ECE 598 Computational Power Systems

Online optimization for Volt/VAr Control

Vladimir Dvorkin

University of Michigan

Why voltage control?

- **Voltage drops** due to both active and reactive loads (significant line resistances)
- Over-voltage: Reduced light bulb life and electronic devices
- Under-voltage: lower illumination, heating devices (e.g., water heaters) operate slower, higher starting currents on motors and overheating
- Voltage fluctuations and transformer overloads due to solar and other **DERs**

https://www.esig.energy/wiki-main-page/ time-series-power-flow-analysis-for-distribution-connected-pv-generation/

DTU-Risø

Diverse energy mix: wind turbines, photovoltaic (PV) plants, diesel generators

- Energy storage: 15 kW/120 kWh vanadium redox flow battery
- Flexible grid: autonomous and grid-connected modes, combinations thereof.

DTU-Risø

■ 3-bus distribution feeder¹: 1 static load and 3 inverter-interfaced devices

- The battery is set to inject 10 kW to cause over-voltage at the end of the feeder
- Goal: device reactive control strategy for inverters to keep voltage within limits

¹Data from L. Ortmann et al. Experimental validation of feedback optimization in power distribution grids. 2020

Designing controller

For simplicity, we do not control active power injection (only reactive)

We continuously take measurements throughout the grid

Reactive power injections of inverters obey the rule

$$\mathbf{q}_t = \mathbf{q}_{t-1} + \eta \Delta \mathbf{q}_t$$

where $\eta > 0$ is a gain (constant) and $\Delta \mathbf{q}_t$ is the external signal which depends on measurements and prompts inverters to change reactive power injection

How to select $\Delta \mathbf{q}_t$ to steer voltages to admissible range of 0.95 - 1.05 p.u.?

Voltage droop control

- AC-OPF-based controlr
- Feedback optimization-based control

Voltage droop control

- Piecewise linear control law complying with recent grid codes²
- Linear response to voltage at inverter's bus with some deadband.
- Critical points \tilde{v} can be changed to tune inverter's response
- Limitation: response to only local voltage measurements can be insufficient

 $^{^{2}}$ IEEE 1547–2018, Standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces

Voltage control using AC-OPF model

$$\begin{aligned} \mathbf{q}_t^{\star} &= \underset{\mathbf{v}, \mathbf{q}_t}{\operatorname{argmin}} \quad \frac{1}{2} (\mathbf{q}_t - \mathbf{q}_{t-1})^{\top} \mathbf{C} (\mathbf{q}_t - \mathbf{q}_{t-1}) \\ \text{subject to} \quad \mathbf{v}_t &= v_0 \mathbf{1} + \mathbf{R} \mathbf{p}_t + \mathbf{X} (\widehat{\mathbf{q}}_t + \mathbf{q}_t) \\ & \underline{\mathbf{v}} &\leq \mathbf{v}_t \leqslant \overline{\mathbf{v}} \\ & \underline{\mathbf{q}} &\leq \mathbf{q}_t \leqslant \overline{\mathbf{q}} \end{aligned}$$

Instead of voltage, it requires active pt and reactive qt power measurements
 It also requires the full knowledge of the grid model in terms of R and X
 Computes the least-cost reactive power injection change:

$$\mathbf{q}_t = \mathbf{q}_{t-1} + \eta(\mathbf{q}_t^{\star} - \mathbf{q}_{t-1})$$

Compared to voltage droop control, does q^{*}_t depend only on local measurements?
What data do we need to know to implement such control strategy in practice?

