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Last lecture recap

B Look around you and form teams of 2 people (1 min)

B Quickly review your notes or the slide deck (1 min)

B Share your three personal highlights with your partner (3 min)
B Get iClicker app ready
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Quiz 2: Which statement about Lagrange duality is TRUE?

A Karush—Kuhn—Tucker optimality conditions are necessary and sufficient for convex
problems and sufficient for non-convex problems.

B Because of complementarity slackness and primal feasibility, the Lagrangian of
the economic dispatch equals to the dispatch cost at optimality.

C For convex economic dispatch problem, weak duality holds, while strong duality is
difficult to establish.

D Electricity price is the cost of the marginal generator; we compute the price as
the dual variable of the maximum dispatch constraint of the marginal generator.
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Coordination of distributed energy resources (DERs)

How to dispatch DERs (EV, PV, batteries) without knowing too much about them?
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Cross-border coordination

How independent grid operators solve the continental dispatch problem?

5/19



Outline

( Penalized economic dispatch )

faster computation

Dual ascent algorithm )

guaranteed convergence

(Augmented Lagrangian method)

decentralization

[Alternating direction method]

of multipliers (ADMM)

Applications
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Penalized economic dispatch

B Economic dispatch (ED) problem

minimize c¢(p
P<PSP p)

subjectto 1'p=d v

where ¢ : R" — R is convex cost function, p € R" is generator dispatch

1Vp (% HlTp — d||§) grows linearly in p, the Lipschitz constant v ||1]| = vy/n
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Penalized economic dispatch

B Economic dispatch (ED) problem

minimize c¢(p
P<PSP (P)

subjectto 1'p=d v

where ¢ : R" — R is convex cost function, p € R" is generator dispatch

B Proposition: Let's solve an unconstrained problem for some large value v

v 2
minimize c(p) + — HlT — dH
PSP<P (p) 2 P 2

1Vp (% 1nTp— d||§) grows linearly in p, the Lipschitz constant v ||1|| = v+/n
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Penalized economic dispatch

B Economic dispatch (ED) problem
minimize ¢
P<PSP p)

subjectto 1'p=d v

where ¢ : R" — R is convex cost function, p € R" is generator dispatch

B Proposition: Let's solve an unconstrained problem for some large value v

v 2
minimize c(p) + — HlT — dH
PSP<P (p) 2 P 2

Pros: As v — oo, the solution approaches that of ED

Cons: The rate of convergence is proportional to Lipschitz constant v/n'.
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Penalized economic dispatch

B Economic dispatch (ED) problem

minimize c¢(p
P<PSP (P)

subjectto 1'p=d v

where ¢ : R" — R is convex cost function, p € R" is generator dispatch

B Proposition: Let's solve an unconstrained problem for some large value v

v 2
minimize c(p) + — HlT — dH
PSP<P (p) 2 P 2

Pros: As v — oo, the solution approaches that of ED

Cons: The rate of convergence is proportional to Lipschitz constant v/n'.

B We will work with Lagrange duality to find a better approach to solving ED

1Vp (% 1nTp— d||§) grows linearly in p, the Lipschitz constant v ||1|| = v+/n
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Lagrange duality

B ED optimization

minimize ¢
PSPSP (p)

subjectto 1Tp=d :v

B Partial Lagrangian function of ED
max min_L(p,v) = c(p) + v(d — 1T p)
v psSp<p
B Finding the optimal solution of ED is the same as finding the saddle point of L

L£(p*,v*) = c(p) + 1 (d — 17p*) = c(p*)
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Dual ascent algorithm

L(p*, 1) = c(p*) + 1v*(d — 17p*) = c(p*)

B One way to optimize Lagrangian function is via dual ascent
B Consider a sequence of iterations k = 1,..., K starting from (p°,2°)

B At every iteration k, the primal-dual update for some p > 0:
p“Tt =arg min_ L(p,¥) primal update
PSPSP
VR =k 4 p(d — 17 pF ) dual ascent

B What is the economic intuition behind dual ascent?
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Dual ascent algorithm

L(p*, 1) = c(p*) + 1v*(d — 17p*) = c(p*)

B One way to optimize Lagrangian function is via dual ascent
B Consider a sequence of iterations k = 1,..., K starting from (p°,2°)

B At every iteration k, the primal-dual update for some p > 0:

p“Tt =arg min_ L(p,¥) primal update
PSPSP

k1 — k4 p(d — 17 pkt) dual ascent

v
B What is the economic intuition behind dual ascent?

