ECE 598 Computational Power Systems

Intro

Vladimir Dvorkin

University of Michigan

Power grid

Past: dominated by conventional gen, predictable, less control opportunities
Present & future: renewables, hard to predict but plenty of control opportunities

Power grid

Past: dominated by conventional gen, predictable, less control opportunities
Present & future: renewables, hard to predict but plenty of control opportunities

Many problems in power systems are optimization problems

 $\min_{\mathbf{x}\in\mathbb{R}^n}$ $c(\mathbf{x})$ subject to $g(\mathbf{x}) \leq \mathbf{0}$

- Vector x of decision variables (dispatch, prices, voltage)
- Cost function $c(\mathbf{x})$ (gen cost, -profit, forecast error)
- Constraint function $g(\mathbf{x})$ (gen, trans, voltage limits)

The optimal decision \mathbf{x}^* minimizes the cost and satisfies all constraints

non-convex optimization [Amini]

Decision-making timeline in power systems

- Decisions from year to minutes ahead of operation
- Each decision here can be computed by solving an optimization problem
- Each problem has input data, objective function, constraints and algorithm

Some challenges in modern power systems

8

5 / 34

A room full of power systems experts

Look around you, form teams of 3 people

You are the team of experts in grid optimization

Select one person that is responsible for

- keeping time
- ensuring everyone in the team contributes
- representing the team, sharing your responses

Use 5 minutes to discuss what competences you bring to the team

Grid engineering: phasor analysis, 3ϕ -systems, transformers, power transmission, ...

- **Power flow analysis:** per unit modeling, Newton-Raphson, fast decoupled power flow, ...
- **Control:** droop and load frequency control, reactive power compensation, dynamics, ...
- Optimization: linear, quadratic, non-linear optimization, relaxation, decomposition, ...
- Analytics & ML: forecasting, classification, risk management, ...
- Get ready to work as a team for the next 45 minutes

We will go through all cases one by one

For each case, I will describe the problem and the optimization challenge

Set up an optimization problem:

- What is the optimization data?
- What are the decision variables?
- What are the cost fun and constraints?
- Which method/algorithm to use?

Discuss how to tackle the challenge with your team's competence

- Do you think you have the necessary competences?
- Would you take up the challenge?
- If yes, what methods would you use?
- If no, what's blocking you?

Quick! 3 minutes per case

Case 1: Distribution grid control

- Distribution grid with a large penetration of rooftop PV panels
- In cloudy weather, the operator struggles to maintain voltage within limits
- Tap-changing transformers and capacitor tanks can control voltage during the day
- **Goal:** devise optimization problem to assist with the voltage control problem

Case 2: Carbon-aware data center dispatch

- Large language models (LLMs) requires a lot of power for training and inference
- Space-time allocation of LLM workloads defines their emission footprint
- **Goal:** optimization for carbon-aware allocation of LLM workloads in the grid

Case 3: Renewable power forecasting

- Wind power producers sell energy one day ahead of real-time delivery
- Real-time penalty for any forecast errors are very expensive, but asymmetric
- **Goal:** optimization for wind power producers to improve their financial standing

Case 4: EV aggregator and frequency regulation market

- EV charging company must ensure full charge by a specific time
- The company can use the plugged EVs for frequency regulation
- The frequency regulation market pays for fast (dis)charging response to grid signal
- Goal: devise revenue-maximizing optimization for EV aggregators

Case 5: Portfolio optimization for large electricity consumers

- Refinery company is a large electricity consumer
- The company can purchase power on the sport market with hourly-varying prices
- Or make a bilateral power purchasing agreement with the price fixed for one year
- The spot and bilateral power purchasing can be made in some proportion
- **Goal:** devise optimization problem for the management of the company

Case 6: Cross-border grid coordination

- New York (USA) enjoys hydro power from Québec (CA)
- The NY and Quebec system operators are in charge of operating their own grids
- They wish to operate at the minimum of dispatch cost ...
 - ... but they can't share their grid models (classified information)
- **Goal:** develop grid coordination model with minimum data exchange

Case 7: Offshore wind farm layout

Wind turbines create turbulence that disrupts the airflow around nearby turbines
Array cables connect individual turbines; they can not overlap (expansive, unsafe)
The wind farm design must thus account for both air and underwater effects
Goal: devise optimization for designing offshore wind farm from scratch

Case 8: Power grid decarbonization

- Power grid is the second largest source of greenhouse gas emissions in the US
- The public pressures to significantly reduce the emission footprint by 2050
- Goal: Device an optimization problem for scheduling decarbonization and meeting emission targets by 2050. What inherent uncertainties to include?

