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Last lecture recap

↭ Look around you and form teams of 2 people (1 min)

↭ Quickly review your notes or the slide deck (1 min)

↭ Share your three personal highlights with your partner (3 min)

↭ Get iClicker app ready
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Inversing ISO’s decision-making model

data y decisions x ,ω

minimize
x

f (x , y)

subject to g(x , y) ↫ 0 : ω

↭ In practice, we do not know optimization underlying the decision-making process

↭ But we know some data (e.g., weather) and decisions (e.g., dispatch, prices)

↭ Our goal is to estimate y from decisions x ,ω to reconstruct decision-making
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Where does the data come from?

https://www.gridstatus.io/live app.electricitymaps.com

↭ Abundance of data available in real-time thanks to grid analytics start ups

↭ Aggregated generation statistics, LMPs, emissions, meteorological data, etc.

↭ We can rely on these data points to restore the underlying ISO’s decision-making
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Taxonomy of inverse optimization (IO) problems

forward optimization

linear, quadratic
integer, non-convex

unkown

objective
constraints

fitting

perfect
imperfect

Classical IO

Data-driven IO

↭ Forward optimization: the decision-making model whose parameters we intend to
estimate from the optimal decisions

↭ Unkown: parameters of the objective function, constraint function, or both

↭ Fitting: Depending on available data, we may achieve the perfect fit or, at least,
maximize a suitable measure of fitness
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Forward optimization (FO) problem

Original optimization problem

minimize
x

x
→
Cx+ c

→
x

subject to Ax ↬ b

Forward optimization problem

minimize
x

x
→
!x+ ω→

x

subject to ”x ↬ ε

↭ FO replicates the structure of the original problem

↭ ! and ω are unknown parameters of the objective function

↭ ” and ε are unknown parameters of the constraint function

↭ Estimating objective function: set ” = A and ε = b, estimate ! and ω

↭ Estimating constraint function: set ! = C and ω = c, estimate ” and ε
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Classical IO using bilevel programming

↭ Second-order cost coe!cients in C and constraint matrix A are known

↭ First-order cost coe!cients in c and the right-hand side parameter b are unknown

↭ Known optimal primal and dual decisions xω and ϑω from the original problem

minimize
ω,ε

→x(ω,ε)↑ x
ω→

p︸ ︷︷ ︸
primal error

+ →ϑ(ω,ε)↑ ϑω→
p︸ ︷︷ ︸

dual error

minimize decision error

subject to ω ↫ ω ↫ ω constrain unknowns

ε ↫ ε ↫ ε

x(ω,ε) ↓ ϑ(ω,ε) ↔ argmin
x,ϑ

x
→
Cx+ ω→

x
feedback from FO

subject to Ax ↬ ε : ϑ

↭ Q. How to solve this problem?

↭ For p = {1,↗}, solve the IO as mixed-integer linear program in a single shot

↭ For p = 2, we can also iteratively solve the IO using gradient descent

↭ See Lecture 10 for solution strategies
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Data-driven IO

↭ In classic IO, we only relied on a single observation xω and ϑω

↭ Data-driven IO acts on the history of n observations

(xω
i
,ϑω

i
), . . . , (xωn ,ϑ

ω
n )

↭ Used to estimate static parameters (e.g., c, b) from repeated observations

↭ or data generating models (e.g., forecast models) that produce decision inputs
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Data-driven IO for static parameter estimation

↭ Given a history of n observations (xω
i
,ϑω

i
), find the right-hand side parameter b

↭ Optimized unknown parameter ε on all n observations

minimize
ε

1

2

n∑

i=1

(
→xi (ε)↑ x

ω
i
→
p
+ →ϑi (ε)↑ ϑω

i
→
p

)
minimize decision error

subject to ε ↫ ε ↫ ε

xi (ε) ↓ ϑi (ε) ↔ argmin
x,ϑ

x
→
Cix+ c

→
i
x

FO for every i

subject to Aix ↬ ε : ϑ

↭ Q. How to solve the problem when n is large?
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Data-driven IO for data generating models

↭ Consider that the right-hand side parameter b is variable

↭ Suppose it comes from a prediction model:

b̂ = Bϖ̂

where ϖ̂ is the feature vector, and B is the matrix of model weights

↭ Feature ϖ̂ should correlate variable with b̂ (e.g., as air temperature for loads)

↭ Given a history of observations {(xω
i
,ϑω

i
,ϖi )}ni=1, find model weights B

minimize
B

1

2

n∑

i=1

(
→xi (B)↑ x

ω
i
→
p
+ →ϑi (B)↑ ϑω

i
→
p

)
minimize decision error

subject to xi (B) ↓ ϑi (B) ↔ argmin
x,ϑ

x
→
Cix+ c

→
i
x

FO for every i

subject to Aix ↬ Bϖi : ϑ

↭ n number of FO problems are coupled by common weights B

↭ Exercise 1: derive the gradient for SGD update

↭ Exercise 2: derive sensitivities εx(B)
εB and εϑ(B)

εB
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Application: Unveiling ISO’s wind power forecast model – I

↭ Consider an optimal power flow problem:

minimize
p

p
→
Cp+ c

→
p generator dispatch cost

subject to p ↫ p ↫ p generation limits

1
→(p+ ŵ ↑ d) = 0 : ϑb power balance condition

|F(p+ ŵ ↑ d)| ↫ f : ϑ
f
,ϑf power flow limits

where ŵ is the forecast of wind power generation

↭ Goal: unveil wind power forecast model of the system operator ...

↭ What information we would typically know in practice?

↭ We observe public weather data ϖ and locational marginal prices ϱ

ϱ = ϑb · 1↑ F
→(ϑ

f
↑ ϑf)

↭ Goal (cont’d): ... using historical LMPs and weather features
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→(p+ ŵ ↑ d) = 0 : ϑb power balance condition
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Application: Unveiling ISO’s wind power forecast model – II

↭ Reformulate the problem in the FO form from above and take the dual

minimize
p

1

2
p
→
Cp+ c

→
p

subject to Ap ↬ b(ŵ) : ϑ

primal FO problem

maximize
ϑ

q(ŵ)→ϑ↑ ϑ→
Qϑ

subject to ϑ ↬ 0

dual FO problem

where q(ŵ) = AC↑1c+ b(ŵ) and Q = AC↑1A

↭ We use a ReLU neural network to map features into predictions

featu
res

ω

forecast

R
eL

U

R
eL

U

R
eL

U
ŵ

→ε(ŵ) ↑ εω→

d
u
al

F
O

prob
lem

ω
(ŵ

)
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Application: Unveiling ISO’s wind power forecast model – III

IEEE 118-bus system

↭ One wind farm at bus 39

↭ 1, 000 scenarios with 118 LMPs, wind
speed, direction, and peach blade angle

↭ Stochastic GD with 1,000 epochs
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↭ 1, 000 scenarios with 118 LMPs, wind
speed, direction, and peach blade angle
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actual predictions
prediction from NN
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Resources

↭ Chan, T. C., Mahmood, R., & Zhu, I. Y. (2025). Inverse optimization: Theory
and applications. Operations Research, 73(2), 1046-1074. [must read]

↭ Mitridati, L., & Pinson, P. (2017). A Bayesian inference approach to unveil
supply curves in electricity markets. IEEE Transactions on Power Systems, 33(3),
2610-2620.

↭ Birge, J. R., Hortaçsu, A., & Pavlin, J. M. (2017). Inverse optimization for the
recovery of market structure from market outcomes: An application to the MISO
electricity market. Operations Research, 65(4), 837-855.
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