B For certain problem classes, dual ascent yields efficient, convergent algorithms to
an optimal primal-dual solution (p*,v*)

B However, it may fail for some problems in power systems

B Example: in ED with linear cost c(p) = ¢ p, the dual function
dv, ifc—1v=0
o) = £ ) = {

—oo(unbounded), if otherwise (Lec.2,p.14)
is unbounded without additional constraints = no meaningful primal update
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Augmented Lagrangian

B Intuitively, the dual ascent fails to converge because the Lagrangian does not
penalize the power balance constraint strongly enough

B Remedy: Augmented Lagrangian
_ T p T 12
Lp(p,v) =c(p) +v(d =1 p)+ 7 ld—1 p|

where p > 0 is a penalty parameter
B The augmented Lagrangian can be regarded as the Lagrangian function for

minimize ¢(p) + L Hd — lTpH2
pP<P<P 2 2

subjectto 1Tp=d :v
B Even though the dispatch cost can be linear, the overall objective is quadratic

B Hence, the dual function is always bounded (Lec.2,p.14) = primal update exists
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Augmented Lagrangian method

B Augmented Lagrangian

Ly(p,v) = c(p) +v(d —1Tp)

B At every iteration k, the primal-dual update:

p“l =arg min_ L,(p,v")

P<P<P

L — K +p(d _ lTpk+1)

+ 5 e =17l

primal update

dual ascent
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Augmented Lagrangian method

B Augmented Lagrangian

Lo(pv) = c(p) +1(d ~17p) + || d = 17p]

B At every iteration k, the primal-dual update:

pk+1 = arg min L',p(p7 yk) primal update
P<PSP
VAL =k p(d — 17 pkt) dual ascent

B Working with augmented Lagrangian, we end up solving the original problem

0 =Vp£p(pk+1, Vk) primal update for aug. problem
=Vpc(p*!) + 1k + p1(d — 17p*1)
=Vpc(p"*) + 1+t = v £(phtt, ) Lag. of the original problem

B Thus, p“¥t! minimizes the Lagrangian function of the original problem
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Alternating direction method of multipliers

Two drawbacks of the augmented Lagrangian method:
B Computation: solves optimization for primal updates (no closed-form sol.)

B Centralization: every generator shares opt. data (as in centralized ED)
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Alternating direction method of multipliers

Two drawbacks of the augmented Lagrangian method:
B Computation: solves optimization for primal updates (no closed-form sol.)

B Centralization: every generator shares opt. data (as in centralized ED)
Alternating direction method of multipliers (ADMM) solves these two issues:

B Fix v and pa, ..., pn, solve for p; :

k+1 __ H k k k
pi =arg min_ Ly(p1,Py,--sPny V")
P SP1SP]

B Fix v and all p1,..., pn but p;, solve for p; :

k+1 _ - k+1 ko k
pi =arg min_ Lo(pi" . Piyee s Pay V)
P;<Pi<P;
B Fix v and py,...,pp—1, solve for p, :
k+1 . k+1 k+1 k
pitt =arg min_ Lo(pr, ..o, pKTT, P, v5)
P,SPn<Pp
B Fix all p1,..., pn and update the dual using dual ascent:

n
V= vk p(d = Y pf)
i=1
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Closed-form solution for ADMM sub-problems

k+1 __ H k+1 k  k
pi T =arg min_ Ly(py T, Piye e Py YY)
P SPisP;

. k p k41 2
=arg min_ ¢(p;) —vipi+ §{|d*2j:1,.u,f—1 Pj+ *Zj:iﬂ,m,npjk *Piug

P SPisP;

Ap;‘ (power mismatch)

(Vpicilpi) — v — p(ApF — p;) = 0)

ﬁ(vk + pApk — c1;), if quad. cost ¢;(pi) = ciipi + c2ip?

