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Course overview

Covered topics:

1 Intro to computational power systems

2 Duality, optimality conditions, and electricity pricing

3 Optimal power flow & Locational pricing

4 Distributed/decentralized optimization (ADMM)

5 ADMM applications to optimal power flow

6 Online feedback optimization (OFO)

7 OFO application to Volt/VAr control in distribution grid

8 OFO application to real-time economic re-dispatch

9 Today: Renewable power forecasting

What comes up next?

■ Advanced regression analysis

■ Decision-focused analytics

■ Final project presentation (April 18th)
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Why forecasting?

■ Forecasting is the first step in decision-making

■ Resolves (some) uncertainty of decision-making inputs

■ Brings confidence to your decision-making



Need for forecasting in power systems

Who needs a forecast?

■ Power producers: conventional generators, wind farm operators

■ Utility companies, large industrial consumers, aggregators, etc.

■ Independent system operators (US), system and market operators (Europe)

What to forecast?

■ Renewable power

■ Electricity demand

■ Day-ahead and real-time prices

■ Real-time system imbalance/congestion

■ Any other information relevant to your decision-making...
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Renewable energy forecasts in decision-making

Forecast provides inputs to many decision-making problems:

■ Reserve quantification (i.e., backup capacity for the system operator)

■ Unit commitment, economic dispatch, contingency screeining, etc.

■ Trading strategy for renewables, aggregators, utilities, etc.

Relevant inputs include:

■ Deterministic forecasts

■ Probabilistic forecasts as quantiles, intervals, and predictive distributions

■ Probabilistic forecasts in the form of trajectories/scenarios

Pinson et al. “Evaluation of nonparametric probabilistic forecasts of wind power”
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Forecasting for power system dispatch

time
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■ Two-stage decision-making to manage uncertainty of renewables:

■ Day-ahead: minimize the cost of power supply using forecast

■ Real-time: costly re-dispatch to accommodate forecast errors

■ The costs of real-time re-dispatch increase in renewable power capacity

■ Electricity prices (and thus revenues) are a function of the forecast

Need for a “good” power forecast to reduce the cost of uncertainty
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Example of market outcomes

■ Dutch electricity pool simulated over a year

■ 15-MW wind farm with no storage and control over output

■ Point and probabilistic forecasts generated with state-of-the-art tools

■ Three forecast models versus perfect predictions

■ Market outcomes are very sensitivity to a forecast model

■ Which forecast model do you chose?

Pinson, Chevallier, Kariniotakis. “Trading wind generation from short-term probabilistic forecasts of wind power”. IEEE TPWRS
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Forecast products



Wind power in Denmark
For illustration: the Western Denmark dataset

Agg. zone Orig. zones % of capacity
1 1, 2, 3 31
2 5, 6, 7 18
3 4, 8, 9 17
4 10, 11, 14, 15 23
5 12, 13 10

Figure: The Western Denmark dataset: original locations for which measurements are available, 15 control zones defined by Energinet, as
well as the 5 aggregated zones, for a nominal capacity of around 2.5 GW.

3/14
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Forecast products – Point forecast

A point forecast informs of the conditional expectation of power generation

Point forecast: definition

A point forecast informs of the conditional expectation of power generation

Mathematically:

ŷt+k|t = E[Yt+k |⌦, M, ✓̂]

given

the information set ⌦

a model M

its estimated
parameters ✓̂

at time t

(⌦, M, ✓̂ omitted in other definitions)

4/14
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Forecast products – Point forecast

A point forecast informs of the conditional expectation of power generationPoint forecasting

Figure: Example episode with point forecasts for the 5 aggregated zones of Western Denmark, as issued on 16 March
2007 at 06 UTC, along with corresponding power measurements, obtained a posteriori.

