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Last lecture recap

↭ Look around you and form teams of 2 people (1 min)

↭ Quickly review your notes or the slide deck (1 min)

↭ Share your three personal highlights with your partner (3 min)

↭ Get iClicker app ready

Quiz: Which statement is FALSE?

A The dual problem computes the best upper bound on the primal solution; the
primal problem computes the best lower bound on the dual solution

B Thanks to complementarity slackness and primal feasibility, the Lagrangian
function equals to the primal objective function in the optimum

C Marginal electricity price is the dual variable of the power balance constraint

D The marginal electricity price solves a competitive market equilibrium, i.e., it
provides generators with financial incentives to meet the demand
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2 STEPHEN FRANK AND STEFFEN REBENNACK
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Fig. 1.1: Optimization and control procedures for incremental planning of power system operation. Bold
text indicates procedures which incorporate variants of optimal power flow.

What is missing in the literature—and what we provide in this introductory article—is a detailed in-
troduction to the OPF problem from an operations research perspective. Existing review articles and sur-
veys [13,59,60], including the authors’ recent survey [23,24], focus heavily on optimization theory and tailored
OPF solution algorithms. In contrast, this article emphasizes the electrical engineering theory and mechanics
of the OPF formulation. The goal of the this paper is to provide a bridge between OPF theory and practice:
in it we outline the tool set required to understand, formulate, analyze, and ultimately solve a typical OPF
problem. Therefore, we address many topics given little attention in other introductory materials, including
the construction of the admittance matrix for electrical power flow, treatment of advanced controls such as
phase-shifting and tap-changing transformers, a qualitative comparison of the various forms of the electric
power flow equations, and various practical considerations, such as the use of the per-unit system.

Because we have written this article for the operations researcher, we assume that the reader has signif-
icant experience with nonlinear optimization and advanced mathematical concepts but little background in
electrical engineering. Specifically, this paper requires a foundational understanding of

• linear algebra [28],
• complex number theory [25,28],
• analysis of di↵erential equations in the frequency domain [28], and
• linear and nonlinear optimization theory and application [39,44].

We expect that readers may not possess a working knowledge of electrical circuit theory; we therefore
provide a brief introduction in Appendix B and recommend [40] for further reading. Readers interested in
the technical details of electric power flow should also consult a good power systems text such as [26] or [56].

We begin in Section 2 with a description of power systems models, including the classical formulation
of the OPF problem. Section 3 surveys some common applications of OPF and includes full formulations

S. Frank and S. Rebennack. An introduction to optimal power flow: Theory, formulation, and examples. IIE Transactions, 2016
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1. Power flow models

2. Optimal power flow

3. Locational electricity pricing
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Power transmission network as an electric circuit

↭ N nodes (generator/load buses) and E edges (lines, transformers)

↭ AC voltages and currents as phasors (at nominal frequency)

V = Ve
jω = →[V] + j↑[V]

↭ Ohm’s law V = ZI
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ω→model of transmission lines

Vn Vm

ynm

jb
cn
m

/2

jb
cn
m

/2
↭ Voltages Vn and Vm at line ends

↭ Line series impedance znm = rnm + jxnm

↭ Line series admittance ynm = 1
znm

= gnm + jbnm

↭ Line series conductance gnm = rnm

r2
nm

+x2
nm

↭ Line series susceptance bnm = xnm

r2
nm

+x2
nm

↭ Line charging susceptance b
c
nm
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Line currents

Vm Vn

ynm

jb
cn
m

/2

Inm

I

I

jb
cn
m

/2

Inm = ynm (Vn ↓ Vm) + j
b
c
nm

2
Vn

=

(
ynm + j

b
c
nm

2

)
Vn ↓ ynmVm

Kircho!’s current law:

I1 =
N∑

i=2

(
y1i + j

b
c

1i

2

)
V1 ↓

N∑

i=2

y1iVi

I1

V1
V3

VN

V2

. .
.

