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Last lecture recap

↭ Look around you and form teams of 2 people (1 min)

↭ Quickly review your notes or the slide deck (1 min)

↭ Share your three personal highlights with your partner (3 min)

↭ Get iClicker app ready

Quiz 1: Which statement about Volt/VAr control is FALSE?

A OPF-based control (with the full knowledge of the input-ouput model) updates
set-points without relying on voltage measurements

B Feedback optimization-based control does not need the exact input-output
model; it leverages voltage measurements instead.

C In feedback optimization, the update of the dual variable is based on the power
flow constraint violation which can be computed from the measurements

D Under droop control strategy, inverters only respond to local voltage
measurements. As a result, their individual control objectives can be in conflict
with the system-wide voltage control objective
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When to solve AC-OPF?

Planning (o!ine) stage

↭ Uncertainty of problem parameters
(e.g, load and renewable forecast)

↭ Economically e”cient generator
schedule (set-points)

↭ Anticipation of contingencies

↭ Long comput. horizon (hours)

Real-time (online) stage

↭ Actual problem parameters (e.g,
actual load and renewable realizations)

↭ Adjustments of scheduled generation
to manage any deviation

↭ Real-time contingencies

↭ Narrow comput. horizon (seconds)

At both planning and real-time stages!
(but using di#erent optimization algorithms)
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Towards online AC-OPF

o!ine AC-OPF

o!ine
optimization

system
y = h(x, d)

x

dd̂ (forecast)

y

online AC-OPF

online feedback
optimization

system
y = h(x, d)

d

x y

y

Purpose of online AC-OPF optimization:
↭ Power flow and injection adjustment given actual loads (as opposed to forecast)
↭ Tracking of AC-OPF solutions (as opposed to enforcing o!ine solutions)
↭ Recognize grid dynamics while acting on steady-state equations

Benefits of online AC-OPF optimization:
↭ Increases the robustness against time-varying disturbances
↭ Reduces model-dependence, i.e., make optimization model-free
↭ Fast response to line and generator outages
↭ Minimizes computational e#ort
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Online distribution AC-OPF

feedback
optimization

system
v = h(q, p)

q v

v

DTU-Risø

PCC

v1 v2 v3

p1, q1 p2, q2 p3, q3

PV1 Static load
0 kW �15 kW

±8 kVAr �0 kVAr

PV2
0 kW

±8 kVAr

Battery
10 kW

±10 kVAr

vo
tl
ag

e
[p

.u
.]

0.95 p.u.

1.05 p.u.

•1

⌅ 3-bus distribution feeder1: 1 static load and 3 inverter-interfaced devices

⌅ The battery is set to inject 10 kW to cause over-voltage at the end of the feeder

⌅ Goal: device reactive control strategy for inverters to keep voltage within limits

1Data from L. Ortmann et al. Experimental validation of feedback optimization in power distribution grids. 2020
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Feedback optimization:

minimize
q

1

2
q→Cq cost function

subject to v = v01 + Rp + Xq LinDistFlow equations

q ↫ q ↫ q injection limits

v ↫ v ↫ v voltage limits

↭ q inverter’s reactive injection

↭ v squared voltage magnitude

↭ p uncontrolled active power injection

How is this optimization di”erent from o!ine AC-OPF?
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Online transmission AC-OPF

feedback
optimization

system
vpq = h(sg , vpv , sd )

sg , vpv
vpq

vpq

vi

sd
i

∑

i↑k

sik

sg
i

minimize
sg ,vpv

c(sg )

subject to sg
i → sd

i =
∑

i↑k

sik (vi , vk ) complex power flow

sg
i ↫ sg

i ↫ sg
i generation limits

v i ↫ vi ↫ v i voltage limits

sik (vi , vk ) ↫ sik , ↑(i , k) complex power flow limits

How is this optimization di”erent from o!ine AC-OPF?
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Online optimization algorithms
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Solving non-linear optimization as dynamical systems

↭ Non-linear optimization program

minimize
x↓Rn

f (x)

subject to g(x) ↫ 0 : µ

h(x) = 0 : ω

where f : Rn ↓↔ R is strictly convex, g : Rn ↓↔ Rm, h : Rn ↓↔ Rk

↭ Let C = {x ↗ Rn | g(x) ↫ 0, h(x) = 0} denote its feasible set.