5/14
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Forecast products – Quantile forecast

A quantile forecast is to be seen as a probabilistic threshold for power generation

Quantile forecast: definition

A quantile forecast is to be seen as a probabilistic threshold for power generation

Mathematically:

q̂
(↵)
t+k|t = F̂�1

t+k|t(↵)

with

↵: the nominal level
(ex: 0.5 for 50%)

F̂ : (predicted)
cumulative
distribution function
for Yt+k

6/14α is the quantile of the cumulative distribution function of the random process
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Forecast products – Interval forecast

A prediction interval is an interval within which power generation may lie, with a
certain probability

Prediction interval: definition

A prediction interval is an interval within which power generation may lie, with a certain
probability

Mathematically:

Î
(�)
t+k|t =

h
q̂

(↵)
t+k|t , q̂

(↵)
t+k|t

i

with

�: nominal coverage
rate (ex: 0.9 for
90%)

q̂
(↵)
t+k|t , q̂

(↵)
t+k|t :

interval bounds

↵, ↵: nominal levels
of quantile forecasts

7/14
Interval here is between 0.05th and 0.95th quantiles (90% probability)
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Forecast products – Predictive density

A predictive density fully describes the probabilistic distribution of power generation
for every lead time

Predictive densities: definition

A predictive density fully describes the probabilistic distribution of power generation for every
lead time

Mathematically:

Yt+k ⇠ F̂t+k|t

with

F̂t+k|t : cumulative
distribution function
for Yt+k (predicted
given information
available at time t)

8/14
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Forecast products – Predictive density

A predictive density fully describes the probabilistic distribution of power generation
for every lead time

Predictive densities

Figure: Example episode with probabilistic forecasts for the 5 aggregated zones of Western Denmark, as issued on 16 March 2007 at
06UTC. They take the form of so-called river-of-blood fan charts, represented by a set of central prediction intervals with increasing nominal
coverage rates (from 10% to 90%).

9/14
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Forecast products – Trajectory (scenarios)

Trajectories are equally-likely samples of multivariate predictive densities for power
generation (in time and/or space)

Trajectories (/scenarios): definition

Trajectories are equally-likely samples of multivariate predictive densities for power generation
(in time and/or space)

Mathematically:

z
(j)
t ⇠ F̂t

with

F̂ : multivariate
predictive cdf for Yt

z
(j)
t : the j th

trajectory

11/14
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Forecast products – Trajectory (scenarios)

Trajectories are equally-likely samples of multivariate predictive densities for power
generation (in time and/or space)

Space-time trajectories (/scenarios)

Figure: Spatio-temporal scenarios of wind power generation for the 5 aggregated zones of Western Denmark, issued on the 16 March 2007
at 06 UTC.

12/14
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Basics of forecasting



Theoretical wind power curve
The manufacturer power curve

Power curve of the Vestas V44 turbine (600 kW)

Klim wind farm (North of Jutland, Denmark): 35 V44 turbines
Nominal capacity: 21 MW

Easy direct scaling of the power curve from 600kW to 21MW!
5/9

■ Maps meteorological features to the wind power output

■ Dead band and cut-off wind speed

■ Easy to scale one turbine to the entire farm
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Practical wind power curve
The actual power curve looks di↵erent!

Origins of uncertainty in the conversion process:

actual meteorological
conditions seen by
turbines,

aggregation of individual
curves,

non-ideal power curves,

etc.

6/9

■ Actual wind power curve is very different

■ A lot of uncertainty in the conversion process

■ The uncertainty is amplified by the weather predictions errors
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Linear regression for wind power curve fitting

■ Dataset {(x1, t1), . . . , (xi , ti ), . . . , (xn, tn)} of n observations

■ Vector xi of weather features and target ti for power output

■ Goal: Fit a linear model to relate power output to weather
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Linear regression

■ Using dataset {(xi , ti )}ni=1, with feature x and target t, we estimate the model

y = w⊤x+ b

with weight w and bias b (intercept)

