
ECE 598 Computational Power Systems

Decision-focused analytics

Vladimir Dvorkin

University of Michigan

1 / 34

Last lecture recap

↭ Look around you and form teams of 2 people (1 min)

↭ Quickly review your notes or the slide deck (1 min)

↭ Share your three personal highlights with your partner (3 min)

↭ Get iClicker app ready

2 / 34

Closed-loop analytics

Recap: Why forecasting?

↭ Forecasting is the first step in decision-making

↭ Resolves (some) uncertainty of decision-making inputs

↭ Brings confidence to decision-making

open-loop analytics

forecast
decision

min
x→X (w)

c(x,w)
w xω

closed-loop analytics

forecast
decision

min
x→X (w)

c(x,w)
w xω

xω

Decision feedback of the closed-loop analytics

↭ Inform forecast on the quality of decisions induced on that forecast

↭ Requires integration of forecast and decision-making optimization problems

3 / 34

Closed-loop analytics

Recap: Why forecasting?

↭ Forecasting is the first step in decision-making

↭ Resolves (some) uncertainty of decision-making inputs

↭ Brings confidence to decision-making

open-loop analytics

forecast
decision

min
x→X (w)

c(x,w)
w xω

closed-loop analytics

forecast
decision

min
x→X (w)

c(x,w)
w xω

xω

Decision feedback of the closed-loop analytics

↭ Inform forecast on the quality of decisions induced on that forecast

↭ Requires integration of forecast and decision-making optimization problems

3 / 34

Example: Wind power forecast & electricity pricing

Given a wind power forecast ŵ, solve the DC-OPF problem:

minimize
p↭p↭p

p↑Cp+ c↑p generator dispatch cost

subject to 1↑(p+ ŵ → d) = 0 : ω, power balance condition

|F(p+ ŵ → d)| ↫ f : ωf ,ωf , power flow limits

Location marginal prices (LMPs) are derived from the dual solution:

ε(ŵ) = ωb · 1︸ ︷︷ ︸
uniform price

→ F↑(ωf → ωf)︸ ︷︷ ︸
adjustment due to congestion

which are unique w.r.t forecast ŵ under reasonable assumptions!

The LMP error is then defined as:

ωε = ε(ŵ)→ ε(w)

gap between LMPs induced on forecast (ŵ) and actual realization (w) of wind power.

4 / 34

Example: Wind power forecast & electricity pricing

Given a wind power forecast ŵ, solve the DC-OPF problem:

minimize
p↭p↭p

p↑Cp+ c↑p generator dispatch cost

subject to 1↑(p+ ŵ → d) = 0 : ω, power balance condition

|F(p+ ŵ → d)| ↫ f : ωf ,ωf , power flow limits

Location marginal prices (LMPs) are derived from the dual solution:

ε(ŵ) = ωb · 1︸ ︷︷ ︸
uniform price

→ F↑(ωf → ωf)︸ ︷︷ ︸
adjustment due to congestion

which are unique w.r.t forecast ŵ under reasonable assumptions!

The LMP error is then defined as:

ωε = ε(ŵ)→ ε(w)

gap between LMPs induced on forecast (ŵ) and actual realization (w) of wind power.

4 / 34

Example: Wind power forecast & electricity pricing

Given a wind power forecast ŵ, solve the DC-OPF problem:

minimize
p↭p↭p

p↑Cp+ c↑p generator dispatch cost

subject to 1↑(p+ ŵ → d) = 0 : ω, power balance condition

|F(p+ ŵ → d)| ↫ f : ωf ,ωf , power flow limits

Location marginal prices (LMPs) are derived from the dual solution:

ε(ŵ) = ωb · 1︸ ︷︷ ︸
uniform price

→ F↑(ωf → ωf)︸ ︷︷ ︸
adjustment due to congestion

which are unique w.r.t forecast ŵ under reasonable assumptions!

The LMP error is then defined as:

ωε = ε(ŵ)→ ε(w)

gap between LMPs induced on forecast (ŵ) and actual realization (w) of wind power.

4 / 34

Example: Wind power forecast & electricity pricing (cont’d)

DeepWP

↭ IEEE 118-Bus system with one installed wind farm (bus 39)

↭ We forecast wind power output using weather forecast (↑2 forecast error)

↭ LMP errors varying across the grid due to congestion (Q1. Is it fair?)

↭ The slack bus has the smallest LMP error (Q2. Why?)

5 / 34

Integrating forecasting and decision-making

Forecast problem

↭ Dataset D = {(ϑ1,w1), . . . , (ϑk ,wk)} with features ϑ and observations w

↭ Machine learning model Wω : F ↓↔ W maps features to predictions, i.e.,

Wω(ϑ̂) = ŵ,

where ϖ is a model parameter to be optimized

↭ Prediction-focused learning:

minimize
ω

1

2k

k∑

i=1

↗Wω(ϑi)→ wi↗22 .

