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Last lecture recap

B Look around you and form teams of 2 people (1 min)

B Quickly review your notes or the slide deck (1 min)

B Share your three personal highlights with your partner (3 min)
B Get iClicker app ready
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When to solve AC-OPF?

Planning (offline) stage

B Uncertainty of problem parameters
(e.g, load and renewable forecast)

B Economically efficient generator
schedule (set-points)

B Anticipation of contingencies

B Long comput. horizon (hours)

Real-time (online) stage

Actual problem parameters (e.g,
actual load and renewable realizations)

Adjustments of scheduled generation
to manage any deviation

Real-time contingencies

Narrow comput. horizon (seconds)
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At both planning and real-time stages!
(but using different optimization algorithms)
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Towards online AC-OPF

offline AC-OPF online AC-OPF

d (forecast) d
1 | |
\2

offline X system y online feedback X system L
optimization y = h(x,d) optimization y = h(x,d)

d

=N

Purpose of online AC-OPF optimization:
B Power flow and injection adjustment given actual loads (as opposed to forecast)
B Tracking of AC-OPF solutions (as opposed to enforcing offline solutions)
B Recognize grid dynamics while acting on steady-state equations

Benefits of online AC-OPF optimization:
B Increases the robustness against time-varying disturbances
B Reduces model-dependence, i.e., make optimization model-free
B Fast response to line and generator outages
B Minimizes computational effort
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Online distribution AC-OPF

feedback q
optimization
‘|

Feedback optimization:

1
minimize EqTCq cost function
q
subject to v = w1+ Rp + Xq LinDistFlow equations
q<q<q injection limits
v<v<v voltage limits

B q inverter’s reactive injection
B v squared voltage magnitude
B p uncontrolled active power injection

How is this optimization different from offline AC-OPF?
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Online transmission AC-OPF

v
g 1
Si
feedback &, vPY system vPa ®_ s
— — ik
vPa
o
minimize c(s®)
s& PV
subject to sl.g — s,-d = E sik(vi, vk) complex power flow
i—k
§Ig < sig < E,ig generation limits
v; <vi <V; voltage limits
sik(vi, vik) <Sik, V(i, k) complex power flow limits

How is this optimization different from offline AC-OPF?
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Online optimization algorithms
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Solving non-linear optimization as dynamical systems

B Non-linear optimization program
minimize  f(x)
x€R"

subject to g(x) <0 :p
h(x)=0 : A

where f : R” i R is strictly convex, g :R”+— R™, h:R" s R¥
B Let C = {x € R" | g(x) <0, h(x) =0} denote its feasible set.

B Our goal is to solve this non-linear optimization by designing a dynamical system
x = F(x)

that convergences to the optimal solution x*

B Forward Euler discretization:

x= F(x) <= x¢11 = x¢ + nF (%)
x = —F(x) <= x¢41 = xt — nF(x¢)
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Solving non-linear optimization as dynamical systems (cont'd)

B The Lagrange optimality conditions give us an idea of such dynamical system

PP Apfoxy T
h
L 080)T L Oh) T

VF(x*
(") ox ox

=0

B Control-affine dynamical system

og(x) " o) "

x=—=Vf(x)— 3 k==
— X X
optimality safety “<” safety “="

B The dynamical system strives to the minimizer of f, while the two drift terms
steer the trajectory to feasible points

B Some algorithms to design such dynamical systems:
B Saddle-point flow
B Projected gradient flow
B Safe gradient flow
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Saddle-point flow

B Equality-constrained non-linear optimization
minimize f(x)
xERM
h(x)=0 : X
with Lagrangian function

L(x,A) = f(x) + AT h(x)
(Convex in x, concave in A)

B The trajectories of the system

x=—ViL(xA)T  A=VaL(x,A)T

descent ascent

converge to the saddle-point of £
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Saddle-point flow - example

B Linearly-constrained optimization
minixmize f(x)
Ax=b : X
B The saddle-point flow is described by
x=-Vix)T —ATX
A=Ax—b
B Any equilibrium point (x*, A*) satisfy
0=VFxx*)"+ATA*, 0=Ax"—b

(Karush-Kuhn-Tucker conditions)
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Strengthening saddle-point flow

B What if f(x) is not strictly convex?
£(6,A) = £(x) + AT h(x) + 2 [[h()]1
B What if h(x) is non-convex?
£(x,X) = F(x) + AT h(x) + £ A3

B Add a regularization term to meet
certain regularity conditions
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Strengthening saddle-point flow

B What if f(x) is not strictly convex?
L0t ) = £() + AT h(x) + 2 |1
B What if h(x) is non-convex?
£(x,A) = F(x) + ATh(x) + 2 Al

