ECE 598 Computational Power Systems

ADMM - Intro

Vladimir Dvorkin

University of Michigan

Last lecture recap

- Look around you and form teams of 2 people (1 min)
- Quickly review your notes or the slide deck (1 min)
- Share your three personal highlights with your partner (3 min)
- Get iClicker app ready

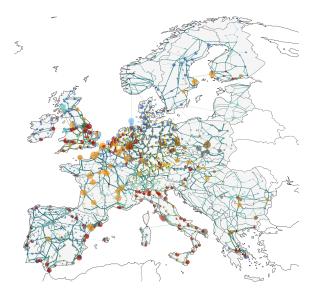
Quiz 2: Which statement about Lagrange duality is TRUE?

- A Karush–Kuhn–Tucker optimality conditions are necessary and sufficient for convex problems and sufficient for non-convex problems.
- **B** Because of complementarity slackness and primal feasibility, the Lagrangian of the economic dispatch equals to the dispatch cost at optimality.
- C For convex economic dispatch problem, weak duality holds, while strong duality is difficult to establish.
- D Electricity price is the cost of the marginal generator; we compute the price as the dual variable of the maximum dispatch constraint of the marginal generator.

Coordination of distributed energy resources (DERs)

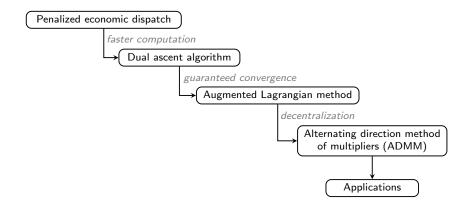
How to dispatch DERs (EV, PV, batteries) without knowing too much about them?

Cross-border coordination



How independent grid operators solve the continental dispatch problem?

Outline



Economic dispatch (ED) problem

 $\begin{array}{ll} \underset{\underline{\mathbf{p}} \leqslant \mathbf{p} \leqslant \overline{\mathbf{p}}}{\text{minimize}} & c(\mathbf{p}) \\ \\ \underset{\underline{\mathbf{p}} \leqslant \mathbf{p} \leqslant \overline{\mathbf{p}}}{\text{subject to}} & \mathbf{1}^{\top} \mathbf{p} = d & : \nu \end{array}$

where $c : \mathbb{R}^n \mapsto \mathbb{R}$ is convex cost function, $\mathbf{p} \in \mathbb{R}^n$ is generator dispatch

 ${}^{1}\nabla_{\mathbf{p}}\left(rac{
u}{2}\|\mathbf{1}^{\top}\mathbf{p}-d\|_{2}^{2}
ight)$ grows linearly in **p**, the Lipschitz constant $u\,\|\mathbf{1}\|=
u\sqrt{n}$

Economic dispatch (ED) problem

 $\begin{array}{ll} \underset{\underline{\mathbf{p}}\leqslant \mathbf{p}\leqslant \overline{\mathbf{p}}}{\text{minimize}} & c(\mathbf{p})\\ \\ \text{subject to} & \mathbf{1}^{\top}\mathbf{p} = d & : \nu \end{array}$

where $c : \mathbb{R}^n \mapsto \mathbb{R}$ is convex cost function, $\mathbf{p} \in \mathbb{R}^n$ is generator dispatch

Proposition: Let's solve an unconstrained problem for some large value ν

$$\underset{\mathbf{p} \leq \mathbf{p} \leq \overline{\mathbf{p}}}{\text{minimize}} \quad c(\mathbf{p}) + \frac{\nu}{2} \left\| \mathbf{1}^{\top} \mathbf{p} - d \right\|_{2}^{2}$$

 ${}^{1}\nabla_{\mathbf{p}}\left(rac{
u}{2}\|\mathbf{1}^{\top}\mathbf{p}-d\|_{2}^{2}
ight)$ grows linearly in **p**, the Lipschitz constant $u\,\|\mathbf{1}\|=
u\sqrt{n}$