Collect currents and voltages {Ii , Vi}Ni=1 into vectors i, v ↔ CN .
We will ignore transformers and phase shifters (for now).
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Multivariate Ohm’s law

↭ Currents are linearly related to voltages, i.e., i = Yv

↭ Bus admittance matrix is fundamental in power flow analysis

Ynm =






∑
k →=n

ynk + j
b
c

nk

2 , n = m

↓ynm , ↗ line (n,m)
0 , otherwise

↭ symmetric (Ynm = Ymn); non-Hermitian (Ynm →= Y
→
mn

)

↭ sparse: e!cient computations and storage

↭ invertible if bc

nm
→= 0 for at least one line; otherwise Y1 = 0

↭ Bus impedance matrix Z = Y↑1 (v = Zi)
↭ non-sparse

↭ not the matrix of line impedances, i.e., Znm →= znm = 1
ynm
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IEEE 118-Bus system
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Complex power

↭ Power Sn = S
g

n ↓ S
d
n consumed/generated at bus n

{
Si = Pi + jQi = ViI↓

i

}
N

i=1
and i = Yv

↭ Eliminate current to get the multivariate power model

s = diag(s)Y↓
v
↓

N complex equations in 2N complex unknowns

↭ Similar expressions for power flow on line (n,m)

Snm = VmI↓
nm

In

Vn
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AC power flow model

Sn = Pn + jQn

Voltages in polar coordinates (ωnm = ωn ↓ ωm)

Pn = Vn

N∑

m=1

Vm (Gnm cos ωnm + Bnm sin ωnm)

Qn = Vn

N∑

m=1

Vm (Gnm sin ωnm ↓ Bnm cos ωnm)

depends on voltage di”erence; reference bus ωN = 0

Voltages in rectangular coordinates

Pn = →[Vn]
N∑

m=1

(→[Vm]Gnm ↓ ↑[Vm]Bnm) + ↑[Vn]
N∑

m=1

(↑[Vm]Gnm + →[Vm]Bnm)

Qn = ↑[Vn]
N∑

m=1

(→[Vm]Gnm ↓ ↑[Vm]Bnm) ↓ →[Vn]
N∑

m=1

(↑[Vm]Gnm + →[Vm]Bnm)
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Solving power flow equations

↭ There are 2N equations and 4N variables {(Pm,Qm,Vm, ωm)}Nm=1

↭ Problem statement: Fixing the values of 2N variables, find the values of the rest
2N unknowns that satisfy the nonlinear power flow equations

↭ Given values typically come from
1 First Nd load buses (PQ buses) (Pn,Qn)

2 Next Ng generator buses (PV buses) (Pn,Vn)

3 Reference bus (VN , ωN = 0)

↭ Number of buses N = 1 + Ng + Nd

↭ Resultant 2N power flow equations

Pn = Vn

∑
N

m=1 Vm (Gnm cos ωnm + Bnm sin ωnm) , ↘n = 1, . . . ,Nd + Ng = N ↓ 1

Qn = Vn

∑
N

m=1 Vm (Gnm sin ωnm ↓ Bnm cos ωnm) , ↘n = 1, . . . ,Nd

↭ Equations in {(Vn, ωn)}Nn=1 solved recursively (Gauss-Seidel, Newton, FDPF)

↭ Once voltages {(V ε
n , ωε

n )}Nn=1 are found, any other quantity (injections, flows,
currents, losses) can be calculated
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DC power flow model

Only active power flow Pn = Vn

N∑

m=1

Vm (Gnm cos ωnm + Bnm sin ωnm)

Assumptions

A1 Low r/x ratios in transmission lines (1/5-1/10 for 220-400kV)

rnm ≃ xnm ⇐ gnm ≃ bnm ⇐ G ⇒ 0 and bnm =
xnm

r2nm + x2nm

A2 Small angle di”erence sin(ωn ↓ ωm) ⇒ ωn ↓ ωm

A3 Voltage magnitudes Vn ⇒ 1

DC power flow model

Pn ⇒
∑

m:n↔m

Pnm =
∑

m:n↔m

bnm(ωn ↓ ωm)
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B matrix

Power injections (and flows) relate linearly to phase di”erences

Pn =
∑

m:n↔m

bnm(ωn ↓ ωm)

Multivariate power flow model: p = Bω

DC bus admittance matrix: (di”erent from matrix B in Y = G+ jB)

Bnm =






∑
k →=n

bnk , n = m

↓bnm , ↗ line (n,m)
0 , otherwise

↭ Real, symmetric, sparse, and positive semidefinite

↭ Lossless lines: B1 = 0 ⇑ 1↗p = 0 (1↗(pg ↓ pd ) = 0)

