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Many problems in power systems are optimization problems

minimize
x→Rn

c(x)

subject to g(x) ↫ 0

↭ Vector x of decision variables (dispatch, prices, voltage)

↭ Cost function c(x) (gen cost, →profit, forecast error)

↭ Constraint function g(x) (gen, trans, voltage limits)

The optimal decision xω minimizes the cost
and satisfies all constraints

convex optimization [Ahmadi] non-convex optimization [Amini]
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Decision-making timeline in power systems

↭ Decisions from year to minutes ahead of operation

↭ Each decision here can be computed by solving an optimization problem

↭ Each problem has input data, objective function, constraints and algorithm
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Some challenges in modern power systems
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A room full of power systems experts

↭ Look around you, form teams of 3 people

↭ You are the team of experts in grid optimization

↭ Select one person that is responsible for

1 keeping time

2 ensuring everyone in the team contributes

3 representing the team, sharing your responses

↭ Use 5 minutes to discuss what competences you bring to the team
↭ Grid engineering: phasor analysis, 3ω-systems, transformers, power transmission, ...
↭ Power flow analysis: per unit modeling, Newton-Raphson, fast decoupled power flow, ...
↭ Control: droop and load frequency control, reactive power compensation, dynamics, ...
↭ Optimization: linear, quadratic, non-linear optimization, relaxation, decomposition, ...
↭ Analytics & ML: forecasting, classification, risk management, ...

↭ Get ready to work as a team for the next 45 minutes
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We will go through all cases one by one

↭ For each case, I will describe the problem and the optimization challenge

↭ Set up an optimization problem:

↭ What is the optimization data?

↭ What are the decision variables?

↭ What are the cost fun and constraints?

↭ Which method/algorithm to use?

minimize
x→Rn

c(x)

subject to g(x) ↫ 0

↭ Discuss how to tackle the challenge with your team’s competence

↭ Do you think you have the necessary competences?

↭ Would you take up the challenge?

↭ If yes, what methods would you use?

↭ If no, what’s blocking you?

Quick! 3 minutes per case
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Case 1: Distribution grid control

↭ Distribution grid with a large penetration of rooftop PV panels

↭ In cloudy weather, the operator struggles to maintain voltage within limits

↭ Tap-changing transformers and capacitor tanks can control voltage during the day

↭ Goal: devise optimization problem to assist with the voltage control problem
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Case 2: Carbon-aware data center dispatch

↭ Large language models (LLMs) requires a lot of power for training and inference

↭ Space-time allocation of LLM workloads defines their emission footprint

↭ Goal: optimization for carbon-aware allocation of LLM workloads in the grid
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Case 3: Renewable power forecasting

↭ Wind power producers sell energy one day ahead of real-time delivery

↭ Real-time penalty for any forecast errors are very expensive, but asymmetric

↭ Goal: optimization for wind power producers to improve their financial standing
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Case 4: EV aggregator and frequency regulation market

↭ EV charging company must ensure full charge by a specific time

↭ The company can use the plugged EVs for frequency regulation

↭ The frequency regulation market pays for fast (dis)charging response to grid signal

↭ Goal: devise revenue-maximizing optimization for EV aggregators
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Case 5: Portfolio optimization for large electricity consumers

↭ Refinery company is a large electricity consumer

↭ The company can purchase power on the sport market with hourly-varying prices

↭ Or make a bilateral power purchasing agreement with the price fixed for one year

↭ The spot and bilateral power purchasing can be made in some proportion

↭ Goal: devise optimization problem for the management of the company
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Case 6: Cross-border grid coordination

↭ New York (USA) enjoys hydro power from Québec (CA)

↭ The NY and Quebec system operators are in charge of operating their own grids

↭ They wish to operate at the minimum of dispatch cost ...

... but they can’t share their grid models (classified information)

↭ Goal: develop grid coordination model with minimum data exchange

13 / 34



Case 7: O!shore wind farm layout

↭ Wind turbines create turbulence that disrupts the airflow around nearby turbines

↭ Array cables connect individual turbines; they can not overlap (expansive, unsafe)

↭ The wind farm design must thus account for both air and underwater e!ects

↭ Goal: devise optimization for designing o!shore wind farm from scratch
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Case 8: Power grid decarbonization

↭ Power grid is the second largest source of greenhouse gas emissions in the US

↭ The public pressures to significantly reduce the emission footprint by 2050

↭ Goal: Device an optimization problem for scheduling decarbonization and
meeting emission targets by 2050. What inherent uncertainties to include?
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ptiML group

Vladimir Dvorkin
dvorkin@umich.edu
web.eecs.umich.edu/~dvorkin/

↭ Prescriptive analytics: Prescribing optimization data to enhance
decisions (e.g., revenue-optimal wind power forecast)