Economic dispatch (ED) problem

 $\begin{array}{ll} \underset{\underline{\mathbf{p}}\leqslant \mathbf{p}\leqslant \overline{\mathbf{p}}}{\text{minimize}} & c(\mathbf{p})\\ \\ \text{subject to} & \mathbf{1}^{\top}\mathbf{p} = d & : \nu \end{array}$

where $c : \mathbb{R}^n \mapsto \mathbb{R}$ is convex cost function, $\mathbf{p} \in \mathbb{R}^n$ is generator dispatch

Proposition: Let's solve an unconstrained problem for some large value ν

$$\underset{\underline{\mathbf{p}} \leq \mathbf{p} \leq \overline{\mathbf{p}}}{\text{minimize}} \quad c(\mathbf{p}) + \frac{\nu}{2} \left\| \mathbf{1}^{\top} \mathbf{p} - d \right\|_{2}^{2}$$

Pros: As $\nu \to \infty$, the solution approaches that of ED

Cons: The rate of convergence is proportional to Lipschitz constant $\nu\sqrt{n^1}$.

$${}^{1}\nabla_{\mathbf{p}}\left(\frac{\nu}{2}\|\mathbf{1}^{\top}\mathbf{p}-d\|_{2}^{2}\right)$$
 grows linearly in \mathbf{p} , the Lipschitz constant ν $\|\mathbf{1}\| = \nu\sqrt{n}$

Economic dispatch (ED) problem

 $\begin{array}{ll} \underset{\underline{\mathbf{p}}\leqslant \mathbf{p}\leqslant \overline{\mathbf{p}}}{\text{minimize}} & c(\mathbf{p})\\ \\ \text{subject to} & \mathbf{1}^{\top}\mathbf{p} = d & : \nu \end{array}$

where $c : \mathbb{R}^n \mapsto \mathbb{R}$ is convex cost function, $\mathbf{p} \in \mathbb{R}^n$ is generator dispatch

Proposition: Let's solve an unconstrained problem for some large value ν

$$\underset{\underline{\mathbf{p}} \leq \mathbf{p} \leq \overline{\mathbf{p}}}{\text{minimize}} \quad c(\mathbf{p}) + \frac{\nu}{2} \left\| \mathbf{1}^{\top} \mathbf{p} - d \right\|_{2}^{2}$$

Pros: As $\nu \to \infty$, the solution approaches that of ED

Cons: The rate of convergence is proportional to Lipschitz constant $\nu\sqrt{n^1}$.

We will work with Lagrange duality to find a better approach to solving ED

$${}^{1}\nabla_{\mathbf{p}}\left(\frac{\nu}{2}\|\mathbf{1}^{\top}\mathbf{p}-d\|_{2}^{2}\right)$$
 grows linearly in \mathbf{p} , the Lipschitz constant $\nu\|\mathbf{1}\|=\nu\sqrt{n}$

Lagrange duality

ED optimization

$$egin{array}{c} \min & c(\mathbf{p}) \ & \underline{\mathbf{p}} \leqslant \mathbf{p} \leqslant \overline{\mathbf{p}} & c(\mathbf{p}) \end{array}$$
 subject to $\mathbf{1}^{ op} \mathbf{p} = d \quad :
u$

Partial Lagrangian function of ED

$$\max_{\nu} \min_{\underline{\mathbf{p}} \leqslant \mathbf{p} \leqslant \overline{\mathbf{p}}} \mathcal{L}(\mathbf{p}, \nu) = c(\mathbf{p}) + \nu(d - \mathbf{1}^{\top} \mathbf{p})$$

 \blacksquare Finding the optimal solution of ED is the same as finding the saddle point of $\mathcal L$

$$\mathcal{L}(\mathbf{p}^{\star},\nu^{\star}) = c(\mathbf{p}^{\star}) + \nu^{\star}(d-\mathbf{1}^{\top}\mathbf{p}^{\star}) = c(\mathbf{p}^{\star})$$

