ECE 598 Computational Power Systems

Optimal power flow & Locational pricing
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1/33



Last lecture recap

B Look around you and form teams of 2 people (1 min)

B Quickly review your notes or the slide deck (1 min)

B Share your three personal highlights with your partner (3 min)
B Get iClicker app ready
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S. Frank and S. Rebennack. An introduction to optimal power flow: Theory, formulation, and examples. IIE Transactions, 2016
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1. Power flow models

2. Optimal power flow

3. Locational electricity pricing
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Power transmission network as an electric circuit

B N nodes (generator/load buses) and E edges (lines, transformers)

B AC voltages and currents as phasors (at nominal frequency)
Y = Vel? = R[V] + SV

B Ohm’'s law V = ZZ
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m—model of transmission lines

B Voltages V, and Vp, at line ends

B Line series impedance zpm = fam + jXnm

B Line series admittance y,m = —zl = gm + jbnm
m

B Line series conductance gnm = —2m,—
rnm+xnm

B Line series susceptance bpm = 22— X”’"z
rnm+Xnm

B Line charging susceptance b§,,
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Line currents
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Kirchoff’s current law:
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Vn

Collect currents and voltages {Z;, Vi},'Nzl into vectors i,v € CN.
We will ignore transformers and phase shifters (for now).
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Multivariate Ohm’s law

B Currents are linearly related to voltages, i.e., i = Yv
B Bus admittance matrix is fundamental in power flow analysis

. b¢
D kn Yk T8 n=m
Yom = —Ynm , 3 line (n, m)
0 , otherwise

B symmetric (Ynm = Ymn); non-Hermitian (Y,m # Y,r)
B sparse: efficient computations and storage

B invertible if b7 # O for at least one line; otherwise Y1 = 0

B Bus impedance matrix Z =Y~ (v = Zi)
B non-sparse

B not the matrix of line impedances, i.e., Z,m # Zom = %
nm
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IEEE 118-Bus system
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Complex power

B Power S, = S% — S¢ consumed/generated at bus n
{Si=Pi+jQ=VI}", andi=Yv

B Eliminate current to get the multivariate power model

Vn
s = diag(s)Y*v*
N complex equations in 2N complex unknowns

B Similar expressions for power flow on line (n, m)

Som = VmZpm
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AC power flow model

Sn:Pn"l‘an

Voltages in polar coordinates (0nm = 0, — 0)

N
Pp=V, Z Vim (Gnm €08 Opm + Bpm sin 0nm)

m=1
N
Qn=Va > Vin (Gam sin 6nm — Bam cos 6m)

m=1

depends on voltage difference; reference bus 6y =0

Voltages in rectangular coordinates

N N
Pr = R[Va] > (R[Vin] Gom — S[Vin]Bam) + S[Va] D (S[Vin] Gom + R[Vin] Bam)
m=1 m=1
N N
Qn = S[Val D (R[Vin] Gam — S[Vin] Bam) = RIVa] D (S[Vin] Gom + R[Vin] Bam)
m=1 m=1
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Solving power flow equations

B There are 2N equations and 4N variables {(Pm, Qm, Vim, 0m)}"

m=1

B Problem statement: Fixing the values of 2V variables, find the values of the rest
2N unknowns that satisfy the nonlinear power flow equations
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Solving power flow equations

B There are 2N equations and 4N variables {(Pm, Qm, Vim, 0m)}"

m=1

B Problem statement: Fixing the values of 2V variables, find the values of the rest
2N unknowns that satisfy the nonlinear power flow equations

B Given values typically come from
First Ny load buses (PQ buses) (P,, Q)

Next Ng generator buses (PV buses) (P,, V;)
Reference bus (Viy, Oy = 0)

B Number of buses N =1+ Ng + Ny
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Solving power flow equations

There are 2N equations and 4N variables {(Pm, Qm, Vi, 0m)}N

m=1

Problem statement: Fixing the values of 2V variables, find the values of the rest
2N unknowns that satisfy the nonlinear power flow equations

Given values typically come from
First Ny load buses (PQ buses) (P,, Q)

Next Ng generator buses (PV buses) (P,, V;)
Reference bus (Viy, Oy = 0)

Number of buses N =1+ Ng + Ny

Resultant 2N power flow equations

Py =V, ZQ’,::{ Vi (Gnm €08 0pm + Bpmsin0pm), Yn=1,

Qn =V XN | Vin (GomsinOnm — Bam cosOnm), ¥Yn=1,...

