ECE 598 Computational Power Systems

Decision-focused analytics
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University of Michigan
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Last lecture recap

B Look around you and form teams of 2 people (1 min)

B Quickly review your notes or the slide deck (1 min)

B Share your three personal highlights with your partner (3 min)
B Get iClicker app ready

2/34



Closed-loop analytics

Recap: Why forecasting?
B Forecasting is the first step in decision-making
B Resolves (some) uncertainty of decision-making inputs

B Brings confidence to decision-making
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Closed-loop analytics

Recap: Why forecasting?
B Forecasting is the first step in decision-making
B Resolves (some) uncertainty of decision-making inputs

B Brings confidence to decision-making

open-loop analytics closed-loop analytics

decision

xenj\{!?w)C(x’ W)

decision

xen.j\’l?w)C(xy W)

forecast forecast

x*

Decision feedback of the closed-loop analytics

B Inform forecast on the quality of decisions induced on that forecast

B Requires integration of forecast and decision-making optimization problems
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Example: Wind power forecast & electricity pricing

Given a wind power forecast w, solve the DC-OPF problem:

minimize pTCp + ch generator dispatch cost

PSPSP
subject to lT(p +w—d)=0:A power balance condition
[F(p+w —d)| <F : A A, power flow limits
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Example: Wind power forecast & electricity pricing

Given a wind power forecast w, solve the DC-OPF problem:

minimize pTCp + ch generator dispatch cost

PSPSP
subject to lT(p +w—d)=0:A power balance condition
[F(p+w —d)| <F : A A, power flow limits

Location marginal prices (LMPs) are derived from the dual solution:

(W)= Ap-1 — FT (A — Af)

uniform price adjustment due to congestion

which are unique w.r.t forecast w under reasonable assumptions!
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Example: Wind power forecast & electricity pricing

Given a wind power forecast w, solve the DC-OPF problem:

minimize pTCp + ch generator dispatch cost

PSPSP
subject to lT(p +w—d)=0:A power balance condition
[F(p+w —d)| <F : A A, power flow limits

Location marginal prices (LMPs) are derived from the dual solution:

(W)= Ap-1 — FT (A — Af)

uniform price adjustment due to congestion

which are unique w.r.t forecast w under reasonable assumptions!

The LMP error is then defined as:

om = m(W) — m(w)

gap between LMPs induced on forecast (w) and actual realization (w) of wind power.
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Example: Wind power forecast & electricity pricing (cont'd)

|
=
mean LMP error, 61 [$/MWh]

B |EEE 118-Bus system with one installed wind farm (bus 39)

B We forecast wind power output using weather forecast (x2 forecast error)
B LMP errors varying across the grid due to congestion (Q1. Is it fair?)

B The slack bus has the smallest LMP error (Q2. Why?)
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Integrating forecasting and decision-making



Forecast problem

B Dataset D = {(¢1,W1), .., (¢, Wk)} with features ¢ and observations w

B Machine learning model Wy : F +— VW maps features to predictions, i.e.,
We(@) = w:

where 0 is a model parameter to be optimized

B Prediction-focused learning:

k
. 1 2
m|n|9m|ze 2% ,-5:1 [Wo(p;) — Wi||2‘
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Decision problem

—parametrized optimization problem:
minimize c(x)
X

subject to  g(x,w) <0

B x = (x1,...,Xp) € R" is the vector of decision variable
B w € R™ is the input parameter (e.g., forecast from Wy)

B Objective function ¢ and constraint function g

Decision is the optimal solution x*(w), parametrized by
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Decision problem

—parametrized optimization problem:
minimize c(x)
X

subject to  g(x,w) <0

B x = (x1,...,Xp) € R" is the vector of decision variable
B w € R™ is the input parameter (e.g., forecast from Wy)

B Objective function ¢ and constraint function g
Decision is the optimal solution x*(w), parametrized by

Decision regret is the difference of two objective function values

c(x*(W)) — e(x*(w))

with prediction w and the actual realization
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Decision-focused learning

B Minimize the average decision regret across k historical records

B This calls for the following bilevel optimization structure

e 1 , * * 2
minimize EEIIC(X (wi)) = c(x*(wi)ll3

subject to  w; = Wg(¢;) upper level Vi=1,...
7777777777777777 lower level
X*( I) _ argmin C(X) ower leve
X
subject to  g(x,w;) <0 Vi=1,...