Dual ascent algorithm

$$\mathcal{L}(\mathbf{p}^{\star},\nu^{\star}) = c(\mathbf{p}^{\star}) + \nu^{\star}(d-\mathbf{1}^{\top}\mathbf{p}^{\star}) = c(\mathbf{p}^{\star})$$

Consider a sequence of iterations k = 1, ..., K starting from (\mathbf{p}^0, ν^0)

At every iteration k, the primal-dual update for some $\rho > 0$: $\mathbf{p}^{k+1} = \arg\min_{\mathbf{p} \leq \mathbf{p} \leq \mathbf{p}} \mathcal{L}(\mathbf{p}, \nu^k)$ primal update $\nu^{k+1} = \nu^k + \rho(d - \mathbf{1}^\top \mathbf{p}^{k+1})$ dual ascent

■ What is the economic intuition behind dual ascent?

Dual ascent algorithm

$$\mathcal{L}(\mathbf{p}^{\star},\nu^{\star}) = c(\mathbf{p}^{\star}) + \nu^{\star}(d-\mathbf{1}^{\top}\mathbf{p}^{\star}) = c(\mathbf{p}^{\star})$$

Consider a sequence of iterations k = 1, ..., K starting from (\mathbf{p}^0, ν^0)

At every iteration k, the primal-dual update for some
$$\rho > 0$$
:
 $\mathbf{p}^{k+1} = \arg\min_{\underline{p} \leq \mathbf{p} \leq \overline{\mathbf{p}}} \mathcal{L}(\mathbf{p}, \nu^k)$ primal update
 $\nu^{k+1} = \nu^k + \rho(d - \mathbf{1}^\top \mathbf{p}^{k+1})$ dual ascent

- What is the economic intuition behind dual ascent?
- For certain problem classes, dual ascent yields efficient, convergent algorithms to an optimal primal-dual solution (**p**^{*}, *v*^{*})
- However, it may fail for some problems in power systems
- **Example:** in ED with linear cost $c(\mathbf{p}) = \mathbf{c}^{\top}\mathbf{p}$, the dual function

$$\phi(\boldsymbol{\nu}) = \mathcal{L}(\mathbf{p}^{\star}, \boldsymbol{\nu}) = \begin{cases} d\nu, & \text{if } \mathbf{c} - 1\boldsymbol{\nu} = \mathbf{0} \\ -\infty (\text{unbounded}), & \text{if otherwise} \end{cases} \quad (Lec.2, p.14)$$

is unbounded without additional constraints \Rightarrow no meaningful primal update

Augmented Lagrangian

Intuitively, the dual ascent fails to converge because the Lagrangian does not penalize the power balance constraint strongly enough

Remedy: Augmented Lagrangian

$$\mathcal{L}_{
ho}(\mathbf{p},
u) = c(\mathbf{p}) +
u(d - \mathbf{1}^{ op}\mathbf{p}) + rac{
ho}{2} \left\| d - \mathbf{1}^{ op} \mathbf{p}
ight\|_2^2$$

where $\rho > 0$ is a penalty parameter

The augmented Lagrangian can be regarded as the Lagrangian function for

$$\begin{array}{ll} \underset{\underline{p} \leq \mathbf{p} \leq \overline{\mathbf{p}} }{\text{minimize}} & c(\mathbf{p}) + \frac{\rho}{2} \left\| d - \mathbf{1}^{\top} \mathbf{p} \right\|_{2}^{2} \\ \text{subject to} & \mathbf{1}^{\top} \mathbf{p} = d \quad : \nu \end{array}$$

Even though the dispatch cost can be linear, the overall objective is quadratic

Hence, the dual function is always bounded (*Lec.2, p.14*) \Rightarrow primal update exists

Augmented Lagrangian method

Augmented Lagrangian

$$\mathcal{L}_{
ho}(\mathbf{p},
u) = c(\mathbf{p}) +
u(d - \mathbf{1}^{ op}\mathbf{p}) + rac{
ho}{2} \left\| d - \mathbf{1}^{ op} \mathbf{p} \right\|_{2}^{2}$$