↭ Energy data privacy: Releasing critical grid data with privacy
and cyber resiliency guarantees for the source grid

↭ Trustworthy & fair ML: Embedding physical and societal
constraints into ML models applied to cyber-physical systems

Let’s speak if you are interested in these problems

Xinwei Lui

Milad Hoseinpour

Shengyang Wu
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Course logistics

↭ 1005 DOW, Friday 10:30 am – 1:30 pm EST
↭ Lectures, followed by tutorials and in-class activities
↭ In-person, remote only if absolutely necessary to move class online

↭ O”ce Hours: Wednesday 2:00 to 3:30 PM

↭ Canvas
↭ Files: slides, homeworks, templates, literature
↭ Video recordings, scribed whiteboard notes
↭ Announcements

↭ Piazza
↭ To build a UofM community on computational power systems
↭ Engage by asking questions related to homeworks, projects, presentations, ....
↭ Share interesting academic works, industry news, opportunities, ideas, etc.
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Grading (3 credit)

↭ Homework (30%):
↭ → 5-6 homework assignments
↭ Drop-o! of the lowest grade of all homework assignments

↭ Project (30%):
↭ Work in groups of 2 people
↭ 6-page report and in-class presentation
↭ Proposal should be approved by the instructor

↭ Paper review & presentation (10%)

↭ Lecture notes (5%):
↭ Sign up to scribe at least 2 lectures
↭ Using LATEX template available on canvas
↭ Extra 5% for the whole lecture series
↭ Link to ex. 1, link to ex. 2, link to ex. 3

↭ Quizzes (4%)

↭ Course evaluation (1%)

↭ Final exam (20%)

↭ Active participation on Piazza (up to extra 4%)
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Tentative topics

↭ Intro to modern power system optimization

↭ Optimization for operational planning of power systems

↭ Optimization for wholesale and local electricity markets

↭ Optimization for distribution grid control

↭ Selected machine learning applications in power systems

↭ Decentralized/distributed optimization of power systems

↭ Introduction to decentralized/distributed optimization algorithms

↭ Distributed algorithms for voltage control in distribution grids

↭ Decentralized optimization of wholesale electricity markets

↭ Distributed optimization of local electricity markets

↭ Distributed learning for renewable power forecasting

↭ Prescriptive analytics for power systems

↭ Decision value of renewable power forecast (predict-then-optimize)

↭ Decision-focused renewable power forecasting (smart predict-then-optimize)

↭ End-to-end learning with custom gradient-based algorithms

↭ Verification of machine learning models applied to power systems
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Test quizz: Log in to iClicker and chose any options below

A Live, Laugh, Love

B Do what makes you happy

C Family is everything

D Good vibes only
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Mathematical optimization

Mathematical optimization problem

minimize
x

c(x)

subject to gi (x) ↫ 0, ↑i = 1, . . . ,m (inequality constraints)

hj (x) = 0, ↑j = 1, . . . , p (equality constraints)

↭ x = (x1, . . . , xn) ↓ Rn is the vector of decision variable

↭ c : Rn ↔↗ R is the objective or cost function

↭ constraint functions gi : Rn ↔↗ R and hj : Rn ↔↗ R
↭ feasible set: the set of decision variables satisfying all constraints

X = {x : gi (x) ↫ 0, ↑i = 1, . . . ,m, hj (x) = 0, ↑j = 1, . . . , p}
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A simple example

minimize
x

(x1 → 2)2 + (x2 → 1)2

subject to x21 → x2 ↫ 0

x1 + x2 ↫ 2
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Economic dispatch optimization

↭ n generators supplying a single load d [MW]

↭ dispatch decision for unit i is pi [MW]

↭ generation cost for unit i is ci (pi ) [$]

p1 p2 pn

d

. . .

Problem: find the most economical power schedule

minimize
p1,...,pn

n∑

i=1

ci (pi )

subject to
n∑

i=1

pi = d

pi ↬ 0, ↑i = 1, . . . , n

(algebraic form)

minimize
p=(p1,...,pn)

c(p)

subject to 1
↑
p = d , p ↬ 0

(vector form)
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Convexity

t = 0 t = 1
x ↓ x ↓↓

tx ↓ + (1→ t)x ↓↓

x ↓ x ↓↓

tx ↓ + (1→ t)x ↓↓

Convex set

x→ ↑ C & x→→ ↑ C ↓ tx→ + (1 ↔ t)x→→ ↑ C ↗t ↑ [0, 1]

Convex function

f (tx→ + (1 ↔ t)x→→) ↫ tf (x→) + (1 ↔ t)f (x→→) ↗t ↑ [0, 1]
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Which set is convex?