Feedback optimization

- **u** set-point (e.g., reactive power injection by inverters)
- **y** output (e.g., voltage measurements across the grid)
- **w** uncontrollable input (e.g., PV or wind active power generation)
- **I** $h(\mathbf{u}, \mathbf{w})$ map from inputs to outputs (e.g., power flow equations)

Feedback optimization

- **u** set-point (e.g., reactive power injection by inverters)
- **y** output (e.g., voltage measurements across the grid)
- **w** uncontrollable input (e.g., PV or wind active power generation)
- **I** $h(\mathbf{u}, \mathbf{w})$ map from inputs to outputs (e.g., power flow equations)

Feedback optimization:

 $\begin{array}{ll} \underset{\mathbf{u}}{\text{minimize}} & f(\mathbf{u}) & \text{cost of actuation effort} \\ \text{subject to} & g(\mathbf{y}) \leqslant 0 & \text{constraint on the output } \mathbf{y} = h(\mathbf{u}, \mathbf{w}) \\ & \mathbf{u} \in \mathcal{U} & \text{actuation bounds} \end{array}$

Assumption: output y is measured in real-time, exogenous input w is unknown
Real-time measurements are used to iteratively adjust the set-points u
Reduced model information: h is unknown, but ∂h can be estimated
The closed-loop system converges to the solutions of the optimization problem

Feedback optimization principle - part I

$$\begin{array}{ll} \underset{\mathbf{u}}{\text{minimize}} & f(\mathbf{u}) & \text{cost of actuation effort} \\ \text{subject to} & g(\mathbf{y}) \leqslant 0 & \text{constraint on the output } \mathbf{y} = h(\mathbf{u}, \mathbf{w}) \\ & \mathbf{u} \in \mathcal{U} & \text{actuation bounds} \end{array}$$

Use measurements y instead of the model $h(\mathbf{u}, \mathbf{w})$

Dualize constraint on the output

$$\mathcal{L}(\mathbf{u}, \boldsymbol{\lambda}) = f(\mathbf{u}) + \boldsymbol{\lambda}^{\top} g(h(\mathbf{u}, \mathbf{w}))$$

Instead of optimization above, solve

 $\max_{\boldsymbol{\lambda} \geqslant 0} \phi(\boldsymbol{\lambda})$

where

$$\phi(oldsymbol{\lambda}) = \min_{oldsymbol{u}\in\mathcal{U}} \mathcal{L}(oldsymbol{u},oldsymbol{\lambda})$$

is the dual function

How to solve this optimization?

Feedback optimization principle - part II

Gradient ascent with a fix step size

$$oldsymbol{\lambda}_{t+1} = [oldsymbol{\lambda}_t +
ho
abla_{oldsymbol{\lambda}} \phi(oldsymbol{\lambda})]_{\geqslant oldsymbol{0}}$$

where $\rho > {\rm 0}$ is a tuning parameter

 $\blacksquare \nabla_{\lambda}\phi(\lambda) = g(h(\mathbf{u},\mathbf{w})) - \text{gradient is given by violation of the dualized constraint}$

Do we need to know model h to compute constraint violation? No, only y!

$$\boldsymbol{\lambda}_{t+1} = [\boldsymbol{\lambda}_t + \rho g(\mathbf{y}_t)]_{\geq 0}$$

 λ integrates constraint violation with step ρ (integral part of a PI-controller)

Using λ_{t+1} , update set-points by solving

$$\begin{aligned} \boldsymbol{u}_{t+1} &= \arg\min_{\boldsymbol{u}} \ \mathcal{L}(\boldsymbol{u}, \boldsymbol{\lambda}_{t+1}) \\ &\arg\min_{\boldsymbol{u}} \ f(\boldsymbol{u}) + \boldsymbol{\lambda}_{t+1}^\top g(\boldsymbol{y}_t) \end{aligned}$$

and apply them to the system

Feedback optimization algorithm

For $t = 0, 1, \dots, +\infty$ do

- Step 1: Measure system output \mathbf{y}_t
- Step 2: Update duals $\lambda_{t+1} = [\lambda_t + \rho g(\mathbf{y}_t)]_{\geqslant \mathbf{0}}$
- Step 3: Update set-points $\boldsymbol{u}_{t+1} = \arg\min_{\boldsymbol{u}} f(\boldsymbol{u}) + \boldsymbol{\lambda}_{t+1}^{\top} g(\boldsymbol{y}_t)$