• At every iteration k, the primal-dual update:

$$\begin{aligned} \mathbf{p}^{k+1} &= \arg\min_{\underline{p} \leqslant \mathbf{p} \leqslant \overline{\mathbf{p}}} \mathcal{L}_{\rho}(\mathbf{p}, \nu^{k}) & \text{primal update} \\ \nu^{k+1} &= \nu^{k} + \rho(d - \mathbf{1}^{\top} \mathbf{p}^{k+1}) & \text{dual ascent} \end{aligned}$$

Augmented Lagrangian method

Augmented Lagrangian

$$\mathcal{L}_{
ho}(\mathbf{p},
u) = c(\mathbf{p}) +
u(d - \mathbf{1}^{ op}\mathbf{p}) + rac{
ho}{2} \left\| d - \mathbf{1}^{ op} \mathbf{p} \right\|_{2}^{2}$$

At every iteration k, the primal-dual update:

$$\begin{aligned} \mathbf{p}^{k+1} &= \arg\min_{\underline{\mathbf{p}} \leq \mathbf{p} \leq \overline{\mathbf{p}}} \mathcal{L}_{\rho}(\mathbf{p}, \nu^{k}) & \text{primal update} \\ \nu^{k+1} &= \nu^{k} + \rho(d - \mathbf{1}^{\top} \mathbf{p}^{k+1}) & \text{dual ascent} \end{aligned}$$

Working with augmented Lagrangian, we end up solving the original problem

$$\begin{split} \mathbf{0} = & \nabla_{\mathbf{p}} \mathcal{L}_{\rho}(\mathbf{p}^{k+1}, \nu^{k}) \quad \text{primal update for aug. problem} \\ = & \nabla_{\mathbf{p}} \mathbf{c}(\mathbf{p}^{k+1}) + \mathbf{1}\nu^{k} + \rho \mathbf{1}(d - \mathbf{1}^{\top} \mathbf{p}^{k+1}) \\ = & \nabla_{\mathbf{p}} \mathbf{c}(\mathbf{p}^{k+1}) + \mathbf{1}\nu^{k+1} = & \nabla_{\mathbf{p}} \mathcal{L}(\mathbf{p}^{k+1}, \nu^{k+1}) \quad \text{Lag. of the original problem} \end{split}$$

\blacksquare Thus, \mathbf{p}^{k+1} minimizes the Lagrangian function of the original problem

Alternating direction method of multipliers

Two drawbacks of the augmented Lagrangian method:

- **Computation:** solves optimization for primal updates (no closed-form sol.)
- **Centralization**: every generator shares opt. data (as in centralized ED)

Alternating direction method of multipliers

Two drawbacks of the augmented Lagrangian method:

- **Computation:** solves optimization for primal updates (no closed-form sol.)
- **Centralization**: every generator shares opt. data (as in centralized ED)

Alternating direction method of multipliers (ADMM) solves these two issues:

Fix ν and p_2, \ldots, p_n , solve for p_1 :

$$p_1^{k+1} = \arg\min_{\underline{p}_1 \leqslant p_1 \leqslant \overline{p}_1} \mathcal{L}_{\rho}(p_1, p_2^k, \dots, p_n^k, \nu^k)$$

Fix ν and all p_1, \ldots, p_n but p_i , solve for p_i :

$$p_i^{k+1} = \arg\min_{\underline{p}_i \leqslant p_i \leqslant \overline{p}_i} \mathcal{L}_{\rho}(p_1^{k+1}, \dots, p_i, \dots, p_n^k, \nu^k)$$

Fix ν and p_1, \ldots, p_{n-1} , solve for p_n :

$$p_n^{k+1} = \arg\min_{\underline{p}_n \leqslant p_n \leqslant \overline{p}_n} \mathcal{L}_{\rho}(p_1^{k+1}, \dots, p_{n-1}^{k+1}, p_n, \nu^k)$$