B Add a regularization term to meet
certain regularity conditions

minimize  0.125(|x||2 — 0.5x
x€R2

+0.25% + g [ — 2|2
subjectto x; —x2 =0

Regularization of the objective function
enhances convergence 12/22



Projected gradient flow

B Non-linear optimization program

L p
minimize (x)

subject to  g(x) <0
h(x) =0

B The classic projected gradient descent (PGD)
xey1 = Pe [Xt - ﬁVf(X)T]
where P¢[y ] = argmin ||x — y||§ is the projection on the feasible region C
x
B The trajectories of the projected gradient flow (PGF)
%= Pe [—Vf(x)T] (x)
converge to the optimal solution x*

B PGF comes from PGD in the limit as n — 0

B PGD is a forward Euler discretization of PGF
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Projected gradient flow - example

B Linearly-constrained optimization
minimize  f(x)
X

Ax <b

B Forward Euler discretization of PGF:
X=xt —nVF(x)T
Xe+1 = argmin ||X — x||3
X
subject to Ax < b

B Non-smooth yet feasible trajectory to
the optimal solution
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Projected gradient flow - example

B Linearly-constrained optimization
minimize f(x)
X

Ax <b

B Forward Euler discretization of PGF:
X=xt —nVF(x)T

Xe+1 = argmin ||X — x||3
X

subject to Ax < b

B Non-smooth yet feasible trajectory to L 2
the optimal solution mlnelggzlze 0.125]|x||5 — 0.5x1 + 0.25x»
X

subjectto x3 —x2 <0
x2 >0
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Projected saddle-point flow (mixed saddle flow)

B Non-linear optimization
minimize f(x
rimize )
subjectto x € X
g(x)<0 :p
with partial Lagrangian function

L(x,A) = f(x) +p"g(x)

B The trajectories of the system

x=Px[ —VxLlxw) | = Pan[Vul(xn)]
N e’ SR
V)T —Vgx) T g(x)

converge to the saddle-point of the full Lagrangian function
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Projected saddle-point flow - example

minimize  0.125||x||3 — 0.5x; 4 0.25x
xER2

subject to xp > x1 (dualize)
>

x>0 (project)

Projected gradient flow Saddle-point flow Projected saddle-point flow

\
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Safe gradient flow

The saddle-point flow is smooth but may lead to infeasible intermediate states
The projected gradient flow is non-smooth but remains inside the feasible region

Safe gradient flow enjoys the best of the two flows

Control-affine dynamical system
. og(x) T 9h(x) "
=V - r e 2 )
optimality safety “<" safety "="

At every step, select duals ;o and X by solving an optimization

dg(x) " L 9h) N

1(x) :
[ } € argmin ox ox

)‘(X) I AEK (x)

2

where K, (x) is the admissible control set
“Minimizes the drift (to ensure optimality), while maintaining feasibility”:

B Trajectories are feasible if they start from a feasible point
B Trajectories starting from infeasible points converge to a feasible point
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Safe gradient flow (cont'd)

B The admissible control set is inspired by the theory of control barrier functions!

B Problem constraints define a valid control barrier function

B The resultant admissible control set is

Ka(x) = {(u, A) € RT x R

B Og(x) 9g(x) TH B 0g(x) dh(x) T}\ < 9g(x) VF(x) — ag(x)

ox Ox ox ox ox
Oh(x) Bg(x) T Bh(x) Bh(x) T . Bh(x)

_ _ A= F(x) — ah
ox  Ox H Ox  Ox ox V(x) — ah(x)

1AIIibhoy & Cortés. Control barrier function-based design of gradient flows for constrained nonlinear
programming. |IEEE Transactions on Automatic Control. 2023
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Safe gradient flow - example

minimize  0.125|x||2 — 0.5x; + 0.25x;
xER2

subjectto x31 —x2 <0
x2 >0

Feasible initialization Infeasible initialization
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Safe gradient flow - example (cont'd)

minimize  0.125||x||3 — 0.5x; 4 0.25x2
x€ER2

subject to

Linear Non-linear convex Non-linear non-convex
constraints constraints constraints
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Summary

B Optimization algorithms serve as robust feedback controllers

B AC-OPF is amenable to online algs: tracking optimal solutions under time-varying
parameters while—depending on the alg—ensuring optimality and feasibility

B Online optimization algorithms:
B Saddle-point flow: smooth tracking with no feas guarantees

B Projected gradient flow: non-smooth tracking with feas guarantees
B Safe gradeint flow: smooth tracking with feas guarantees

Next time up: applications of online optimization to power systems
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Resources

Online optimization algorithms:

B Hauswirth, Adrian, et al. " Optimization algorithms as robust feedback
controllers.” Annual Reviews in Control 57 (2024): 100941.

B Allibhoy, Ahmed, and Jorge Cortés. " Control-barrier-function-based design of
gradient flows for constrained nonlinear programming.” IEEE Transactions on
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