B Upper-level: optimize the parameter of the ML model 8

B Lower-level: respond with decision x to parameter 6 for each record i

B Q1. How is it different from the prediction-focused optimization?

B Q2. How to solve this bilevel optimization?

 k
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KKT-based reformulation

The Karush—Kuhn—Tucker conditions (KKTs) of the lower-level problem:
Primal feasibility: g(x*,w;) <0
Dual feasibility: A* = 0
Lagrangian optimality:
Vac(x*) + XM T Vg (x*,w;) = 0

Complementary slackness: A* T g(x*,w;) =0
For convex optimization, the KKTs are necessary and sufficient for optimality

Thus, we can replace the lower-level problem with its KKTs!
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KKT-based reformulation (cont'd)

B Assume linear regression, i.e., Wg(p;) =0T ;

B KKT-based reformulation of the bilevel problem

minimize
0%, A, Wi

subject to

k
1
o> llelx) — el (wi)) B
i=1
_pnT
i=0 % upper level
7777777777777777 lower level

g(xi,w;) <0, X >0,
Vxe(xi) + AT Vxg(x, wi) =0,
A g(xi,w;) =0, Vi=1,... .k
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KKT-based reformulation (cont'd)

B Assume linear regression, i.e., Wg(p;) =0T ;
B KKT-based reformulation of the bilevel problem
N 1 & * 2
BIIES g 210 b Lol

H — 0w
subject to w; =6 ¢;, upper level

g(x,-, i) <0, A >0, lower level
Vxe(x:) + AT Vy,g(x, ;) = 0,
A g(xi,w;) =0, Vi=1,... .k

B Q1. Where does c(x*(w;)) come from?
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KKT-based reformulation (cont'd)

B Assume linear regression, i.e., Wg(p;) =0T ;

B KKT-based reformulation of the bilevel problem

k
e 1 * 2
minimize — c(x;) — c(x i
ginigize o > llelw) — clx* ()1
subject to P = BTgo-
! P upper level
lower level

g(xi,wi) <0, X >0,

Vxe(xi) + AT Ve g(x, W) =0,

A g(xi,w;)=0, Vi=1,...,k
B Q1. Where does c(x*(w;)) come from?
B Non-linear optimization program with hard complementarity condition.
B Q2. How can we make it more tractable? (demonstrate in-class)

B Q3. How to introduce regularization?
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Gradient descent-based solution

B Recall the optimization objective

k
N 1
minimize R £ -3 [lc(x" (We (7)) — </ I
i=1
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Gradient descent-based solution

B Recall the optimization objective

mlnlemlze RE K Z le(x*(Weo(e;)) — C,*Hg
i=1

B Derivatives of the regret w.r.t. model parameter 6 (linear regression)

OR _9R dc  ox*  9We(e))

00 0c ox* OWe(p;) 26

Oc _oxt OWe(w)
ox* OWe(p;) 00

Il
x| =
]~

I
—

>~ (e (Wale)) <)

ox* OWe ()
oWe () 00

Il
x| =
]~

>~ (e (Walei)) ) - Vae(x) -

I
-

ox*
W (p;)

Il
x| =
]~

1
-

>~ (b (Wolen) — € ) - Vxel) @
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Gradient descent-based solution

B Recall the optimization objective

mlnlemlze RE K Z le(x*(Weo(e;)) — C,*Hg
i=1

B Derivatives of the regret w.r.t. model parameter 6 (linear regression)

OR _9R dc  ox*  9We(e))

00 0c ox* OWe(p;) 26

e o Wl
ox* OWe(p;) 00

Il
x| =
]~

I
—

>~ (e (Wale)) <)

ox* OWe ()
oWe () 00

Il
x| =
]~

>~ (e (Walei)) ) - Vae(x) -

I
-

ox*
W (p;)

M=

237 (et (Wole)) — 7 ) - Vcl) %

1
-

B Regret is then minimized over iterations @ < 6 — a%—z

B How to compute the last unknown gradient 3 ax(so_)?
1
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Computing dW ( 3 for convex quadratic programs

. 1
minimize EXTCX—‘,-CTX
X

subject to Ax=b, Gx<h

The Lagrangian function L(x,v,A) = —xTCx +c"x+vT (Ax—b)+ AT (Gx —h)

The stationarity, primal feasibility, and complementarity slackness:

Cx* +c+ ATV  +GTA* =0
Ax* —b=0
diag[A\*](Gx* —h) =0

Implicit differentiation (using a product rule, i.e., 9Cx* = 9C - x* + C - 9x*)!