■ Loss function measures per-instance loss

L(y , t) =
1

2
(y − t)2

■ Cost function measures the loss across the entire dataset

C(y, t) =
1

2n

n∑
i=1

(yi − ti )
2

■ Optimize the model by solving the following convex optimization

minimize
w,b

1

2n

n∑
i=1

(yi − ti )
2

where yi = w⊤xi + b ∀i = 1, . . . , n
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■ Minimize the cost function in scalar variables w and b

minimize
w,b

1

2n

n∑
i=1

(w⊤xi + b − ti )
2

What is the natural algorithm to solve this problem?
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■ Minimize the cost function in scalar variables w and b

minimize
w,b

1

2n

n∑
i=1

(w⊤xi + b − ti )
2

What is the natural algorithm to solve this problem?

Closed-form solution

■ Vectorized features:

X =
[
1 x

]
■ Compute the weight and bias:[

b
w

]
= (X⊤X)−1X⊤t
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■ Minimize the cost function in scalar variables w and b

minimize
w,b

1

2n

n∑
i=1

(w⊤xi + b − ti )
2

What is the natural algorithm to solve this problem?

Gradient descent (GD)

■ Derivatives of the cost function:

∂C
∂w

=
∂

∂w

1

2n

n∑
i=1

(yi − ti )
2 =

1

n

n∑
i=1

(yi − ti )xi

∂C
∂b

=
∂

∂b

1

2n

n∑
i=1

(yi − ti )
2 =

1

n

n∑
i=1

(yi − ti )

■ For some chosen step size α > 0 and iter max:

for k = 1, . . . , iter max do

w ← w−α
∂C
∂w

weight update

b ← b−α
∂C
∂b

bias update

end for

Why GD and not the closed form?

■ Applies to a much broader set of models

■ In high dimension, matrix inversion is a
very expensive operation
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Linear regression results

■ For α = 0.01, iter max= 25, 000 and intial model parameters (w , b) = (0, 0) :

■ Can we make it better?

18 / 31



Linear regression results

■ For α = 0.01, iter max= 25, 000 and intial model parameters (w , b) = (0, 0) :

■ Can we make it better?

18 / 31



Linear regression results

■ For α = 0.01, iter max= 25, 000 and intial model parameters (w , b) = (0, 0) :

■ Can we make it better? Yes! Let’s fit several regression models, each for a
particular wind speed range
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Quiz time

Which statement about wind power forecasting is FALSE?

A Trying to predict renewable power output, we will also be wrong

B The point forecast can be used by ISOs for reserve determination

C The linear regression model captures the ascending trend of the wind power curve

D The interval forecast is less informative than predictive density
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Feature transformation

Wind power extraction

p(u) =
1

2
CpρAu

3

A rotor swept area

u wind speed

A rotor swept area

u wind speed

■ We used linear regression despite the wind power curve is non-linear

■ Leverage the underlying physical law to transform the features:

■ Add cubic wind speed1

■ More generally, fit polynomial or logistic function2

■ In any case, the model remains linear in features

■ Is there a more flexible (less restrictive) approach to curve fitting?

1Chapter 3 of Burton, T., Jenkins, N., Sharpe, D., & Bossanyi, E. Wind energy handbook. 2011
2Wang, Yun, et al. Wind power curve modeling and wind power forecasting with inconsistent data. 2018
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Fitting using Radial basis functions

■ Radial basis function (RBF) is real-valued function φ whose value depends only
on the (typically Euclidean) distance between the input and some fixed point

■ For a fixed point c (center), the RBF is φc(x) = φ̂(∥x− c∥)
■ A series φc1 (x), . . . , φck (x) forms the basis for some function space of interest

■ The weighted sum of RBFs approximates the function f (x) of interest, i.e.,

f (x) =
k∑

i=1

wiφci (x) =
k∑

i=1

wi φ̂(∥x− ci∥)

where wi is the weight to be optimized (e.g., solving a linear regression)

