
ECE 598 Computational Power Systems

ADMM – Intro

Vladimir Dvorkin

University of Michigan

1 / 19



Last lecture recap

↭ Look around you and form teams of 2 people (1 min)

↭ Quickly review your notes or the slide deck (1 min)

↭ Share your three personal highlights with your partner (3 min)

↭ Get iClicker app ready

Quiz 1: Which statement about LMPs is FALSE?
A Congestion in transmission systems leads to locational marginal prices – the price

of electricity depends on your location in the grid

B Locational marginal pricing always ensures cost recovery, revenue adequacy and
market e!ciency. Binary (UC) constraints break this principle.

C To extract prices from a UC problem, we first solve its mixed-integer formulation,
and then extract duals from its relaxed version.

D The network-constrained generator dispatch accumulates congestion rent – the
gap between consumer charges and generator payments

2 / 19



Quiz 2: Which statement about Lagrange duality is TRUE?

A Karush–Kuhn–Tucker optimality conditions are necessary and su!cient for convex
problems and su!cient for non-convex problems.

B Because of complementarity slackness and primal feasibility, the Lagrangian of
the economic dispatch equals to the dispatch cost at optimality.

C For convex economic dispatch problem, weak duality holds, while strong duality is
di!cult to establish.

D Electricity price is the cost of the marginal generator; we compute the price as
the dual variable of the maximum dispatch constraint of the marginal generator.

3 / 19



Coordination of distributed energy resources (DERs)

How to dispatch DERs (EV, PV, batteries) without knowing too much about them?

4 / 19



Cross-border coordination

How independent grid operators solve the continental dispatch problem?

5 / 19



Outline

Penalized economic dispatch

Dual ascent algorithm

faster computation

Augmented Lagrangian method

guaranteed convergence

Alternating direction method
of multipliers (ADMM)

decentralization

Applications

6 / 19



Penalized economic dispatch

↭ Economic dispatch (ED) problem

minimize
p↭p↭p

c(p)

subject to 1→p = d : ω

where c : Rn →↑ R is convex cost function, p ↓ Rn is generator dispatch

↭ Proposition: Let’s solve an unconstrained problem for some large value ω

minimize
p↭p↭p

c(p) +
ω

2

∥∥∥1→p↔ d
∥∥∥
2

2

Pros: As ω ↑ ↗, the solution approaches that of ED

Cons: The rate of convergence is proportional to Lipschitz constant ω
↘
n1.

↭ We will work with Lagrange duality to find a better approach to solving ED

1↑p

(
ω
2 ↓1→p ↔ d↓22

)
grows linearly in p, the Lipschitz constant ω ↓1↓ = ω

↗
n

7 / 19



Penalized economic dispatch

↭ Economic dispatch (ED) problem

minimize
p↭p↭p

c(p)

subject to 1→p = d : ω

where c : Rn →↑ R is convex cost function, p ↓ Rn is generator dispatch

↭ Proposition: Let’s solve an unconstrained problem for some large value ω

minimize
p↭p↭p

c(p) +
ω

2

∥∥∥1→p↔ d
∥∥∥
2

2

Pros: As ω ↑ ↗, the solution approaches that of ED

Cons: The rate of convergence is proportional to Lipschitz constant ω
↘
n1.

↭ We will work with Lagrange duality to find a better approach to solving ED

1↑p

(
ω
2 ↓1→p ↔ d↓22

)
grows linearly in p, the Lipschitz constant ω ↓1↓ = ω

↗
n

7 / 19



Penalized economic dispatch

↭ Economic dispatch (ED) problem

minimize
p↭p↭p

c(p)

subject to 1→p = d : ω

where c : Rn →↑ R is convex cost function, p ↓ Rn is generator dispatch

↭ Proposition: Let’s solve an unconstrained problem for some large value ω

minimize
p↭p↭p

c(p) +
ω

2

∥∥∥1→p↔ d
∥∥∥
2

2

Pros: As ω ↑ ↗, the solution approaches that of ED

Cons: The rate of convergence is proportional to Lipschitz constant ω
↘
n1.

↭ We will work with Lagrange duality to find a better approach to solving ED

1↑p

(
ω
2 ↓1→p ↔ d↓22

)
grows linearly in p, the Lipschitz constant ω ↓1↓ = ω

↗
n

7 / 19



Penalized economic dispatch

↭ Economic dispatch (ED) problem

minimize
p↭p↭p

c(p)

subject to 1→p = d : ω

where c : Rn →↑ R is convex cost function, p ↓ Rn is generator dispatch

↭ Proposition: Let’s solve an unconstrained problem for some large value ω

minimize
p↭p↭p

c(p) +
ω

2

∥∥∥1→p↔ d
∥∥∥
2

2

Pros: As ω ↑ ↗, the solution approaches that of ED

Cons: The rate of convergence is proportional to Lipschitz constant ω
↘
n1.