6 / 34

Decision problem

w→parametrized optimization problem:

minimize
x

c(x)

subject to g(x,w) ↫ 0

↭ x = (x1, . . . , xn) ↘ Rn is the vector of decision variable

↭ w ↘ Rm is the input parameter (e.g., forecast from Wω)

↭ Objective function c and constraint function g

Decision is the optimal solution xω(w), parametrized by w.

Decision regret is the di!erence of two objective function values

c(xω(ŵ))→ c(xω(w))

with prediction ŵ and the actual realization w

7 / 34

Decision problem

w→parametrized optimization problem:

minimize
x

c(x)

subject to g(x,w) ↫ 0

↭ x = (x1, . . . , xn) ↘ Rn is the vector of decision variable

↭ w ↘ Rm is the input parameter (e.g., forecast from Wω)

↭ Objective function c and constraint function g

Decision is the optimal solution xω(w), parametrized by w.

Decision regret is the di!erence of two objective function values

c(xω(ŵ))→ c(xω(w))

with prediction ŵ and the actual realization w

7 / 34

Decision-focused learning

↭ Minimize the average decision regret across k historical records

↭ This calls for the following bilevel optimization structure

minimize
ω

1

2k

k∑

i=1

↗c(xω(ŵi))→ c(xω(wi))↗22

subject to ŵi = Wω(ϑi) ≃i = 1, . . . , k
upper level

lower level
xω(ŵi) = argmin

x
c(x)

subject to g(x, ŵi) ↫ 0 ≃i = 1, . . . , k

↭ Upper-level: optimize the parameter of the ML model ϖ

↭ Lower-level: respond with decision x to parameter ϖ for each record i

↭ Q1. How is it di!erent from the prediction-focused optimization?

↭ Q2. How to solve this bilevel optimization?

8 / 34

KKT-based reformulation

The Karush–Kuhn–Tucker conditions (KKTs) of the lower-level problem:

1 Primal feasibility: g(xω, ŵi) ↫ 0

2 Dual feasibility: ωω ⇐ 0

3 Lagrangian optimality:

⇒xc(xω) + ωω↑⇒xg(xω, ŵi) = 0

4 Complementary slackness: ωω↑g(xω, ŵi) = 0

For convex optimization, the KKTs are necessary and su”cient for optimality

Thus, we can replace the lower-level problem with its KKTs!

9 / 34

KKT-based reformulation (cont’d)

↭ Assume linear regression, i.e., Wω(ϑi) = ϖ↑ϑi

↭ KKT-based reformulation of the bilevel problem

minimize
ω,xi ,εi ,ŵi

1

2k

k∑

i=1

↗c(xi)→ c(xω(wi))↗22

subject to ŵi = ϖ↑ϑi , upper level

lower level
g(xi , ŵi) ↫ 0, ωi ↬ 0,

⇒xc(xi) + ω↑⇒xi g(x, ŵi) = 0,

ω↑
i g(xi , ŵi) = 0, ≃i = 1, . . . , k

↭ Q1. Where does c(xω(wi)) come from?

↭ Non-linear optimization program with hard complementarity condition.

↭ Q2. How can we make it more tractable? (demonstrate in-class)

↭ Q3. How to introduce regularization?

10 / 34

KKT-based reformulation (cont’d)

↭ Assume linear regression, i.e., Wω(ϑi) = ϖ↑ϑi

↭ KKT-based reformulation of the bilevel problem

minimize
ω,xi ,εi ,ŵi

1

2k

k∑

i=1

↗c(xi)→ c(xω(wi))↗22

subject to ŵi = ϖ↑ϑi , upper level

lower level
g(xi , ŵi) ↫ 0, ωi ↬ 0,

⇒xc(xi) + ω↑⇒xi g(x, ŵi) = 0,

ω↑
i g(xi , ŵi) = 0, ≃i = 1, . . . , k

↭ Q1. Where does c(xω(wi)) come from?

↭ Non-linear optimization program with hard complementarity condition.

↭ Q2. How can we make it more tractable? (demonstrate in-class)

↭ Q3. How to introduce regularization?

10 / 34

KKT-based reformulation (cont’d)

↭ Assume linear regression, i.e., Wω(ϑi) = ϖ↑ϑi

↭ KKT-based reformulation of the bilevel problem

minimize
ω,xi ,εi ,ŵi

1

2k

k∑

i=1

↗c(xi)→ c(xω(wi))↗22

subject to ŵi = ϖ↑ϑi , upper level

lower level
g(xi , ŵi) ↫ 0, ωi ↬ 0,

⇒xc(xi) + ω↑⇒xi g(x, ŵi) = 0,

ω↑
i g(xi , ŵi) = 0, ≃i = 1, . . . , k

↭ Q1. Where does c(xω(wi)) come from?

↭ Non-linear optimization program with hard complementarity condition.

