0.50 0.75 1.00
normalized wind speed

the weight of each RBF is 1
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RBF-SVM for wind power curve fitting

B Gaussian radial basis functions ¢;(x) = exp (—(5 ||x — ¢|)?)

B Centered across the normalized wind speed range c =0:0.05: 1.1
B step size o = 0.01, iter_max = 25,000, reg. parameter A = 10—3
B Gray lines depict the 23 Gaussian RBF for curve fitting

T T

power output [p.u.]

0.25 0.50 0.75 1.00
normalized wind speed

no regularization
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RBF-SVM for wind power curve fitting

B Gaussian radial basis functions ¢;(x) = exp (—(5 ||x — ¢|)?)

B Centered across the normalized wind speed range c =0:0.05: 1.1
B step size o = 0.01, iter_max = 25,000, reg. parameter A = 10—3
B Gray lines depict the 23 Gaussian RBF for curve fitting
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Tikhonov regularization
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RBF-SVM for wind power curve fitting

B Gaussian radial basis functions ¢;(x) = exp (—(5 ||x — ¢|)?)

B Centered across the normalized wind speed range c =0:0.05: 1.1
B step size o = 0.01, iter_max = 25,000, reg. parameter A = 10—3
B Gray lines depict the 23 Gaussian RBF for curve fitting
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