↭ Our goal is to solve this non-linear optimization by designing a dynamical system

ẋ = F (x)

that convergences to the optimal solution xω

↭ Forward Euler discretization:

ẋ = →F (x) ↘≃ xt+1 = xt + ωF (xt)

ẋ = →F (x) ↘≃ xt+1 = xt → ωF (xt)
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Solving non-linear optimization as dynamical systems (cont’d)

↭ The Lagrange optimality conditions give us an idea of such dynamical system

⇐f (xω) +
εg(xω)

εx

→
µω +

εh(xω)

εx

→
ωω = 0

↭ Control-a”ne dynamical system

ẋ = →⇐f (x)
︸ ︷︷ ︸
optimality

→
εg(x)

εx

→
µ

︸ ︷︷ ︸
safety “↭”

→
εh(x)

εx

→
ω

︸ ︷︷ ︸
safety “=”

↭ The dynamical system strives to the minimizer of f , while the two drift terms
steer the trajectory to feasible points

↭ Some algorithms to design such dynamical systems:

↭ Saddle-point flow
↭ Projected gradient flow
↭ Safe gradient flow
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Saddle-point flow

↭ Equality-constrained non-linear optimization

minimize
x↓Rn

f (x)

h(x) = 0 : ω

with Lagrangian function

L(x,ω) = f (x) + ω→h(x)

(Convex in x, concave in ω)

↭ The trajectories of the system

ẋ = →⇐xL(x,ω)→
︸ ︷︷ ︸

descent

ω̇ = ⇐ωL(x,ω)→
︸ ︷︷ ︸

ascent

converge to the saddle-point of L
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Saddle-point flow - example

↭ Linearly-constrained optimization

minimize
x

f (x)

Ax = b : ω

↭ The saddle-point flow is described by

ẋ = →⇐f (x)→ → A→ω

ω̇ = Ax→ b

↭ Any equilibrium point (xω,ωω) satisfy

0 = ⇐f (xω)→+ A→ωω, 0 = Axω → b

(Karush-Kuhn-Tucker conditions)

minimize
x

0.125⇒x⇒2
2 → 0.5x1 + 0.25x2

subject to x1 → x2 = 0
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Strengthening saddle-point flow

↭ What if f (x) is not strictly convex?

L(x,ω) = f (x) + ω→h(x) +
ϑ

2
⇒h(x)⇒2

2

↭ What if h(x) is non-convex?

L(x,ω) = f (x) + ω→h(x) +
ϑ

2
⇒ω⇒2

2

↭ Add a regularization term to meet
certain regularity conditions

minimize
x↓R2

0.125⇒x⇒2
2 → 0.5x1

+ 0.25x2 +
ϑ

2
⇒x1 → x2⇒2

2

subject to x1 → x2 = 0

Regularization of the objective function
enhances convergence
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Projected gradient flow

↭ Non-linear optimization program

minimize
x↓Rn

f (x)

subject to g(x) ↫ 0

h(x) = 0

↭ The classic projected gradient descent (PGD)

xt+1 = PC
[
xt → ω⇐f (x)→

]

where PC [ y ] = argmin
x

⇒x→ y⇒2
2 is the projection on the feasible region C

↭ The trajectories of the projected gradient flow (PGF)

ẋ = PC
[
→⇐f (x)→

]
(x)

converge to the optimal solution xω

↭ PGF comes from PGD in the limit as ω ↔ 0

↭ PGD is a forward Euler discretization of PGF
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Projected gradient flow - example

↭ Linearly-constrained optimization

minimize
x

f (x)

Ax ↫ b

↭ Forward Euler discretization of PGF:

x̂ = xt → ω⇐f (x)→

xt+1 = argmin
x

⇒x̂→ x⇒2
2

subject to Ax ↫ b

↭ Non-smooth yet feasible trajectory to
the optimal solution

minimize
x↓R2

0.125⇒x⇒2
2 → 0.5x1 + 0.25x2

subject to x1 → x2 ↫ 0

x2 ↬ 0
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Projected saddle-point flow (mixed saddle flow)