Equations in {(Vp, 0)}_; solved recursively (Gauss-Seidel

o Ng+ Ny =N-—1
7Nd

, Newton, FDPF)

Once voltages {(V;-,0%)}_, are found, any other quantity (injections, flows,

currents, losses) can be calculated
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DC power flow model

N
Only active power flow P,=V, Z Vin (Gpm €08 Onm + Bum sin 0m)

m=1

Assumptions
Al Low r/x ratios in transmission lines (1/5-1/10 for 220-400kV)

X
om <K Xom  —  8m L bpm — G=0 and by, = %
rnm +Xnm
A2 Small angle difference sin(6, — 0m) = 6n — Om

A3 Voltage magnitudes V, =~ 1

DC power flow model

Pnz Z an: Z bnm(gnfem)

m:n~m m:n~m
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B matrix

Power injections (and flows) relate linearly to phase differences

Pn - Z bnm(en - am)

m:n~m

Multivariate power flow model: p = BO

DC bus admittance matrix: (different from matrix B in Y = G + jB)

Zk;gn bpe  sn=m
Bprm = —bnm , 3 line (n, m)
0 , otherwise
B Real, symmetric, sparse, and positive semidefinite
B Lossless lines: BL=0=1Tp=0 (17(p8 —p)=0)

H H H — Xnm ~ 1
B Oftentimes further simplify by, = PR
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2. Optimal power flow
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Formulation in rectangular coordinates

B Collect nodal voltages in rectangular coordinates in v € CV

v=[RWV] S0 . R+ S]]

B Power injections and squared voltage magnitudes are quadratic functions of v:

Pa(v) =v'Mp v
Qn(v) = vHMan
VZ(v) =viMy v

n

where matrices M are Hermitian symmetric (M = M*)

B Every bus contributes two quadratic constraints (active and reactive power) on v
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Finding M matrices

B Voltage magnitude (e, is the n-th canonical vector)

Vi(v) = ViV, =vlleselv = My, =epe/

B Complex power injection

Sn=Pn+jQn=VI; = (vTe,,)(e,Ti*) = vTe,,enTY*v* = vHY*e,,enTv

B Active and reactive power then take the form

1 1
Pn= E(Sn +57)=v'Mp,v where Mp = E(Y*ene,,T +ene, Y*)

1 1
Qn = 5(5" —S)=vMg v where Mg = E(Y*enenT —eqe Y¥)
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Power flow as a feasibility problem

B System state as solution of feasibility problem

find v
st. vVPiMyv=s,, Vk=1,...,2N [note: viMv = Tr(Mkva)]
B Introduce matrix variable V = v/
find (v,V)
st. Tr(MgV) =s¢, Vk=1,...,2N
V =w'

B Eliminate variable v; non-convex problem due to rank constraint

find (V)
st. Tr(MV) =sq, Vk=1,...,2N
V>0, rank(V) =1
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Semidefinite program relaxation

B Drop rank constraint to get semidefinite program (SDP)

find (V)
st. Tr(MgV)=s,, Vk=1,...,2N
V>0

which is a convex problem

B If the solution V* is rank-1, the relaxation is said to be exact

B If exact, find v* from V* = v*v*H

B Relaxation is oftentimes exact under practical system conditions!
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Optimal power flow (OPF) using semidefinite relaxation

B OPF problem:
minimize Tr(MV)
V-0

subject to  Tr(MyV) =s,, Vk=1,...,2N

B Design matrix M to strengthen the relaxation (favor rank-1 solutions)!:
B selecting M = Y?Y minimizes [|i|3
B selecting M = B minimizes losses

B both yield the “high-voltage solution” of the power flow equations

B Use N cnTr(Mp,V) as an objective to minimize the dispatch cost?

n=1

B Incorporate squared voltage bounds as v? < My, V < V2

1R. Madani, J. Lavaei, and R. Baldick. Convexification of power flow problem over arbitrary networks. IEEE CDC 2015
2]. Lavaei and S. Low. Zero duality gap in optimal power flow problem. IEEE Trans. on Power Systems. 2012
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Formulation in polar coordinates