↭ Oftentimes further simplify bnm = xnm

r2
nm

+x2
nm

⇒ 1
xnm
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1. Power flow models

2. Optimal power flow

3. Locational electricity pricing
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Formulation in rectangular coordinates

↭ Collect nodal voltages in rectangular coordinates in v ↔ CN

v =
[
→[V1] + j↑[V1] . . . →[VN ] + j↑[VN ]

]↗

↭ Power injections and squared voltage magnitudes are quadratic functions of v:

Pn(v) = v
H
MPn

v

Qn(v) = v
H
MQn

v

V
2
n (v) = v

H
MVn

v

where matrices M are Hermitian symmetric (M = MH)

↭ Every bus contributes two quadratic constraints (active and reactive power) on v
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Finding M matrices

↭ Voltage magnitude (en is the n-th canonical vector)

V
2
n (v) = V↓

n Vn = v
H
ene

↗
n v ⇑ MVn

= ene
↗
n

↭ Complex power injection

Sn = Pn + jQn = VnI↓
n = (v↗en)(e

↗
n i

↓) = v
↗
ene

↗
n Y

↓
v
↓ = v

H
Y

↓
ene

↗
n v

↭ Active and reactive power then take the form

Pn =
1

2
(Sn + S

↓
n ) = v

H
MPn

v where MPn
=

1

2
(Y↓

ene
↗
n + ene

↗
n Y

↓)

Qn =
1

2
(Sn ↓ S

↓
n ) = v

H
MQn

v where MQn
=

1

2
(Y↓

ene
↗
n ↓ ene

↗
n Y

↓)
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Power flow as a feasibility problem

↭ System state as solution of feasibility problem

find v

s.t. v
H
Mkv = sk , ↘k = 1, . . . , 2N

[
note: v

H
Mkv = Tr(Mkvv

H)
]

↭ Introduce matrix variable V = vvH

find (v,V)

s.t. Tr(MkV) = sk , ↘k = 1, . . . , 2N

V = vv
H

↭ Eliminate variable v; non-convex problem due to rank constraint

find (V)

s.t. Tr(MkV) = sk , ↘k = 1, . . . , 2N

V ⇓ 0, rank(V) = 1
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Semidefinite program relaxation

↭ Drop rank constraint to get semidefinite program (SDP)

find (V)

s.t. Tr(MkV) = sk , ↘k = 1, . . . , 2N

V ⇓ 0

which is a convex problem

↭ If the solution Vε is rank-1, the relaxation is said to be exact

↭ If exact, find vε from Vε = vεvεH

↭ Relaxation is oftentimes exact under practical system conditions!
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Optimal power flow (OPF) using semidefinite relaxation

↭ OPF problem:

minimize
V↘0

Tr(MV)

subject to Tr(MkV) = sk , ↘k = 1, . . . , 2N

↭ Design matrix M to strengthen the relaxation (favor rank-1 solutions)1:

↭ selecting M = Y
H
Y minimizes ↑i↑2

2

↭ selecting M = B minimizes losses

↭ both yield the “high-voltage solution” of the power flow equations

↭ Use
∑

N

n=1 cnTr(MPn
V) as an objective to minimize the dispatch cost2

↭ Incorporate squared voltage bounds as v2 ↫ MVn
V ↫ v

2

1R. Madani, J. Lavaei, and R. Baldick. Convexification of power flow problem over arbitrary networks. IEEE CDC 2015
2J. Lavaei and S. Low. Zero duality gap in optimal power flow problem. IEEE Trans. on Power Systems. 2012
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Formulation in polar coordinates