↭ We will work with Lagrange duality to find a better approach to solving ED

1↑p

(
ω
2 ↓1→p ↔ d↓22

)
grows linearly in p, the Lipschitz constant ω ↓1↓ = ω

↗
n

7 / 19



Lagrange duality

↭ ED optimization

minimize
p↭p↭p

c(p)

subject to 1→p = d : ω

↭ Partial Lagrangian function of ED

max
ω

min
p↭p↭p

L(p, ω) = c(p) + ω(d ↔ 1→p)

↭ Finding the optimal solution of ED is the same as finding the saddle point of L

L(pε, ωε) = c(pε) + ωε(d ↔ 1→pε) = c(pε)

8 / 19



Dual ascent algorithm

L(pε, ωε) = c(pε) + ωε(d ↔ 1→pε) = c(pε)

↭ One way to optimize Lagrangian function is via dual ascent

↭ Consider a sequence of iterations k = 1, . . . ,K starting from (p0, ω0)

↭ At every iteration k, the primal-dual update for some ε > 0:

pk+1 = arg min
p↭p↭p

L(p, ωk ) primal update

ωk+1 = ωk + ε(d ↔ 1→pk+1) dual ascent

↭ What is the economic intuition behind dual ascent?

↭ For certain problem classes, dual ascent yields e!cient, convergent algorithms to
an optimal primal-dual solution (pε, ωε)

↭ However, it may fail for some problems in power systems

↭ Example: in ED with linear cost c(p) = c→p, the dual function

ϑ(ω) = L(pε, ω) =
{

dω, if c↔ 1ω = 0
↔↗(unbounded), if otherwise

(Lec.2,p.14)

is unbounded without additional constraints ≃ no meaningful primal update

9 / 19



Dual ascent algorithm

L(pε, ωε) = c(pε) + ωε(d ↔ 1→pε) = c(pε)

↭ One way to optimize Lagrangian function is via dual ascent

↭ Consider a sequence of iterations k = 1, . . . ,K starting from (p0, ω0)

↭ At every iteration k, the primal-dual update for some ε > 0:

pk+1 = arg min
p↭p↭p

L(p, ωk ) primal update

ωk+1 = ωk + ε(d ↔ 1→pk+1) dual ascent

↭ What is the economic intuition behind dual ascent?

↭ For certain problem classes, dual ascent yields e!cient, convergent algorithms to
an optimal primal-dual solution (pε, ωε)

↭ However, it may fail for some problems in power systems

↭ Example: in ED with linear cost c(p) = c→p, the dual function

ϑ(ω) = L(pε, ω) =
{

dω, if c↔ 1ω = 0
↔↗(unbounded), if otherwise

(Lec.2,p.14)

is unbounded without additional constraints ≃ no meaningful primal update
9 / 19



Augmented Lagrangian

↭ Intuitively, the dual ascent fails to converge because the Lagrangian does not
penalize the power balance constraint strongly enough

↭ Remedy: Augmented Lagrangian

Lϑ(p, ω) = c(p) + ω(d ↔ 1→p) +
ε

2

∥∥∥d ↔ 1→p
∥∥∥
2

2

where ε > 0 is a penalty parameter

↭ The augmented Lagrangian can be regarded as the Lagrangian function for

minimize
p↭p↭p

c(p) +
ε

2

∥∥∥d ↔ 1→p
∥∥∥
2

2

subject to 1→p = d : ω

↭ Even though the dispatch cost can be linear, the overall objective is quadratic

↭ Hence, the dual function is always bounded (Lec.2,p.14) ≃ primal update exists

10 / 19



Augmented Lagrangian method

↭ Augmented Lagrangian

Lϑ(p, ω) = c(p) + ω(d ↔ 1→p) +
ε

2

∥∥∥d ↔ 1→p
∥∥∥
2

2

↭ At every iteration k, the primal-dual update:

pk+1 = arg min
p↭p↭p

Lϑ(p, ωk ) primal update

ωk+1 = ωk + ε(d ↔ 1→pk+1) dual ascent

↭ Working with augmented Lagrangian, we end up solving the original problem

0 =⇐pLϑ(pk+1, ωk ) primal update for aug. problem

=⇐pc(pk+1) + 1ωk + ε1(d ↔ 1→pk+1)