Fix all p_1, \ldots, p_n and update the dual using dual ascent:

$$u^{k+1} = \nu^k +
ho(d - \sum_{i=1}^n p_i^{k+1})$$

Closed-form solution for ADMM sub-problems

Response to price ν^k and power mismatch Δp^k_i with dispatch decision p^{k+1}
 Local computation: no optimization parameters are shared (only decisions)
 Solving the sub-problem in closed-form is much easier than solving optimization

Exchange ADMM for parallel computations

The previous algorithm updates dispatch sequentially ⇒ no parallelization
 Exchange ADMM: following economic intuition, enables parallelization
 Let Δp^k = d - ∑_{i=1}ⁿ p_i^k be the total power mismatch at iteration k

Parallel primal update $\forall i = 1, \ldots, n$:

$$p_i^{k+1} = \underset{\underline{p}_i \leq p_i \leq \overline{p}_i}{\operatorname{argmin}} c_i(p_i) - \nu^k p_i + \frac{\rho}{2} \|p_i - (p_i^k - \Delta p^k)\|_2^2$$

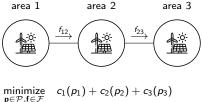
followed by price update:

$$\nu^{k+1} = \nu^k + \rho \Delta p^k$$

Decentralized, parallel implementation

Consensus ADMM - motivation

- Exchange ADMM requires a central entity for dual variable update
- Consensus ADMM requires dual update only among "neighbors"
- the dual update is distributed among agents (no central entity!)
- Coordinating power flows in tie-lines between different areas:



subject to $p_1 - d_1 = f_{12}$ area 1

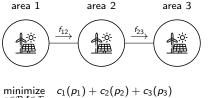
$$p_2 - d_2 = f_{23} - f_{12}$$
 area 2

$$p_3 - d_3 = -f_{23}$$
 area 3

Duplicate power flow variables and solve as a consensus problem

Consensus ADMM - motivation

- Exchange ADMM requires a central entity for dual variable update
- Consensus ADMM requires dual update only among "neighbors"
- ... the dual update is distributed among agents (no central entity!)
- Coordinating power flows in tie-lines between different areas:



subject to
$$p_1 - d_1 = f_{12}^1$$
 area 1
 $p_2 - d_2 = f_{23}^2 - f_{12}^2$ area 2
 $p_3 - d_3 = -f_{23}^3$ area 3
 $f_{12}^1 = f_{12}^2 = f_{12} : \nu_{12}$ consensus for 1 and 2
 $f_{23}^2 = f_{23}^3 = f_{23}^2 : \nu_{23}$ consensus for 2 and 3

Duplicate power flow variables and solve as a consensus problem

Consensus ADMM - formulation

Global optimization problem:

 $\begin{array}{ll} \underset{p,f}{\text{minimize}} & c(p) \\ \text{subject to} & p - d = Af \\ & \underline{p} \leqslant p \leqslant \overline{p} \\ & \underline{f} \leqslant f \leqslant \overline{f} \end{array}$

Adjacency matrix A:

$$a_{ij} = \begin{cases} +1, & \text{if node } i \text{ exports flow } j \\ -1, & \text{if node } i \text{ imports flow } j \\ 0, & \text{if otherwise} \end{cases}$$

3-area example:
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix}$$

Consensus ADMM - formulation

Global optimization problem:

 $\begin{array}{ll} \underset{p,f}{\text{minimize}} & c(p) \\ \text{subject to} & p-d = Af \\ & \underline{p} \leqslant p \leqslant \overline{p} \\ & \underline{f} \leqslant f \leqslant \overline{f} \end{array}$

