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Inverse optimization for market analytics

Vladimir Dvorkin

University of Michigan

1/15



Last lecture recap

B Look around you and form teams of 2 people (1 min)

B Quickly review your notes or the slide deck (1 min)

B Share your three personal highlights with your partner (3 min)
B Get iClicker app ready
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Inversing ISO’s decision-making model

minimize  f(x,y)

subject to  g(x,y) <0: A
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Inversing ISO’s decision-making model

minimize  f(x,y)

subject to  g(x,y) <0: A

B In practice, we do not know optimization underlying the decision-making process
B But we know some data (e.g., weather) and decisions (e.g., dispatch, prices)

B Our goal is to estimate y from decisions x, A to reconstruct decision-making
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Where does the data come from?

https://www.gridstatus.io/live app.electricitymaps.com

B Abundance of data available in real-time thanks to grid analytics start ups
B Aggregated generation statistics, LMPs, emissions, meteorological data, etc.

B We can rely on these data points to restore the underlying ISO’s decision-making
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Taxonomy of inverse optimization (I0) problems

forward optimization unkown fitting
linear, quadratic objective perfect
integer, non-convex constraints imperfect

B Forward optimization: the decision-making model whose parameters we intend to
estimate from the optimal decisions

Classical 10

Data-driven 10

B Unkown: parameters of the objective function, constraint function, or both

B Fitting: Depending on available data, we may achieve the perfect fit or, at least,
maximize a suitable measure of fitness
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Forward optimization (FO) problem

Original optimization problem Forward optimization problem
minimize x' Cx+c'x minimize x'Ox + 6 x
X X
subject to Ax >b subject to Wx >

B FO replicates the structure of the original problem
B O and 6 are unknown parameters of the objective function

B W and v are unknown parameters of the constraint function
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Forward optimization (FO) problem

Original optimization problem Forward optimization problem
minimize x' Cx+c'x minimize x'Ox + 6 x
X X
subject to Ax >b subject to Wx >

B FO replicates the structure of the original problem
B O and 6 are unknown parameters of the objective function

B W and v are unknown parameters of the constraint function

B Estimating objective function: set W = A and @ = b, estimate @ and 6

B Estimating constraint function: set ® = C and 6 = c, estimate W and
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Classical 10 using bilevel programming

B Second-order cost coefficients in C and constraint matrix A are known
B First-order cost coefficients in ¢ and the right-hand side parameter b are unknown

B Known optimal primal and dual decisions x* and A* from the original problem
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B Second-order cost coefficients in C and constraint matrix A are known
B First-order cost coefficients in ¢ and the right-hand side parameter b are unknown

B Known optimal primal and dual decisions x* and A* from the original problem

migi’nizize 1x(8, ) — x*|I,, + A (6, 4) — A*|, minimize decision error
primal error dual error
subjectto 0 <60 <86 constrain unknowns
P <Y <P
x(0,1) UX(8, ) € argmin x'Cx+0"x
X, A

feedback from FO
subject to Ax > : A
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Classical 10 using bilevel programming

B Second-order cost coefficients in C and constraint matrix A are known
B First-order cost coefficients in ¢ and the right-hand side parameter b are unknown

B Known optimal primal and dual decisions x* and A* from the original problem

migi’n’(’gize 1x(8, ) — x*|I,, + A (6, 4) — A*|, minimize decision error
primal error dual error
subjectto 0 <60 <86 constrain unknowns
Y<Y <Y
x(0

, A6, €argmin x' Cx+ 60 x
(6, %) UA(6, %) € argmi feedback from FO

subject to Ax > : A

B Q. How to solve this problem?
B For p = {1, o0}, solve the 10 as mixed-integer linear program in a single shot
B For p = 2, we can also iteratively solve the IO using gradient descent

B See Lecture 10 for solution strategies
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Data-driven 10

B In classic 10, we only relied on a single observation x* and A*

B Data-driven 1O acts on the history of n observations
(Xf7 A7()7 ctty (x;7 A:)

B Used to estimate static parameters (e.g., ¢, b) from repeated observations

B or data generating models (e.g., forecast models) that produce decision inputs
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Data-driven O for static parameter estimation

B Given a history of n observations (x¥, A¥), find the right-hand side parameter b

B Optimized unknown parameter 1) on all n observations

mlnjl’znlze > ,z:; <||x,('¢v) = X7, + [IAi(h) = A ||p> minimize decision error

subject to ¥ <P < P
)\.

xi(¥) U Xi(2h) € argmin  xT Cix + ¢ x )
XA FO for every i

subjectto Ajx =1 : A
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Data-driven O for static parameter estimation