UptiML group

Vladimir Dvorkin dvorkin@umich.edu web.eecs.umich.edu/~dvorkin/

Xinwei Lui

Milad Hoseinpour

Shengyang Wu

- Prescriptive analytics: Prescribing optimization data to enhance decisions (e.g., revenue-optimal wind power forecast)
- Energy data privacy: Releasing critical grid data with privacy and cyber resiliency guarantees for the source grid
- Trustworthy & fair ML: Embedding physical and societal constraints into ML models applied to cyber-physical systems

Let's speak if you are interested in these problems

Course logistics

1005 DOW, Friday 10:30 am – 1:30 pm EST

- Lectures, followed by tutorials and in-class activities
- In-person, remote only if absolutely necessary to move class online

Office Hours: Wednesday 2:00 to 3:30 PM

Canvas

- Files: slides, homeworks, templates, literature
- Video recordings, scribed whiteboard notes
- Announcements

Piazza

- To build a UofM community on computational power systems
- Engage by asking questions related to homeworks, projects, presentations,
- Share interesting academic works, industry news, opportunities, ideas, etc.

Grading (3 credit)

- Homework (30%):
 - \blacksquare \approx 5-6 homework assignments
 - Drop-off of the lowest grade of all homework assignments
- Project (30%):
 - Work in groups of 2 people
 - 6-page report and in-class presentation
 - Proposal should be approved by the instructor
- Paper review & presentation (10%)
- Lecture notes (5%):
 - Sign up to scribe at least 2 lectures
 - Using LATEX template available on canvas
 - Extra 5% for the whole lecture series
 - Link to ex. 1, link to ex. 2, link to ex. 3
- Quizzes (4%)
- Course evaluation (1%)
- Final exam (20%)
- Active participation on Piazza (up to extra 4%)

Tentative topics

Intro to modern power system optimization

- Optimization for operational planning of power systems
- Optimization for wholesale and local electricity markets
- Optimization for distribution grid control
- Selected machine learning applications in power systems

Decentralized/distributed optimization of power systems

- Introduction to decentralized/distributed optimization algorithms
- Distributed algorithms for voltage control in distribution grids
- Decentralized optimization of wholesale electricity markets
- Distributed optimization of local electricity markets
- Distributed learning for renewable power forecasting

Prescriptive analytics for power systems

- Decision value of renewable power forecast (predict-then-optimize)
- Decision-focused renewable power forecasting (smart predict-then-optimize)
- End-to-end learning with custom gradient-based algorithms
- Verification of machine learning models applied to power systems

Test quizz: Log in to iClicker and chose any options below

INFORMATION AND TECHNOLOGY SERVICES

List four stereotypical quotes from friends on Facebook

Sure! Here are four stereotypical quotes that you might often see friends sharing on Facebook:

- A Live, Laugh, Love
- **B** Do what makes you happy
- C Family is everything
- D Good vibes only

Mathematical optimization

Mathematical optimization problem

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & c(\mathbf{x}) \\ \text{subject to} & g_i(\mathbf{x}) \leqslant 0, \quad \forall i = 1, \dots, m \\ & h_j(\mathbf{x}) = 0, \quad \forall j = 1, \dots, p \end{array} \qquad (\begin{array}{ll} \text{inequality constraints} \\ \text{(equality constraints)} \end{array}$$

x =
$$(x_1, ..., x_n) \in \mathbb{R}^n$$
 is the vector of decision variable
c : $\mathbb{R}^n \mapsto \mathbb{R}$ is the objective or cost function
constraint functions $g_i : \mathbb{R}^n \mapsto \mathbb{R}$ and $h_j : \mathbb{R}^n \mapsto \mathbb{R}$

feasible set: the set of decision variables satisfying all constraints

$$\mathcal{X} = \{\mathbf{x} : g_i(\mathbf{x}) \leqslant 0, \forall i = 1, \dots, m, h_j(\mathbf{x}) = 0, \forall j = 1, \dots, p\}$$