↭ Q2. How can we make it more tractable? (demonstrate in-class)

↭ Q3. How to introduce regularization?

10 / 34

Gradient descent-based solution

↭ Recall the optimization objective

minimize
ω

R ⊜ 1

2k

k∑

i=1

↗c(xω(Wω(ϑi))→ cωi ↗
2
2

↭ Derivatives of the regret w.r.t. model parameter ϖ (linear regression)

ϑR
ϑϖ

=
ϑR
ϑc

·
ϑc

ϑxω
·

ϑxω

ϑWω(ϑi)
·
ϑWω(ϑi)

ϑϖ

=
1

k

k∑

i=1

(
c(xω(Wω(ϑi)))→ cωi

)
·
ϑc

ϑxω
·

ϑxω

ϑWω(ϑi)
·
ϑWω(ϑi)

ϑϖ

=
1

k

k∑

i=1

(
c(xω(Wω(ϑi)))→ cωi

)
·⇒xc(x) ·

ϑxω

ϑWω(ϑi)
·
ϑWω(ϑi)

ϑϖ

=
1

k

k∑

i=1

(
c(xω(Wω(ϑi)))→ cωi

)
·⇒xc(xi) ·

ϑxω

ϑWω(ϑi)
·ϑi

↭ Regret is then minimized over iterations ϖ ⇑ ϖ → ϖ εR
εω

↭ How to compute the last unknown gradient εxω

εWω(ϑi)
?

11 / 34

Gradient descent-based solution

↭ Recall the optimization objective

minimize
ω

R ⊜ 1

2k

k∑

i=1

↗c(xω(Wω(ϑi))→ cωi ↗
2
2

↭ Derivatives of the regret w.r.t. model parameter ϖ (linear regression)

ϑR
ϑϖ

=
ϑR
ϑc

·
ϑc

ϑxω
·

ϑxω

ϑWω(ϑi)
·
ϑWω(ϑi)

ϑϖ

=
1

k

k∑

i=1

(
c(xω(Wω(ϑi)))→ cωi

)
·
ϑc

ϑxω
·

ϑxω

ϑWω(ϑi)
·
ϑWω(ϑi)

ϑϖ

=
1

k

k∑

i=1

(
c(xω(Wω(ϑi)))→ cωi

)
·⇒xc(x) ·

ϑxω

ϑWω(ϑi)
·
ϑWω(ϑi)

ϑϖ

=
1

k

k∑

i=1

(
c(xω(Wω(ϑi)))→ cωi

)
·⇒xc(xi) ·

ϑxω

ϑWω(ϑi)
·ϑi

↭ Regret is then minimized over iterations ϖ ⇑ ϖ → ϖ εR
εω

↭ How to compute the last unknown gradient εxω

εWω(ϑi)
?

11 / 34

Gradient descent-based solution

↭ Recall the optimization objective

minimize
ω

R ⊜ 1

2k

k∑

i=1

↗c(xω(Wω(ϑi))→ cωi ↗
2
2

↭ Derivatives of the regret w.r.t. model parameter ϖ (linear regression)

ϑR
ϑϖ

=
ϑR
ϑc

·
ϑc

ϑxω
·

ϑxω

ϑWω(ϑi)
·
ϑWω(ϑi)

ϑϖ

=
1

k

k∑

i=1

(
c(xω(Wω(ϑi)))→ cωi

)
·
ϑc

ϑxω
·

ϑxω

ϑWω(ϑi)
·
ϑWω(ϑi)

ϑϖ

=
1

k

k∑

i=1

(
c(xω(Wω(ϑi)))→ cωi

)
·⇒xc(x) ·

ϑxω

ϑWω(ϑi)
·
ϑWω(ϑi)

ϑϖ

=
1

k

k∑

i=1

(
c(xω(Wω(ϑi)))→ cωi

)
·⇒xc(xi) ·

ϑxω

ϑWω(ϑi)
·ϑi

↭ Regret is then minimized over iterations ϖ ⇑ ϖ → ϖ εR
εω

↭ How to compute the last unknown gradient εxω

εWω(ϑi)
?

11 / 34

Computing
ϑxω

ϑWω(ϑi)
for convex quadratic programs

minimize
x

1

2
x↑Cx+ c↑x

subject to Ax = b, Gx ↫ h

The Lagrangian function L(x,ϱ,ω) = 1
2 x

↑Cx+ c↑x+ ϱ↑(Ax→ b) + ω↑(Gx→ h)

The stationarity, primal feasibility, and complementarity slackness:

Cxω + c+ A↑ϱω + G↑ωω = 0

Axω → b = 0

diag[ωω](Gxω → h) = 0

Implicit di!erentiation (using a product rule, i.e., ϑCxω = ϑC · xω + C · ϑxω)1




C G↑ A↑

diag[ωω]G diag[Gxω → h] 0
A 0 0








ϑx
ϑω
ϑϱ



 =




→ϑCxω → ϑc→ ϑG↑ωω → ϑA↑ϱω

→diag[ωω]ϑGxω + diag[ωω]ϑh
→ϑAxω + ϑb





1Amos B., & Kolter J. Z. Optnet: Di!erentiable optimization as a layer in neural networks. 2017