Apk — %(Cu + vk, if linear cost ¢;(p;) = c1ip;

followed by projection on the feasible dispatch range [B,-vﬁi]

B Response to price v¥ and power mismatch Ap,k with dispatch decision pf“
B Local computation: no optimization parameters are shared (only decisions)

B Solving the sub-problem in closed-form is much easier than solving optimization
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Exchange ADMM for parallel computations

B The previous algorithm updates dispatch sequentially = no parallelization
B Exchange ADMM: following economic intuition, enables parallelization

B Let Apk=d— i pf‘ be the total power mismatch at iteration k

Parallel primal update Vi =1,...,n:
. 4 2
pitt = argmin c(pi) — v¥p; + S |pi — (pF — ApN)||5
P;<Pi<P; 2

followed by price update:
VAL kg oAk

B Decentralized, parallel implementation

generator 1

generator n
optimization

optimization
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Consensus ADMM — motivation

B Exchange ADMM requires a central entity for dual variable update
B Consensus ADMM requires dual update only among “neighbors”
B ... the dual update is distributed among agents (no central entity!)

B Coordinating power flows in tie-lines between different areas:

area 1 area 2 area 3

imize o . .
minimize 1(p1) + c2(p2) + c3(p3)

subject to p; —di = fi, area 1
p2—dr =3 — f area 2

—f area 3

p3 — ds

B Duplicate power flow variables and solve as a consensus problem
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Consensus ADMM — motivation

B Exchange ADMM requires a central entity for dual variable update
B Consensus ADMM requires dual update only among “neighbors”
B ... the dual update is distributed among agents (no central entity!)

B Coordinating power flows in tie-lines between different areas:

area 1 area 2 area 3

minimize c C C:
minimize 1(p1) + c2(p2) + c3(p3)

subject to p; —di = 1‘112 area 1
pp—h =15~ area 2
p3—d3 = —Fy area 3
f112 = f122 = fip :wvi2 consensus for 1 and 2

f3 =fy =fi :wo3 consensus for 2 and 3

B Duplicate power flow variables and solve as a consensus problem
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Consensus ADMM - formulation

Global optimization problem:
min')iTize c(p)
subject to p—d = Af
ps<p<p
<Fgf

I=n

Adjacency matrix A:

+1, if node i exports flow j
aj = —1, if node i imports flow j

0, if otherwise

3-area example: A =

1
-1
0

0
1
-1
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Consensus ADMM - formulation

Global optimization problem: Consensus optimization for n areas:
minimize  c(p) minimize > ci(pi)
subject to p —d = Af subject to p; —d; = a,-Tf,', Vi
ps<p<p fif—f=0:v; Vi
f<FF fF<fFgT
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Consensus ADMM - formulation

Global optimization problem: Consensus optimization for n areas:

minimize c(p) minimize  >.7 , ¢i(pi)
p,f p.f.f1,.fn -
subject to p; —d; = a,-Tf,', Vi

subject to p—d = Af
fi—f=0:v;, Vi

ps<p<p
f<f<f F<FT
Consensus ADMM iterations:
B Private variable update for all i =1,...,n
fl.kJrl =argmin  ¢(p;) + <+ d Hf,- - ka
pi-fi 2
subject to p; —d; = a,Tf,'
P, S Pi <P
B Consensus variable update
f4 = argmin - —VKTF4 00 s Hfl.k'*'l — fH

f
subject to f<f < f

B Dual variable update
uff“ =vk4 p(fl.kJrl — fktl
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Resources

W Boyd, S., et al. (2011). Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations and Trends in Machine
learning, 3(1), 1-122. [§2,§3,87]

B Wright, J., & Ma, Y. (2022). High-dimensional data analysis with low-
dimensional models: Principles, computation, and applications. Cambridge
University Press. [§8.4,§8.5]

B Molzahn, Daniel K., et al. “A survey of distributed optimization and control
algorithms for electric power systems.” |IEEE Transactions on Smart Grid 8.6
(2017): 2941-2962.
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B Look around you and form teams of 2 people (1 min)

B Formulate and code the problem below working in pairs

In-class Exercise 1: Solve the problem below using
Ipopt solver
penalized formulation
dual ascent algorithm
augmented Lagrangian method
Alternating direction method of multipliers (ADMM)

mi)r?lirpzize %(xl - 52+ %(Xz +3)2

subjectto x31+x =10 :v
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