↭ AC power flow model

Pn(v,ω) = Vn

∑
N

m=1 Vm (Gnm cos ωnm + Bnm sin ωnm) , ↘n = 1, . . . ,N

Qn(v,ω) = Vn

∑
N

m=1 Vm (Gnm sin ωnm ↓ Bnm cos ωnm) , ↘n = 1, . . . ,N

↭ Classic AC-OPF problem formulation

minimize
pg ,qg ,v,ω

c(pg ) generation cost

subject to p(v,ω) = p
g ↓ p

d
active power flow

q(v,ω) = q
g ↓ q

d
reactive power flow

p
g ↫ p

g ↫ p
g

min/max gen p-limits

q
g ↫ q

g ↫ q
g

min/max gen q-limits

v ↫ v ↫ v min/max voltage mag limits

ω ↫ ω ↫ ω min/max voltage angle limits

↭ Minimize generation cost subject to power flow equations and variable limits
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Security-constrained AC-OPF (SC-AC-OPF)

minimize
pg ,qg ,v0,ω0,vc ,ωc

c(pg ) generation cost

subject to p0(v0,ω0) = p
g ↓ p

d
nominal act. power flow

q0(v0,ω0) = q
g ↓ q

d
nominal rea. power flow

pc (vc ,ωc ) = p
g ↓ p

d , ↘c = 1, . . . ,Nc post-contingency act. power flow

qc (vc ,ωc ) = q
g ↓ q

d , ↘c = 1, . . . ,Nc post-contingency rea. power flow

+ limits on optimization variables

↭ Constraints for the nominal and all contingency scenarios

↭ Line outage: pc () and qc () include new admittances Yc

↭ One dispatch (pg , qg ) is computed for the nominal and all contingency scenarios

↭ SC-AC-OPF costs ↬ classic AC-OPF (why? what is Nc for line outages?)

↭ Similarly, generator outage security constraints are added to SC-AC-OPF
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DC-OPF (bε→formulation)

minimize
p,ω

c(p) generation cost

subject to Bω = p ↓ d active power balance

p ↫ p ↫ p min/max gen p-limits

↓ f nm ↫ bnm(ωn ↓ ωm) ↫ f nm power flow limits

↭ New notation: pg ⇐ p and pd ⇐ d

↭ Acts on the DC power flow approximation

↭ Active power only; reactive power disregarded

↭ Double-sided power flow constraints (why?)
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DC-OPF (PTDF formulation)

↭ Formulate the DC-OPF problem in one variable pg only

↭ Use matrix F ↔ RE≃N of power transfer distribution factors (PTDF)
↭ how the power flow in line e changes w.r.t. to the change of power injection at node n?

↭ obtained by manipulating the DC bus admittance matrix B (see today’s tutorial)

↭ Power flows f = F(p ↓ d) (distribution of net injections across power lines)

↭ The new DC-OPF formulation

minimize
p

c(p) generation cost

subject to 1
↗(p ↓ d) = 0 active power balance

|F(p ↓ d)| ↫ f power flow limits

p ↫ p ↫ p min/max gen p-limits

↭ Less variables than in bω↓formulation, but requires more memory to store and
operate with matrix F

↭ Often used for locational marginal pricing in high-voltage grids
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1. Power flow models

2. Optimal power flow

3. Locational electricity pricing
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Duality of DC-OPF

↭ Focus on the coupling constraints (i.e., linking generators and loads):

minimize
p↫p↫p

c(p)

subject to 1
↗(p ↓ d) = 0 : ε

F(p ↓ d) ↫ f : µ

↓F(p ↓ d) ↫ f : µ

↭ Partial Lagrangian function (dualize the coupling constraints only):

max
ϑ,µ,µ

min
p↫p↫p

L(p, ε,µ,µ) =c(p) ↓ ε1↗(p ↓ d)

+ µ↗(F(p ↓ d) ↓ f) + µ↗(↓F(p ↓ d) ↓ f)

↭ Group terms corresponding to dispatch p, demand d and line limits f :

L = Lp + Ld + Lf , where

Lp(p, ε,µ,µ) = c(p) ↓ (1ε ↓ F
↗µ+ F

↗µ)↗p

Ld(ε,µ,µ) = (1ε ↓ F
↗µ+ F

↗µ)↗d

Lf(µ,µ) = ↓(µ+ µ)↗f

Power dispatch p and demand d share the same multiplier but with oposite signs
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Locational marginal prices (LMPs)

εε(εε,µε,µε) = 1εε
︸
uniform

↓F
↗(µε ↓ µε)

︸  
congestion

↔ RN

↭ ϑε
n is the cost of supplying the next unit of demand at node n

↭ in case of congestion (µε > 0 or µε > 0), electricity price varies across the grid

↭ price at the reference bus is εε (the ref. column of F is zero)

Mieth et al. Risk- and Variance-Aware Electricity Pricing. PSCC 2020
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TABLE I: Optimal Solutions of the deterministic, GEN-CC, EQV-CC and VA-CC cases.