12 / 34

Computing
ϑxω

ϑWω(ϑi)
for convex quadratic programs (cont’d)




ϑx
ϑω
ϑϱ



 =




C G↑ A↑

diag[ωω]G diag[Gxω → h] 0
A 0 0




↓1 


→ϑCxω → ϑc→ ϑG↑ωω → ϑA↑ϱω

→diag[ωω]ϑGxω + diag[ωω]ϑh
→ϑAxω + ϑb





Suppose that vector b is given by the prediction of our model, i.e., b = Wω(ϑi)

Focus only on ϑb, and set other di!erentials to zero




ϑx
ϑω
ϑϱ



 =




C G↑ A↑

diag[ωω]G diag[Gxω → h] 0
A 0 0




↓1 


0
0
ϑb



 =




(A↑)↓1ϑb

0
0





Hence, the εx
εb = εx

εWω(ϑi)
= (A↑)↓1

By analogy, compute the derivative of optimizer x to any other QP problem data

13 / 34

Gradient descent for decision-focused learning

minimize
ω

R ⊜ 1

2k

k∑

i=1

↗c(xω(Wω(ϑi))→ cωi ↗
2
2

The gradient descent-like algorithms use the update

ϖ ⇑ ϖ → ϖ
ϑR
ϑϖ

for some step size ϖ > 0

↭ Requires solving an optimization problem at every iteration (Q. Why?)

↭ Yet, more versatile solution (no structural assumption on model Wω)

↭ Also, scales up to much larger problems (in terms of dimensions n, m and k)

14 / 34

Illustrative example: Setting

↭ Dataset {(x1, y1), . . . , (xi , yi), . . . , (xn, yn)} of n records

↭ Prediction-focused learning: find the linear model ŷ = w↑x̂ by solving

minimize
w

1

2n

n∑

i=1

(w↑xi → yi)
2

↭ The downstream ŷ→parametrized decision problem:

minimize
z

1

2
(z → ŷ)2 + ϱz2

subject to z ↬ 0

↭ Decision-focused learning: seeks the linear model by solving

minimize
w,̂y

1

2n

n∑

i=1

(zω(ŷi)→ zω(yi))
2

subject to ŷi = w↑xi

zω(ŷi) = argmin
z

1

2
(z → ŷi)

2 + ϱz2

subject to z ↬ 0, ≃i = 1, . . . , n

15 / 34

Illustrative example: Solution via bilevel optimization

↭ The KKTs of the lower-level problem are

z → ŷ + ϱ→ µ = 0 (Lagrange optimality)

z ↬ 0 (primal feasibility)

µ ↬ 0 (dual feasibility)

zµ = 0 (complementarity slackness)

↭ Big-M reformulation of complementarity slackness:
{

µ ↫ Mu
z ↫ M(1→ u)

where u ↘ {0, 1} is an auxiliary binary variable, and M is a large enough constant

↭ The bilevel reformulation of the decision-focused learning problem:

minimize
w,̂y,z,µ,u

1

2n

n∑

i=1

(zω(ŷi)→ zω(yi))
2

subject to ŷi = w↑x̂i , ≃i = 1, . . . , n

z→ ŷ + 2ϱz→ µ = 0

z ↬ 0, µ ↬ 0, u ↘ {0, 1}n

µ ↫ Mu, z ↫ M(1→ u)

16 / 34

Illustrative example: Solution via bilevel optimization

↭ The KKTs of the lower-level problem are

z → ŷ + ϱ→ µ = 0 (Lagrange optimality)

z ↬ 0 (primal feasibility)

µ ↬ 0 (dual feasibility)

zµ = 0 (complementarity slackness)

↭ Big-M reformulation of complementarity slackness:
{

µ ↫ Mu
z ↫ M(1→ u)

where u ↘ {0, 1} is an auxiliary binary variable, and M is a large enough constant

↭ The bilevel reformulation of the decision-focused learning problem:

minimize
w,̂y,z,µ,u

1

2n

n∑

i=1

(zω(ŷi)→ zω(yi))
2

subject to ŷi = w↑x̂i , ≃i = 1, . . . , n

z→ ŷ + 2ϱz→ µ = 0

z ↬ 0, µ ↬ 0, u ↘ {0, 1}n

µ ↫ Mu, z ↫ M(1→ u)

16 / 34

Illustrative example: Solution via bilevel optimization

↭ The KKTs of the lower-level problem are

z → ŷ + ϱ→ µ = 0 (Lagrange optimality)

z ↬ 0 (primal feasibility)

µ ↬ 0 (dual feasibility)

zµ = 0 (complementarity slackness)