Step 4: Apply set-points to the system

Practical feedback optimization for voltage control

We take voltage measurements $\hat{\mathbf{v}}$ from unknown PF equations $\mathbf{v}(\mathbf{q}, \mathbf{w})$

Model-free AC optimal power flow problem:

Practical feedback optimization for voltage control

We take voltage measurements $\hat{\mathbf{v}}$ from unknown PF equations $\mathbf{v}(\mathbf{q}, \mathbf{w})$

Model-free AC optimal power flow problem:

■ The reactive set points are updated by solving for some fixed

$$\begin{split} \mathcal{L}(\mathbf{q},\underline{\lambda},\overline{\lambda}) &= \frac{1}{2}\mathbf{q}^{\top}\mathbf{C}\mathbf{q} + \overline{\lambda}^{\top}(\mathbf{v}(\mathbf{q},\mathbf{w}) - \overline{\mathbf{v}}) + \underline{\lambda}^{\top}(\underline{\mathbf{v}} - \mathbf{v}(\mathbf{q},\mathbf{w})) \\ \Longrightarrow \nabla_{\mathbf{q}}\mathcal{L}(\mathbf{q},\underline{\lambda},\overline{\lambda}) &= \mathbf{C}\mathbf{q} + \frac{\partial\mathbf{v}(\mathbf{q},\mathbf{w})}{\partial\mathbf{q}}^{\top}(\overline{\lambda} - \underline{\lambda}) = \mathbf{0} \\ \Longrightarrow \mathbf{q} &= \mathbf{C}^{-1}\frac{\partial\mathbf{v}(\mathbf{q},\mathbf{w})}{\partial\mathbf{q}}^{\top}(\underline{\lambda} - \overline{\lambda}), \quad \text{followed by projection on } [\underline{\mathbf{q}},\overline{\mathbf{q}}] \end{split}$$

How to approximate the sensitivity of voltages to reactive power injections?

Practical feedback optimization for voltage control

We take voltage measurements $\hat{\mathbf{v}}$ from unknown PF equations $\mathbf{v}(\mathbf{q}, \mathbf{w})$

Model-free AC optimal power flow problem:

The reactive set points are updated by solving for some fixed

$$\begin{split} \mathcal{L}(\mathbf{q},\underline{\lambda},\overline{\lambda}) &= \frac{1}{2}\mathbf{q}^{\top}\mathbf{C}\mathbf{q} + \overline{\lambda}^{\top}(\mathbf{v}(\mathbf{q},\mathbf{w}) - \overline{\mathbf{v}}) + \underline{\lambda}^{\top}(\underline{\mathbf{v}} - \mathbf{v}(\mathbf{q},\mathbf{w})) \\ \Longrightarrow \nabla_{\mathbf{q}}\mathcal{L}(\mathbf{q},\underline{\lambda},\overline{\lambda}) &= \mathbf{C}\mathbf{q} + \frac{\partial\mathbf{v}(\mathbf{q},\mathbf{w})}{\partial\mathbf{q}}^{\top}(\overline{\lambda} - \underline{\lambda}) = \mathbf{0} \\ \Longrightarrow \mathbf{q} &= \mathbf{C}^{-1}\frac{\partial\mathbf{v}(\mathbf{q},\mathbf{w})}{\partial\mathbf{q}}^{\top}(\underline{\lambda} - \overline{\lambda}), \quad \text{followed by projection on } [\underline{\mathbf{q}},\overline{\mathbf{q}}] \end{split}$$

How to approximate the sensitivity of voltages to reactive power injections?
 From LinDistFlow model, ∂v(q,w)/∂q = X − reduced bus reactance matrix.