C G'T AT [ox —9Cx* —dc — G T A* — AT v*
diag[A*]G diag[Gx* —h] 0 oA = —diag[A*]0Gx* + diag[A*]0h
A 0 0 ov —OAx* + 0b

L Amos B., & Kolter J. Z. Optnet: Differentiable optimization as a layer in neural networks. 2017
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Computing dW ( 3 for convex quadratic programs (cont'd)

ox o GT AT] ' [—0Cx* — 0c — OGTA* — OAT v+
OX| = |diag[A*]G diag[Gx* —h] 0 —diag[A*]0Gx* + diag[A*]6h
ov A 0 0 —O0Ax* + Ob

Suppose that vector b is given by the prediction of our model, i.e., b = Wg(¢p;)

Focus only on Ob, and set other differentials to zero
Ox C GT AT]7'To (AT)~15b
OX| = |diag[A*]G diag[Gx* —h] 0 0| = 0
ov A 0 0 ob 0

Hence, the % = BW(Z( 3= =(AT) 1

By analogy, compute the derivative of optimizer x to any other QP problem data
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Gradient descent for decision-focused learning

k

. 1
minimize R £ -3 [le(x* (Wa (7)) — ¢/
i=1

The gradient descent-like algorithms use the update

0%97(16—72
00

for some step size a > 0

B Requires solving an optimization problem at every iteration (Q. Why?)
B Yet, more versatile solution (no structural assumption on model Wgy)

B Also, scales up to much larger problems (in terms of dimensions n, m and k)
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lllustrative example: Setting

B Dataset {(x1,¥1),---,(Xi,¥i)s -, (Xn, ¥n)} of n records
B Prediction-focused learning: find the linear model y = w ' X by solving
minimize S zn:(wa- —yi)?
w 2n 4 ' '
i=1
B The downstream y—parametrized decision problem:
P 1 )2 2
minimize =(z —Yy)“ + Az
z 2
subjectto z >0

B Decision-focused learning: seeks the linear model by solving

minimize fz @) — z*(%1))?

subject to y; = wa,-
-~ o1 ~
z*(y;) = argmin E(z — 71?4 222
z

subject to z >0, Vi=1,...,n
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lllustrative example: Solution via bilevel optimization

B The KKTs of the lower-level problem are

z—y+A—p=0 (Lagrange optimality)
z>20 (primal feasibility)
w=0 (dual feasibility)
zup =20 (complementarity slackness)
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lllustrative example: Solution via bilevel optimization

B The KKTs of the lower-level problem are

z—y+A—p=0 (Lagrange optimality)
z>20 (primal feasibility)
w=0 (dual feasibility)
zup =20 (complementarity slackness)

B Big-M reformulation of complementarity slackness:

w< Mu
z< M1 —u)

where u € {0,1} is an auxiliary binary variable, and M is a large enough constant
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lllustrative example: Solution via bilevel optimization

B The KKTs of the lower-level problem are

—y+A—pu=0

(Lagrange optimality)
(primal feasibility)
(dual feasibility)

(complementarity slackness)

B Big-M reformulation of complementarity slackness:

{2oha

where u € {0,1} is an auxiliary binary variable, and M is a large enough constant

B The bilevel reformulation of the decision-focused learning problem:

mlnlmlze
w.y,z,p,u

subject to

5 Z(Z*(YI -z (YI))

}’i:WTXh
z—y+2X\z—
220, p>
pn< Mu, z
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lllustrative example: Solution via stochastic gradient descent

minimize 2i Z(Z*()A’,) - Z*()’i))2
nia

w,y
subject to yi =w ' x;
z*(yi) = arg;nin %(z — 7% 4+ 22
subject to z >0, Vi=1,...,n

B Closed-form solution for the lower-level problem

2*(7;) = max {o Z }

T142)

B The gradient 9z*(y;)/dYy; is obtained using LogSumExp approximation:

z*(y;) = max {0, ﬁ} =~ log (1 + exp (1 j’lz)\)) (EECS 559)
exp (14{12,\> 1

1+ex"<1i§x> 1+23

z*(vi)/0yi =

17/ 34



lllustrative example: Solution via stochastic gradient descent

w,y

AV IR R
minimize %E(Z (}/i)—z (}’:))2

subject to 7 =w ' x;