↭ The hexagon, which includes its boundary (shown darker), is convex

↭ The kidney-like set is not convex; the line connecting two dots is outside the set

↭ The square contains some boundary points but not others, and is not convex
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Convex hulls

The convex hulls of two sets in R2

↭ The convex hull of a set of fifteen points (shown as dots) is the pentagon

↭ The convex hull of the kidney shaped set is the shaded set

↭ The optimal solution is often at the boundary of the feasible region ↘ sometimes,
convex hull is a good approximation of the original non-convex problem

↭ Convex hulls can be used for electricity pricing (more on this later)
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Common convex sets and functions

halfspace

{x | a↑x ↫ b}
polyhedron

{x | Ax ↫ b}

ellipsoid

{xc + Au | ≃u≃2 ↫ 1}

↭ A!ne functions

f (x) = a
↑
x+ b

↭ Norms

f (x) = ≃x→ c≃

↭ Quadratic functions

f (x) = x
↑
Ax+ b

↑
x, A ⇐ 0 (positive semidefinite)
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Operations that preserve convexity

↭ nonnegative multiple: f (x) is convex, ω ↬ 0 =↘ ωf (x) is convex

↭ finite sum: f1(x), f2(x) are convex =↘ f1(x) + f2(x) is convex

↭ pointwise maximum: f1(x), f2(x) are convex =↘ max{f1(x), f2(x)} is convex

↭ partial minimization: if f (x, y) is convex in (x, y) and C is a convex set, then

g(x) = min
y→C

f (x, y) is convex

↭ a!ne transformation of domain: f (x) is convex =↘ f (Ax+ b) is convex
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Is economic dispatch a convex problem?

minimize
p

p
↑
Ap+ b

↑
p

subject to 1
↑
p = d , p ↬ 0

p1 p2 pn

d

. . .

↭ Power balance constraint h(p) = 1↑p→ d

↑t ↓ [0, 1], h(tp↓ + (1→ t)p↓↓) = 1
↑(tp↓ + (1→ t)p↓↓)→ d

= t1↑p
↓ + (1→ t)1↑p

↓↓ → td → (1→ t)d

= th(p↓) + (1→ t)h(p↓↓)

↭ Non-negative generation bound p ↬ 0 (read as p ↓ Rn
+ ):

↭ Two points p
→, p→→ ↬ 0 ↑ Rn

+

↭ For all t ↑ [0, 1], t · p→ + (1 ↔ t) · p→→ ↑ Rn
+ =↓ convex

↭ Objective function:

↭ If A ↘ 0 (positive semidefinite), then p
↑
Ap is convex quadratic

↭ The sum of convex quadratic and convex a”ne functions is also convex

↭ What if we add extra constraints, e.g., pmin ↫ p ↫ pmax?
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Local and global optimal solutions

Consider a problem
min
x→C

c(x)

Definitions

↭ x ↓ C is the locally optimal if there exists an r > 0 such that

for all y ↓ C with ≃y → x≃ ↫ r =↘ c(x) ↫ c(y)

↭ x ↓ C is the global optimal (or simply optimal) if

for all y ↓ C =↘ c(x) ↫ c(y)

Important properties

1 For convex problems, any local solution is also global

2 If additionally c(x) is strictly convex, there is at most one minimum

3 The optimal set Copt is convex

30 / 34



Restriction and relaxation

original problem

cω = minimize
x

c(x)

subject to x ↓ C

new problem

c̃ω = minimize
x

c(x)

subject to x ↓ C̃

The new problem is

↭ relaxation if C ⇒ C̃ =↘ c̃ω ↫ cω

↭ restriction if C̃ ⇒ C =↘ cω ↫ c̃ω

relaxation

original

restriction

Example: If C is non-convex, let C̃ be the convex hull of C. We can solve the new
problem to obtain a lower bound c̃ω on the original problem’s objective function cω

↭ relaxation may result in an infeasible solution to the original problem, i.e., x̃ω /↓ C
↭ restriction always results in feasible but suboptimal solution, i.e., cω ↫ c̃ω
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Literature & resources

https://web.stanford.edu/~boyd/cvxbook/

↭ Lecture slides

↭ Book free to download

↭ Code and toolboxes (CVX)

↭ Exercises

↭ Open online course
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Tutorial: Economic dispatch optimization in Julia

Problem we intend to solve

minimize
p

p
↑
Ap+ b

↑
p

subject to 1
↑
p = d , p ↬ 0

Look for tutorial 1 ED.ipynb on Canvas ⇑ Files ⇑ Tutorials
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