Feedback optimization algorithm for voltage control

For $t = 0, 1, ..., +\infty$ do Step 1: Measure voltage $\hat{\mathbf{v}}_t$ Step 2: Update duals $\underline{\lambda}_{t+1} = [\underline{\lambda}_t + \rho(\underline{\mathbf{v}} - \widehat{\mathbf{v}}_t)] \ge 0$ $\overline{\lambda}_{t+1} = [\overline{\lambda}_t + \rho(\widehat{\mathbf{v}}_t - \overline{\mathbf{v}})] \ge 0$ Step 3: Update reactive set-points $\tilde{\mathbf{q}}_{t+1} = \mathbf{C}^{-1} \mathbf{X}^{\top} (\underline{\lambda}_{t+1} - \overline{\lambda}_{t+1})$ $\mathbf{q}_{t+1} = \max{\{\underline{\mathbf{q}}, \min{\{\overline{\mathbf{q}}_{t+1}, \overline{\mathbf{q}}\}}}$

Step 4: Apply set-points to inverters

Feedback optimization algorithm for voltage control

For $t = 0, 1, ..., +\infty$ do Step 1: Measure voltage $\hat{\mathbf{v}}_t$ Step 2: Update duals $\underline{\lambda}_{t+1} = [\underline{\lambda}_t + \rho(\underline{\mathbf{v}} - \widehat{\mathbf{v}}_t)]_{\ge 0}$ $\overline{\lambda}_{t+1} = [\overline{\lambda}_t + \rho(\widehat{\mathbf{v}}_t - \overline{\mathbf{v}})]_{\ge 0}$ Step 3: Update reactive set-points $\tilde{\mathbf{q}}_{t+1} = \mathbf{C}^{-1}\mathbf{X}^{\top}(\underline{\lambda}_{t+1} - \overline{\lambda}_{t+1})$ $\mathbf{q}_{t+1} = \max{\{\underline{\mathbf{q}}, \min{\{\widetilde{\mathbf{q}}_{t+1}, \overline{\mathbf{q}}\}}\}}$ Step 4: Apply set-points to inverters

What if the problem is infeasible?

- Duals keep integrating (windup)
- Solution \rightarrow anti-windup. For example, for the dual of the lower voltage limit:

$$\underline{\lambda}_{t+1} = \begin{cases} \underline{\lambda}_t & \text{, if } \underline{\mathbf{v}} - \widehat{\mathbf{v}}_t > 0 \text{ and } \mathbf{q} = \overline{\mathbf{q}} \\ \underline{\lambda}_t + \rho(\underline{\mathbf{v}} - \widehat{\mathbf{v}}_t) & \text{, if otherwise} \end{cases}$$

Summary

■ Volt/VAr control to maintain normal operation of appliances in distribution grids

■ Three Volt/VAr control strategies:

- Droop control (current industry standard), inefficient due to its "local" nature
- OPF-based control (ideal, yet impractical due to unrealistic knowledge assumptions)
- Feedback optimization-based control (acts on measurements, middle-ground solution)
- Feedback optimization-based control leverages Lagrange duality to replace unknown model (OPF equations) with measurements
- Only needs the gradient of the PF equations. Hence, it is robust to model mismatch (e.g., reactance estimation errors, as reactance does not change in sign)

Resources

- Ortmann, L., Hauswirth, A., Caduff, I., Dörfler, F., & Bolognani, S. (2020). Experimental validation of feedback optimization in power distribution grids. Electric Power Systems Research, 189, 106782.
- Bolognani, S., Carli, R., Cavraro, G., & Zampieri, S. (2014). Distributed reactive power feedback control for voltage regulation and loss minimization. IEEE Transactions on Automatic Control, 60(4), 966-981.
- Dall'Anese, E., & Simonetto, A. (2016). Optimal power flow pursuit. IEEE Transactions on Smart Grid, 9(2), 942-952.

Tutorial time

- Look around you and form teams of 2 people (1 min)
- Pick one person to code; the other one guides
- Work in pairs for the whole tutorial session

Tutorial: Risø

- Simulation horizon of 1,000 seconds
- At 300's sec, battery starts injecting 50% less active power
- At 700's sec, battery restores active power at 10 kW
- Implement droop and OPF-based voltage control starting from 100's sec
- Use tutorial_6_Volt/VAr_control to start the tutorial

Expected results: no voltage control

Expected results: droop control

Expected results: OPF-based control

Expected results: Online feedback optimization-based control