1
z*(y;) = argmin E(Z —3)2 + 222
z

subject to z > 0,

Vi=1,...,n

B For SGD, we draw one sample i from a dataset and minimize
Ci=(z*() —z*(m))

B By the chain rule, the gradient is

oC; . .o 0z* Oy
Ty (0 =20 o

max{O Yi } - zZ"(w)
———
—_—

T142)
precomputed offline
closed form for z*

B The SGD perform the following update:
aC;
ow

W—WwW—«o

with some step size a > 0.

Vi
exp ( 1+2A) 1

' 1+ exp (155 ) L+2)

0z*(v1)/ 9%i

X
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lllustrative example: Results

B Experiments on synthetic data (100 samples)
B Prediction space: displays how the model explains the underlying data

B Decision space: displays how the model prescribes decisions

prediction space

gara
tion-focused m
s ciseq mods (bievel opt

| = Decision-focused model (grad descent)

eensog¥Y

o
o3

000 025 050 075
input x

decision z

decision space

n groungtruth data
focused m
| s D ocused mogel bievel opt)
| s Decision-focused model (gradient descent)

000 0z 050
input x

B Prediction-focused model is better in predictions, decision-focused — in decisions

B Bilevel optimization provides the global optimal solution

B Gradient descent-based solution does not have global guarantees
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Tutorial time

B Look around you and form teams of 2 people (1 min)
B Pick one person to code; the other one guides

B Work in pairs for the whole tutorial session

Goal: replicate the results of the illustrative example
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Multiparametric programming to ease computational burden

Challenge: Large-scale downstream optimization
B Wind power forecast w—parametrized DC-OPF problem

minipmize %pTCp + ch generator dispatch cost
subject to p<p<p generation limits
1T(p+w—d)=0 power balance condition
[F(p+w—d)| <f power flow limits

B For practical-sized systems, there are thousands of variables and constraints

B Solving DC-OPF at every SGD update significantly slows convergence
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Multiparametric programming to ease computational burden

Challenge: Large-scale downstream optimization
B Wind power forecast w—parametrized DC-OPF problem

minipmize %pTCp + ch generator dispatch cost
subject to p<p<p generation limits
1T(p+w—d)=0 power balance condition
[F(p+w—d)| <f power flow limits

B For practical-sized systems, there are thousands of variables and constraints

B Solving DC-OPF at every SGD update significantly slows convergence

Solution: Multiparametric programming (MPP)
B Studies the solutions of an optimization problem as a function of its parameters

B Let W belong to the union W £ Uf-(:l[O7 1]; of normalized output ranges of k
wind farms. A sampled wind power output w is seen as a random draw from W

B For convex quadratic programs, set VW can be portioned into polyhedral regions,
each having a closed-form solution for primal and dual variables = speed up!
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Compact DC-OPF formulation for MPP

1
minimize -p'Cp+c'p
p 2
subjectto Ap<Bw—+b : A

where problem data is

| 0 p
- 0 —p
A=|-1T|, B=|1T|, b=|-1"d
F F f
—F —F f

Q. Why can we replace the power balance constraint with inequality?
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Compact DC-OPF formulation for MPP

1
minimize -p'Cp+c'p
p 2
subjectto Ap<Bw—+b : A

where problem data is

| 0 p
- 0 —p
A=|-1T|, B=|1T|, b=|-1"d
F F f
—F —F f

Q. Why can we replace the power balance constraint with inequality?

B A multiparametric programming problem (MPP) dependent on

B For some realization w, MPP expresses the primal p and dual X solutions as
affine functions of some W in the neighborhood of
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Closed-form DC-OPF solutions from MPP

B Lagrangian function of the compact DC-OPF:

1 ~
L(p,A) = EpTCp +c"p+ AT (Ap—Bw —b)

B Let A, I§, b be sub-matrices/vectors containing only those entries of A, B, b that
correspond to the active (binding) constraints (A > 0)

B A, B,b collect the remaining entries corresponding to inactive constraints (A=0).
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Closed-form DC-OPF solutions from MPP

B Lagrangian function of the compact DC-OPF:

1 ~
L(p,A) = EpTCp +c"p+ AT (Ap—Bw —b)

B Let A, I§, b be sub-matrices/vectors containing only those entries of A, B, b that
correspond to the active (binding) constraints (A > 0)

B A, B,b collect the remaining entries corresponding to inactive constraints (A=0).