=⇐pc(pk+1) + 1ωk+1 = ⇐pL(pk+1, ωk+1) Lag. of the original problem

↭ Thus, pk+1 minimizes the Lagrangian function of the original problem

11 / 19



Augmented Lagrangian method

↭ Augmented Lagrangian

Lϑ(p, ω) = c(p) + ω(d ↔ 1→p) +
ε

2

∥∥∥d ↔ 1→p
∥∥∥
2

2

↭ At every iteration k, the primal-dual update:

pk+1 = arg min
p↭p↭p

Lϑ(p, ωk ) primal update

ωk+1 = ωk + ε(d ↔ 1→pk+1) dual ascent

↭ Working with augmented Lagrangian, we end up solving the original problem

0 =⇐pLϑ(pk+1, ωk ) primal update for aug. problem

=⇐pc(pk+1) + 1ωk + ε1(d ↔ 1→pk+1)

=⇐pc(pk+1) + 1ωk+1 = ⇐pL(pk+1, ωk+1) Lag. of the original problem

↭ Thus, pk+1 minimizes the Lagrangian function of the original problem

11 / 19



Alternating direction method of multipliers

Two drawbacks of the augmented Lagrangian method:

↭ Computation: solves optimization for primal updates (no closed-form sol.)

↭ Centralization: every generator shares opt. data (as in centralized ED)

Alternating direction method of multipliers (ADMM) solves these two issues:

↭ Fix ω and p2, . . . , pn, solve for p1 :

pk+1
1 = arg min

p
1
↭p1↭p1

Lϑ(p1, p
k
2 , . . . , p

k
n , ω

k )

↭ Fix ω and all p1, . . . , pn but pi , solve for pi :

pk+1
i = arg min

p
i
↭pi↭pi

Lϑ(p
k+1
1 , . . . , pi , . . . , p

k
n , ω

k )

↭ Fix ω and p1, . . . , pn↔1, solve for pn :

pk+1
n = arg min

p
n
↭pn↭pn

Lϑ(p
k+1
1 , . . . , pk+1

n↔1, pn, ω
k )

↭ Fix all p1, . . . , pn and update the dual using dual ascent:

ωk+1 = ωk + ε(d ↔
n∑

i=1

pk+1
i )

12 / 19



Alternating direction method of multipliers

Two drawbacks of the augmented Lagrangian method:

↭ Computation: solves optimization for primal updates (no closed-form sol.)

↭ Centralization: every generator shares opt. data (as in centralized ED)

Alternating direction method of multipliers (ADMM) solves these two issues:

↭ Fix ω and p2, . . . , pn, solve for p1 :

pk+1
1 = arg min

p
1
↭p1↭p1

Lϑ(p1, p
k
2 , . . . , p

k
n , ω

k )

↭ Fix ω and all p1, . . . , pn but pi , solve for pi :

pk+1
i = arg min

p
i
↭pi↭pi

Lϑ(p
k+1
1 , . . . , pi , . . . , p

k
n , ω

k )

↭ Fix ω and p1, . . . , pn↔1, solve for pn :

pk+1
n = arg min

p
n
↭pn↭pn

Lϑ(p
k+1
1 , . . . , pk+1

n↔1, pn, ω
k )

↭ Fix all p1, . . . , pn and update the dual using dual ascent:

ωk+1 = ωk + ε(d ↔
n∑

i=1

pk+1
i )

12 / 19



Closed-form solution for ADMM sub-problems

pk+1
i = arg min

p
i
↭pi↭pi

Lϑ(p
k+1
1 , . . . , pi , . . . , p

k
n , ω

k )

= arg min
p
i
↭pi↭pi

ci (pi )↔ ωkpi +
ε

2

∥∥ d ↔
∑

j=1,...,i↔1 p
k+1
j ↔

∑
j=i+1,...,n p

k
j︸ ︷︷ ︸

”pki (power mismatch)

↔pi
∥∥2
2

(⇐pi ci (pi )↔ ωk ↔ ε(”pki ↔ pi ) = 0)

=






1
2c2i+ϑ (ω

k + ε”pki ↔ c1i ), if quad. cost ci (pi ) = c1i pi + c2i p2i

”pki ↔ 1
ϑ (c1i + ωk ), if linear cost ci (pi ) = c1i pi

followed by projection on the feasible dispatch range [p
i
, pi ]

↭ Response to price ωk and power mismatch ”pki with dispatch decision pk+1
i

↭ Local computation: no optimization parameters are shared (only decisions)

↭ Solving the sub-problem in closed-form is much easier than solving optimization

13 / 19



Exchange ADMM for parallel computations

↭ The previous algorithm updates dispatch sequentially ≃ no parallelization

↭ Exchange ADMM: following economic intuition, enables parallelization

↭ Let ”pk = d ↔
∑n

i=1 p
k
i be the total power mismatch at iteration k

Parallel primal update ⇒i = 1, . . . , n :

pk+1
i = argmin

p
i
↭pi↭pi

ci (pi )↔ ωkpi +
ε

2

∥∥pi ↔ (pki ↔”pk )
∥∥2
2

followed by price update:

ωk+1 = ωk + ε”pk

↭ Decentralized, parallel implementation

Price update

generator 1
optimization

generator n
optimization

ω,”
p ω,

”
p

p
1 pn
. . .