↭ Big-M reformulation of complementarity slackness:
{

µ ↫ Mu
z ↫ M(1→ u)

where u ↘ {0, 1} is an auxiliary binary variable, and M is a large enough constant

↭ The bilevel reformulation of the decision-focused learning problem:

minimize
w,̂y,z,µ,u

1

2n

n∑

i=1

(zω(ŷi)→ zω(yi))
2

subject to ŷi = w↑x̂i , ≃i = 1, . . . , n

z→ ŷ + 2ϱz→ µ = 0

z ↬ 0, µ ↬ 0, u ↘ {0, 1}n

µ ↫ Mu, z ↫ M(1→ u)

16 / 34

Illustrative example: Solution via stochastic gradient descent

minimize
w,̂y

1

2n

n∑

i=1

(zω(ŷi)→ zω(yi))
2

subject to ŷi = w↑xi

zω(ŷi) = argmin
z

1

2
(z → ŷi)

2 + ϱz2

subject to z ↬ 0, ≃i = 1, . . . , n

↭ Closed-form solution for the lower-level problem

zω(ŷi) = max

{
0,

ŷi
1 + 2ϱ

}

↭ The gradient ϑzω(ŷi)/ϑŷi is obtained using LogSumExp approximation:

zω(ŷi) = max

{
0,

ŷi
1 + 2ϱ

}
⇓ log

(
1 + exp

(
ŷi

1 + 2ϱ


(EECS 559)

zω(ŷi)/ϑŷi ⇓
exp

(
ŷi

1+2ϑ

)

1 + exp
(

ŷi
1+2ϑ

) 1

1 + 2ϱ

17 / 34

Illustrative example: Solution via stochastic gradient descent

minimize
w,̂y

1

2n

n∑

i=1

(zω(ŷi)→ zω(yi))
2

subject to ŷi = w↑xi

zω(ŷi) = argmin
z

1

2
(z → ŷi)

2 + ϱz2

subject to z ↬ 0, ≃i = 1, . . . , n

↭ For SGD, we draw one sample i from a dataset and minimize

Ci = (zω(ŷi)→ zω(yi))
2

↭ By the chain rule, the gradient is

ϑCi
ϑw

=(zω(ŷi)→ zω(yi)) ·
ϑzω

ϑyi
·
ϑyi
ϑw

=




max

{
0,

ŷi
1 + 2ϱ

}

︸ ︷︷ ︸
closed form for zω

→ zω(yi)︸ ︷︷ ︸
precomputed o#ine




·

exp
(

ŷi
1+2ϑ

)

1 + exp
(

ŷi
1+2ϑ

) 1

1 + 2ϱ

︸ ︷︷ ︸
εzω(ŷi)/εŷi

· xi

↭ The SGD perform the following update:

w ⇑ w → ϖ
ϑCi
ϑw

with some step size ϖ > 0.
17 / 34

Illustrative example: Results

↭ Experiments on synthetic data (100 samples)

↭ Prediction space: displays how the model explains the underlying data

↭ Decision space: displays how the model prescribes decisions

prediction space decision space

↭ Prediction-focused model is better in predictions, decision-focused – in decisions

↭ Bilevel optimization provides the global optimal solution

↭ Gradient descent-based solution does not have global guarantees

18 / 34

Tutorial time

↭ Look around you and form teams of 2 people (1 min)

↭ Pick one person to code; the other one guides

↭ Work in pairs for the whole tutorial session

Goal: replicate the results of the illustrative example

19 / 34

Multiparametric programming to ease computational burden

Challenge: Large-scale downstream optimization

↭ Wind power forecast ŵ→parametrized DC-OPF problem

minimize
p

1

2
p↑Cp+ c↑p generator dispatch cost

subject to p ↫ p ↫ p generation limits

1↑(p+ ŵ → d) = 0 power balance condition

|F(p+ ŵ → d)| ↫ f power flow limits

↭ For practical-sized systems, there are thousands of variables and constraints

↭ Solving DC-OPF at every SGD update significantly slows convergence

Solution: Multiparametric programming (MPP)

↭ Studies the solutions of an optimization problem as a function of its parameters

↭ Let ŵ belong to the union W ⊜ k
i=1[0, 1]i of normalized output ranges of k

wind farms. A sampled wind power output ŵ is seen as a random draw from W
↭ For convex quadratic programs, set W can be portioned into polyhedral regions,

each having a closed-form solution for primal and dual variables ⇔ speed up!