B AC power flow model

Pa(v,0) = Va S°N_| Vi (Gom €08 0um + Bamsin Opm), ¥n=1,...,N
Qn(v,8) = Vo SN Viy (Gom Sin Om — Boam €08 0nm), ¥n=1,...,N

B Classic AC-OPF problem formulation

- o
minimize c(p
p%,q8,v,0 ( )

subject to  p(v, ) = p& — p?
a(v,0) = qf — q°

generation cost

active power flow

reactive power flow
min/max gen p-limits
min/max gen q-limits
min/max voltage mag limits

min/max voltage angle limits

B Minimize generation cost subject to power flow equations and variable limits
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Security-constrained AC-OPF (SC-AC-OPF)

pg’q?i‘giyrgoi’zvec 0. c(p®) generation cost
subject to  po(vo, 8o) = p& — p? nominal act. power flow
qo(vo, B0) = g8 — q‘ nominal rea. power flow
pe(ve,0c) =p8 —p9, Ve =1,...,N. post-contingency act. power flow
qc(ve,0c) =8 — q9, Ve=1,...,N. post-contingency rea. power flow

+ limits on optimization variables

B Constraints for the nominal and all contingency scenarios

W Line outage: pc() and gc() include new admittances Y.

B One dispatch (p%,q#) is computed for the nominal and all contingency scenarios
B SC-AC-OPF costs > classic AC-OPF (why? what is Nc for line outages?)

B Similarly, generator outage security constraints are added to SC-AC-OPF
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DC-OPF (bf—formulation)

minimize c(p)
p,0
subject to BO =

B New notation: p& — p and p¢ — d
B Acts on the DC power flow approximation
B Active power only; reactive power disregarded

B Double-sided power flow constraints (why?)

generation cost
active power balance
min/max gen p-limits

power flow limits
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DC-OPF (PTDF formulation)

B Formulate the DC-OPF problem in one variable p& only

B Use matrix F € REXN of power transfer distribution factors (PTDF)
B how the power flow in line e changes w.r.t. to the change of power injection at node n?

B obtained by manipulating the DC bus admittance matrix B (see today’s tutorial)
B Power flows f = F(p — d) (distribution of net injections across power lines)

B The new DC-OPF formulation

minimize c(p) generation cost
p
subject to 1T (p—d)=0 active power balance
IF(p—d)| < f power flow limits
p<p<p min/max gen p-limits

B Less variables than in bf—formulation, but requires more memory to store and
operate with matrix F

B Often used for locational marginal pricing in high-voltage grids
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3. Locational electricity pricing
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Duality of DC-OPF

B Focus on the coupling constraints (i.e., linking generators and loads):

minimize c(p)

PSPSP
subjectto 1T (p—d)=0 :A
Fp-d)<f g
—Fp-d)<f :p

B Partial Lagrangian function (dualize the coupling constraints only):
max min_ L(p,\, &, p) =c(p) — A1" (p — d)
B p PSPSP - T - T -
+u (F(p—d)—f)+p (-F(p—d)—f)
B Group terms corresponding to dispatch p, demand d and line limits f :

L=rP+ %4+ LF where

LP(p, A, p) = c(p) — (IN—F m+Fp)Tp
L mp)=(1N-F ' n+F'p)'d
Li(mp)=—(u+n)'f

Power dispatch p and demand d share the same multiplier but with oposite signs
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Locational marginal prices (LMPs)

ﬂ*(A*,ﬁ*,H*) — 1)\* — FT(ﬁ* 77*) c RN
uniform .
congestion
B 7} is the cost of supplying the next unit of demand at node n

B in case of congestion (z* > 0 or t* > 0), electricity price varies across the grid

B price at the reference bus is A* (the ref. column of F is zero)
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Locational marginal prices (LMPs)

*)\*’7*’ *) — IA*_FTf*_ * ERN
(A, BT, ") (" —p™)

uniform .
congestion
B 7} is the cost of supplying the next unit of demand at node n
B in case of congestion (z* > 0 or t* > 0), electricity price varies across the grid