Consensus optimization for n areas:

$$\begin{array}{ll} \underset{\mathbf{p}, \mathbf{f}, \mathbf{f}_1, \dots, \mathbf{f}_n}{\text{minimize}} & \sum_{i=1}^n c_i(p_i) \\ \text{subject to} & p_i - d_i = a_i^\top \mathbf{f}_i, \; \forall i \\ & \mathbf{f}_i - \mathbf{f} = \mathbf{0} : \boldsymbol{\nu}_i, \; \forall i \\ & \underline{\mathbf{f}} \leqslant \mathbf{f} \leqslant \overline{\mathbf{f}} \end{array}$$

Consensus ADMM - formulation

Global optimization problem:

Consensus optimization for n areas:

$$\begin{array}{ll} \underset{\mathbf{p},\mathbf{f}}{\text{minimize}} & c(\mathbf{p}) & \underset{\mathbf{p},\mathbf{f},\mathbf{f}_{1},\ldots,\mathbf{f}_{n}}{\text{minimize}} & \sum_{i=1}^{n} c_{i}(p_{i}) \\ \\ \text{subject to} & \mathbf{p} - \mathbf{d} = \mathbf{A}\mathbf{f} & \\ & \underset{\mathbf{p}}{\underline{p}} \leqslant \mathbf{p} \leqslant \overline{\mathbf{p}} & \\ & & \mathbf{f}_{i} - \mathbf{f} = \mathbf{0} : \boldsymbol{\nu}_{i}, \ \forall i \\ & & \\ & & \underline{\mathbf{f}} \leqslant \mathbf{f} \leqslant \overline{\mathbf{f}} & \\ \end{array}$$

Consensus ADMM iterations:

Private variable update for all i = 1, ..., n

$$\begin{aligned} \mathbf{f}_{i}^{k+1} &= \underset{p_{i},\mathbf{f}_{i}}{\operatorname{argmin}} \quad c_{i}(p_{i}) + \boldsymbol{\nu}_{i}^{k\top}\mathbf{f}_{i} + \frac{\rho}{2} \left\| \mathbf{f}_{i} - \mathbf{f}^{k} \right\| \\ \text{subject to} \quad p_{i} - d_{i} &= \mathbf{a}_{i}^{\top}\mathbf{f}_{i} \\ \underline{p}_{i} \leqslant p_{i} \leqslant \overline{p}_{i} \end{aligned}$$

Consensus variable update

$$\begin{aligned} \mathbf{f}^{k+1} &= \operatorname*{argmin}_{\mathbf{f}} \quad -\boldsymbol{\nu}_i^{k\top}\mathbf{f} + \sum_{i=1}^n \frac{\rho}{2} \left\| \mathbf{f}_i^{k+1} - \mathbf{f} \right\| \\ & \operatorname{subject to} \quad \underline{\mathbf{f}} \leqslant \mathbf{f} \leqslant \overline{\mathbf{f}} \end{aligned}$$

Dual variable update

$$\boldsymbol{\nu}_i^{k+1} = \boldsymbol{\nu}_i^k + \rho(\mathbf{f}_i^{k+1} - \mathbf{f}^{k+1})$$

Resources

- Boyd, S., et al. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine learning, 3(1), 1-122. [§2,§3,§7]
- Wright, J., & Ma, Y. (2022). High-dimensional data analysis with lowdimensional models: Principles, computation, and applications. Cambridge University Press. [§8.4,§8.5]
- Molzahn, Daniel K., et al. "A survey of distributed optimization and control algorithms for electric power systems." IEEE Transactions on Smart Grid 8.6 (2017): 2941-2962.

- Look around you and form teams of 2 people (1 min)
- Formulate and code the problem below working in pairs

In-class Exercise 1: Solve the problem below using

- 1 Ipopt solver
- 2 penalized formulation
- dual ascent algorithm
- augmented Lagrangian method
- In Alternating direction method of multipliers (ADMM)

$$\begin{array}{ll} \underset{x_{1},x_{2}}{\text{minimize}} & \frac{1}{2}(x_{1}-5)^{2}+\frac{1}{2}(x_{2}+3)^{2}\\ \text{subject to} & x_{1}+x_{2}=10 & :\nu \end{array}$$