Risk Level
Model Det GEN-CC EQV-CC VA-CC ( =  p

i =  q
i =  v

i =  fp

ij =  fq

ij , 8i, 8ij)

 – – – 0.1 1 10 100 1000

✏ p
=

✏ q
=

✏ v
=

✏ f
=

0
.1

Objective [$] 91103.22 91107.33 92237.67 92237.74 92238.30 92243.86 92296.91 92764.30

Exp. Gen. Cost [$] 91103.22 91107.33 92237.67 92237.68 92237.68 92237.72 92239.70 92260.83
� rel. to EQV-CC 98.770% 98.774% 100.000% 100.000% 100.000% 100.000% 100.002% 100.025%

� [$] – 8.72 28.10 28.11 28.23 29.40 40.35 125.54

�
P

i �2
qG,i

[%] – – 100.0% 0.132% 0.103% 0.090% 0.087% 0.064%
�

P
i �2

vi
[%] – – 100.0% 3.459% 1.215% 0.349% 0.269% 0.225%

�
P

ij �2
fp

ij
[%] – – 100.0% 61.071% 60.458% 60.537% 59.798% 59.614%

�
P

ij �2
fq

ij
[%] – – 100.0% 55.808% 54.793% 54.925% 54.584% 54.313%

✏ p
=

✏ q
=

✏ v
=

✏ f
=

0
.0

1 Objective [$] 91103.22 91107.71 93744.95 93745.01 93745.57 93751.17 93805.19 94281.35

Exp. Gen. Cost [$] 91103.22 91107.71 93744.95 93744.95 93744.94 93744.96 93747.04 93772.27
� rel. to EQV-CC 97.182% 97.187% 100.000% 100.000% 100.000% 100.000% 100.002% 100.029%

� [$] – 9.74 25.93 25.94 26.03 26.95 37.47 126.42

�
P

i �2
qG,i

[%] – – 100.0% 0.194% 0.188% 0.187% 0.163% 0.149%
�

P
i �2

vi
[%] – – 100.0% 25.384% 4.570% 1.073% 0.752% 0.650%

�
P

ij �2
fp

ij
[%] – – 100.0% 64.291% 64.526% 64.404% 62.879% 62.103%

�
P

ij �2
fq

ij
[%] – – 100.0% 54.022% 54.241% 54.193% 52.940% 52.626%

Fig. 1: (a) Active and reactive power prices �p
i and �q

i for the deterministic, GEN-CC and EQV-CC cases and VA-CC with
 = 100 for risk level ✏ = 0.01. The orange line within the blue box represents the median value, the left and right edges of
the box represent the first and third quartiles and the outliers are plotted as circles. (b) Difference of active power prices �p

i in
the VA-CC ( = 100) relative to the deterministic case (in %). (c) Magnification of the area indicated by the doted rectangle
in (b).

VI. CONCLUSION

This paper described an approach to internalize RES
stochasticity and risk parameters in electricity prices. Using
SOC duality, these risk- and variance-aware prices are derived
from a chance-constrained AC-OPF and are itemized in terms
of active and reactive power, voltage support and power flow
components. We proved that active and reactive power prices
do not explicitly depend on uncertainty and risk parameters,
while expressions for balancing reserve prices explicitly in-
clude these parameters. Further, introducing variance penalties

on the system state variables has been shown to internalize the
trade-off between variance, risk and system cost at a modest
increase in the expected operating cost. The results have
been demonstrated and analyzed on the modified IEEE 118-
node testbed. Future work includes extensions of the proposed
market-clearing model to account for risk-averse strategies
of market participants, enable risk trading instruments using
our preliminary work in [27], and to account for multi-period
trading horizons.