B From the Karush—Kuhn—Tucker (KKT) conditions we have a system of equations:
Cp+c+ATA=0
Ap—Bw—-b=0
Q. From which KKT conditions do these equation come from?

B Manipulating these equations, we get the closed-form solutions
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Closed-form DC-OPF solutions from MPP (cont'd)

Cp+c+ATA=0 (1a)
Ap—Bw—b=0 (1b)
From (1a) we express p (assuming C is invertible)
p=-C! (c + ATS\> (2)
and substitute it into (1b):
—~AC ¢~ AC!ATA-Bw-b=0
. - S\ -1 . IS 2
& A=-(AcT'AT) Bw- (AC'AT) (b+AcTic)
D d
& X=Dw-+d (closed-form solution for duals) 3)
Substituting (3) into (2), we have the solution for p :
p=_C1 (c +AT (DW + d)) - Cc!'ATDbw-Clc—Cc!ATd
T \—7:—/
4)

< p=Nw+m (closed-form solution for primals)
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Closed-form DC-OPF solutions from MPP (cont'd)

B The primal-dual solution depends linearly on w:

- B[

Q. How do we obtain matrices and vectors M, D, 7 and d?
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Closed-form DC-OPF solutions from MPP (cont'd)

B The primal-dual solution depends linearly on w:

p| (M)~ ™
&1=[5] =+ [3] ®
Q. How do we obtain matrices and vectors N, D, 7w and d?

B For a given w, we obtain them by solving an optimization problem (bad news)

B Eq. (5) valid not only for w but for all W in the neighborhood of w (good news)
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Closed-form DC-OPF solutions from MPP (cont'd)

B The primal-dual solution depends linearly on w:

HUEH g
Q. How do we obtain matrices and vectors N, D, 7w and d?
B For a given w, we obtain them by solving an optimization problem (bad news)
B Eq. (5) valid not only for w but for all W in the neighborhood of w (good news)

B The neighborhood originates from two KKT conditions:

(AN —B)w <b - Ax (primal feasibility of inactive constraints) (6a)
Dw+d>0 (dual feasibility) (6b)

B We term the neighborhood of w a critical region (CR), formally defined as:
R:{Wer(KI‘I—E)W<B—K7r, DW+d20} @)

B In fact, there are many CRs. The task is to identify the CR corresponding to a
particular realization of wind power, and then compute solution from (5).
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Identifying critical regions

B 5-Bus PJM testbed with 3 variable net loads
B Initialize the set of critical regions CR = {@}
B To identify critical regions, perform the following iterations

for i=1,...,1000 do
Sample w from W
if w does not belong to any R in CR then
Solve DC-OPF on w, compute R and add to CR
end if
end for

Q1. What is the complexity of this algorithm?
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Identifying critical regions

B 5-Bus PJM testbed with 3 variable net loads
B Initialize the set of critical regions CR = {@}
B To identify critical regions, perform the following iterations

for i=1,...,1000 do
Sample w from W
if w does not belong to any R in CR then
Solve DC-OPF on w, compute R and add to CR
end if
end for

Q1. What is the complexity of this algorithm?
B 7 distinct critical regions, each having a fixed set of active constraints

Center

El ! Limit-240MW Sundance
O D =
600MW | S0V
Brighton | || o
! LSE
| > bidder /
Generation| | ;N
Center || Load
1
1
1

@_
5
54 @. S20MW
110MW
Park Solitude
City

1000

500

0o ot

Q2. How many DC-OPF problems did we solve in this case?
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MPP-Powered SGD for decision-focused learning

B Machine learning model W = Wg(p)

B For a given W, the primal solution and the gradient are
op*
ow

p=Nw+m= =n'

B Decision-focused problem minimizing the primal decision error

K
N 1 -
minimize Réﬂg ||P*(W6(4Pi))_Pi*H§
i1

B The gradient update in SGD for a particular sample i takes the form:
~_Op*  OWe(sp))
OWe () 06

T. OWe(p;)
00

OR _
80

(P*(Wo(%7)) — pf)
= (MW (%;) + 7 —pj)-N

B No need to solve optimization if we know the critical region of Wg(%;)!
B Significant time saving after we explore a sufficient number of critical regions