20 / 34

Multiparametric programming to ease computational burden

Challenge: Large-scale downstream optimization

↭ Wind power forecast ŵ→parametrized DC-OPF problem

minimize
p

1

2
p↑Cp+ c↑p generator dispatch cost

subject to p ↫ p ↫ p generation limits

1↑(p+ ŵ → d) = 0 power balance condition

|F(p+ ŵ → d)| ↫ f power flow limits

↭ For practical-sized systems, there are thousands of variables and constraints

↭ Solving DC-OPF at every SGD update significantly slows convergence

Solution: Multiparametric programming (MPP)

↭ Studies the solutions of an optimization problem as a function of its parameters

↭ Let ŵ belong to the union W ⊜ k
i=1[0, 1]i of normalized output ranges of k

wind farms. A sampled wind power output ŵ is seen as a random draw from W
↭ For convex quadratic programs, set W can be portioned into polyhedral regions,

each having a closed-form solution for primal and dual variables ⇔ speed up!

20 / 34

Compact DC-OPF formulation for MPP

minimize
p

1

2
p↑Cp+ c↑p

subject to Ap ↫ Bŵ + b : ω

where problem data is

A =





I
→I

→1↑

F
→F




, B =





0
0
1↑

F
→F




, b =





p
→p

→1↑d
f
f





Q. Why can we replace the power balance constraint with inequality?

↭ A multiparametric programming problem (MPP) dependent on ŵ

↭ For some realization ŵ, MPP expresses the primal p and dual ω solutions as
a”ne functions of some ŵ in the neighborhood of ŵ

21 / 34

Compact DC-OPF formulation for MPP

minimize
p

1

2
p↑Cp+ c↑p

subject to Ap ↫ Bŵ + b : ω

where problem data is

A =





I
→I

→1↑

F
→F




, B =





0
0
1↑

F
→F




, b =





p
→p

→1↑d
f
f





Q. Why can we replace the power balance constraint with inequality?

↭ A multiparametric programming problem (MPP) dependent on ŵ

↭ For some realization ŵ, MPP expresses the primal p and dual ω solutions as
a”ne functions of some ŵ in the neighborhood of ŵ

21 / 34

Closed-form DC-OPF solutions from MPP

↭ Lagrangian function of the compact DC-OPF:

L(p,ω) =
1

2
p↑Cp+ c↑p+ ω↑ (Ap→ Bŵ → b)

↭ Let Ã, B̃, b̃ be sub-matrices/vectors containing only those entries of A,B, b that
correspond to the active (binding) constraints (ϱ > 0)

↭ A,B, b collect the remaining entries corresponding to inactive constraints (ϱ = 0).

↭ From the Karush–Kuhn–Tucker (KKT) conditions we have a system of equations:

Cp+ c+ Ã↑ω̃ = 0

Ãp→ B̃ŵ → b̃ = 0

Q. From which KKT conditions do these equation come from?

↭ Manipulating these equations, we get the closed-form solutions

22 / 34

Closed-form DC-OPF solutions from MPP

↭ Lagrangian function of the compact DC-OPF:

L(p,ω) =
1

2
p↑Cp+ c↑p+ ω↑ (Ap→ Bŵ → b)

↭ Let Ã, B̃, b̃ be sub-matrices/vectors containing only those entries of A,B, b that
correspond to the active (binding) constraints (ϱ > 0)

↭ A,B, b collect the remaining entries corresponding to inactive constraints (ϱ = 0).

↭ From the Karush–Kuhn–Tucker (KKT) conditions we have a system of equations:

Cp+ c+ Ã↑ω̃ = 0

Ãp→ B̃ŵ → b̃ = 0

Q. From which KKT conditions do these equation come from?

↭ Manipulating these equations, we get the closed-form solutions

22 / 34

Closed-form DC-OPF solutions from MPP (cont’d)

Cp+ c+ Ã↑ω̃ = 0 (1a)

Ãp→ B̃ŵ → b̃ = 0 (1b)

From (1a) we express p (assuming C is invertible)

p = →C↓1
(
c+ Ã↑ω̃

)
(2)

and substitute it into (1b):

→ ÃC↓1c→ ÃC↓1Ã↑ω̃→ B̃ŵ → b̃ = 0

↖ ω̃ = →
(
ÃC↓1Ã↑

)↓1
B̃

︸ ︷︷ ︸
D

ŵ→
(
ÃC↓1Ã↑

)↓1 (
b̃+ ÃC↓1c

)

︸ ︷︷ ︸
d

↖ ω̃ = Dŵ + d (closed-form solution for duals) (3)

Substituting (3) into (2), we have the solution for p :

p = →C↓1
(
c+ Ã↑ (Dŵ + d)

)
= →C↓1Ã↑D︸ ︷︷ ︸

!