A simple example

$$\begin{array}{ll} \underset{x}{\text{minimize}} & (x_1 - 2)^2 + (x_2 - 1)^2 \\ \text{subject to} & x_1^2 - x_2 \leqslant 0 \\ & x_1 + x_2 \leqslant 2 \end{array}$$

Economic dispatch optimization

■ *n* generators supplying a single load *d* [MW]

- dispatch decision for unit i is p_i [MW]
- generation cost for unit *i* is $c_i(p_i)$ [\$]

Problem: find the most economical power schedule

$$\begin{array}{ll} \underset{p_1,\ldots,p_n}{\text{minimize}} & \sum_{i=1}^n c_i(p_i) \\ \text{subject to} & \sum_{i=1}^n p_i = d \\ & p_i \ge 0, \ \forall i = 1,\ldots,n \end{array}$$

(algebraic form)

 $\begin{array}{ll} \underset{\mathbf{p}=(p_1,\ldots,p_n)}{\text{minimize}} & c(\mathbf{p}) \\\\ \text{subject to} & \mathbf{1}^\top \mathbf{p} = d, \ \mathbf{p} \geqslant \mathbf{0} \end{array}$

(vector form)

Convexity

Convex set

$$x' \in \mathcal{C} \And x'' \in \mathcal{C} \implies tx' + (1-t)x'' \in \mathcal{C} \quad \forall t \in [0,1]$$

Convex function

$$f(tx' + (1 - t)x'') \leq tf(x') + (1 - t)f(x'') \quad \forall t \in [0, 1]$$

Which set is convex?

Which set is convex?

- The hexagon, which includes its boundary (shown darker), is convex
- The kidney-like set is not convex; the line connecting two dots is outside the set
- The square contains some boundary points but not others, and is not convex

Convex hulls

The convex hulls of two sets in \mathbb{R}^2

- The convex hull of a set of fifteen points (shown as dots) is the pentagon
- The convex hull of the kidney shaped set is the shaded set
- The optimal solution is often at the boundary of the feasible region ⇒ sometimes, convex hull is a good approximation of the original non-convex problem
- Convex hulls can be used for electricity pricing (more on this later)

Common convex sets and functions

Affine functions

$$f(\mathbf{x}) = \mathbf{a}^{\top}\mathbf{x} + \mathbf{b}$$

Norms

 $f(\mathbf{x}) = \|\mathbf{x} - \mathbf{c}\|$

Quadratic functions

 $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b}^{\top} \mathbf{x}, \quad \mathbf{A} \succeq 0$ (positive semidefinite)

Operations that preserve convexity

nonnegative multiple: $f(\mathbf{x})$ is convex, $\alpha \ge 0 \implies \alpha f(\mathbf{x})$ is convex

finite sum: $f_1(\mathbf{x}), f_2(\mathbf{x})$ are convex $\implies f_1(\mathbf{x}) + f_2(\mathbf{x})$ is convex

pointwise maximum: $f_1(\mathbf{x}), f_2(\mathbf{x})$ are convex $\implies \max\{f_1(\mathbf{x}), f_2(\mathbf{x})\}$ is convex

partial minimization: if $f(\mathbf{x}, \mathbf{y})$ is convex in (\mathbf{x}, \mathbf{y}) and C is a convex set, then

$$g(\mathbf{x}) = \min_{\mathbf{y} \in \mathcal{C}} f(\mathbf{x}, \mathbf{y})$$
 is convex

affine transformation of domain: $f(\mathbf{x})$ is convex \implies $f(\mathbf{A}\mathbf{x} + \mathbf{b})$ is convex

Is economic dispatch a convex problem?

 $\label{eq:product} \begin{array}{ll} \underset{p}{\text{minimize}} & \mathbf{p}^\top \mathbf{A} \mathbf{p} + \mathbf{b}^\top \mathbf{p} \\ \\ \text{subject to} & \mathbf{1}^\top \mathbf{p} = d, \; \mathbf{p} \geqslant \mathbf{0} \end{array}$

Is economic dispatch a convex problem?