B By analogy, we can minimize the dual decision error
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Example (cont’d): Wind power forecast & electricity pricing

|
AR
mean LMP error, &m [$/MWh]
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Example (cont’d): Price-awareness for wind power forecast

B Dataset {(¢1,W1), ..., (¥x,Wk)} of wind power records
B Two deep learning architectures DeepWP and DeepWP+ for forecasting?

loss function: W — wl|

¢ saunjesy

2Dvorkin V., & Fioretto F. Price-aware deep learning for electricity markets. 2023
28 / 34



Example (cont’d): Price-awareness for wind power forecast

B Dataset {(¢1,W1),...,(®x, Wk)} of wind power records

B Two deep learning architectures DeepWP and DeepWP+ for forecasting?

loss function: W —w| + |7 (W) — m(w)]|

g)

—

{

=

&

1seda.04

& sauniesy

[ JaAj0S Suliea|d-3xewWw ]

B DeepWP+ informs wind power predictions about the downstream pricing errors

2Dvorkin V., & Fioretto F. Price-aware deep learning for electricity markets. 2023
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Example (cont’d): Numerical experiments

B Standard PowerModels. j1 test cases

B 1,000 wind power records .
B Active power output
B Wind speed and direction
B Blade pitch angle

B DeepWP has 4 hidden layers with 30
neurons each. DeepWP+ additionally
includes an opt. layer

active power output [p.u.]

wind speed [m/s]

B ADAM optimizer with varying
learning rate
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Example (cont’d): IEEE 118-bus system

|
-
mean LMP error, 61 [$/MWh]

DeepWP . 0¥ DeepWP+

DeepWP: Forecast error minimization yields ém € [—4,1] $/MWh
DeepWP+: Price error minimization yields 7 € [—1,1] $/MWh

Q1. Which prediction is fairer?
Q2. What prevents us from completely eliminating the price error?
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Example (cont’d): Wind power forecasts

10.0
| Xactual ’
10.0 >.<Deepwp 9.5
ODeepWP+ 9.0
8.5

7.5

S o
o 8.0 X N v
e At O !
g 75 80 85 9.0 9.5 10
S 5.0¢Ff 5
o
X

2 2.0
e 25 1.5

1.0

0.5

15,18
5.0 7. - A
wind speed [m/s] 25 3.0 35 40 45 5.

DeepWP: Minimizes the average forecast deviation

DeepWP+: Intentionally over-predicts in certain range of wind speeds
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Example (cont’d): Bias of DeepWP+ model

6.6

6.4

6.2

e DeepWP
6.0 | |===DeepWP+

RMSE(W) [MWh]

T

= 11.4
11.2 T ~—
11.0
10.8
10.6
10.4
10.2

T

T

) [$/MW

S

T

T

RMSE(

T

500 750 1000 1250 1500
epoch

B DeepWP+ training starts at iteration 500 using a pre-trained DeepWP model
B RMSE(w) and RMSE(7) are conflicting objectives which are kept in balance
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Example (cont’d): Forecast and price error trade-off

DeepWP DeepWP+
case RMSE(#) RMSE(%) CVaR(7) a-—value RMSE(w) RMSE(7) CVaR(7) a—value
MWh $/MWh $/MWh $/MWh MWh gain $/Mh gain $/Mwh gain $/MWh gain

14 _jeee 0.35 0.62 1.52 0 035 +0.6% 0.61 —0.6% 1.50 —0.8% 0 —
57_iece 231 11.03 34.64 3208 260 +11.2% 1072  -2.9% 3359 -3.1% 3092 —3.8%
24 jeee 4.08 8.62 37.70 2748 451  49.6% 833 —3.5% 3635 —3.7% 2626 —4.6%
39_epri 5.94 11.15 31.21 17.53 6.43 +7.6% 10.19 —9.4% 28.02 —11.4% 15.84 —10.7%
73_jeee 4.02 5.12 16.21 3283 551 4269% 424 —20.8% 1341 —20.9% 26.63 —233%
118 iece 2.29 3.59 11.32 17.01 260 +121% 288 —247%  9.06 —25.0% 1409 —27.2%

B Worst-case improvement exceeds that of the average case

B Price error reduction and fairness improves with the size of the network
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Resources
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