↭ Non-linear optimization

minimize
x↓Rn

f (x)

subject to x ↗ X
g(x) ↫ 0 : µ

with partial Lagrangian function

L(x,ω) = f (x) + µ→g(x)

↭ The trajectories of the system

ẋ = PX
[

→⇐xL(x,µ)→
︸ ︷︷ ︸

↔↗f (x)→↔↗g(x)→µ

]
µ̇ = PRm

+

[
⇐µL(x,µ)→
︸ ︷︷ ︸

g(x)

]

converge to the saddle-point of the full Lagrangian function
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Projected saddle-point flow - example

minimize
x↓R2

0.125⇒x⇒2
2 → 0.5x1 + 0.25x2

subject to x2 ↬ x1 (dualize)

x2 ↬ 0 (project)

Projected gradient flow Saddle-point flow Projected saddle-point flow
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Safe gradient flow

↭ The saddle-point flow is smooth but may lead to infeasible intermediate states

↭ The projected gradient flow is non-smooth but remains inside the feasible region

↭ Safe gradient flow enjoys the best of the two flows

↭ Control-a”ne dynamical system

ẋ = →⇐f (x)
︸ ︷︷ ︸
optimality

→
εg(x)

εx

→
µ

︸ ︷︷ ︸
safety “↭”

→
εh(x)

εx

→
ω

︸ ︷︷ ︸
safety “=”

(1)

↭ At every step, select duals µ and ω by solving an optimization

[
µ(x)
ω(x)

]
↗ argmin

µ,ω↓Kω(x)

∥∥∥∥∥
εg(x)

εx

→
µ +

εh(x)

εx

→
ω

∥∥∥∥∥

2

2

where Kε(x) is the admissible control set

↭ “Minimizes the drift (to ensure optimality), while maintaining feasibility”:

↭ Trajectories are feasible if they start from a feasible point
↭ Trajectories starting from infeasible points converge to a feasible point
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Safe gradient flow (cont’d)

↭ The admissible control set is inspired by the theory of control barrier functions1

↭ Problem constraints define a valid control barrier function

↭ The resultant admissible control set is

Kε(x) =

{
(µ,ω) ↗ Rm

+ ⇑ Rk
∣∣∣

→
εg(x)

εx

εg(x)

εx

→
µ→

εg(x)

εx

εh(x)

εx

→
ω ↫ εg(x)

εx
⇐f (x) → ϖg(x)

→
εh(x)

εx

εg(x)

εx

→
µ→

εh(x)

εx

εh(x)

εx

→
ω =

εh(x)

εx
⇐f (x) → ϖh(x)



1Allibhoy & Cortés. Control barrier function-based design of gradient flows for constrained nonlinear
programming. IEEE Transactions on Automatic Control. 2023
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Safe gradient flow - example

minimize
x↓R2

0.125⇒x⇒2
2 → 0.5x1 + 0.25x2

subject to x1 → x2 ↫ 0

x2 ↬ 0

Feasible initialization Infeasible initialization
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Safe gradient flow - example (cont’d)

minimize
x↓R2

0.125⇒x⇒2
2 → 0.5x1 + 0.25x2

subject to

Linear
constraints

Non-linear convex
constraints

Non-linear non-convex
constraints
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Summary

↭ Optimization algorithms serve as robust feedback controllers

↭ AC-OPF is amenable to online algs: tracking optimal solutions under time-varying
parameters while–depending on the alg–ensuring optimality and feasibility

↭ Online optimization algorithms:

↭ Saddle-point flow: smooth tracking with no feas guarantees
↭ Projected gradient flow: non-smooth tracking with feas guarantees
↭ Safe gradeint flow: smooth tracking with feas guarantees

Next time up: applications of online optimization to power systems
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power feedback control for voltage regulation and loss minimization. IEEE
Transactions on Automatic Control, 60(4), 966-981.

↭ Dall’Anese, E., & Simonetto, A. (2016). Optimal power flow pursuit. IEEE
Transactions on Smart Grid, 9(2), 942-952.

22 / 22