 $\begin{array}{ll} \underset{p}{\text{minimize}} & \mathbf{p}^\top \mathbf{A} \mathbf{p} + \mathbf{b}^\top \mathbf{p} \\\\ \text{subject to} & \mathbf{1}^\top \mathbf{p} = d, \ \mathbf{p} \geqslant \mathbf{0} \end{array}$

Derived Power balance constraint $h(\mathbf{p}) = \mathbf{1}^{\top}\mathbf{p} - d$

$$\forall t \in [0,1], \quad h(t\mathbf{p}' + (1-t)\mathbf{p}'') = \mathbf{1}^{\top}(t\mathbf{p}' + (1-t)\mathbf{p}'') - d \\ = t\mathbf{1}^{\top}\mathbf{p}' + (1-t)\mathbf{1}^{\top}\mathbf{p}'' - td - (1-t)d \\ = th(\mathbf{p}') + (1-t)h(\mathbf{p}'')$$

■ Non-negative generation bound $\mathbf{p} \ge \mathbf{0}$ (read as $\mathbf{p} \in \mathbb{R}^n_+$):

Two points
$$\mathbf{p}', \mathbf{p}'' \ge \mathbf{0} \in \mathbb{R}^n_+$$

For all $t \in [0, 1], \quad t \cdot \mathbf{p}' + (1 - t) \cdot \mathbf{p}'' \in \mathbb{R}^n_+ \implies \text{ convex}$

Objective function:

If $\mathbf{A} \succeq 0$ (positive semidefinite), then $\mathbf{p}^{\top} \mathbf{A} \mathbf{p}$ is convex quadratic

The sum of convex quadratic and convex affine functions is also convex

 \blacksquare What if we add extra constraints, e.g., $p^{\text{min}} \leqslant p \leqslant p^{\text{max}}?$

Local and global optimal solutions

Consider a problem

$$\min_{\mathbf{x}\in\mathcal{C}} c(\mathbf{x})$$

Definitions

I $\mathbf{x} \in \mathcal{C}$ is the locally optimal if there exists an r > 0 such that

for all
$$\mathbf{y} \in \mathcal{C}$$
 with $\|\mathbf{y} - \mathbf{x}\| \leqslant r \implies c(\mathbf{x}) \leqslant c(\mathbf{y})$

I $\mathbf{x} \in C$ is the global optimal (or simply optimal) if

for all
$$\mathbf{y} \in \mathcal{C} \implies c(\mathbf{x}) \leqslant c(\mathbf{y})$$

Important properties

- For convex problems, any local solution is also global
- **2** If additionally $c(\mathbf{x})$ is strictly convex, there is at most one minimum
- **3** The optimal set C_{opt} is convex

Restriction and relaxation

Example: If C is non-convex, let \tilde{C} be the convex hull of C. We can solve the new problem to obtain a lower bound \tilde{c}^* on the original problem's objective function c^*

relaxation may result in an infeasible solution to the original problem, i.e., x^{*} ∉ C
 restriction always results in feasible but suboptimal solution, i.e., c^{*} ≤ č^{*}

Literature & resources

https://web.stanford.edu/~boyd/cvxbook/

- Lecture slides
- Book free to download
- Code and toolboxes (CVX)
- Exercises
- Open online course

Stephen Boyd and Lieven Vandenberghe

Convex Optimization

CAMBRIDGE

Tutorial: Economic dispatch optimization in Julia

Problem we intend to solve

 $\begin{array}{ll} \underset{p}{\text{minimize}} & p^{\top} \mathbf{A} \mathbf{p} + \mathbf{b}^{\top} \mathbf{p} \\\\ \text{subject to} & \mathbf{1}^{\top} \mathbf{p} = d, \; \mathbf{p} \geqslant \mathbf{0} \end{array}$

function ed.get(data)
sould size
n = length(data(tb))
s cract = Jupe Model
model = Model(1) >> Iop(.dptinise())
model = Model(1) >> Iop(.dptinise())
objective function
objective function
objective function
contrain(toods, yon, yon a to the statist)
objective function
objective functi

Look for tutorial_1_ED.ipynb on Canvas \gg Files \gg Tutorials