ŵ→C↓1c→ C↓1Ã↑d︸ ︷︷ ︸
ϖ

↖ p = !ŵ + ε (closed-form solution for primals) (4)

23 / 34

Closed-form DC-OPF solutions from MPP (cont’d)

↭ The primal-dual solution depends linearly on ŵ:


p
ω̃


=


!
D


ŵ +


ε
d


(5)

Q. How do we obtain matrices and vectors !,D,ε and d?

↭ For a given ŵ, we obtain them by solving an optimization problem (bad news)

↭ Eq. (5) valid not only for ŵ but for all ŵ in the neighborhood of ŵ (good news)

↭ The neighborhood originates from two KKT conditions:

(A!→ B)ŵ < b→ Aε (primal feasibility of inactive constraints) (6a)

Dŵ + d ↬ 0 (dual feasibility) (6b)

↭ We term the neighborhood of ŵ a critical region (CR), formally defined as:

R =

ŵ ↘ W | (A!→ B)ŵ < b→ Aε, Dŵ + d ↬ 0


(7)

↭ In fact, there are many CRs. The task is to identify the CR corresponding to a
particular realization of wind power, and then compute solution from (5).

24 / 34

Closed-form DC-OPF solutions from MPP (cont’d)

↭ The primal-dual solution depends linearly on ŵ:


p
ω̃


=


!
D


ŵ +


ε
d


(5)

Q. How do we obtain matrices and vectors !,D,ε and d?

↭ For a given ŵ, we obtain them by solving an optimization problem (bad news)

↭ Eq. (5) valid not only for ŵ but for all ŵ in the neighborhood of ŵ (good news)

↭ The neighborhood originates from two KKT conditions:

(A!→ B)ŵ < b→ Aε (primal feasibility of inactive constraints) (6a)

Dŵ + d ↬ 0 (dual feasibility) (6b)

↭ We term the neighborhood of ŵ a critical region (CR), formally defined as:

R =

ŵ ↘ W | (A!→ B)ŵ < b→ Aε, Dŵ + d ↬ 0


(7)

↭ In fact, there are many CRs. The task is to identify the CR corresponding to a
particular realization of wind power, and then compute solution from (5).

24 / 34

Closed-form DC-OPF solutions from MPP (cont’d)

↭ The primal-dual solution depends linearly on ŵ:


p
ω̃


=


!
D


ŵ +


ε
d


(5)

Q. How do we obtain matrices and vectors !,D,ε and d?

↭ For a given ŵ, we obtain them by solving an optimization problem (bad news)

↭ Eq. (5) valid not only for ŵ but for all ŵ in the neighborhood of ŵ (good news)

↭ The neighborhood originates from two KKT conditions:

(A!→ B)ŵ < b→ Aε (primal feasibility of inactive constraints) (6a)

Dŵ + d ↬ 0 (dual feasibility) (6b)

↭ We term the neighborhood of ŵ a critical region (CR), formally defined as:

R =

ŵ ↘ W | (A!→ B)ŵ < b→ Aε, Dŵ + d ↬ 0


(7)

↭ In fact, there are many CRs. The task is to identify the CR corresponding to a
particular realization of wind power, and then compute solution from (5).

24 / 34

Identifying critical regions

↭ 5-Bus PJM testbed with 3 variable net loads
↭ Initialize the set of critical regions CR = {⊋}
↭ To identify critical regions, perform the following iterations

for i = 1, . . . , 1000 do
Sample ŵ from W
if ŵ does not belong to any R in CR then

Solve DC-OPF on ŵ, compute R and add to CR
end if

end for

Q1. What is the complexity of this algorithm?

↭ 7 distinct critical regions, each having a fixed set of active constraints

Q2. How many DC-OPF problems did we solve in this case?

25 / 34

Identifying critical regions

↭ 5-Bus PJM testbed with 3 variable net loads
↭ Initialize the set of critical regions CR = {⊋}
↭ To identify critical regions, perform the following iterations

for i = 1, . . . , 1000 do
Sample ŵ from W
if ŵ does not belong to any R in CR then

Solve DC-OPF on ŵ, compute R and add to CR
end if

end for

Q1. What is the complexity of this algorithm?
↭ 7 distinct critical regions, each having a fixed set of active constraints

Q2. How many DC-OPF problems did we solve in this case?

25 / 34

MPP-Powered SGD for decision-focused learning

↭ Machine learning model ŵ = Wω(ϑ̂)

↭ For a given ŵ, the primal solution and the gradient are

p = !ŵ + ε
ϑpω

ϑŵ
= !↑

↭ Decision-focused problem minimizing the primal decision error

minimize
ω

R ⊜ 1

2k

k∑

i=1

↗pω(Wω(ϑ̂i))→ pωi ↗
2
2

↭ The gradient update in SGD for a particular sample i takes the form:

ϑR
ϑϖ

= (pω(Wω(ϑ̂i))→ pωi) ·
ϑpω

ϑWω(ϑi)
·
ϑWω(ϑi)

ϑϖ

= (!Wω(ϑ̂i) + ε → pωi) ·!
↑ ·

ϑWω(ϑi)

ϑϖ

↭ No need to solve optimization if we know the critical region of Wω(ϑ̂i)!