B Given a history of n observations (x¥, A¥), find the right-hand side parameter b

B Optimized unknown parameter 1) on all n observations

mlnjl’znlze > ,z:; <||x,('¢v) = X7, + [IAi(h) = A ||p) minimize decision error

subject to ¥ <P < P
)\.

xi(¥) U Xi(2h) € argmin  xT Cix + ¢ x )
XA FO for every i

subjectto Ajx =1 : A

B Q. How to solve the problem when n is large?
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Data-driven 1O for data generating models

B Consider that the right-hand side parameter b is variable

B Suppose it comes from a prediction model:
b=Bp

where  is the feature vector, and B is the matrix of model weights
B Feature $ should correlate variable with b (e.g., as air temperature for loads)

B Given a history of observations {(x*, A}, ¢;)}7_;, find model weights B
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Data-driven 1O for data generating models

B Consider that the right-hand side parameter b is variable

B Suppose it comes from a prediction model:
b=B3

where  is the feature vector, and B is the matrix of model weights
B Feature $ should correlate variable with b (e.g., as air temperature for loads)

B Given a history of observations {(x*, A}, ¢;)}7_;, find model weights B

1 n
miniB[nize > ,z_; (||x,-(B) = x7l, + [IXi(B) — A?”,;) minimize decision error
subject to  x;(B) U X;(B) € argmin x' Cix+ ¢;'x )
XA FO for every i
subject to A;x > Bp; : A

B n number of FO problems are coupled by common weights B

B Exercise 1: derive the gradient for SGD update

9x(B) .4 OA(B)

B Exercise 2: derive sensitivities 3B 38
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Application: Unveiling ISO’s wind power forecast model — |

B Consider an optimal power flow problem:

minimize pTCp + ch generator dispatch cost
subjeit to p<p<p generation limits
1T(p+w—d)=0 :X, power balance condition
IF(p+w—d)| <F 25X power flow limits

where w is the forecast of wind power generation
B Goal: unveil wind power forecast model of the system operator ...

B What information we would typically know in practice?
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Application: Unveiling ISO’s wind power forecast model — |

B Consider an optimal power flow problem:

minimize pTCp + ch generator dispatch cost
subjeit to p<p<p generation limits
1T(p+w—d)=0 :X, power balance condition
F(p+w—d)|<F :ApAf power flow limits

where w is the forecast of wind power generation
B Goal: unveil wind power forecast model of the system operator ...

B What information we would typically know in practice?

B We observe public weather data ¢ and locational marginal prices 7

=X 1= FT (A= Xp)

B Goal (cont’d): ... using historical LMPs and weather features
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Application: Unveiling ISO’s wind power forecast model — Il

B Reformulate the problem in the FO form from above and take the dual

1 .
minimize EpTCp +c'p maximize a(@)Tx=xTQx
p
subject to Ap >b(w) : X subjectto A >0
primal FO problem dual FO problem

where q(w) = AC~1c 4 b(w) and Q = AC~1A
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Application: Unveiling ISO’s wind power forecast model — Il
B Reformulate the problem in the FO form from above and take the dual
1 .. .
minimize EpTCp +c'p maximize a(@)Tx=2TQx
p
subject to  Ap > b(w) A subjectto A >0
dual FO problem

primal FO problem
where q(Ww) = AC~!c + b(w) and Q = AC™1A
B We use a ReLU neural network to map features into predictions
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Application: Unveiling ISO’s wind power forecast model — Il

B One wind farm at bus 39

B 1,000 scenarios with 118 LMPs, wind
speed, direction, and peach blade angle

B Stochastic GD with 1,000 epochs

IEEE 118-bus system
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Application:
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Unveiling 1ISO’s wind power forecast model — Il

B One wind farm at bus 39

B 1,000 scenarios with 118 LMPs, wind
speed, direction, and peach blade angle

B Stochastic GD with 1,000 epochs
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B Chan, T. C., Mahmood, R., & Zhu, I. Y. (2025). Inverse optimization: Theory
and applications. Operations Research, 73(2), 1046-1074. [must read)]

B Mitridati, L., & Pinson, P. (2017). A Bayesian inference approach to unveil
supply curves in electricity markets. |IEEE Transactions on Power Systems, 33(3),
2610-2620.

B Birge, J. R., Hortagsu, A., & Pavlin, J. M. (2017). Inverse optimization for the
recovery of market structure from market outcomes: An application to the MISO
electricity market. Operations Research, 65(4), 837-855.
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