■ Examples of relevant RBFs (kernels):

■ Gaussian

φ̂(r) = exp
(
−(γr)2

)
■ Inverse quadratic

1

1 + (γr)2

■ Thin plate spline

φ̂(r) = r2ln(r)

■ Inverse multiquadric

1√
1 + (γr)2
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The weight of each Gaussian RBF is 1. Our goal is to weight them properly to
shape a smooth wind power curve.
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RBF-Based Support Vector Regression

■ Dataset {(xi , ti )}ni=1, with feature x and target t, we estimate the model3

y = w0 +
k∑

j=1

wjφj (x)

with parameters w = [w0,w1, . . . ,wk ]
⊤

■ Optimize the model by solving the following convex optimization

minimize
w

1

2n

n∑
i=1

(
w0 +

k∑
j=1

wjφj (xi )− ti

)2

︸ ︷︷ ︸
cost function C

Q. Is it convex or non-convex optimization problem?

■ Optimization is not convex in features x, but convex in RBF weights w!

3Z. Jianwu, W. Qiao. Support vector machine-based short-term wind power forecasting. 2011.
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Regularization

■ To prevent overfitting, we introduce a regularization term R(w)

minimize
w

1

2n

n∑
i=1

(
w0 +

k∑
j=1

wjφj (xi )− ti

)2
+ λR(w)

with typically small parameter λ, e.g ., 10−5

■ Tikhonov regularization: R(w) = 1
2
∥w∥22 gives rise to ridge regression

■ For the fitting models with many RBFs, Tikhonov regularization mitigates the
problem of multicollinearity (highly correlated RBFs with similar parameters)

■ ℓ1-regularization: R(w) = ∥w∥1 gives rise to LASSO regression

■ LASSO: Least Absolute Shrinkage and Selection Operator

■ For the fitting models with many RBFs, LASSO puts zero weight on redundant
features (introduce many RBFs and select only important ones using LASSO)
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Solving RBF-Based Support Vector Regression

■ Closed-form solution is unlikely due to dimensionality of the feature matrix X

X =
[
1 φ1(x) . . . φk (x)

]
■ The gradient descent is also challenging due to dimensionality of the gradients

w0 ←w0 −
α

n

n∑
i=1

(
w0 +

k∑
j=1

wjφj (xi )− ti

)

wj ←wj −
α

n

n∑
i=1

(
w0 +

k∑
j=1

wjφj (xi )− ti

)
φj (xi ) ∀j = 1, . . . , k

which is very expensive to compute at every iterations

Q. How can we avoid computing so many gradients at every iterations?
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Stochastic gradient descent (SGD)

for k = 1, . . . , iter max do

step 1. Sample index i ∼ U [1, n] from a uniform distribution

step 2. Update model parameters on (xi , ti ) only

w0 ←w0 − α
(
w0 +

k∑
j=1

wjφj (xi )− ti

)

wj ←wj − α
(
w0 +

k∑
j=1

wjφj (xi )− ti

)
φj (xi ) ∀j = 1, . . . , k

end for

■ At each iteration, the gradients are only evaluated at a single xi

■ Regarded as a stochastic approximation of the original gradient descent

■ Mini-batch extension: sample a small subset of training data

Q. Does it account for regularization?
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Tikhonov regularization for SGD

minimize
w

1

2

(
w0 +

k∑
j=1

wjφj (xi )− ti

)2
+

λ

2
∥w∥22

Q. How do the gradients in SGD look like? (in-class exercise)

w0 ←w0 − α
(
w0 +

k∑
j=1

wjφj (xi )− ti − λw0

)

wj ←wj − α
((

w0 +
k∑

j=1

wjφj (xi )− ti

)
φj (xi )− λwj

)
∀j = 1, . . . , k
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Lasso regularization for SGD