↭ Significant time saving after we explore a su”cient number of critical regions

↭ By analogy, we can minimize the dual decision error

26 / 34

Example (cont’d): Wind power forecast & electricity pricing

DeepWP

27 / 34

Example (cont’d): Price-awareness for wind power forecast

↭ Dataset {(ϑ1,w1), . . . , (ϑk ,wk)} of wind power records

↭ Two deep learning architectures DeepWP and DeepWP+ for forecasting2

featu
res

ω

forecast

DeepWP

R
eL

U

R
eL

U

R
eL

U

→ŵ ↑ w→+ →ε(ŵ) ↑ ε(w)→loss function:

DeepWP+

ŵ

↭ DeepWP+ informs wind power predictions about the downstream pricing errors

2Dvorkin V., & Fioretto F. Price-aware deep learning for electricity markets. 2023

28 / 34

Example (cont’d): Price-awareness for wind power forecast

↭ Dataset {(ϑ1,w1), . . . , (ϑk ,wk)} of wind power records

↭ Two deep learning architectures DeepWP and DeepWP+ for forecasting2

featu
res

ω

forecast

DeepWP

R
eL

U

R
eL

U

R
eL

U

→ŵ ↑ w→+ →ε(ŵ) ↑ ε(w)→loss function:

DeepWP+

ŵ

→ŵ ↑ w→ + →ε(ŵ) ↑ ε(w)→

m
arket-clearin

g
solver

ŵ

ε
(ŵ

)

↭ DeepWP+ informs wind power predictions about the downstream pricing errors

2Dvorkin V., & Fioretto F. Price-aware deep learning for electricity markets. 2023

28 / 34

Example (cont’d): Numerical experiments

↭ Standard PowerModels.jl test cases

↭ 1,000 wind power records

↭ Active power output
↭ Wind speed and direction
↭ Blade pitch angle

↭ DeepWP has 4 hidden layers with 30
neurons each. DeepWP+ additionally
includes an opt. layer

↭ ADAM optimizer with varying
learning rate

3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

wind speed [m/s]

ac
ti
ve

p
ow

er
ou

tp
u
t
[p
.u
.]

29 / 34

Example (cont’d): IEEE 118-bus system

DeepWP DeepWP+

DeepWP: Forecast error minimization yields ωε ↘ [→4, 1] $/MWh

DeepWP+: Price error minimization yields ωε ↘ [→1, 1] $/MWh

Q1. Which prediction is fairer?
Q2. What prevents us from completely eliminating the price error?

30 / 34

Example (cont’d): Wind power forecasts

DeepWP: Minimizes the average forecast deviation

DeepWP+: Intentionally over-predicts in certain range of wind speeds

31 / 34

Example (cont’d): Bias of DeepWP+ model

↭ DeepWP+ training starts at iteration 500 using a pre-trained DeepWP model

↭ RMSE(ŵ) and RMSE(ε̂) are conflicting objectives which are kept in balance

32 / 34

Example (cont’d): Forecast and price error trade-o!

case
DeepWP DeepWP+

RMSE(ŵ) RMSE(ε̂) CVaR(ε̂) ϖ→value RMSE(ŵ) RMSE(ε̂) CVaR(ε̂) ϖ→value

MWh $/MWh $/MWh $/MWh MWh gain $/MWh gain $/MWh gain $/MWh gain

14 ieee 0.35 0.62 1.52 0 0.35 +0.6% 0.61 →0.6% 1.50 →0.8% 0 —
57 ieee 2.31 11.03 34.64 32.08 2.60 +11.2% 10.72 →2.9% 33.59 →3.1% 30.92 →3.8%
24 ieee 4.08 8.62 37.70 27.48 4.51 +9.6% 8.33 →3.5% 36.35 →3.7% 26.26 →4.6%
39 epri 5.94 11.15 31.21 17.53 6.43 +7.6% 10.19 →9.4% 28.02 →11.4% 15.84 →10.7%
73 ieee 4.02 5.12 16.21 32.83 5.51 +26.9% 4.24 →20.8% 13.41 →20.9% 26.63 →23.3%
118 ieee 2.29 3.59 11.32 17.91 2.60 +12.1% 2.88 →24.7% 9.06 →25.0% 14.09 →27.2%

↭ Worst-case improvement exceeds that of the average case

↭ Price error reduction and fairness improves with the size of the network

33 / 34

Resources

↭ Mandi, J. et al. (2024). Decision-focused learning: Foundations, state of the art,
benchmark and future opportunities. Journal of Artificial Intelligence Research,
80, 1623-1701.

↭ Amos, B., & Kolter, J. Z. (2017, July). Optnet: Di!erentiable optimization as a
layer in neural networks. In International conference on machine learning (pp.
136-145).

↭ Tøndel, P., Johansen, T. A., & Bemporad, A. (2003). An algorithm for
multi-parametric quadratic programming and explicit MPC solutions.
Automatica, 39(3), 489-497.

↭ Dvorkin, V., & Fioretto, F. (2023). Price-aware deep learning for electricity
markets. arXiv preprint arXiv:2308.01436.

34 / 34