Mieth et al. Risk- and Variance-Aware Electricity Pricing. PSCC 2020
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Equilibrium interpretation

↭ Equilibrium problem:

Power suppliers minimize negative profits:

p(εε) = argmin
p↫p↫p

Lp(p,εε) = c(p) ↓ εε↗
p

Market operator finds such prices εε(εε,µε,µε) that satisfy:

1
↗(p(εε) ↓ d) = 0 and |F(p(εε) ↓ d)| ↫ f

↭ Once equilibrium is found, power suppliers are paid as above and:

Inelastic demands are charged with εε ⇔ d

Transmission operator collects congestion rent (µ+ µ)↗f

↭ No congestion (µε = µε = 0) ⇐ problem reduces to economic dispatch

↭ Elastic demand ⇐ utility-maximization problem for each demand
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Some desirable market properties - Part I

↭ Market e”ciency: Equilibrium LMPs yield the least-cost dispatch

Proof: Extrapolate the solution to Assignment 1 (Problem 2) to the
network-constrained case.

↭ Cost recovery: for fully dispatchable generators (i.e., p = 0)

Proof:
primal problem

maximize
p

εε↗
p ↓ c

↗
p

subject to p ↫ p ↫ p

dual problem

minimize
ε,ε↬0

ϑ
↗
p ↓ ϑ↗

p

subject to c ↓ εε + ϑ ↓ ϑ = 0

Strong duality: εε↗pε ↓ c↗pε = ϑ
ε↗

p ↓ ϑε↗
p

ϑ
ε
,ϑε ↬ 0 and p = 0 ⇑ the profit is non-negative ⇑ cost recovery

↭ What holds for aggregate also holds for individual generators

↭ On your own: repeat the same steps for quadratic costs ...
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Some desirable market properties - Part II

↭ Revenue adequacy in markets with fully dispatchable units (i.e., p = 0):

Market operator does not run into deficit (demand charges ↬ generator revenues)

Proof: The Lagrangian function in optimality decomposes into

L(pε, εε,µε,µε)
︸  

=c(pω)

= c(pε) ↓ εε↗
p

ε

︸  
minus profit

+εε↗
d︸  

charges

↓ f
↗
(µε + µε)

︸  
congestion rent

↖⇑

εε↗
d ↓ εε↗

p
ε = f

↗
(µε + µε)

We thus only need to show that the congestion rent is non-negative

From dual feasibility conditions µε,µε ↬ 0 ⇑ εε↗d ↓ εε↗pε ↬ 0

Since the congestion rent is non-negative, the revenue adequacy holds
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Unit commitment (UC) problem

minimize
pt ,ut

T∑

t=1

c(pt , ut)

subject to 1
↗(pt ↓ dt) = 0,

: !!""εt

F(pt ↓ dt) ↫ f ,

: !!""µt

↓F(pt ↓ dt) ↫ f ,

: !!""µt

ut ⇔ p ↫ pt ↫ ut ⇔ p,

+ other constraints ↘t = 1, . . . ,T

co
st

c(
p t
,u

t
)

dispatch pt

p p

↭ Binary unit commitment decisions ut ↔ {0, 1}N

↭ Discontinuous generator cost functions ⇑ non-convex problem

↭ Because of discontinuity, the dual variables do not exist!

↭ Mixed-integer (MI) linear (or quadratic) program

↭ How to price electricity using unit commitment?
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Electricity pricing with discontinuous costs

↭ Let uε
1 , . . . , uε

T
be the optimal UC decisions (e.g., after solving UC with MI solver)

↭ Formulate the relaxed problem

minimize
pt ,ut

T∑

t=1

c(pt , ut)

subject to 1
↗(pt ↓ dt) = 0 : εt

F(pt ↓ dt) ↫ f : µt

↓F(pt ↓ dt) ↫ f : µ
t

ut ⇔ p ↫ pt ↫ ut ⇔ p

ut = u
ε
t : ϑt

↭ This is a convex optimization problem with the dual solution3:
↭ Prices ωω

t
(εω

t
,µω

t
,µω

t
) and εt

ω solve a competitive equilibrium with disc. cost

↭ Uplift payment εt
ω ↓ ut to remunerate for the costs that can not be recovered by LMPs

↭ This is the case of not fully dispatchable (p →= 0) units (see desirable market property 2)

↭ UC is solved days ahead to compute uplifts; OPF is solved later to price electricity

3O’Neill et al. E!cient market-clearing prices in markets with nonconvexities. EJOR, 2005.
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