minimize
w

1

2

(
w0 +

k∑
j=1

wjφj (xi )− ti

)2
+ λ ∥w∥1

■ Focus on the terms involving w0

minimize
w

1

2

(
w0 +

k∑
j=1

wjφj (xi )− ti︸ ︷︷ ︸
residual ri

)2
+ λ|w0|

■ Derivative of the squared term w.r.t. w0

∂

∂w0

1

2
r2i = ri

■ For the regularization term, the subgradient is

∂

∂w0
λ|w0| =

 λ, w0 > 0
−λ, w0 < 0
any g ∈ [−λ, λ], w0 = 0

■ The optimality conditions w.r.t. w0

ri + λsign(w0) = 0, w0 ̸= 0 and |ri | ⩽ λ, w0 = 0
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Lasso regularization for SGD (cont’d)

■ We need a well defined optimality condition for the gradient update, i.e.,

w0 ← w0 − αri [w/o ℓ1-regularization]

■ Instead, we will apply a soft-thresholding function4

Sτ (x) =

 x − τ, x > τ
0, |x | ⩽ τ
x + τ, x < −τ

8.2 Proximal Gradient Methods 317

x

y = soft(x, ⌧)

0 ⌧�⌧ x

y = soft(x, ⌧), y � 0

0 ⌧

Figure 8.1 Illustrations of soft-thresholding (or shrinkage) operators associated with
proximal operators of the `1 norm (left) and the nuclear norm (right), respectively.
Note that singular values are always nonnegative. Typically the threshold ⌧ � 0 is a
small value.

the first and third assertions as exercises to the reader. [Hint: for the first, use

the definition; for the third, use the subdi↵erential of k · k⇤.]

Example 8.5 (Proximal Operators for Powers of Nuclear Norm). In problems

such as high-order low-rank tensor completion [ZZWM14] or stochastic matrix

factorization [CMH+17] (also known as “dropout” in deep learning, see Exercise

7.8 of Chapter 7), we may need to find the proximal operator for a given matrix

W :

proxg[W ]
.
= arg min

X

⇢
g(X) +

1

2
kX �W k2F

�
, (8.2.27)

for g(X) as certain powers of nuclear norm or its exponential,4 say

g(X) = �kXk2⇤ or g(X) = �ekXk⇤ . (8.2.28)

For each of these two cases, one can show that the proximal operator takes the

form:

proxg[W ] = Usoft(⌃, ⌧)V ⇤,

where ⌧ is certain threshold that depends on � and the singular values of W .

See Figure 8.1 right for an illustration of the soft-thresholding function on the

singular values. In fact, this is true if g(X) = f(kXk⇤) for any monotonic

convex function f . The only question is whether the associated threshold ⌧ can

be solved in closed-form or e�ciently computed numerically. We explore some

of these extensions in the exercises (see Exercise 8.4). The reader may further

explore whether the same property holds for any unitary invariant matrix norm

(introduced in Appendix A.9).

Thus, for the problems of our interest, we can compute the proximal operator

4 The reader may refer to [ZM20] for the more general case.

■ Applying the soft-thresholding function to the gradient step

w0 = Sαλ(w0 − αri ) =

 w0 − αri − αλ, w0 − αri > αλ
0, |w0 − αri | ⩽ αλ
w0 − αri + αλ, w0 − αri < −αλ

■ This ensures small w0 shrink to 0, as desired. Apply similarly to w1, . . . ,wk

4Wright and Yi. High-dimensional data analysis with low-dimensional models. 2022.
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RBF-SVM for wind power curve fitting

■ Gaussian radial basis functions φi (x) = exp
(
−(5 ∥x − ci∥)2

)
■ Centered across the normalized wind speed range c = 0 : 0.05 : 1.1

■ step size α = 0.01, iter max = 25, 000, reg. parameter λ = 10−3

■ Gray lines depict the 23 Gaussian RBF for curve fitting

the weight of each RBF is 1
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)
■ Centered across the normalized wind speed range c = 0 : 0.05 : 1.1
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