B price at the reference bus is A* (the ref. column of F is zero)
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€=0.01,% = 100
Mieth et al. Risk- and Variance-Aware Electricity Pricing. PSCC 2020
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Equilibrium interpretation

B Equilibrium problem:
Power suppliers minimize negative profits:

p(m*) = argmin LP(p,7*) =c(p) — =" 'p
PSPSP

Market operator finds such prices 7w*(\*, x*, u*) that satisfy:

1 (p(r*) —d)=0 and [F(p(r*) —d)| < F

B Once equilibrium is found, power suppliers are paid as above and:
Inelastic demands are charged with #* od

Transmission operator collects congestion rent (p + i

B No congestion (z* = p* = 0) — problem reduces to economic dispatch

B Elastic demand — utility-maximization problem for each demand
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Some desirable market properties - Part |

B Market efficiency: Equilibrium LMPs yield the least-cost dispatch

Proof: Extrapolate the solution to Assignment 1 (Problem 2) to the
network-constrained case.

B Cost recovery: for fully dispatchable generators (i.e., p = 0)

Proof:
primal problem dual problem
maximize 7w 'p—c'p minimize ETﬁ - QTP
P 9,920 B
subjectto p<p<p subjectto c— 7w +9-9=0

Strong duality: 7* Tp* —cTp* = E*Tﬁ — ﬁ*TE

9, 9* >0 and P = 0 = the profit is non-negative => cost recovery
B What holds for aggregate also holds for individual generators

B On your own: repeat the same steps for quadratic costs ...
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Some desirable market properties - Part Il

B Revenue adequacy in markets with fully dispatchable units (i.e., p = 0):

Market operator does not run into deficit (demand charges > generator revenues)

Proof: The Lagrangian function in optimality decomposes into

L(p* 2\ w* *) *Y ek ok *Td_fo* *
(PN B p)=c(p*) —7" p +m (7" 4+ p*)

=c(p*) minus profit charges congestion rent

—

ﬂ_*Td_ﬂ_*Tp*:f (“ _,’_“*)

We thus only need to show that the congestion rent is non-negative
From dual feasibility conditions *, u* >0 = w* Td — 7*Tp* > 0

Since the congestion rent is non-negative, the revenue adequacy holds

30/ 33



Unit commitment (UC) problem

T

minimize c(pt,u
Pt,ut ; (Pt t)
subject to lT(pf —d:) =0,

F(pr —d¢) < F

cost c(pe, )

—F(p: — d¢) <, : dispatch p:
. :

o |-

urop < pr<uop, p

+ other constraints YVt =1,..., T

B Binary unit commitment decisions u; € {0, 1}V

B Discontinuous generator cost functions = non-convex problem
B Because of discontinuity, the dual variables do not exist!

B Mixed-integer (MI) linear (or quadratic) program

B How to price electricity using unit commitment?
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Unit commitment (UC) problem

-
minimize c 5
Pt,ut Z (Pnut) ::.
t=1 g
subject to 17 (pr—d¢) =0, ){ It
— o
Fpe —de) <7, % °
—F(p: — d¢) <, : }K : dispatch p:
urop < pr<uUop, P P
+ other constraints YVt =1,..., T

B Binary unit commitment decisions u; € {0, 1}V

B Discontinuous generator cost functions = non-convex problem
B Because of discontinuity, the dual variables do not exist!

B Mixed-integer (MI) linear (or quadratic) program

B How to price electricity using unit commitment?
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Electricity pricing with discontinuous costs
B Let uj,...,u’} be the optimal UC decisions (e.g., after solving UC with MI solver)

B Formulate the relaxed problem

T

minimize Z c(pe,ue)

Pt,ut —1

subject to 1T (pr—di) =0 : A

ut:u§ 21.9t

B This is a convex optimization problem with the dual solution3:
B Prices ﬂ':(A:,ﬁ:,E:) and 9;* solve a competitive equilibrium with disc. cost

B Uplift payment 9,* o u; to remunerate for the costs that can not be recovered by LMPs
B This is the case of not fully dispatchable (p # 0) units (see desirable market property 2)

B UC is solved days ahead to compute uplifts; OPF is solved later to price electricity

30'Neill et al. Efficient market-clearing prices in markets with nonconvexities. EJOR, 2005.
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