14 / 19



Consensus ADMM – motivation

↭ Exchange ADMM requires a central entity for dual variable update

↭ Consensus ADMM requires dual update only among “neighbors”

↭ ... the dual update is distributed among agents (no central entity!)

↭ Coordinating power flows in tie-lines between di#erent areas:

area 1 area 2 area 3

f12↔↑ f23↔↑

minimize
p↘P,f↘F

c1(p1) + c2(p2) + c3(p3)

subject to p1 ↔ d1 = f

1

12 area 1

p2 ↔ d2 = f

2

23 ↔ f

2

12 area 2

p3 ↔ d3 = ↔f

3

23 area 3

f 112 = f 212 = f12 : ω12 consensus for 1 and 2

f 223 = f 323 = f23 : ω23 consensus for 2 and 3

↭ Duplicate power flow variables and solve as a consensus problem

15 / 19



Consensus ADMM – motivation

↭ Exchange ADMM requires a central entity for dual variable update

↭ Consensus ADMM requires dual update only among “neighbors”

↭ ... the dual update is distributed among agents (no central entity!)

↭ Coordinating power flows in tie-lines between di#erent areas:

area 1 area 2 area 3

f12↔↑ f23↔↑

minimize
p↘P,f↘F

c1(p1) + c2(p2) + c3(p3)

subject to p1 ↔ d1 = f 112 area 1

p2 ↔ d2 = f 223 ↔ f 212 area 2

p3 ↔ d3 = ↔f 323 area 3

f 112 = f 212 = f12 : ω12 consensus for 1 and 2

f 223 = f 323 = f23 : ω23 consensus for 2 and 3

↭ Duplicate power flow variables and solve as a consensus problem

15 / 19



Consensus ADMM – formulation

Global optimization problem:

minimize
p,f

c(p)

subject to p↔ d = Af

p ↫ p ↫ p

f ↫ f ↫ f

Adjacency matrix A:

aij =






+1, if node i exports flow j
↔1, if node i imports flow j
0, if otherwise

3-area example: A =




1 0

↔1 1
0 ↔1





16 / 19



Consensus ADMM – formulation

Global optimization problem:

minimize
p,f

c(p)

subject to p↔ d = Af

p ↫ p ↫ p

f ↫ f ↫ f

Consensus optimization for n areas:

minimize
p,f,f1,...,fn

∑n
i=1 ci (pi )

subject to pi ↔ di = a→i fi , ⇒i
fi ↔ f = 0 : ω i , ⇒i

f ↫ f ↫ f

16 / 19



Consensus ADMM – formulation

Global optimization problem:

minimize
p,f

c(p)

subject to p↔ d = Af

p ↫ p ↫ p

f ↫ f ↫ f

Consensus optimization for n areas:

minimize
p,f,f1,...,fn

∑n
i=1 ci (pi )

subject to pi ↔ di = a→i fi , ⇒i
fi ↔ f = 0 : ω i , ⇒i

f ↫ f ↫ f

Consensus ADMM iterations:

↭ Private variable update for all i = 1, . . . , n

fk+1
i = argmin

pi ,fi

ci (pi ) + ωk→
i fi +

ε

2

∥∥∥fi ↔ fk
∥∥∥

subject to pi ↔ di = a→i fi

p
i
↫ pi ↫ pi

↭ Consensus variable update

fk+1 = argmin
f

↔ ωk→
i f +

∑n
i=1

ϑ
2

∥∥∥fk+1
i ↔ f

∥∥∥

subject to f ↫ f ↫ f

↭ Dual variable update

ωk+1
i = ωk

i + ε(fk+1
i ↔ fk+1)

16 / 19



Resources

↭ Boyd, S., et al. (2011). Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations and Trends in Machine
learning, 3(1), 1-122. [§2,§3,§7]

↭ Wright, J., & Ma, Y. (2022). High-dimensional data analysis with low-
dimensional models: Principles, computation, and applications. Cambridge
University Press. [§8.4,§8.5]

↭ Molzahn, Daniel K., et al. “A survey of distributed optimization and control
algorithms for electric power systems.” IEEE Transactions on Smart Grid 8.6
(2017): 2941-2962.

17 / 19



↭ Look around you and form teams of 2 people (1 min)

↭ Formulate and code the problem below working in pairs

In-class Exercise 1: Solve the problem below using

1 Ipopt solver

2 penalized formulation

3 dual ascent algorithm

4 augmented Lagrangian method

5 Alternating direction method of multipliers (ADMM)

minimize
x1,x2

1
2 (x1 ↔ 5)2 + 1

2 (x2 + 3)2

subject to x1 + x2 = 10 : ω

19 / 19


